JP2013189335A - Concrete using copper slag, and concrete structure - Google Patents

Concrete using copper slag, and concrete structure Download PDF

Info

Publication number
JP2013189335A
JP2013189335A JP2012056058A JP2012056058A JP2013189335A JP 2013189335 A JP2013189335 A JP 2013189335A JP 2012056058 A JP2012056058 A JP 2012056058A JP 2012056058 A JP2012056058 A JP 2012056058A JP 2013189335 A JP2013189335 A JP 2013189335A
Authority
JP
Japan
Prior art keywords
fine aggregate
concrete
test body
ratio
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012056058A
Other languages
Japanese (ja)
Other versions
JP6259555B2 (en
Inventor
Akira Niimura
亮 新村
Keisaburo Katano
啓三郎 片野
Toru Yamashita
徹 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2012056058A priority Critical patent/JP6259555B2/en
Publication of JP2013189335A publication Critical patent/JP2013189335A/en
Application granted granted Critical
Publication of JP6259555B2 publication Critical patent/JP6259555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide concrete using copper slag not generating material separation.SOLUTION: In this concrete using copper slag, which is concrete including cement, coarse aggregate and fine aggregate, the fine aggregate is constituted of copper slag and mountain sand having a coarse particle ratio of <2.75, and the ratio of the mountain sand to the whole fine aggregate is determined to be ≥43% in terms of the volume ratio, to put it in detail, in the range of 43%-50%. A synthetic coarse particle ratio of the copper slag and the sand is preferably ≤2.78, to put it in detail, in the range of 2.78-2.70.

Description

本発明は、銅スラグを用いたコンクリート、及びコンクリート構造物に関する。   The present invention relates to concrete using copper slag and a concrete structure.

銅スラグは銅精錬時の副産物であり、セメント原料やサンドブラストなどに用いられている。この銅スラグは比重が高いことから、2.5t/m以上の大きな密度を有する重量コンクリートにも用いられている。例えば、特許文献1に記載されたコンクリートでは、粗粒率4.52の銅スラグと粗粒率2.78の山砂を細骨材として用いている。 Copper slag is a by-product of copper refining and is used in cement raw materials and sandblasting. Since this copper slag has a high specific gravity, it is also used for heavy concrete having a large density of 2.5 t / m 3 or more. For example, in the concrete described in Patent Document 1, copper slag having a coarse grain ratio of 4.52 and mountain sand having a coarse grain ratio of 2.78 are used as fine aggregates.

特開2004−123422号公報(表1)JP 2004-123422 A (Table 1)

ここで、銅スラグは微粒分が少なく、表面が硬質かつ平滑であることから、材料分離を生じ易いという問題点があった。   Here, the copper slag has a problem that it has a small amount of fine particles and the surface is hard and smooth, so that material separation is likely to occur.

本発明はこのような事情に鑑みてなされたものであり、その目的は、銅スラグを用いても材料分離が生じないコンクリートを提供することにある。   This invention is made | formed in view of such a situation, The objective is to provide the concrete which does not produce material separation, even if it uses copper slag.

前述の目的を達成するため発明者等は、銅スラグと砂の粗粒率と比率に着目して鋭意検討を重ねた結果、本発明を完成させるに至ったものである。すなわち、本発明は、セメント、粗骨材及び細骨材を含有するコンクリートであって、前記細骨材が、銅スラグと粗粒率2.75未満の砂とから構成され、細骨材全体に対する前記砂の比率を、体積比で43%以上に定めたことを特徴とする。   In order to achieve the above-mentioned object, the inventors have intensively studied paying attention to the coarse particle ratio and the ratio of copper slag and sand, and as a result, have completed the present invention. That is, the present invention is a concrete containing cement, coarse aggregate and fine aggregate, wherein the fine aggregate is composed of copper slag and sand having a coarse grain ratio of less than 2.75, and the fine aggregate as a whole. The ratio of the sand with respect to is defined as a volume ratio of 43% or more.

本発明によれば、細骨材を銅スラグと粗粒率2.75未満の砂とから構成し、細骨材全体に対する砂の比率を体積比で43%以上に定めているので、銅スラグを用いても材料分離が生じず、かつ、過度な乾燥収縮を抑制可能なコンクリートを提供することができる。   According to the present invention, the fine aggregate is composed of copper slag and sand having a coarse particle ratio of less than 2.75, and the ratio of the sand to the whole fine aggregate is determined to be 43% or more by volume. It is possible to provide a concrete which does not cause material separation even when using, and can suppress excessive drying shrinkage.

このコンクリートにおいて、前記銅スラグと前記砂の合成粗粒率は2.78以下であることが好ましい。   In this concrete, the synthetic coarse particle ratio of the copper slag and the sand is preferably 2.78 or less.

また、本発明は、請求項1又は2に記載の銅スラグを用いたコンクリートによって構築されたことを特徴とするコンクリート構造物である。   In addition, the present invention is a concrete structure characterized by being constructed of concrete using the copper slag according to claim 1 or 2.

本発明によれば、銅スラグを用いても材料分離が生じないコンクリートを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it uses copper slag, the concrete which does not produce material separation can be provided.

