JP6344088B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP6344088B2
JP6344088B2 JP2014130490A JP2014130490A JP6344088B2 JP 6344088 B2 JP6344088 B2 JP 6344088B2 JP 2014130490 A JP2014130490 A JP 2014130490A JP 2014130490 A JP2014130490 A JP 2014130490A JP 6344088 B2 JP6344088 B2 JP 6344088B2
Authority
JP
Japan
Prior art keywords
groove
lug
tire
lug groove
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014130490A
Other languages
Japanese (ja)
Other versions
JP2016007973A (en
Inventor
政明 長安
政明 長安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2014130490A priority Critical patent/JP6344088B2/en
Publication of JP2016007973A publication Critical patent/JP2016007973A/en
Application granted granted Critical
Publication of JP6344088B2 publication Critical patent/JP6344088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Tires In General (AREA)

Description

本発明は、空気入りタイヤに関し、更に詳しくは、高い排水性能を維持してウェット路面における走行性能(ウェット性能)を充分に確保する一方で、通過音を抑制することで騒音性能を向上し、且つ、乾燥路面における操縦安定性能(ドライ性能)を高度に維持することを可能にした空気入りタイヤに関する。   The present invention relates to a pneumatic tire, and more specifically, while maintaining high drainage performance and sufficiently ensuring running performance (wet performance) on a wet road surface, noise performance is improved by suppressing passing sound, In addition, the present invention relates to a pneumatic tire that can maintain a high steering stability performance (dry performance) on a dry road surface.

従来の空気入りタイヤでは、雨などで濡れた路面での走行性能(ウェット性能)を確保するため、排水性能の向上が重要な要素となることから、一般的にタイヤ周方向に延びるストレート主溝を形成することにより排水性能の向上を図っている。しかしながら、このようなストレート主溝は、気柱共鳴音の抑制が困難であり、騒音の低減を図ることが困難であるという問題がある。そこで、形状の異なる複数本の主溝を設けることにより、排水性能を維持しながら気柱共鳴音の発生を抑制して、ウェット性能と騒音性能とを両立させることが提案されている。   In conventional pneumatic tires, the straight main grooves that generally extend in the tire circumferential direction are important because it is important to improve drainage performance in order to ensure driving performance (wet performance) on road surfaces wet with rain. The drainage performance is improved by forming. However, such a straight main groove has a problem in that it is difficult to suppress air column resonance and it is difficult to reduce noise. Thus, it has been proposed to provide both the wet performance and the noise performance by providing a plurality of main grooves having different shapes to suppress the generation of air column resonance while maintaining the drainage performance.

例えば、特許文献1に記載された空気入りタイヤでは、ストレート主溝をタイヤ赤道上に配置し、このストレート主溝のタイヤ幅方向両側に複数の弧状溝がタイヤ周方向に連続的に繰り返すように形成された弧状湾曲主溝を配置すると共に、この弧状湾曲主溝のタイヤ幅方向外側に溝幅の狭い補助溝を配置し、更に、この補助溝を斜めに横切るように複数の傾斜溝を配置している。このようにトレッドパターンを構成することで、排水性能を確保してウェット性能を維持しながら、ストレート主溝に起因する気柱共鳴音の発生を抑制して騒音性能を向上することができる。   For example, in the pneumatic tire described in Patent Document 1, a straight main groove is arranged on the tire equator, and a plurality of arc-shaped grooves are continuously repeated in the tire circumferential direction on both sides of the straight main groove in the tire width direction. An arc-shaped curved main groove formed is arranged, an auxiliary groove having a narrow groove width is arranged outside the arc-shaped curved main groove in the tire width direction, and a plurality of inclined grooves are arranged so as to cross the auxiliary groove diagonally. doing. By configuring the tread pattern in this manner, it is possible to improve the noise performance by suppressing the generation of air column resonance due to the straight main groove while ensuring the drainage performance and maintaining the wet performance.

しかしながら、このようなトレッドパターンを有する空気入りタイヤでは、ストレート主溝に起因する気柱共鳴音の発生を抑制することはできるものの、弧状湾曲主溝や補助溝で発生する気柱共鳴音が高周波ロードノイズとして複数の傾斜溝からタイヤ外側に伝達されることは充分に抑制することができず、充分な騒音性能が得られないという問題がある。   However, in the pneumatic tire having such a tread pattern, although the generation of air column resonance sound due to the straight main groove can be suppressed, the air column resonance sound generated in the arc-shaped curved main groove or auxiliary groove is high frequency. Transmission of road noise as a road noise from a plurality of inclined grooves to the outside of the tire cannot be sufficiently suppressed, and there is a problem that sufficient noise performance cannot be obtained.

特開2004−168142号公報JP 2004-168142 A

本発明の目的は、高い排水性能を維持してウェット路面における走行性能(ウェット性能)を充分に確保する一方で、通過音を抑制することで騒音性能を向上し、且つ、乾燥路面における操縦安定性能(ドライ性能)を高度に維持することを可能にした空気入りタイヤを提供することにある。   The object of the present invention is to maintain high drainage performance and ensure sufficient running performance (wet performance) on wet road surfaces, while improving noise performance by suppressing passing sound and stable steering on dry road surfaces. The object is to provide a pneumatic tire capable of maintaining high performance (dry performance).

上記目的を達成するための本発明の空気入りタイヤは、トレッド面におけるタイヤ赤道の両側にタイヤ周方向に延びる複数本の主溝が設けられ、該複数本の主溝により複数列の陸部が区画形成された空気入りタイヤにおいて、前記複数本の主溝のうちタイヤ幅方向最外側に位置する最外側主溝のタイヤ幅方向外側に位置するショルダー陸部にタイヤ幅方向に延びる複数本の第1ラグ溝とタイヤ幅方向に延びる複数本の第2ラグ溝とを設け、前記複数本の第1ラグ溝の一端部を前記最外側主溝に連通させる一方で前記複数本の第1ラグ溝の他端部をタイヤ接地端に到達させずに前記ショルダー陸部内で終端させ、前記複数本の第2ラグ溝の一端部を前記最外側主溝に到達させずに前記ショルダー陸部内で終端させる一方で前記複数本の第2ラグ溝の他端部を前記タイヤ接地端を超えて延在させ、前記複数本の第1ラグ溝の他端部の終端位置どうしをタイヤ周上で一致させると共に前記複数本の第2ラグ溝の一端部の終端位置どうしをタイヤ周上で一致させ、且つ、前記複数本の第1ラグ溝の他端部と前記複数本の第2ラグ溝の一端部とがタイヤ幅方向で重なり代Sを有するように前記複数本の第1ラグ溝と前記複数本の第2ラグ溝とをタイヤ周方向に交互に配置する一方で、前記複数本の第1ラグ溝のそれぞれの延長線上に溝幅が1mm以下で前記複数本の第1ラグ溝の他端部と不連続でタイヤ幅方向に延びるサイプを形成し、前記ショルダー陸部をタイヤ周方向に連続するリブ状に構成したことを特徴とする。 In order to achieve the above object, the pneumatic tire of the present invention is provided with a plurality of main grooves extending in the tire circumferential direction on both sides of the tire equator on the tread surface, and a plurality of rows of land portions are formed by the plurality of main grooves. a pneumatic tire which is defined and formed, first a plurality of extending in the tire width direction in the shoulder land portion located on the outer side in the tire width direction outermost main groove located at the outermost side in the tire width direction of the major groove of the plurality of 1 is provided and a second lug grooves a plurality of extending lug grooves and the tire width direction, the first lug grooves of the plurality of the one end of the first lug groove of the plurality of while communicating to the outermost main groove The other end portion of the plurality of second lug grooves is terminated in the shoulder land portion without reaching the tire ground contact end, and one end portions of the plurality of second lug grooves are terminated in the shoulder land portion without reaching the outermost main groove. while the second lug of the plurality of One end of the other end portion extend beyond the tire ground contact end, was what end position of the other end of the first lug groove of the plurality of causes is matched on the circumference of the tire of the second lug grooves of the plurality of was what end position of the parts are matched on the circumference of the tire, and, said plurality of other end of the first lug grooves and the plurality of second end portion of the lug groove of having cash S overlap in the tire width direction As described above, while the plurality of first lug grooves and the plurality of second lug grooves are alternately arranged in the tire circumferential direction, the groove width is 1 mm on each extension line of the plurality of first lug grooves. In the following, a sipe extending in the tire width direction is formed discontinuously with the other end portions of the plurality of first lug grooves, and the shoulder land portion is configured in a rib shape continuous in the tire circumferential direction.