各配合を説明する図である。It is a figure explaining each mixing | blending. 使用材料を説明する図である。It is a figure explaining used material. 試験結果を説明する図である。It is a figure explaining a test result. 配合1の試験体に対するスランプ試験の様子を示す写真である。It is a photograph which shows the mode of the slump test with respect to the test body of the mixing | blending 1. FIG. 配合2の試験体に対するスランプ試験の様子を示す写真である。It is a photograph which shows the mode of the slump test with respect to the test body of the mixing | blending 2. FIG. 配合3の試験体に対するスランプ試験の様子を示す写真である。It is a photograph which shows the mode of the slump test with respect to the test body of the mixing | blending 3. FIG. 配合4の試験体に対するスランプ試験の様子を示す写真である。It is a photograph which shows the mode of the slump test with respect to the test body of the mixing | blending 4. FIG. 配合5の試験体に対するスランプ試験の様子を示す写真である。It is a photograph which shows the mode of the slump test with respect to the test body of the mixing | blending 5. FIG. 配合6の試験体に対するスランプ試験の様子を示す写真である。It is a photograph which shows the mode of the slump test with respect to the test body of the mixing | blending 6. FIG. 配合7の試験体に対するスランプ試験の様子を示す写真である。It is a photograph which shows the mode of the slump test with respect to the test body of the mixing | blending 7. FIG.

以下、本発明の実施形態について説明する。まず、図1に示す試験体1〜7とその配合について説明する。なお、これらの試験体1〜7は、重量細骨材として銅スラグが混入されている点で共通している。   Hereinafter, embodiments of the present invention will be described. First, the test bodies 1-7 shown in FIG. In addition, these test bodies 1-7 are common in the point by which copper slag is mixed as a heavy fine aggregate.

試験体1〜3は本発明の実施例である。すなわち、試験体1は単位容積質量2.5t/mの実施例であり、試験体2は単位容積質量2.7t/mの実施例であり、試験体3は単位容積質量2.9t/mの実施例である。一方、試験体4〜7は比較例である。すなわち、試験体4,5は単位容積質量2.5t/mの比較例であり、試験体6,7は単位容積質量2.9t/mの比較例である。 Test bodies 1 to 3 are examples of the present invention. That is, the test body 1 is an example with a unit volume mass of 2.5 t / m 3 , the test body 2 is an example with a unit volume mass of 2.7 t / m 3 , and the test body 3 has a unit volume mass of 2.9 t. This is an example of / m 3 . On the other hand, the test bodies 4-7 are comparative examples. That is, the test bodies 4 and 5 are comparative examples having a unit volume mass of 2.5 t / m 3 , and the test bodies 6 and 7 are comparative examples having a unit volume mass of 2.9 t / m 3 .

これらの試験体1〜7は、記号Cで示すセメント、記号S1で示す重量細骨材、記号S2で示す細骨材、記号Gで示す粗骨材を、混和剤とともに後述する割合で混合し、記号Wで示す水で練り混ぜることで作製される。   These test specimens 1 to 7 were prepared by mixing the cement indicated by symbol C, the heavy fine aggregate indicated by symbol S1, the fine aggregate indicated by symbol S2, and the coarse aggregate indicated by symbol G in the proportion described later together with the admixture. , And kneaded with water indicated by symbol W.

ここで、図2を参照して使用材料について説明する。セメントCは、記号OPCで示す普通ポルトランドセメントと、記号BBで示す高炉セメントB種の二種類を用いた。普通ポルトランドセメントの密度は3.16g/cmであり、高炉セメントB種の密度は3.04g/cmである。 Here, the materials used will be described with reference to FIG. Two types of cement C were used: ordinary Portland cement indicated by symbol OPC and blast furnace cement B type indicated by symbol BB. The density of ordinary Portland cement is 3.16 g / cm 3 and the density of blast furnace cement type B is 3.04 g / cm 3 .

重量細骨材S1は銅スラグ細骨材を用いた。銅スラグ細骨材は、製造時に微粒分が取り除かれるため粗粒であり、表面が平滑なガラス質の粒子である。本実施形態では、小名浜精錬株式会社の小名浜精錬所で産出された銅スラグ細骨材を用いた。この銅スラグ細骨材はJIS適合品であり、その密度は3.52g/cm、粗粒率は3.30である。 As the heavy fine aggregate S1, copper slag fine aggregate was used. The copper slag fine aggregate is a vitreous particle that is coarse and has a smooth surface because fine particles are removed during production. In this embodiment, the copper slag fine aggregate produced at Onahama Refinery of Onahama Smelting Co., Ltd. was used. This copper slag fine aggregate is a JIS compliant product, and its density is 3.52 g / cm 3 and the coarse particle ratio is 3.30.

細骨材S2は山砂と砕砂を用いた。山砂は千葉県富津市産のものであり、密度が2.60g/cm、粗粒率が2.10である。砕砂は福島県白河産のものであり、密度が2.64g/cm、粗粒率が2.75である。 As the fine aggregate S2, mountain sand and crushed sand were used. Mountain sand is from Futtsu City, Chiba Prefecture, and has a density of 2.60 g / cm 3 and a coarse grain ratio of 2.10. The crushed sand is from Shirakawa, Fukushima Prefecture, and has a density of 2.64 g / cm 3 and a coarse particle ratio of 2.75.

粗骨材Gは砕石や電気炉酸化スラグ粗骨材を用いた。混和剤は、減水剤と消泡材を用いた。減水剤に関し、記号WRで示すAE減水剤(高機能タイプAE減水剤)と記号SPで示す高性能AE減水剤とを用いた。   As the coarse aggregate G, crushed stone or electric furnace oxidized slag coarse aggregate was used. As the admixture, a water reducing agent and an antifoaming material were used. Regarding the water reducing agent, an AE water reducing agent (high function type AE water reducing agent) indicated by symbol WR and a high performance AE water reducing agent indicated by symbol SP were used.

試験体1では、細骨材に関し、重量細骨材S1と細骨材S2の細骨材混合率が体積比で50対50となるように細骨材S1,S2の単位量を定めた。そして、細骨材S2として山砂を用い、細骨材の合成粗粒率を2.70とした。また、セメントCとしては普通ポルトランドセメントOPCを用い、混和剤として消泡材とAE減水剤WRとを添加した。   In the test body 1, with respect to the fine aggregate, the unit amounts of the fine aggregates S1 and S2 were determined so that the fine aggregate mixing ratio of the heavy fine aggregate S1 and the fine aggregate S2 was 50:50 in volume ratio. Then, mountain sand was used as the fine aggregate S2, and the synthetic coarse particle ratio of the fine aggregate was 2.70. Further, ordinary Portland cement OPC was used as the cement C, and an antifoaming material and an AE water reducing agent WR were added as admixtures.

具体的には、試験体1は、単位量158kg/cmの水Wと、単位量395kg/cmの普通ポルトランドセメントOPCと、単位量561kg/cmの重量細骨材S1と、単位量413kg/cmの細骨材(山砂)S2と、単位量1020kg/cmの粗骨材Gと、混和剤とを練り混ぜることでフレッシュコンクリートを得た。このフレッシュコンクリートの水セメント比W/Cは40%であった。 Specifically, the test body 1, and the water W of the unit amount 158 kg / cm 3, and ordinary portland cement OPC unit amount 395kg / cm 3, a weight fine aggregate S1 of the unit amount 561kg / cm 3, the unit amount Fresh concrete was obtained by kneading 413 kg / cm 3 of fine aggregate (mountain sand) S2, coarse aggregate G of unit amount 1020 kg / cm 3 and an admixture. The water-cement ratio W / C of this fresh concrete was 40%.

試験体2では、細骨材に関し、重量細骨材S1と細骨材S2の細骨材混合率が体積比で56対44となるように細骨材S1,S2の単位量を定めた。そして、細骨材S2として山砂を用い、細骨材の合成粗粒率を2.77とした。セメントCとしては高炉セメントB種BBを用い、混和剤として消泡材とAE減水剤WRとを添加した。   In the test body 2, with respect to the fine aggregate, the unit amounts of the fine aggregates S1 and S2 were determined so that the fine aggregate mixing ratio of the heavy fine aggregate S1 and the fine aggregate S2 was 56:44 in volume ratio. Then, mountain sand was used as the fine aggregate S2, and the synthetic coarse particle ratio of the fine aggregate was 2.77. As the cement C, a blast furnace cement type B BB was used, and an antifoaming material and an AE water reducing agent WR were added as admixtures.

具体的には、試験体2は、単位量179kg/cmの水Wと、単位量377kg/cmの高炉セメントB種BBと、単位量595kg/cmの重量細骨材S1と、単位量361kg/cmの細骨材(山砂)S2と、単位量1191kg/cmの粗骨材Gと、混和剤とを練り混ぜることでフレッシュコンクリートを得た。このフレッシュコンクリートの水セメント比W/Cは47.5%であった。 Specifically, test material 2 includes a water W unit amount 179 kg / cm 3, and blast furnace cement type B BB unit amount 377kg / cm 3, a weight fine aggregate S1 of the unit amount 595kg / cm 3, the unit fine aggregate amounts 361kg / cm 3 and (pit sand) S2, and coarse aggregate G unit quantity 1191kg / cm 3, to obtain a fresh concrete by mixing kneaded and admixtures. The water-cement ratio W / C of this fresh concrete was 47.5%.

試験体3では、細骨材に関し、重量細骨材S1と細骨材S2の細骨材混合率が体積比で57対43となるように細骨材S1,S2の単位量を定めた。そして、細骨材S2として山砂を用い、細骨材の合成粗粒率を2.78とした。セメントCとしては高炉セメントB種BBを用い、混和剤として消泡材とAE減水剤WRとを添加した。   In the test body 3, with respect to the fine aggregate, the unit amounts of the fine aggregates S1 and S2 were determined so that the fine aggregate mixing ratio of the heavy fine aggregate S1 and the fine aggregate S2 was 57:43 by volume ratio. Then, mountain sand was used as the fine aggregate S2, and the synthetic coarse particle ratio of the fine aggregate was 2.78. As the cement C, a blast furnace cement type B BB was used, and an antifoaming material and an AE water reducing agent WR were added as admixtures.

具体的には、試験体3は、単位量178kg/cmの水Wと、単位量406kg/cmの高炉セメントB種BBと、単位量577kg/cmの重量細骨材S1と、単位量348kg/cmの細骨材(山砂)S2と、単位量1391kg/cmの粗骨材Gと、混和剤とを練り混ぜることでフレッシュコンクリートを得た。このフレッシュコンクリートの水セメント比W/Cは43.9%であった。 Specifically, the test body 3, and water W unit amount 178 kg / cm 3, and blast furnace cement type B BB unit amount 406kg / cm 3, a weight fine aggregate S1 of the unit amount 577kg / cm 3, the unit fine aggregate amounts 348kg / cm 3 and (pit sand) S2, and coarse aggregate G unit quantity 1391kg / cm 3, to obtain a fresh concrete by mixing kneaded and admixtures. The water-cement ratio W / C of this fresh concrete was 43.9%.