本発明では、最外側主溝と第1、第2ラグ溝によってショルダー陸部における優れた排水性能を確保してウェット路面での走行安定性能(ウェット性能)を向上することができる。また、最外側主溝とタイヤ接地端との間に存在するラグ溝がショルダー陸部の中腹で途切れている(即ち、形状の異なる第1ラグ溝と第2ラグ溝との2種類のラグ溝が存在する)ことで、最外側主溝で発生した気柱共鳴音が高周波ロードノイズとして複数本のラグ溝を介してタイヤの外側に伝達されることが抑制されるので、騒音性能を向上することができる。このとき、第1ラグ溝の延長線上に溝幅が1mm以下で第1ラグ溝の他端部と不連続でタイヤ幅方向に延びるサイプが形成されているので、第1ラグ溝が接地端に開口していない(第2ラグ溝に対して連通しない)でも排水性能が損なわれることがない。また、ラグ溝ではなく上述のサイプを設けているので、ショルダー陸部の剛性が低下することがなく、ドライ路面における操縦安定性能(ドライ性能)を充分に維持することができる。更に、第1ラグ溝及び第2ラグ溝のそれぞれの終端位置がタイヤ周上で一致し、且つ、第1ラグ溝と第2ラグ溝とに重なり代があり、各ラグ溝の長さが充分に確保されているので、第1ラグ溝と第2ラグ溝とが不連続で、ショルダー陸部を横断して最外側主溝と接地端とを結ぶようなラグ溝が存在しないでも、排水性能が損なわれることがない。また、この第1ラグ溝と第2ラグ溝との重複配置によって、第1ラグ溝及び第2ラグ溝の長さや位置関係が適正化されるので、ウェット性能、ドライ性能、及び、騒音性能とを高度に両立することが可能になる。   In the present invention, excellent drainage performance in the shoulder land portion can be ensured by the outermost main groove and the first and second lug grooves, and the running stability performance (wet performance) on the wet road surface can be improved. Also, the lug groove existing between the outermost main groove and the tire ground contact edge is interrupted in the middle of the shoulder land portion (that is, the two types of lug grooves of the first lug groove and the second lug groove having different shapes). Therefore, the air column resonance generated in the outermost main groove is suppressed from being transmitted to the outside of the tire through a plurality of lug grooves as high-frequency road noise, thus improving the noise performance. be able to. At this time, since the sipe extending in the tire width direction is formed discontinuously with the other end portion of the first lug groove on the extension line of the first lug groove and extending in the tire width direction, the first lug groove becomes the ground contact end. Even if it is not open (it does not communicate with the second lug groove), the drainage performance is not impaired. Further, since the above-described sipes are provided instead of the lug grooves, the rigidity of the shoulder land portion does not decrease, and the steering stability performance (dry performance) on the dry road surface can be sufficiently maintained. Furthermore, the terminal positions of the first lug groove and the second lug groove coincide with each other on the tire circumference, and there is an overlap between the first lug groove and the second lug groove, and the length of each lug groove is sufficient. Even if there is no lug groove where the first lug groove and the second lug groove are discontinuous and the outermost main groove and the grounding end are crossed across the shoulder land, the drainage performance Will not be damaged. Moreover, since the length and positional relationship of the first lug groove and the second lug groove are optimized by the overlapping arrangement of the first lug groove and the second lug groove, the wet performance, the dry performance, and the noise performance Can be achieved at a high level.

本発明では、サイプがタイヤ接地端を超えてタイヤ幅方向外側に延在し、且つ、サイプのタイヤ幅方向長さLsと最外側主溝からタイヤ接地端までの長さLとが0.4×L≦Ls≦1.2×Lの関係を満たすことが好ましい。これにより、サイプがタイヤ接地端に開口し、且つ、充分なサイプ長さが確保されるので、ドライ性能や騒音性能を維持したまま、排水性能を向上することができる。   In the present invention, the sipe extends outward in the tire width direction beyond the tire ground contact edge, and the length Ls of the sipe in the tire width direction and the length L from the outermost main groove to the tire ground contact edge is 0.4. It is preferable to satisfy the relationship of × L ≦ Ls ≦ 1.2 × L. As a result, the sipe opens at the tire ground contact end and a sufficient sipe length is ensured, so that drainage performance can be improved while maintaining dry performance and noise performance.

本発明では、サイプのタイヤ幅方向長さLsと重なり代Sとが0.1×Ls≦S≦0.5×Lsの関係を満たすことが好ましい。これにより、サイプ長さLsと重なり代Sとを適正化することができるので、ウェット性能、ドライ性能、及び、騒音性能を高度に両立するには有利になる。   In the present invention, it is preferable that the length Ls of the sipe in the tire width direction and the overlap margin S satisfy the relationship of 0.1 × Ls ≦ S ≦ 0.5 × Ls. As a result, the sipe length Ls and the overlap margin S can be optimized, which is advantageous in achieving both high wet performance, dry performance, and noise performance.

本発明では、第1ラグ溝の他端部と第2ラグ溝の一端部とが重なり代Sを有する重複領域内において第1ラグ溝の溝深さがその終端部に向かって徐々に小さくなると共に第2ラグ溝の溝深さがその終端部に向かって徐々に小さくなり、第1ラグ溝の最大溝深さD1a及び第2ラグ溝の最大溝深さD2aと、重複領域内の任意の位置における第1ラグ溝の溝深さD1b及び第2ラグ溝の溝深さD2bとが0.2×(D1a+D2a)≦D1b+D2b≦0.8×(D1a+D2a)の関係を満たすことが好ましい。このように第1ラグ溝及び第2ラグ溝の溝深さを変化させることで、第1ラグ溝及び第2ラグ溝を設けてもショルダー陸部の剛性を維持することができ、ドライ性能を維持したままウェット性能を向上するには有利になる。   In the present invention, the groove depth of the first lug groove is gradually reduced toward the end portion in the overlapping region where the other end portion of the first lug groove and the one end portion of the second lug groove have an overlap margin S. In addition, the groove depth of the second lug groove is gradually decreased toward the end portion thereof, and the maximum groove depth D1a of the first lug groove and the maximum groove depth D2a of the second lug groove are arbitrarily set in the overlapping region. It is preferable that the groove depth D1b of the first lug groove and the groove depth D2b of the second lug groove satisfy the relationship of 0.2 × (D1a + D2a) ≦ D1b + D2b ≦ 0.8 × (D1a + D2a). By changing the groove depth of the first lug groove and the second lug groove in this way, the rigidity of the shoulder land portion can be maintained even if the first lug groove and the second lug groove are provided, and the dry performance is improved. It is advantageous to improve the wet performance while maintaining.

本発明では、重なり代Sと、第1ラグ溝の最大溝深さD1aと、第2ラグ溝の最大溝深さD2aとが0.8×D1a≦S≦2×D1a又は0.8×D2a≦S≦2×D2aの関係を満たすことが好ましい。これにより、重なり代Sと第1ラグ溝及び第2ラグ溝の溝深さとを適正化して、ショルダー陸部の剛性を維持することができ、ドライ性能を維持したままウェット性能を向上するには有利になる。   In the present invention, the overlap margin S, the maximum groove depth D1a of the first lug groove, and the maximum groove depth D2a of the second lug groove are 0.8 × D1a ≦ S ≦ 2 × D1a or 0.8 × D2a. It is preferable to satisfy the relationship of ≦ S ≦ 2 × D2a. Thereby, the overlap margin S and the groove depth of the first lug groove and the second lug groove can be optimized to maintain the rigidity of the shoulder land portion, and to improve the wet performance while maintaining the dry performance. Become advantageous.

本発明では、最外側主溝のタイヤ幅方向内側に隣接する中間陸部に第3ラグ溝を設け、この第3ラグ溝の一端部を中間陸部内で終端させる一方で第3ラグ溝の他端部を最外側主溝に連通させ、第3ラグ溝の他端部の最外側主溝との連通位置をタイヤ周方向に隣接する第1ラグ溝の一端部の最外側主溝との連通位置間に配置することが好ましい。これにより、第3ラグ溝による排水性能を確保してウェット性能を更に向上しながら、その配置の適正化によりドライ性能を高度に維持することができる。   In the present invention, a third lug groove is provided in an intermediate land portion adjacent to the inner side in the tire width direction of the outermost main groove, and one end portion of the third lug groove is terminated in the intermediate land portion, while the third lug groove The end portion communicates with the outermost main groove, and the communication position with the outermost main groove at the other end of the third lug groove communicates with the outermost main groove at one end portion of the first lug groove adjacent in the tire circumferential direction. It is preferable to arrange between positions. Thereby, while ensuring the drainage performance by the 3rd lug groove and improving wet performance further, dry performance can be maintained highly by optimization of the arrangement.

このとき、第3ラグ溝の最外側主溝との連通位置での溝深さD3cと最外側主溝の溝深さGDとが0.4×GD≦D3c≦0.8×GDの関係を満たすことが好ましい。このように第3ラグ溝が最外側主溝に連通する位置に底上げを施すことで、第3ラグ溝の増加に伴って中間陸部の剛性が低下することを抑制することができるので、ドライ性能を高度に維持するには有利になる。   At this time, the groove depth D3c at the communication position with the outermost main groove of the third lug groove and the groove depth GD of the outermost main groove have a relationship of 0.4 × GD ≦ D3c ≦ 0.8 × GD. It is preferable to satisfy. By raising the bottom at the position where the third lug groove communicates with the outermost main groove in this way, it is possible to suppress a decrease in rigidity of the intermediate land portion with an increase in the third lug groove. It is advantageous to maintain high performance.

本発明では、第1ラグ溝の最外側主溝との連通位置での溝深さD1cと最外側主溝の溝深さGDとが0.4×GD≦D1c≦0.8×GDの関係を満たすことが好ましい。このように第1ラグ溝が最外側主溝に連通する位置に底上げを施すことで、第1ラグ溝によってショルダー陸部の剛性が低下することを抑制することができるので、ドライ性能を高度に維持するには有利になる。   In the present invention, the relationship between the groove depth D1c at the communication position of the first lug groove with the outermost main groove and the groove depth GD of the outermost main groove is 0.4 × GD ≦ D1c ≦ 0.8 × GD. It is preferable to satisfy. Since the first lug groove is raised at the position where the first lug groove communicates with the outermost main groove in this way, it is possible to suppress the rigidity of the shoulder land portion from being lowered by the first lug groove. It is advantageous to maintain.

本発明では、第1ラグ溝の他端部と第2ラグ溝の一端部との間のタイヤ周方向の距離が5mm以上15mm以下であることが好ましい。このように第1ラグ溝及び第2ラグ溝の間隔を設定することで、ショルダー陸部の剛性を適正化することができ、ウェット性能、ドライ性能、及び、騒音性能を高度に両立するには有利になる。   In this invention, it is preferable that the distance of the tire circumferential direction between the other end part of a 1st lug groove and the one end part of a 2nd lug groove is 5 mm or more and 15 mm or less. By setting the distance between the first lug groove and the second lug groove in this way, the rigidity of the shoulder land portion can be optimized, and in order to achieve both high wet performance, dry performance, and noise performance. Become advantageous.