試験体4は、試験体1に対応する比較例であり、細骨材として重量細骨材S1のみを使用した。このため、試験体4の合成粗粒率は、重量細骨材S1の粗粒率である3.30となる。セメントCとしては普通ポルトランドセメントOPCを用い、混和剤として消泡材とAE減水剤WRとを添加した。   The test body 4 is a comparative example corresponding to the test body 1, and only the heavy fine aggregate S1 was used as the fine aggregate. For this reason, the synthetic coarse particle rate of the test body 4 is 3.30 which is the coarse particle rate of the heavy fine aggregate S1. Ordinary Portland cement OPC was used as the cement C, and an antifoaming material and an AE water reducing agent WR were added as admixtures.

具体的には、試験体4は、単位量158kg/cmの水Wと、単位量288kg/cmの普通ポルトランドセメントOPCと、単位量1241kg/cmの重量細骨材S1と、単位量1020kg/cmの粗骨材Gと、混和剤とを練り混ぜることでフレッシュコンクリートを得た。このフレッシュコンクリートの水セメント比W/Cは54.9%であった。 Specifically, the test body 4, and the water W of the unit amount 158 kg / cm 3, and ordinary portland cement OPC unit amount 288 kg / cm 3, a weight fine aggregate S1 of the unit quantity 1241kg / cm 3, the unit amount Fresh concrete was obtained by kneading coarse aggregate G of 1020 kg / cm 3 and an admixture. The water-cement ratio W / C of this fresh concrete was 54.9%.

試験体5もまた、試験体1に対応する比較例であり、重量細骨材S1と細骨材S2の細骨材混合率が体積比で80対20となるように細骨材S1,S2の単位量を定めた。そして、細骨材S2として山砂を用い、細骨材の合成粗粒率を3.06とした。セメントCとしては普通ポルトランドセメントOPCを用い、混和剤として消泡材とAE減水剤WRとを添加した。   The test body 5 is also a comparative example corresponding to the test body 1, and the fine aggregates S1, S2 so that the fine aggregate mixing ratio of the heavy fine aggregate S1 and the fine aggregate S2 is 80:20 by volume ratio. The unit amount of was determined. Then, mountain sand was used as the fine aggregate S2, and the synthetic coarse particle ratio of the fine aggregate was set to 3.06. Ordinary Portland cement OPC was used as the cement C, and an antifoaming material and an AE water reducing agent WR were added as admixtures.

具体的には、試験体5は、単位量158kg/cmの水Wと、単位量352kg/cmの普通ポルトランドセメントOPCと、単位量936kg/cmの重量細骨材S1と、単位量172kg/cmの細骨材(山砂)S2と、単位量1020kg/cmの粗骨材Gと、混和剤とを練り混ぜることでフレッシュコンクリートを得た。このフレッシュコンクリートの水セメント比W/Cは44.9%であった。 Specifically, the test body 5, a water W unit amount 158 kg / cm 3, and ordinary portland cement OPC unit amount 352 kg / cm 3, a weight fine aggregate S1 of the unit amount 936kg / cm 3, the unit amount 172kg / cm 3 of fine aggregate (the mountain sand) S2, to give a coarse aggregate G unit quantity 1020kg / cm 3, the fresh concrete by mixing kneaded and admixtures. The water-cement ratio W / C of this fresh concrete was 44.9%.

試験体6は、試験体3に対応する比較例であり、細骨材S2として砕砂を使用し、重量細骨材S1と細骨材S2の細骨材混合率が体積比で50対50となるように細骨材S1,S2の単位量を定めた。これにより、試験体6の合成粗粒率は3.03となった。また、セメントCとしては普通ポルトランドセメントOPCを用い、混和剤として消泡材と高性能AE減水剤SPとを添加した。   The test body 6 is a comparative example corresponding to the test body 3, and crushed sand is used as the fine aggregate S2, and the fine aggregate mixing ratio of the heavy fine aggregate S1 and the fine aggregate S2 is 50:50 in volume ratio. The unit amount of the fine aggregates S1 and S2 was determined so as to be. Thereby, the synthetic coarse particle rate of the test body 6 became 3.03. Moreover, normal Portland cement OPC was used as the cement C, and an antifoaming material and a high performance AE water reducing agent SP were added as admixtures.

具体的には、試験体6は、単位量157kg/cmの水Wと、単位量400kg/cmの普通ポルトランドセメントOPCと、単位量561kg/cmの重量細骨材S1と、単位量438kg/cmの細骨材(砕砂)S2と、単位量1421kg/cmの粗骨材Gと、混和剤とを練り混ぜることでフレッシュコンクリートを得た。このフレッシュコンクリートの水セメント比W/Cは39.3%であった。 Specifically, the test body 6, the water W of the unit amount 157 kg / cm 3, and ordinary portland cement OPC unit amount 400 kg / cm 3, a weight fine aggregate S1 of the unit amount 561kg / cm 3, the unit amount Fresh concrete was obtained by kneading 438 kg / cm 3 of fine aggregate (crushed sand) S2, coarse aggregate G of unit amount 1421 kg / cm 3 and an admixture. The water-cement ratio W / C of this fresh concrete was 39.3%.

試験体7もまた、試験体3に対応する比較例であり、細骨材S2として砕砂を使用し、重量細骨材S1と細骨材S2の細骨材混合率が体積比で30対70となるように細骨材S1,S2の単位量を定めた。これにより、試験体7の合成粗粒率は2.92となった。また、セメントCとしては普通ポルトランドセメントOPCを用い、混和剤として消泡材と高性能AE減水剤SPとを添加した。   The test body 7 is also a comparative example corresponding to the test body 3, and crushed sand is used as the fine aggregate S2, and the fine aggregate mixing ratio of the heavy fine aggregate S1 and the fine aggregate S2 is 30:70 in volume ratio. The unit amounts of the fine aggregates S1 and S2 were determined so that Thereby, the synthetic coarse particle rate of the test body 7 became 2.92. Moreover, normal Portland cement OPC was used as the cement C, and an antifoaming material and a high performance AE water reducing agent SP were added as admixtures.

具体的には、試験体7は、単位量162kg/cmの水Wと、単位量400kg/cmの普通ポルトランドセメントOPCと、単位量331kg/cmの重量細骨材S1と、単位量578kg/cmの細骨材(砕砂)S2と、単位量1421kg/cmの粗骨材Gと、混和剤とを練り混ぜることでフレッシュコンクリートを得た。このフレッシュコンクリートの水セメント比W/Cは40.5%であった。 Specifically, the test body 7, the water W of the unit amount 162 kg / cm 3, and ordinary portland cement OPC unit amount 400 kg / cm 3, a weight fine aggregate S1 of the unit amount 331 kg / cm 3, the unit amount Fresh concrete was obtained by kneading and mixing 578 kg / cm 3 of fine aggregate (crushed sand) S2, coarse aggregate G of unit amount 1421 kg / cm 3 and an admixture. The water-cement ratio W / C of this fresh concrete was 40.5%.

各試験体1〜7のフレッシュコンクリートを作製した後、それぞれの試験体についてスランプ、空気量、単位容積質量、圧縮強度の測定を行った。ここで、スランプの測定はJIS A 1110、空気量の測定はJIS A 1128、単位容積質量の測定はJIS A 1116、圧縮強度の測定はJIS A 1108に即して行った。試験結果を図3〜図10に示す。   After preparing the fresh concrete of each test body 1-7, the slump, the air amount, the unit volume mass, and the compressive strength were measured for each test body. Here, the slump measurement was performed according to JIS A 1110, the air volume measurement was performed according to JIS A 1128, the unit volume mass measurement was performed according to JIS A 1116, and the compressive strength measurement was performed according to JIS A 1108. The test results are shown in FIGS.

まず、単位容積質量の試験結果について検討する。図3に示すように、単位容積質量に関し、試験体1は2546kg/m、試験体2は2790kg/m、試験体3は2990kg/mであった。また、試験体4は2595kg/m、試験体5は2624kg/mであり、試験体6は2943kg/m、試験体7は2909kg/mであった。試験体1,4,5に関し、何れも単位容積質量2.5t/mの要求を満たすことが確認された。同様に、試験体2に関して単位容積質量2.7t/mの要求を満たすこと、及び、試験体3,6,7に関して何れも単位容積質量2.9t/mの要求を満たすことが確認された。 First, the test result of unit volume mass is examined. As shown in FIG. 3, regarding the unit volume mass, the test body 1 was 2546 kg / m 3 , the test body 2 was 2790 kg / m 3 , and the test body 3 was 2990 kg / m 3 . Moreover, the test body 4 was 2595 kg / m < 3 >, the test body 5 was 2624 kg / m < 3 >, the test body 6 was 2943 kg / m < 3 >, and the test body 7 was 2909 kg / m < 3 >. It was confirmed that all of the test bodies 1, 4 and 5 satisfy the requirement of a unit volume mass of 2.5 t / m 3 . Similarly, it is confirmed that the requirement of the unit volume mass of 2.7 t / m 3 is satisfied for the test body 2 and that the requirements of the unit volume mass of 2.9 t / m 3 are all satisfied for the test bodies 3 , 6, and 7. It was done.

次に、空気量の試験結果について検討する。図3に示すように、空気量に関し、試験体1は2.6%、試験体2は0.8%、試験体3は1.0%であった。また、試験体4は5.2%、試験体5は2.8%、試験体6は2.7%、試験体7は2.1%であった。試験体4に関して5.2%と高い数値であったが、他の試験体は0.8〜2.8%と3.0%よりも少ない空気量であった。特に、試験体2,3については1.0%以下と極めて少ない空気量であった。   Next, we will examine the test results for air volume. As shown in FIG. 3, regarding the air amount, the test body 1 was 2.6%, the test body 2 was 0.8%, and the test body 3 was 1.0%. Moreover, the test body 4 was 5.2%, the test body 5 was 2.8%, the test body 6 was 2.7%, and the test body 7 was 2.1%. Although it was as high as 5.2% for the test body 4, the other test bodies had 0.8 to 2.8% and an air amount smaller than 3.0%. In particular, the test bodies 2 and 3 had an extremely small air amount of 1.0% or less.

次に、スランプの試験結果について検討する。まず、試験体1,4,5(単位容積質量2.5t/mの銅スラグ入りコンクリート)について検討する。図3に示すように、試験体1のスランプは7.0cmであった。これに対し、試験体4のスランプは0.0cm、試験体4のスランプは2.0cmであった。図4に示すように、試験体1では、プラスティシティー(一体に変形できる性能)を保ったまま沈んでいることが確認された。これに対し、図7,8に示すように、試験体4,5では、スランプコーンを取り去ったあとも、ほぼスランプコーンの形状のままであることが確認された。加えて、図8に示すように、試験体5では上端部に多少の崩れが生じていることも確認された。 Next, the test results of the slump will be examined. First, test specimens 1, 4 and 5 (concrete containing copper slag having a unit volume mass of 2.5 t / m 3 ) are examined. As shown in FIG. 3, the slump of the test body 1 was 7.0 cm. On the other hand, the slump of the test body 4 was 0.0 cm, and the slump of the test body 4 was 2.0 cm. As shown in FIG. 4, it was confirmed that the test body 1 was sinking while maintaining plasticity (performance capable of being integrally deformed). On the other hand, as shown in FIGS. 7 and 8, it was confirmed that in the test bodies 4 and 5, the shape of the slump cone remained substantially after the slump cone was removed. In addition, as shown in FIG. 8, it was also confirmed that the test body 5 had some collapse at the upper end.