尚、本発明において、タイヤ接地端とは、タイヤを正規リムにリム組みして正規内圧を充填した状態で平面上に垂直に置いて正規荷重を加えたときのタイヤ軸方向の端部である。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE ROAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”であるが、タイヤが乗用車である場合には180kPaとする。「正規荷重」は、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている荷重であり、JATMAであれば最大負荷能力、TRAであれば表“TIRE ROAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“LOAD CAPACITY”であるが、タイヤが乗用車である場合には前記荷重の88%に相当する荷重とする。   In the present invention, the tire ground contact end is an end in the tire axial direction when a normal load is applied by placing the tire on a normal rim and filling the normal internal pressure in a vertical state on a plane. . The “regular rim” is a rim determined for each tire in the standard system including the standard on which the tire is based, for example, a standard rim for JATMA, “Design Rim” for TRA, or ETRTO. Then, “Measuring Rim” is set. “Regular internal pressure” is the air pressure that each standard defines for each tire in the standard system including the standard on which the tire is based. The maximum air pressure is JATMA, and the table “TIRE ROAD LIMITS AT VARIOUS” is TRA. The maximum value described in “COLD INFRATION PRESURES”, “INFLATION PRESURE” for ETRTO, but 180 kPa when the tire is a passenger car. “Regular load” is a load determined by each standard for each tire in the standard system including the standard on which the tire is based. The maximum load capacity is JATMA, and the table “TIRE ROAD LIMITS AT VARIOUS” is TRA. The maximum value described in “COLD INFORATION PRESSURES” is “LOAD CAPACITY” if it is ETRTO, but if the tire is a passenger car, the load is equivalent to 88% of the load.

本発明の実施形態からなる空気入りタイヤの子午線断面図である。1 is a meridian cross-sectional view of a pneumatic tire according to an embodiment of the present invention. 本発明の実施形態からなる空気入りタイヤのトレッド面を示す正面図である 。1 is a front view showing a tread surface of a pneumatic tire according to an embodiment of the present invention. 第1ラグ溝、第2ラグ溝、及び、第3ラグ溝の構造を説明する断面図である 。It is sectional drawing explaining the structure of a 1st lug groove, a 2nd lug groove, and a 3rd lug groove.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。尚、以下の説明において、タイヤ幅方向とは、空気入りタイヤの回転軸と平行な方向であり、タイヤ幅方向内側とは、タイヤ幅方向においてタイヤ赤道に向かう方向であり、タイヤ幅方向外側とは、タイヤ幅方向においてタイヤ赤道に向かう方向の反対方向である。また、タイヤ径方向とは、空気入りタイヤの回転軸と直交する方向であり、タイヤ周方向とは、空気入りタイヤの回転軸を回転の中心として回転する方向である。更に、車両内側とは、空気入りタイヤを正規リムにリム組みして車体に装着したとき、この車体の内側に位置する方向であり、車両外側とは、このとき、車体の外側に位置する方向である。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. In the following description, the tire width direction is a direction parallel to the rotation axis of the pneumatic tire, and the inner side in the tire width direction is the direction toward the tire equator in the tire width direction, and the outer side in the tire width direction. Is the direction opposite to the direction toward the tire equator in the tire width direction. Further, the tire radial direction is a direction orthogonal to the rotation axis of the pneumatic tire, and the tire circumferential direction is a direction of rotation about the rotation axis of the pneumatic tire. Further, the vehicle inner side is a direction that is located inside the vehicle body when a pneumatic tire is assembled to a regular rim and mounted on the vehicle body, and the vehicle outer side is a direction that is located outside the vehicle body at this time. It is.

図1において、符号CLはタイヤ赤道を表わす。本発明の空気入りタイヤTは、トレッド部1、サイドウォール部2、ビード部3から構成される。左右一対のビード部3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りに車両内側から外側に折り返されている。また、ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部と折り返し部とにより包み込まれている。一方、トレッド部1におけるカーカス層4の外周側には複数層(図1では2層)のベルト層7,8が埋設されている。各ベルト層7,8は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。これらベルト層7,8において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°〜40°の範囲に設定されている。更に、ベルト層7,8の外周側にはベルト補強層9が設けられている。ベルト補強層9は、タイヤ周方向に配向する有機繊維コードを含む。ベルト補強層9において、有機繊維コードはタイヤ周方向に対する角度が例えば0°〜5°に設定されている。   In FIG. 1, the symbol CL represents the tire equator. The pneumatic tire T of the present invention includes a tread portion 1, a sidewall portion 2, and a bead portion 3. A carcass layer 4 is mounted between the pair of left and right bead portions 3. The carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back around the bead core 5 disposed in each bead portion 3 from the vehicle inner side to the outer side. A bead filler 6 is disposed on the outer periphery of the bead core 5, and the bead filler 6 is wrapped by the main body portion and the folded portion of the carcass layer 4. On the other hand, a plurality of layers (two layers in FIG. 1) of belt layers 7 and 8 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. Each of the belt layers 7 and 8 includes a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and is disposed so that the reinforcing cords cross each other between the layers. In these belt layers 7 and 8, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set, for example, in a range of 10 ° to 40 °. Further, a belt reinforcing layer 9 is provided on the outer peripheral side of the belt layers 7 and 8. The belt reinforcing layer 9 includes an organic fiber cord oriented in the tire circumferential direction. In the belt reinforcing layer 9, the organic fiber cord has an angle with respect to the tire circumferential direction set to, for example, 0 ° to 5 °.

本発明は、このような一般的な空気入りタイヤに適用されるが、その断面構造は上述の基本構造に限定されるものではない。   The present invention is applied to such a general pneumatic tire, but its cross-sectional structure is not limited to the basic structure described above.

図2に示すように、トレッド部1の外表面であるトレッド面10には、タイヤ周方向に延びる複数本の主溝、具体的には、タイヤ赤道CLの両側に位置する1対の第1主溝11と、この第1主溝のタイヤ幅方向外側に位置する1対の第2主溝12が設けられている。図2の例では、第1主溝11及び第2主溝12は共に、タイヤ赤道CLと平行なストレート主溝となっている。図2の例では、複数本の主溝のうち第2主溝12がタイヤ幅方向最外側に位置する最外側主溝である。主溝はタイヤ赤道CL側に近付いた位置に設けることが排水性を向上するには有利であるため、タイヤ赤道CLからタイヤ幅方向最外側の主溝(図2の場合、第2主溝12)の外側側壁までの長さL0が、タイヤ赤道CLから一方の接地端Eまでの長さ、即ち、接地幅TWの1/2(つまり、TW/2)に対して、0.3×(TW/2)≦L0≦0.6×(TW/2)、好ましくは、0.33×(TW/2)≦L0≦0.55×(TW/2)の関係を満たすようにすることが好ましい。また、最外側主溝(第2主溝12)の溝幅は、例えば5mm以上20mm以下に設定することがウェット性能と騒音性能を両立するには好ましい。   As shown in FIG. 2, the tread surface 10 that is the outer surface of the tread portion 1 has a plurality of main grooves extending in the tire circumferential direction, specifically, a pair of first grooves positioned on both sides of the tire equator CL. A main groove 11 and a pair of second main grooves 12 located on the outer side in the tire width direction of the first main groove are provided. In the example of FIG. 2, the first main groove 11 and the second main groove 12 are both straight main grooves parallel to the tire equator CL. In the example of FIG. 2, the second main groove 12 among the plurality of main grooves is the outermost main groove located on the outermost side in the tire width direction. Since it is advantageous to improve the drainage by providing the main groove at a position close to the tire equator CL side, the main groove on the outermost side in the tire width direction from the tire equator CL (in the case of FIG. 2, the second main groove 12). ) To the outer side wall is 0.3 × (length from the tire equator CL to one of the contact ends E, that is, 1/2 of the contact width TW (that is, TW / 2). (TW / 2) ≦ L0 ≦ 0.6 × (TW / 2), preferably 0.33 × (TW / 2) ≦ L0 ≦ 0.55 × (TW / 2). preferable. Moreover, it is preferable to set the groove width of the outermost main groove (second main groove 12) to, for example, 5 mm or more and 20 mm or less in order to achieve both wet performance and noise performance.

これら第1主溝11及び第2主溝12により複数列の陸部が区画形成されている。具体的には、最外側主溝(第2主溝12)のタイヤ幅方向外側に位置するショルダー陸部13と、最外側主溝(第2主溝12)と第1主溝11との間に位置する2つの中間陸部14と、2本の第1主溝11間に位置するセンター陸部15とが区画形成されている。   The first main groove 11 and the second main groove 12 define a plurality of rows of land portions. Specifically, between the shoulder land portion 13 located on the outer side in the tire width direction of the outermost main groove (second main groove 12), and between the outermost main groove (second main groove 12) and the first main groove 11 The two intermediate land portions 14 located at the center and the center land portion 15 located between the two first main grooves 11 are partitioned.

これら陸部(ショルダー陸部13、中間陸部14、センター陸部15)には、それぞれタイヤ幅方向に延びる複数本のラグ溝がタイヤ周方向に間隔をおいて設けられている。本発明では、少なくともショルダー陸部13に第1ラグ溝16及び第2ラグ溝17を設ける。尚、図2の例では、中間陸部14に後述の第3ラグ溝18、センター陸部15に後述の第4ラグ溝19が設けられている。   In these land portions (shoulder land portion 13, intermediate land portion 14, and center land portion 15), a plurality of lug grooves extending in the tire width direction are provided at intervals in the tire circumferential direction. In the present invention, at least the shoulder land portion 13 is provided with the first lug groove 16 and the second lug groove 17. In the example of FIG. 2, a later-described third lug groove 18 is provided in the intermediate land portion 14, and a later-described fourth lug groove 19 is provided in the center land portion 15.