これらの結果から、試験体1は流動性及びプラスティシティーが良好であるといえる。これに対し、試験体4は流動性がなく、試験体5は流動性が不足していることが理解できる。特に試験体4は、空気量が5.2%であり、他の試験体よりも多くの空気を含んでいるにもかかわらず、流動性が得られなかった。これは、空気量測定用の容器内にコンクリートを充てんする際に、コンクリートの流動性がないため未充てんの空隙部分が残ったためと考えられる。また、試験体5については、流動性の不足に加えて、プラスティシティーが損なわれていることも理解できる。   From these results, it can be said that the test body 1 has good fluidity and plasticity. On the other hand, it can be understood that the specimen 4 has no fluidity and the specimen 5 lacks fluidity. In particular, the specimen 4 had an air amount of 5.2%, and fluidity was not obtained even though it contained more air than the other specimens. This is considered to be because when filling concrete in the air amount measurement container, the unfilled void portion remained because the concrete did not have fluidity. Moreover, about the test body 5, in addition to lack of fluidity | liquidity, it can also be understood that the plasticity is impaired.

試験体1,4,5のスランプ試験から、山砂(細骨材S2)を、体積比で銅スラグ(重量細骨材S1)の50%混合し、普通ポルトランドセメントOPCの単位セメント量を395kg/mまで高めることにより、良好なワーカビリティーが得られることが確認できた。 From the slump test of specimens 1, 4 and 5, pile sand (fine aggregate S2) was mixed with 50% of copper slag (heavy fine aggregate S1) by volume, and the unit cement amount of ordinary Portland cement OPC was 395 kg It was confirmed that good workability can be obtained by increasing to / m 3 .

次に、試験体3,6,7(単位容積質量2.9t/mの銅スラグ入りコンクリート)について検討する。図3に示すように、試験体3のスランプは17.5cmであった。これに対し、試験体6のスランプは17.0cm、試験体7のスランプは14.0cmであった。各試験体3,6,7のスランプ値には大きな違いはみられなかったが、プラスティシティーが大きく異なっていた。 Next, test specimens 3 , 6, and 7 (concrete containing copper slag having a unit volume mass of 2.9 t / m 3 ) will be examined. As shown in FIG. 3, the slump of the test body 3 was 17.5 cm. On the other hand, the slump of the test body 6 was 17.0 cm, and the slump of the test body 7 was 14.0 cm. Although there was no significant difference in the slump values of the test specimens 3, 6 and 7, the plasticity was greatly different.

すなわち、図6に示すように、試験体3ではプラスティシティーを保ったまま、ほぼ半分程度の高さになるまで沈んでいることが確認された。また半径方向において、ほぼ均等(平面視でほぼ円形)に拡がっていることも確認された。これに対し、図9,10に示すように、試験体6,7では、小さな塊に分かれた状態で崩れてしまい、プラスティシティーが損なわれていることが確認された。   That is, as shown in FIG. 6, it was confirmed that the specimen 3 was submerged to a height of about half while maintaining the plasticity. In addition, it was confirmed that in the radial direction, it spreads almost uniformly (substantially circular in plan view). On the other hand, as shown in FIGS. 9 and 10, it was confirmed that the specimens 6 and 7 collapsed in a state of being divided into small lumps, and the plasticity was impaired.

これらの結果から、試験体3は流動性及びプラスティシティーが良好であるといえる。これに対し、試験体6,7はプラスティシティーに難があり、材料分離を生じてしまうことが理解できる。そして、試験体3,6,7のスランプ試験から、山砂(細骨材S2)を、体積比で銅スラグ(重量細骨材S1)の43%混合し、高炉セメントBBの単位セメント量を406kg/mまで高めることにより、良好なワーカビリティーが得られることが確認できた。 From these results, it can be said that the test body 3 has good fluidity and plasticity. On the other hand, it can be understood that the specimens 6 and 7 have difficulty in plasticity and cause material separation. And from the slump test of the test bodies 3, 6 and 7, pile sand (fine aggregate S2) is mixed with 43% of copper slag (heavy fine aggregate S1) by volume ratio, and the unit cement amount of blast furnace cement BB is determined. It was confirmed that good workability could be obtained by increasing to 406 kg / m 3 .

次に、試験体2(単位容積質量2.7t/mの銅スラグ入りコンクリート)について検討する。図3に示すように、試験体1のスランプは20.0cmであった。そして、図5に示すように、試験体2ではプラスティシティーを保ったまま、ほぼ1/3程度の高さになるまで沈んでいることが確認された。そして、試験体3と同様に、半径方向において、ほぼ均等に拡がっていることが確認された。これらのことから、試験体2は、良好なワーカビリティーが得られることが確認できた。 Next, the specimen 2 (concrete containing copper slag having a unit volume mass of 2.7 t / m 3 ) will be examined. As shown in FIG. 3, the slump of the test body 1 was 20.0 cm. Then, as shown in FIG. 5, it was confirmed that the specimen 2 was submerged to a height of about 1/3 while maintaining the plasticity. And like the test body 3, it was confirmed that it has spread substantially uniformly in the radial direction. From these facts, it was confirmed that the test body 2 can obtain good workability.