ショルダー陸部13に設けられた第1ラグ溝16は、一端部(タイヤ幅方向内側の端部)が最外側主溝(第2主溝12)に連通する一方で、他端部(タイヤ幅方向外側の端部)がタイヤ接地端Eに到達せずにショルダー陸部13内で終端している。一方、ショルダー陸部13に設けられた第2ラグ溝17は、一端部(タイヤ幅方向内側の端部)が最外側主溝(第2主溝)に到達せずにショルダー陸部13内で終端する一方で、他端部(タイヤ幅方向外側の端部)がタイヤ接地端Eを超えてタイヤ幅方向外側に延在している。図2の例では、これら第1ラグ溝16及び第2ラグ溝17は、共にタイヤ周方向に湾曲した形状となっている。また、車両内側(図2の左側)と車両外側(図2の右側)とで、第1ラグ溝16及び第2ラグ溝17の湾曲方向が逆方向になっている。これら第1ラグ溝16と第2ラグ溝17とは互いに交わらず不連続である。複数本設けられた第1ラグ溝16の他端部は、その終端位置どうしがタイヤ周上で一致している。同様に、複数本設けられた第2ラグ溝17の一端部の終端位置どうしもタイヤ周上で一致している。そして、第1ラグ溝16の他端部と第2ラグ溝17の一端部とがタイヤ幅方向で重なり代Sを有するように、第1ラグ溝16と第2ラグ溝17とはタイヤ周方向に交互に配置されている。これにより、ショルダー陸部13はタイヤ周方向に連続するリブ状に構成されている。 The first lug groove 16 provided in the shoulder land portion 13 has one end portion (end portion in the tire width direction) communicating with the outermost main groove (second main groove 12), while the other end portion (tire width). The end portion on the outer side in the direction does not reach the tire ground contact end E and terminates in the shoulder land portion 13. On the other hand, the second lug groove 17 provided in the shoulder land portion 13 has one end portion (end portion on the inner side in the tire width direction) that does not reach the outermost main groove (second main groove) and is within the shoulder land portion 13. On the other hand, the other end portion (end portion on the outer side in the tire width direction) extends beyond the tire ground contact end E to the outer side in the tire width direction. In the example of FIG. 2, the first lug groove 16 and the second lug groove 17 are both curved in the tire circumferential direction. In addition, the bending directions of the first lug groove 16 and the second lug groove 17 are opposite on the vehicle inner side (left side in FIG. 2) and the vehicle outer side (right side in FIG. 2). The first lug groove 16 and the second lug groove 17 are discontinuous without crossing each other. The other end of the first lug grooves 16 provided plural is to do its end position is matched on the lap tire. Similarly, the terminal positions of one end portions of the plurality of second lug grooves 17 that are provided coincide with each other on the tire circumference. The first lug groove 16 and the second lug groove 17 are in the tire circumferential direction so that the other end portion of the first lug groove 16 and the one end portion of the second lug groove 17 have an overlap margin S in the tire width direction. Are alternately arranged. Thereby, the shoulder land part 13 is comprised by the rib shape which follows a tire circumferential direction.

このように構成されたショルダー陸部13において、第1ラグ溝16の延長線上には溝幅が1mm以下で第1ラグ溝16の他端部と不連続でタイヤ幅方向に延びるサイプ20が形成されている。サイプ20は、第1ラグ溝16及び第2ラグ溝17に比べて溝幅及び溝深さが充分に小さく、ショルダー陸部13を分断するものではない。上述のように、サイプ20は第1ラグ溝16の延長線に沿って形成されるので、第1ラグ溝16や第2ラグ溝17と交差することはない。   In the shoulder land portion 13 thus configured, a sipe 20 having a groove width of 1 mm or less and discontinuous with the other end portion of the first lug groove 16 is formed on the extension line of the first lug groove 16. Has been. The sipe 20 has a sufficiently small groove width and groove depth as compared with the first lug groove 16 and the second lug groove 17, and does not divide the shoulder land portion 13. As described above, since the sipe 20 is formed along the extension line of the first lug groove 16, it does not intersect the first lug groove 16 and the second lug groove 17.

このようにショルダー陸部13を構成したので、最外側主溝(第2主溝12)と第1ラグ溝16と第2ラグ溝17によって優れた排水性能を得て、ウェット路面での走行安定性能(ウェット性能)を向上することができる。また、ショルダー陸部13に形状の異なる2種類のラグ溝(第1ラグ溝16及び第2ラグ溝17)が配置されて、最外側主溝(第2主溝12)とタイヤ接地端Eとの間に存在するラグ溝がショルダー陸部13の中腹で途切れていることで、最外側主溝(第2主溝12)で発生した気柱共鳴音が高周波ロードノイズとして複数本のラグ溝を介してタイヤの外側に伝達されることが抑制されるので、騒音性能を向上することができる。このとき、第1ラグ溝16の延長線上に溝幅が1mm以下で第1ラグ溝16の他端部と不連続でタイヤ幅方向に延びるサイプ20が形成されているので、第1ラグ溝16がタイヤ接地端Eに対して開口していない(第2ラグ溝17に対して連通していない)でも、排水性能が損なわれることがない。また、溝ではなく上述のように溝幅及び溝深さが小さいサイプ20を設けているので、ショルダー陸部13の剛性が低下することがなく、ドライ路面における操縦安定性能(ドライ性能)を充分に維持することができる。更に、第1ラグ溝16及び第2ラグ溝17のそれぞれの終端位置がタイヤ周上で一致し、且つ、第1ラグ溝16と第2ラグ溝17とが重なり代Sを有するように形成され、各ラグ溝16,17の長さが充分に確保されているので、この点からも、第1ラグ溝16と第2ラグ溝17とが不連続で、ショルダー陸部13を横断して最外側主溝(第2主溝12)とタイヤ接地端Eとを結ぶようなラグ溝が存在しないことによる排水性能の低下が抑制される。また、このように第1ラグ溝16と第2ラグ溝17とが重複領域を有するように配置されることによって、第1ラグ溝16及び第2ラグ溝17の長さや位置関係が適正化されるので、ウェット性能、ドライ性能、及び、騒音性能とを高度に両立することが可能になる。   Since the shoulder land portion 13 is configured in this way, excellent drainage performance is obtained by the outermost main groove (second main groove 12), the first lug groove 16, and the second lug groove 17, and stable running on a wet road surface is achieved. Performance (wet performance) can be improved. Further, two types of lug grooves (first lug groove 16 and second lug groove 17) having different shapes are arranged in the shoulder land portion 13, and the outermost main groove (second main groove 12), the tire ground contact edge E, Since the lug groove existing between them is interrupted in the middle of the shoulder land portion 13, the air column resonance generated in the outermost main groove (second main groove 12) causes a plurality of lug grooves as high-frequency road noise. Therefore, the noise performance can be improved. At this time, the sipe 20 is formed on the extension line of the first lug groove 16 so that the groove width is 1 mm or less and is discontinuous with the other end portion of the first lug groove 16 and extends in the tire width direction. Even if it is not open to the tire ground contact edge E (not communicated with the second lug groove 17), the drainage performance is not impaired. Moreover, since the sipe 20 having a small groove width and groove depth as described above is provided instead of the groove, the rigidity of the shoulder land portion 13 does not decrease, and the steering stability performance (dry performance) on the dry road surface is sufficient. Can be maintained. Further, the end positions of the first lug groove 16 and the second lug groove 17 coincide with each other on the tire circumference, and the first lug groove 16 and the second lug groove 17 have an overlap S. Since the lengths of the lug grooves 16 and 17 are sufficiently secured, the first lug groove 16 and the second lug groove 17 are discontinuous from this point as well. A decrease in drainage performance due to the absence of a lug groove that connects the outer main groove (second main groove 12) and the tire ground contact edge E is suppressed. In addition, by arranging the first lug groove 16 and the second lug groove 17 so as to have an overlapping region in this way, the length and positional relationship of the first lug groove 16 and the second lug groove 17 are optimized. Therefore, it is possible to achieve a high degree of compatibility between wet performance, dry performance, and noise performance.

サイプ20は上述のように第1ラグ溝16の他端部(タイヤ幅方向外側の端部)と離間しているが、排水性能を向上するために充分な長さを有することが好ましい。そのため、サイプ20をタイヤ接地端Eを超えてタイヤ幅方向外側に延在させ、且つ、サイプ20のタイヤ幅方向長さLsと最外側主溝(第2主溝12)からタイヤ接地端Eまでの長さLとが0.4×L≦Ls≦1.2×Lの関係を満たすようにすることが好ましい。これにより、サイプ20がタイヤ接地端Eに開口し、且つ、充分なサイプ長さが確保されるので、ドライ性能や騒音性能を維持したまま、排水性能を向上することができる。このとき、上述の長さLsが長さLの0.4倍よりも小さいと、サイプ20が充分な長さを有さないため、排水性能を向上することが難しくなる。長さLsが長さLの1.2倍よりも大きいと、サイプ20が長くなり過ぎて、第1ラグ溝16とサイプ20とを離間させてショルダー陸部13の剛性を確保することが難しくなる。   As described above, the sipe 20 is separated from the other end of the first lug groove 16 (end on the outer side in the tire width direction), but preferably has a sufficient length to improve drainage performance. Therefore, the sipe 20 extends beyond the tire ground contact edge E to the outside in the tire width direction, and the tire width direction length Ls of the sipe 20 and the outermost main groove (second main groove 12) to the tire ground contact edge E. It is preferable to satisfy the relationship of 0.4 × L ≦ Ls ≦ 1.2 × L. Thereby, since the sipe 20 opens to the tire ground contact end E and a sufficient sipe length is ensured, drainage performance can be improved while maintaining dry performance and noise performance. At this time, if the above-mentioned length Ls is smaller than 0.4 times the length L, the sipe 20 does not have a sufficient length, so it is difficult to improve drainage performance. If the length Ls is larger than 1.2 times the length L, the sipe 20 becomes too long, and it is difficult to secure the rigidity of the shoulder land portion 13 by separating the first lug groove 16 and the sipe 20. Become.

サイプ20のタイヤ幅方向長さLsは、更に、第1ラグ溝16と第2ラグ溝17との重なり代Sと0.1×Ls≦S≦0.5×Lsの関係を満たすことが好ましい。このようにサイプ20の長さと重なり代Sとの関係を適正化することで、ウェット性能、ドライ性能、及び、騒音性能を高度に両立するには有利になる。このとき、重なり代Sが長さLsの0.1倍よりも小さいと、排水性能を充分に確保することが難しくなる。重なり代Sが長さLsの0.5倍よりも大きいと、ショルダー陸部13の剛性が低下してドライ性能を維持することが難しくなる。   The length Ls of the sipe 20 in the tire width direction preferably further satisfies the relationship of the overlap margin S between the first lug groove 16 and the second lug groove 17 and 0.1 × Ls ≦ S ≦ 0.5 × Ls. . Thus, by optimizing the relationship between the length of the sipe 20 and the overlap margin S, it is advantageous to achieve both high wet performance, dry performance, and noise performance. At this time, if the overlap allowance S is smaller than 0.1 times the length Ls, it is difficult to ensure sufficient drainage performance. If the overlap margin S is larger than 0.5 times the length Ls, the rigidity of the shoulder land portion 13 is lowered and it is difficult to maintain the dry performance.

図3に例示するように、第1ラグ溝16と第2ラグ溝17とが重複する領域(以下、「重複領域」という)内において、第1ラグ溝16の溝深さがその終端部、即ち、他端部(タイヤ幅方向外側の端部)に向かって徐々に小さくなると共に、第2ラグ溝17の溝深さがその終端部、即ち、一端部(タイヤ幅方向内側の端部)に向かって徐々に小さくなるようにすることが好ましい。特に、第1ラグ溝16の最大溝深さをD1a、第2ラグ溝17の最大溝深さをD2a、重複領域内の任意の位置における第1ラグ溝16の溝深さをD1b、重複範囲内の任意の位置(深さD1bを測定した位置と同位置)における第2ラグ溝17の溝深さをD2bとすると、これら深さD1a,D2a,D1b,D2bが、0.2×(D1a+D2a)≦(D1b+D2b)≦0.8×(D1a+D2a)の関係を満たすことが好ましい。このように溝深さを変化させ、その大小関係を設定することで、第1ラグ溝16及び第2ラグ溝17を設けてもショルダー陸部13の剛性を維持することができ、ドライ性能を維持したままウェット性能を向上するには有利になる。このとき、深さD1bと深さD2bとの和(D1b+D2b)が深さD1aと深さD2aとの和(D1a+D2a)の0.2倍よりも小さいと、重複領域における第1ラグ溝16及び第2ラグ溝17の溝深さの総和が小さくなり過ぎて、充分な排水性能を得ることが難しくなる。深さD1bと深さD2bとの和(D1b+D2b)が深さD1aと深さD2aとの和(D1a+D2a)の0.8倍よりも大きいと、重複領域における第1ラグ溝16及び第2ラグ溝17の溝深さの総和が大きくなり過ぎて、ショルダー陸部13(特に、重複領域)の剛性を充分に確保することが難しくなり、優れたドライ性能を維持することが難しくなる。尚、深さD1a,D2a,D1b,D2bはいずれも最外側主溝(第2主溝12)よりも溝深さが小さく、好ましくは、最外側主溝(第2主溝12)の溝深さGDの45%〜90%の深さを有するようにするとよい。   As illustrated in FIG. 3, in the region where the first lug groove 16 and the second lug groove 17 overlap (hereinafter referred to as “overlapping region”), the groove depth of the first lug groove 16 is the end portion thereof, That is, it gradually decreases toward the other end (the outer end in the tire width direction), and the groove depth of the second lug groove 17 is the terminal end, that is, one end (the end in the tire width direction). It is preferable to make it gradually smaller toward. In particular, the maximum groove depth of the first lug groove 16 is D1a, the maximum groove depth of the second lug groove 17 is D2a, the groove depth of the first lug groove 16 at an arbitrary position in the overlapping region is D1b, and the overlapping range. If the groove depth of the second lug groove 17 at an arbitrary position (the same position as the position where the depth D1b is measured) is D2b, these depths D1a, D2a, D1b, D2b are 0.2 × (D1a + D2a). ) ≦ (D1b + D2b) ≦ 0.8 × (D1a + D2a). Thus, by changing the groove depth and setting the magnitude relationship, the rigidity of the shoulder land portion 13 can be maintained even if the first lug groove 16 and the second lug groove 17 are provided, and the dry performance is improved. It is advantageous to improve the wet performance while maintaining. At this time, if the sum (D1b + D2b) of the depth D1b and the depth D2b is smaller than 0.2 times the sum (D1a + D2a) of the depth D1a and the depth D2a, the first lug groove 16 and the first The sum of the groove depths of the two lug grooves 17 becomes too small, making it difficult to obtain sufficient drainage performance. When the sum (D1b + D2b) of the depth D1b and the depth D2b is greater than 0.8 times the sum (D1a + D2a) of the depth D1a and the depth D2a, the first lug groove 16 and the second lug groove in the overlapping region The sum total of the groove depths 17 becomes too large, and it becomes difficult to sufficiently secure the rigidity of the shoulder land portion 13 (particularly, the overlapping region), and it becomes difficult to maintain excellent dry performance. The depths D1a, D2a, D1b, and D2b are all smaller than the outermost main groove (second main groove 12), preferably the outermost main groove (second main groove 12). The depth GD should be 45% to 90%.

更に、重なり代Sと、第1ラグ溝16の最大溝深さD1aと、第2ラグ溝17の最大溝深さD2aとが0.8×D1a≦S≦2×D1a、又は、0.8×D2a≦S≦2×D2aの関係を満たすようにすることが好ましい。このように重なり代Sと第1ラグ溝16及び第2ラグ溝17の溝深さとを適正化することで、ショルダー陸部13の剛性を維持することができ、ドライ性能を維持したままウェット性能を向上するには有利になる。このとき、重なり代Sが深さD1a,D2aの0.8倍よりも小さいと、重複領域を充分に確保することが難しくなり、第1ラグ溝16及び第2ラグ溝17を重複させることによる効果が充分に得られなくなる。重なり代Sが深さD1a,D2aの2倍よりも大きいと、重複領域が広くなり過ぎて第1ラグ溝16及び第2ラグ溝17の重なりが増えるので、ショルダー陸部13の剛性を充分に維持することが難しくなり、ドライ性能を保つことが難しくなる。   Furthermore, the overlap margin S, the maximum groove depth D1a of the first lug groove 16, and the maximum groove depth D2a of the second lug groove 17 are 0.8 × D1a ≦ S ≦ 2 × D1a or 0.8 It is preferable to satisfy the relationship of × D2a ≦ S ≦ 2 × D2a. Thus, by optimizing the overlap margin S and the groove depths of the first lug groove 16 and the second lug groove 17, the rigidity of the shoulder land portion 13 can be maintained, and wet performance is maintained while maintaining dry performance. It will be advantageous to improve. At this time, if the overlap margin S is smaller than 0.8 times the depths D1a and D2a, it becomes difficult to sufficiently secure the overlapping region, and the first lug groove 16 and the second lug groove 17 are overlapped. The effect cannot be obtained sufficiently. If the overlap margin S is larger than twice the depths D1a and D2a, the overlap region becomes too wide and the overlap of the first lug groove 16 and the second lug groove 17 increases, so that the rigidity of the shoulder land portion 13 is sufficiently increased. It becomes difficult to maintain, and it becomes difficult to maintain dry performance.

最外側主溝(第2主溝12)のタイヤ幅方向内側に隣接する中間陸部14にもラグ溝を設けることができるが、好ましくは、図2に示すように、一端部(タイヤ幅方向内側の端部)が中間陸部14内で終端する一方で他端部(タイヤ幅方向外側の端部)が最外側主溝(第2主溝12)に連通する第3ラグ溝18を設けるとよい。この例では、第3ラグ溝18はタイヤ幅方向内側に凸になるように僅かに湾曲している。このように第3ラグ溝18を設ける場合、その他端部の最外側主溝(第2主溝12)との連通位置は、タイヤ周方向に隣接する第1ラグ溝16の一端部(タイヤ幅方向内側の端部)の最外側主溝(第2主溝12)との連通位置間に配置することが好ましい。このように第3ラグ溝18を構成することで、第3ラグ溝18による排水性を得てウェット性能を向上しながら、その配置を適正化することでドライ性能を高度に維持することができる。尚、第3ラグ溝18の最大溝深さD3aは特に限定されないが、最外側主溝(第2主溝12)よりも溝深さが小さいことが好ましく、より好ましくは、第3ラグ溝18の最大溝深さD3aが最外側主溝(第2主溝12)の溝深さGDの45%〜90%の深さになるようにするとよい。   A lug groove can also be provided in the intermediate land portion 14 adjacent to the innermost side in the tire width direction of the outermost main groove (second main groove 12). Preferably, as shown in FIG. A third lug groove 18 is provided in which the inner end portion is terminated in the intermediate land portion 14 while the other end portion (the outer end portion in the tire width direction) communicates with the outermost main groove (second main groove 12). Good. In this example, the third lug groove 18 is slightly curved so as to protrude inward in the tire width direction. When the third lug groove 18 is provided in this manner, the communication position with the outermost main groove (second main groove 12) at the other end is one end of the first lug groove 16 adjacent to the tire circumferential direction (tire width). It is preferable to dispose between the communication positions with the outermost main groove (second main groove 12) at the inner end in the direction. By configuring the third lug groove 18 in this way, the dry performance can be maintained at a high level by optimizing the arrangement while improving the wet performance by obtaining drainage by the third lug groove 18. . Although the maximum groove depth D3a of the third lug groove 18 is not particularly limited, the groove depth is preferably smaller than the outermost main groove (second main groove 12), and more preferably, the third lug groove 18 is. The maximum groove depth D3a may be 45% to 90% of the groove depth GD of the outermost main groove (second main groove 12).