次に、圧縮強度の試験結果について検討する。普通ポルトランドセメントOPCを用いた試験体1では材令28日の圧縮強度で60N/mm以上の値を示した。また、高炉セメントBBを用いた試験体2,3では材令28日の圧縮強度で40N/mm以上の値を示した。何れの試験体1〜3も十分な強度が得られていることが確認された。 Next, the test result of compressive strength will be examined. Specimen 1 using ordinary Portland cement OPC showed a value of 60 N / mm 2 or more in terms of compressive strength on the 28th day of material age. Moreover, in the test bodies 2 and 3 using the blast furnace cement BB, the compressive strength on the material age 28 days showed a value of 40 N / mm 2 or more. It was confirmed that any of the test bodies 1 to 3 had sufficient strength.

以上の試験結果を総括すると、次のことがいえる。   Summarizing the above test results, the following can be said.

細骨材を重量細骨材S1と細骨材S2から構成し、重量細骨材S1として銅スラグを、細骨材S2として粗粒率2.75未満の砂をそれぞれ用い、細骨材全体に対する砂の比率を体積比で43%以上に定めることで、銅スラグを用いても材料分離が生じず、良好なワーカビリティーのコンクリートを実現でき、コンクリート構造物を構築できる。   The fine aggregate is composed of heavy fine aggregate S1 and fine aggregate S2, copper slag is used as heavy fine aggregate S1, and sand with a coarse particle ratio of less than 2.75 is used as fine aggregate S2, and the whole fine aggregate By setting the ratio of sand to the volume ratio to 43% or more, material separation does not occur even when copper slag is used, and concrete with good workability can be realized and a concrete structure can be constructed.

土木学会の無筋コンクリート標準示方書では、細骨材の粗粒率が、コンクリートの配合を定める時に仮定した細骨材の粗粒率にくらべて、0.20以上の変化を示したときは、配合を変えなければその細骨材を用いてはならないとされている。この基準に照らせば、細骨材S2に関し、粗粒率2.10±0.20を超えなければ等価といえる。すなわち、砂の粗粒率については、1.90〜2.30の範囲が好ましいといえる。同様に、重量細骨材S1に関しても、粗粒率3.30±0.20を超えなければ等価といえる。すなわち、銅スラグの粗粒率については、3.10〜3.50の範囲が好ましいといえる。   In the Japan Society of Civil Engineers Standard Specification for Unreinforced Concrete, when the coarse aggregate ratio of fine aggregate shows a change of 0.20 or more compared to the coarse aggregate ratio of fine aggregate assumed when determining the concrete composition It is said that the fine aggregate should not be used unless the composition is changed. In light of this standard, it can be said that the fine aggregate S2 is equivalent if the coarse particle ratio does not exceed 2.10 ± 0.20. That is, it can be said that the range of 1.90 to 2.30 is preferable for the coarse grain ratio of sand. Similarly, it can be said that the heavy fine aggregate S1 is equivalent if the coarse particle ratio does not exceed 3.30 ± 0.20. That is, it can be said that the range of 3.10 to 3.50 is preferable for the coarse grain ratio of copper slag.

また、重量細骨材S1と細骨材S2の合成粗粒率は2.78以下、詳しくは2.78から2.70の範囲内であることが好ましいといえる。さらに、細骨材全体における細骨材S2の容積比率は43%以上、詳しくは43%から50%の範囲内であることが好ましいといえる。   Further, it can be said that the composite coarse particle ratio of the heavy fine aggregate S1 and the fine aggregate S2 is preferably 2.78 or less, more specifically, in the range of 2.78 to 2.70. Furthermore, it can be said that the volume ratio of the fine aggregate S2 in the entire fine aggregate is preferably 43% or more, and more preferably in the range of 43% to 50%.

以上の実施形態の説明は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれる。   The above description of the embodiment is for facilitating the understanding of the present invention, and does not limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes equivalents thereof.

セメントCに関し、試験体1では普通ポルトランドセメントOPCを用い、試験体2,3では高炉セメントBBを用いたが、何れの種類のセメントを用いてもよい。例えば、試験体1に高炉セメントBBを用いてもよいし、試験体2,3に普通ポルトランドセメントOPCを用いてもよい。   Regarding the cement C, the specimen 1 used ordinary Portland cement OPC, and the specimens 2 and 3 used blast furnace cement BB, but any kind of cement may be used. For example, blast furnace cement BB may be used for the test body 1, and normal Portland cement OPC may be used for the test bodies 2 and 3.

細骨材S2に関し、試験体1〜3では山砂を用いたが、これに限定されない。すなわち、山砂と同様に角の少ない天然砂であれば、山砂に代えて用いることができる。例えば、海砂、川砂、陸砂を用いることができる。   Regarding fine aggregate S2, piles of sand were used in specimens 1 to 3, but the invention is not limited to this. That is, natural sand with few corners like mountain sand can be used instead of mountain sand. For example, sea sand, river sand, and land sand can be used.