このように第3ラグ溝18を設ける場合、図3に示すように、最外側主溝(第2主溝12)に連通する第3ラグ溝18が最外側主溝(第2主溝12)に連通する位置に底上げを施すことが好ましい。具体的には、第3ラグ溝18の最外側主溝(第2主溝12)との連通位置での溝深さをD3cとしたとき、溝深さD3cが最外側主溝(第2主溝12)の溝深さGDと0.4×GD≦D3c≦0.8×GDの関係を満たすことが好ましい。このように底上げを施すことで、第3ラグ溝18の増加に伴って中間陸部14の剛性が低下することを抑制することができるので、ドライ性能を高度に維持するには有利になる。このとき、溝深さD3cが溝深さGDの0.4倍よりも小さいと、第3ラグ溝18の最外側主溝(第2主溝12)との連通位置での溝深さが過小になり、優れた排水性能を得ることが難しくなる。溝深さD3cが溝深さGDの0.8倍よりも大きいと、底上げを設けない場合との差が殆どなく、中間陸部14の剛性を高める効果が充分に得られなくなる。   When the third lug groove 18 is provided in this way, as shown in FIG. 3, the third lug groove 18 communicating with the outermost main groove (second main groove 12) is the outermost main groove (second main groove 12). It is preferable to raise the bottom at a position communicating with the. Specifically, when the groove depth at the communication position of the third lug groove 18 with the outermost main groove (second main groove 12) is D3c, the groove depth D3c is the outermost main groove (second main groove). It is preferable to satisfy the relationship of the groove depth GD of the groove 12) and 0.4 × GD ≦ D3c ≦ 0.8 × GD. By raising the bottom in this manner, it is possible to suppress a decrease in the rigidity of the intermediate land portion 14 with an increase in the third lug groove 18, which is advantageous in maintaining high dry performance. At this time, if the groove depth D3c is smaller than 0.4 times the groove depth GD, the groove depth at the communication position of the third lug groove 18 with the outermost main groove (second main groove 12) is too small. It becomes difficult to obtain excellent drainage performance. If the groove depth D3c is larger than 0.8 times the groove depth GD, there is almost no difference from the case where the bottom elevation is not provided, and the effect of increasing the rigidity of the intermediate land portion 14 cannot be sufficiently obtained.

第3ラグ溝18と同様に、最外側主溝(第2主溝12)に連通する第1ラグ溝16についても、図3に示すように、最外側主溝(第2主溝12)に連通する位置に底上げを施すことが好ましい。具体的には、第1ラグ溝16の最外側主溝(第2主溝12)との連通位置での溝深さをD1cとしたとき、溝深さD1cが第2主溝12の溝深さGDと0.4×GD≦D1c≦0.8×GDの関係を満たすようにすることが好ましい。このように底上げを施すことで、第1ラグ溝16によってショルダー陸部13の剛性が低下することを抑制することができるので、ドライ性能を高度に維持するには有利になる。このとき、溝深さD1cが溝深さGDの0.4倍よりも小さいと、第1ラグ溝16の最外側主溝(第2主溝12)との連通位置での溝深さが過小になり、優れた排水性能を得ることが難しくなる。溝深さD1cが溝深さGDの0.8倍よりも大きいと、底上げを設けない場合との差が殆どなく、ショルダー陸部13の剛性を高める効果が充分に得られなくなる。   Similarly to the third lug groove 18, the first lug groove 16 communicating with the outermost main groove (second main groove 12) also has an outermost main groove (second main groove 12) as shown in FIG. 3. It is preferable to raise the bottom at the communicating position. Specifically, when the groove depth at the communication position with the outermost main groove (second main groove 12) of the first lug groove 16 is D1c, the groove depth D1c is the groove depth of the second main groove 12. It is preferable to satisfy the relationship of the length GD and 0.4 × GD ≦ D1c ≦ 0.8 × GD. By raising the bottom as described above, it is possible to suppress the rigidity of the shoulder land portion 13 from being lowered by the first lug groove 16, which is advantageous in maintaining high dry performance. At this time, if the groove depth D1c is smaller than 0.4 times the groove depth GD, the groove depth at the communication position of the first lug groove 16 with the outermost main groove (second main groove 12) is too small. It becomes difficult to obtain excellent drainage performance. If the groove depth D1c is larger than 0.8 times the groove depth GD, there is almost no difference from the case where the bottom elevation is not provided, and the effect of increasing the rigidity of the shoulder land portion 13 cannot be obtained sufficiently.

第1ラグ溝16と第2ラグ溝17とは、上述のように、タイヤ周方向に交互に配置されるが、その際、ウェット性能、ドライ性能、及び、騒音性能を両立するために、これら第1ラグ溝16及び第2ラグ溝17が所定の間隔をおいて配置されるようにすることが好ましい。具体的には、第1ラグ溝16の他端部(タイヤ幅方向外側の端部)と第2ラグ溝17の一端部(タイヤ幅方向内側の端部)との間のタイヤ周方向の距離dが5mm以上15mm以下であるようにすることが好ましい。このように第1ラグ溝16及び第2ラグ溝17の間隔を設定することで、ショルダー陸部13の剛性を適正化することができ、ウェット性能、ドライ性能、及び、騒音性能を高度に両立するには有利になる。このとき、距離dが5mmよりも小さいと、ショルダー陸部13の剛性が小さくなり過ぎてドライ性能を充分に向上することが難しくなる。距離dが15mmよりも大きいと、ショルダー陸部13の剛性が大きくなり過ぎてパターンノイズが生じ易くなるので、騒音性能を充分に向上することが難しくなる。   As described above, the first lug grooves 16 and the second lug grooves 17 are alternately arranged in the tire circumferential direction. In this case, in order to achieve both wet performance, dry performance, and noise performance, It is preferable that the first lug groove 16 and the second lug groove 17 be arranged at a predetermined interval. Specifically, the distance in the tire circumferential direction between the other end portion (the outer end portion in the tire width direction) of the first lug groove 16 and one end portion (the end portion in the tire width direction) of the second lug groove 17. It is preferable that d is 5 mm or more and 15 mm or less. By setting the distance between the first lug groove 16 and the second lug groove 17 in this way, the rigidity of the shoulder land portion 13 can be optimized, and the wet performance, dry performance, and noise performance are highly compatible. It will be advantageous to. At this time, if the distance d is smaller than 5 mm, the rigidity of the shoulder land portion 13 becomes too small, and it becomes difficult to sufficiently improve the dry performance. If the distance d is greater than 15 mm, the rigidity of the shoulder land portion 13 becomes too large and pattern noise is likely to occur, so that it is difficult to sufficiently improve the noise performance.

センター陸部15に形成するラグ溝の形状は特に限定されないが、例えば、図2に示すように、タイヤ幅方向に対して傾斜し、一端部(タイヤ幅方向内側の端部)がタイヤ赤道CLを超えずにセンター陸部13C内で終端し、他端部(タイヤ幅方向外側の端部)が第1主溝11に連通する第4ラグ溝19を設けることができる。図2の例では、タイヤ赤道CLの両側の第1主溝11のそれぞれに連通するセンターラグ溝14Cがタイヤ周方向に間隔をあけて複数本設けられている。タイヤ赤道CLの一方側と他方側とに設けられたセンターラグ溝14Cは、タイヤ幅方向に対する傾斜角度が同じになっている。   The shape of the lug groove formed in the center land portion 15 is not particularly limited. For example, as shown in FIG. 2, the lug groove is inclined with respect to the tire width direction, and one end portion (end portion on the inner side in the tire width direction) is the tire equator CL. It is possible to provide a fourth lug groove 19 that terminates in the center land portion 13C without exceeding and whose other end portion (end portion on the outer side in the tire width direction) communicates with the first main groove 11. In the example of FIG. 2, a plurality of center lug grooves 14 </ b> C communicating with each of the first main grooves 11 on both sides of the tire equator CL are provided at intervals in the tire circumferential direction. The center lug grooves 14C provided on one side and the other side of the tire equator CL have the same inclination angle with respect to the tire width direction.

タイヤサイズが215/60R16であり、図1に例示する断面形状を有し、図2のトレッドパターンを基調とし、ショルダー陸部のサイプの有無、サイプと第1ラグ溝との連通の有無(サイプとラグ溝との関係)、サイプのタイヤ幅方向長さLsの第2主溝からタイヤ接地端までの長さLに対する割合Ls/L、重なり代Sのサイプのタイヤ幅方向長さLsに対する割合S/Ls、第1ラグ溝と第2ラグ溝とが重複する領域において各ラグ溝の溝深さが徐々に減少するか否か(重複領域でのラグ溝深さの減少の有無)、第1ラグ溝と第2ラグ溝との重複領域内での任意の位置における第1ラグ溝の溝深さD1bと第2ラグ溝の溝深さD2bとの和の第1ラグ溝の最大溝深さD1aと第2ラグ溝の最大溝深さD2aとの和に対する割合(D1b+D2b)/(D1a+D2a)、重なり代Sの第1ラグ溝の最大溝深さD1aに対する割合S/D1a、重なり代Sの第2ラグ溝の最大溝深さD2aに対する割合S/D2a、第3ラグ溝の開口位置、第1ラグ溝の第2主溝との連通位置における底上げの有無、第3ラグ溝の第2主溝との連通位置における底上げの有無、第1ラグ溝の第2主溝との連通位置での溝深さD1cの第2主溝の溝深さGDに対する割合D1c/GD、第3ラグ溝の第2主溝との連通位置での溝深さD3cの第2主溝の溝深さGDに対する割合D3c/GD、第1ラグ溝の他端部と第2ラグ溝の一端部との間のタイヤ周方向の距離dをそれぞれ表1,2のように設定した比較例1〜4、実施例1〜26の30種類の空気入りタイヤを作製した。   The tire size is 215 / 60R16, has the cross-sectional shape illustrated in FIG. 1 and is based on the tread pattern of FIG. 2, and the presence / absence of sipe in the shoulder land portion and the presence / absence of communication between the sipe and the first lug groove (sipe The relationship between the length Ls of the sipe in the tire width direction to the length L from the second main groove to the tire ground contact end, the ratio Ls / L of the sipe to the tire width direction length Ls. S / Ls, whether or not the groove depth of each lug groove gradually decreases in the region where the first lug groove and the second lug groove overlap (whether or not the lug groove depth decreases in the overlapping region), The maximum groove depth of the first lug groove which is the sum of the groove depth D1b of the first lug groove and the groove depth D2b of the second lug groove at an arbitrary position in the overlapping region of the 1 lug groove and the second lug groove Ratio (D1) to the sum of the depth D1a and the maximum groove depth D2a of the second lug groove + D2b) / (D1a + D2a), the ratio S / D1a of the first lug groove of the overlap margin S to the maximum groove depth D1a, the ratio S / D2a of the second lug groove of the overlap margin S to the maximum groove depth D2a, the third lug Opening position of groove, presence / absence of bottom raising at communication position of first lug groove with second main groove, presence / absence of bottom raising at communication position of third lug groove with second main groove, second main groove of first lug groove The ratio D1c / GD of the groove depth D1c at the communication position to the groove depth GD of the second main groove, and the second main groove of the groove depth D3c at the communication position of the third lug groove with the second main groove Comparative example in which the ratio D3c / GD with respect to the groove depth GD and the distance d in the tire circumferential direction between the other end of the first lug groove and one end of the second lug groove are set as shown in Tables 1 and 2, respectively. 30 types of pneumatic tires of 1-4 and Examples 1-26 were produced.

尚、比較例1は、図2のトレッドパターンにおいて第1ラグ溝がタイヤ接地端を超えて第2ラグ溝のタイヤ幅方向外側端と同じ位置まで延在する一方で、第2ラグ溝が第2主溝に連通した例である。比較例2は、図2のトレッドパターンにおいてサイプを廃した例である。比較例3は、図2のトレッドパターンにおいて、サイプを第1ラグ溝の他端部(タイヤ幅方向外側の端部)に連結した例である。比較例4は、図2のトレッドパターンにおいて、第1ラグ溝と第2ラグ溝とが重複せず重なり代Sを有さない例である。   In Comparative Example 1, the first lug groove extends beyond the tire ground contact end to the same position as the outer end in the tire width direction of the second lug groove in the tread pattern of FIG. This is an example of communication with two main grooves. Comparative Example 2 is an example in which sipes are eliminated from the tread pattern of FIG. Comparative Example 3 is an example in which the sipe is connected to the other end of the first lug groove (the end on the outer side in the tire width direction) in the tread pattern of FIG. The comparative example 4 is an example in which the first lug groove and the second lug groove do not overlap and do not have the overlap margin S in the tread pattern of FIG.

また、表1,2の「第3ラグ溝の開口位置」の欄について、第3ラグ溝の開口端(他端部)がタイヤ周方向に隣接する第1ラグ溝の開口端(一端部)どうしの間に配置される場合を「ラグ溝間」と表示し、第3ラグ溝の開口端(他端部)の位置と第1ラグ溝の開口端(一端部)の位置とがタイヤ周方向で一致する場合を「ラグ溝」と表示している。   In addition, regarding the column of “Open position of third lug groove” in Tables 1 and 2, the open end (one end part) of the first lug groove where the open end (other end part) of the third lug groove is adjacent in the tire circumferential direction. The case where it is arranged between the two is indicated as “between lug grooves”, and the position of the opening end (other end) of the third lug groove and the position of the opening end (one end) of the first lug groove are the tire circumference. The case where the direction matches is indicated as “lag groove”.

これら30種類の空気入りタイヤについて、下記の評価方法により、騒音性能、ウェット性能、ドライ性能を評価し、その結果を表1,2に併せて示した。   About these 30 types of pneumatic tires, noise performance, wet performance, and dry performance were evaluated by the following evaluation methods, and the results are also shown in Tables 1 and 2.

騒音性能
各試験タイヤをリムサイズ16×7Jのホイールに組み付けて、空気圧を220kPaとして排気量2Lの前輪駆動車(試験車両)に装着し、荒れた路面を速度60km/hで走行したときの通過音についての官能評価を行った。評価結果は、比較例1を基準(5点)とする10点満点で示した。この値が大きいほど通過音の音圧が低く、騒音性能が優れることを意味する。
Noise performance Each test tire is mounted on a wheel with a rim size of 16 × 7J, mounted on a 2L front-wheel drive vehicle (test vehicle) with an air pressure of 220 kPa, and a passing sound when traveling on a rough road at a speed of 60 km / h The sensory evaluation about was performed. The evaluation results are shown on a 10-point scale with Comparative Example 1 as a reference (5 points). The larger this value, the lower the sound pressure of the passing sound and the better the noise performance.

ウェット性能
各試験タイヤをリムサイズ16×7Jのホイールに組み付けて、空気圧を220kPaとして排気量2Lの前輪駆動車(試験車両)に装着し、濡れた路面において5名のテストドライバーによる操縦安定性についての官能評価を行った。評価は、比較例1を基準(5点)とする10点満点で行い、評価結果として、各ドライバーによる評価の平均値を示した。この値が大きいほど濡れた路面における操縦安定性が優れ、ウェット性能が優れていることを意味する。
Wet performance Each test tire is mounted on a wheel with a rim size of 16x7J, mounted on a 2L front-wheel drive vehicle (test vehicle) with an air pressure of 220kPa, and handling stability by five test drivers on a wet road surface Sensory evaluation was performed. The evaluation was performed with a maximum of 10 points using Comparative Example 1 as a reference (5 points), and the average value of the evaluation by each driver was shown as the evaluation result. The larger this value, the better the steering stability on a wet road surface, and the better the wet performance.

ドライ性能
各試験タイヤをリムサイズ16×7Jのホイールに組み付けて、空気圧を220kPaとして排気量2Lの前輪駆動車(試験車両)に装着し、乾いた路面において5名のテストドライバーによる操縦安定性についての官能評価を行った。評価は、比較例1を基準(5点)とする10点満点で行い、評価結果として、各ドライバーによる評価の平均値を示した。この値が大きいほど乾いた路面における操縦安定性が優れ、ドライ性能が優れていることを意味する。
Dry performance Each test tire is mounted on a wheel with a rim size of 16x7J, mounted on a 2L front-wheel drive vehicle (test vehicle) with an air pressure of 220kPa, and handling stability by five test drivers on a dry road surface Sensory evaluation was performed. The evaluation was performed with a maximum of 10 points using Comparative Example 1 as a reference (5 points), and the average value of the evaluation by each driver was shown as the evaluation result. The larger this value, the better the steering stability on the dry road surface, and the better the dry performance.

Figure 0006344088
Figure 0006344088

Figure 0006344088
Figure 0006344088

表1,2から明らかなように、実施例1〜26はいずれも、騒音性能、ウェット性能、及び、ドライ性能の3つの性能について、少なくとも従来レベル(比較例1)を維持しながら、複数の性能を従来レベル(比較例1)よりも向上した。   As is clear from Tables 1 and 2, all of Examples 1 to 26 have a plurality of noise performance, wet performance, and dry performance while maintaining at least the conventional level (Comparative Example 1). The performance was improved from the conventional level (Comparative Example 1).

一方、サイプを有さない比較例2は、ウェット性能が比較例1よりも悪化した。サイプが第1ラグ溝と連通する比較例3は、ドライ性能が比較例1よりも悪化した。第1ラグ溝と第2ラグ溝とが重複せず重なり代Sを有さない比較例4は、ウェット性能が比較例1よりも悪化した。   On the other hand, the comparative example 2 which does not have a sipe was worse in wet performance than the comparative example 1. In Comparative Example 3 in which the sipe communicated with the first lug groove, the dry performance was worse than that in Comparative Example 1. In Comparative Example 4 in which the first lug groove and the second lug groove do not overlap and have no overlap margin S, the wet performance is worse than that of Comparative Example 1.

1 トレッド部
2 サイドウォール部
3 ビード部
4 カーカス層
5 ビードコア
6 ビードフィラー
7,8 ベルト層
9 ベルト補強層
10 トレッド面
11 第1主溝
12 第2主溝
13 ショルダー陸部
14 中間陸部
15 センター陸部
16 第1ラグ溝
17 第2ラグ溝
18 第3ラグ溝
19 第4ラグ溝
20 サイプ
CL タイヤ赤道
E 接地端
DESCRIPTION OF SYMBOLS 1 Tread part 2 Side wall part 3 Bead part 4 Carcass layer 5 Bead core 6 Bead filler 7, 8 Belt layer 9 Belt reinforcement layer 10 Tread surface 11 1st main groove 12 2nd main groove 13 Shoulder land part 14 Middle land part 15 Center Land portion 16 First lug groove 17 Second lug groove 18 Third lug groove 19 Fourth lug groove 20 Sipe CL Tire equator E Grounding end

Claims (9)

トレッド面におけるタイヤ赤道の両側にタイヤ周方向に延びる複数本の主溝が設けられ、該複数本の主溝により複数列の陸部が区画形成された空気入りタイヤにおいて、
前記複数本の主溝のうちタイヤ幅方向最外側に位置する最外側主溝のタイヤ幅方向外側に位置するショルダー陸部にタイヤ幅方向に延びる複数本の第1ラグ溝とタイヤ幅方向に延びる複数本の第2ラグ溝とを設け、前記複数本の第1ラグ溝の一端部を前記最外側主溝に連通させる一方で前記複数本の第1ラグ溝の他端部をタイヤ接地端に到達させずに前記ショルダー陸部内で終端させ、前記複数本の第2ラグ溝の一端部を前記最外側主溝に到達させずに前記ショルダー陸部内で終端させる一方で前記複数本の第2ラグ溝の他端部を前記タイヤ接地端を超えて延在させ、前記複数本の第1ラグ溝の他端部の終端位置どうしをタイヤ周上で一致させると共に前記複数本の第2ラグ溝の一端部の終端位置どうしをタイヤ周上で一致させ、且つ、前記複数本の第1ラグ溝の他端部と前記複数本の第2ラグ溝の一端部とがタイヤ幅方向で重なり代Sを有するように前記複数本の第1ラグ溝と前記複数本の第2ラグ溝とをタイヤ周方向に交互に配置する一方で、前記複数本の第1ラグ溝のそれぞれの延長線上に溝幅が1mm以下で前記複数本の第1ラグ溝の他端部と不連続でタイヤ幅方向に延びるサイプを形成し、前記ショルダー陸部をタイヤ周方向に連続するリブ状に構成したことを特徴とする空気入りタイヤ。
In the pneumatic tire in which a plurality of main grooves extending in the tire circumferential direction are provided on both sides of the tire equator on the tread surface, and a plurality of rows of land portions are defined by the plurality of main grooves,
Among the plurality of main grooves, the plurality of first lug grooves extending in the tire width direction extend in the tire width direction on the shoulder land portion positioned on the outer side in the tire width direction of the outermost main groove positioned on the outermost side in the tire width direction. It provided a second lug grooves of the plurality of the one end of the first lug groove of the plurality of the tire ground contact end and the other end of the first lug groove of the plurality of while communicating to the outermost main groove is terminated within the shoulder land portion without reaching, the plurality of second the plurality of second lug one end of the lug grooves while terminating at the shoulder land portion in the without reaching the outermost main groove The other end portion of the groove extends beyond the tire ground contact end, the end positions of the other end portions of the plurality of first lug grooves are aligned on the tire circumference, and the plurality of second lug grooves was what end position of the one end are matched on the circumference of the tire, and, the The one end portion of the second lug groove of the plurality of the other end portion of the first lug grooves of several that the first lug groove of the plurality of to have cash S overlap in the tire width direction of the plurality of and 2 lug grooves while arranging alternately in the tire circumferential direction, the plurality groove width on each extension of the first lug groove of the book of the plurality of first lug grooves in 1mm below the other end portion and the non A pneumatic tire characterized in that sipes continuously extending in the tire width direction are formed and the shoulder land portion is formed in a rib shape continuous in the tire circumferential direction.
前記サイプが前記タイヤ接地端を超えてタイヤ幅方向外側に延在し、且つ、前記サイプのタイヤ幅方向長さLsと前記最外側主溝から前記タイヤ接地端までの長さLとが0.4×L≦Ls≦1.2×Lの関係を満たすことを特徴とする請求項1に記載の空気入りタイヤ。   The sipe extends outward in the tire width direction beyond the tire ground contact edge, and the length Ls of the sipe in the tire width direction and the length L from the outermost main groove to the tire ground contact edge is 0. The pneumatic tire according to claim 1, wherein a relationship of 4 × L ≦ Ls ≦ 1.2 × L is satisfied. 前記サイプのタイヤ幅方向長さLsと前記重なり代Sとが0.1×Ls≦S≦0.5×Lsの関係を満たすことを特徴とする請求項1又は2に記載の空気入りタイヤ。   3. The pneumatic tire according to claim 1, wherein a length Ls of the sipe in the tire width direction and the overlap margin S satisfy a relationship of 0.1 × Ls ≦ S ≦ 0.5 × Ls. 前記第1ラグ溝の他端部と前記第2ラグ溝の一端部とが前記重なり代Sを有する重複領域内において前記第1ラグ溝の溝深さがその終端部に向かって徐々に小さくなると共に前記第2ラグ溝の溝深さがその終端部に向かって徐々に小さくなり、前記第1ラグ溝の最大溝深さD1a及び前記第2ラグ溝の最大溝深さD2aと、前記重複領域内の任意の位置における前記第1ラグ溝の溝深さD1b及び前記第2ラグ溝の溝深さD2bとが0.2×(D1a+D2a)≦D1b+D2b≦0.8×(D1a+D2a)の関係を満たすことを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。   In the overlapping region where the other end portion of the first lug groove and the one end portion of the second lug groove have the overlap allowance S, the groove depth of the first lug groove gradually decreases toward the terminal portion. In addition, the groove depth of the second lug groove gradually decreases toward the terminal portion, the maximum groove depth D1a of the first lug groove and the maximum groove depth D2a of the second lug groove, and the overlapping region The groove depth D1b of the first lug groove and the groove depth D2b of the second lug groove at any position within the range satisfy the relationship of 0.2 × (D1a + D2a) ≦ D1b + D2b ≦ 0.8 × (D1a + D2a) The pneumatic tire according to any one of claims 1 to 3. 前記重なり代Sと、前記第1ラグ溝の最大溝深さD1aと、前記第2ラグ溝の最大溝深さD2aとが0.8×D1a≦S≦2×D1a又は0.8×D2a≦S≦2×D2aの関係を満たすことを特徴とする請求項1〜4のいずれかに記載の空気入りタイヤ。   The overlap margin S, the maximum groove depth D1a of the first lug groove, and the maximum groove depth D2a of the second lug groove are 0.8 × D1a ≦ S ≦ 2 × D1a or 0.8 × D2a ≦ The pneumatic tire according to claim 1, wherein a relationship of S ≦ 2 × D2a is satisfied. 前記最外側主溝のタイヤ幅方向内側に隣接する中間陸部に第3ラグ溝を設け、該第3ラグ溝の一端部を前記中間陸部内で終端させる一方で前記第3ラグ溝の他端部を前記最外側主溝に連通させ、前記第3ラグ溝の他端部の前記最外側主溝との連通位置をタイヤ周方向に隣接する前記第1ラグ溝の一端部の前記最外側主溝との連通位置間に配置したことを特徴とする請求項1〜5のいずれかに記載の空気入りタイヤ。   A third lug groove is provided in an intermediate land portion adjacent to the innermost side in the tire width direction of the outermost main groove, and one end portion of the third lug groove is terminated in the intermediate land portion, while the other end of the third lug groove is provided. The outermost main groove at one end portion of the first lug groove adjacent to the tire circumferential direction at a position where the other end portion of the third lug groove communicates with the outermost main groove. The pneumatic tire according to any one of claims 1 to 5, wherein the pneumatic tire is disposed between communication positions with the groove. 前記第3ラグ溝の前記最外側主溝との連通位置での溝深さD3cと前記最外側主溝の溝深さGDとが0.4×GD≦D3c≦0.8×GDの関係を満たすことを特徴とする請求項6に記載の空気入りタイヤ。   The groove depth D3c at the communication position of the third lug groove with the outermost main groove and the groove depth GD of the outermost main groove have a relationship of 0.4 × GD ≦ D3c ≦ 0.8 × GD. The pneumatic tire according to claim 6, wherein the pneumatic tire is satisfied. 前記第1ラグ溝の前記最外側主溝との連通位置での溝深さD1cと前記最外側主溝の溝深さGDとが0.4×GD≦D1c≦0.8×GDの関係を満たすことを特徴とする請求項1〜7のいずれかに記載の空気入りタイヤ。   The groove depth D1c at the communication position of the first lug groove with the outermost main groove and the groove depth GD of the outermost main groove have a relationship of 0.4 × GD ≦ D1c ≦ 0.8 × GD. The pneumatic tire according to claim 1, wherein the pneumatic tire is satisfied. 前記第1ラグ溝の他端部と前記第2ラグ溝の一端部との間のタイヤ周方向の距離が5mm以上15mm以下であることを特徴とする請求項1〜8のいずれかに記載の空気入りタイヤ。   The distance of the tire peripheral direction between the other end part of the said 1st lug groove and the one end part of the said 2nd lug groove is 5 mm or more and 15 mm or less, The Claim 1 characterized by the above-mentioned. Pneumatic tire.
JP2014130490A 2014-06-25 2014-06-25 Pneumatic tire Active JP6344088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014130490A JP6344088B2 (en) 2014-06-25 2014-06-25 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014130490A JP6344088B2 (en) 2014-06-25 2014-06-25 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2016007973A JP2016007973A (en) 2016-01-18
JP6344088B2 true JP6344088B2 (en) 2018-06-20

Family

ID=55225838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130490A Active JP6344088B2 (en) 2014-06-25 2014-06-25 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP6344088B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834291B2 (en) * 2016-09-21 2021-02-24 住友ゴム工業株式会社 Pneumatic tires
JP7131111B2 (en) * 2018-06-19 2022-09-06 横浜ゴム株式会社 pneumatic tire
JP7108560B2 (en) * 2019-02-14 2022-07-28 株式会社ブリヂストン tire
JP7393271B2 (en) 2020-03-25 2023-12-06 株式会社ブリヂストン pneumatic tires

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4291861B2 (en) * 2007-07-02 2009-07-08 横浜ゴム株式会社 Pneumatic tire
JP4488083B2 (en) * 2008-04-11 2010-06-23 横浜ゴム株式会社 Pneumatic tire
JP5298914B2 (en) * 2009-02-12 2013-09-25 横浜ゴム株式会社 Pneumatic tire
JP5667614B2 (en) * 2012-10-02 2015-02-12 住友ゴム工業株式会社 Pneumatic tire

Also Published As

Publication number Publication date
JP2016007973A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP6436080B2 (en) Pneumatic tire
JP5333510B2 (en) Pneumatic tire
JP4905599B1 (en) Pneumatic tire
JP5667614B2 (en) Pneumatic tire
JP6380529B2 (en) Pneumatic tire
JP5796655B1 (en) Pneumatic tire
JP5617859B2 (en) Pneumatic tire
JP6358030B2 (en) Pneumatic tire
JP6375851B2 (en) Pneumatic tire
JP6327100B2 (en) Pneumatic tire
JP6375850B2 (en) Pneumatic tire
JP6446979B2 (en) Pneumatic tire
JP6044561B2 (en) Pneumatic tire
JP2017170938A (en) Pneumatic tire
WO2018131475A1 (en) Pneumatic tire
JP2013052872A (en) Pneumatic tire
JP6344088B2 (en) Pneumatic tire
JP6597013B2 (en) Pneumatic tire
JP6421652B2 (en) Pneumatic tire
JP6819774B2 (en) Pneumatic tires
JP6446980B2 (en) Pneumatic tire
JP2017128269A (en) Pneumatic tire
JP2019001423A (en) tire
JP6680328B2 (en) Pneumatic tire
JP2018111451A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180507

R150 Certificate of patent or registration of utility model

Ref document number: 6344088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250