Claims (3)

セメント、粗骨材及び細骨材を含有するコンクリートであって、
前記細骨材が、銅スラグと粗粒率2.75未満の砂とから構成され、
細骨材全体に対する前記砂の比率を、体積比で43%以上に定めたことを特徴とする銅スラグを用いたコンクリート。
Concrete containing cement, coarse aggregate and fine aggregate,
The fine aggregate is composed of copper slag and sand having a coarse particle ratio of less than 2.75,
Concrete using copper slag, wherein the ratio of the sand to the whole fine aggregate is set to 43% or more by volume.
前記銅スラグと前記砂の合成粗粒率が2.78以下であることを特徴とする請求項1に記載の銅スラグを用いたコンクリート。   2. The concrete using copper slag according to claim 1, wherein a synthetic coarse particle ratio of the copper slag and the sand is 2.78 or less. 請求項1又は2に記載の銅スラグを用いたコンクリートによって構築されたことを特徴とするコンクリート構造物。   A concrete structure constructed by concrete using the copper slag according to claim 1.
JP2012056058A 2012-03-13 2012-03-13 Concrete using copper slag and concrete structure Expired - Fee Related JP6259555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056058A JP6259555B2 (en) 2012-03-13 2012-03-13 Concrete using copper slag and concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012056058A JP6259555B2 (en) 2012-03-13 2012-03-13 Concrete using copper slag and concrete structure

Publications (2)

Publication Number Publication Date
JP2013189335A true JP2013189335A (en) 2013-09-26
JP6259555B2 JP6259555B2 (en) 2018-01-10

Family

ID=49390018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056058A Expired - Fee Related JP6259555B2 (en) 2012-03-13 2012-03-13 Concrete using copper slag and concrete structure

Country Status (1)

Country Link
JP (1) JP6259555B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112260A (en) * 2017-12-22 2019-07-11 住友金属鉱山株式会社 Method for producing fine aggregate
JP2019210200A (en) * 2018-06-08 2019-12-12 住友大阪セメント株式会社 High strength concrete composition and high strength concrete hardened body
JP2020011871A (en) * 2018-07-19 2020-01-23 住友金属鉱山株式会社 Concrete having durability
JP2020158330A (en) * 2019-03-26 2020-10-01 住友大阪セメント株式会社 Self-compacting concrete and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045027A (en) * 2004-08-06 2006-02-16 Nissan Rinkai Construction Co Ltd High specific gravity concrete, its manufacturing method, wave breaking high specific gravity concrete molding and radiation shielding high specific gravity concrete molding

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045027A (en) * 2004-08-06 2006-02-16 Nissan Rinkai Construction Co Ltd High specific gravity concrete, its manufacturing method, wave breaking high specific gravity concrete molding and radiation shielding high specific gravity concrete molding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015047023; C. L. Hwang and J. C. Laiw: 'Properties of Concrete Using Copper Slag as a Substitute for Fine Aggregate' Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, Proceedings Third International Confe SP-114, Vol.2, 1989, p.1677-1695 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112260A (en) * 2017-12-22 2019-07-11 住友金属鉱山株式会社 Method for producing fine aggregate
JP7110590B2 (en) 2017-12-22 2022-08-02 住友金属鉱山株式会社 Manufacturing method of fine aggregate
JP2019210200A (en) * 2018-06-08 2019-12-12 住友大阪セメント株式会社 High strength concrete composition and high strength concrete hardened body
JP7068655B2 (en) 2018-06-08 2022-05-17 住友大阪セメント株式会社 High-strength concrete composition and high-strength concrete hardened body
JP2020011871A (en) * 2018-07-19 2020-01-23 住友金属鉱山株式会社 Concrete having durability
JP2020158330A (en) * 2019-03-26 2020-10-01 住友大阪セメント株式会社 Self-compacting concrete and method for producing the same
JP7215283B2 (en) 2019-03-26 2023-01-31 住友大阪セメント株式会社 Self-compacting concrete and method for producing self-compacting concrete

Also Published As

Publication number Publication date
JP6259555B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6259555B2 (en) Concrete using copper slag and concrete structure
JP6346519B2 (en) Method for producing high-strength concrete and concrete member
CN107200526A (en) C40 grades are mixed slag regeneration aggregate self-compacting concrete and preparation method thereof
JP5588613B2 (en) Cement mortar
TWI778211B (en) High-strength grouting material composition, high-strength grouting mortar using the same, and manufacturing method of high-strength grouting mortar
JP7092459B2 (en) Cement composition
KR101366294B1 (en) High-fluid, subaqueous non-separated concrete admixture and this adding high-fluid, subaqueous non-separated concrete composition
JP2018087107A (en) Manufacturing method of premix cement composition
JP2011207669A (en) Hydraulic composition and hardened body thereof
JP6813339B2 (en) Cement composition
JP6035784B2 (en) Medium fluidity concrete mixed with thickener and shrinkage reducing agent
JP2013086986A (en) Middle fluidity concrete
JP6165447B2 (en) Method for producing concrete with reduced bleeding
JP5768431B2 (en) High flow mortar composition
JP6485741B2 (en) Heavy aggregate and heavy concrete
JP2012201558A (en) Copper-slag-containing fine aggregate for concrete, and concrete construction method using the same
JP2019065638A (en) Concrete, tunnel lining body and concrete mixing design method
JP2011236080A (en) Production method for medium-fluidity concrete and medium-fluidity concrete produced by the method
JP7079157B2 (en) Blast furnace slag powder, cement composition and mortar composition containing blast furnace slag powder, and method for predicting fluidity of cement composition.
JP2016185888A (en) Cement composition
JP6118490B2 (en) Medium fluidity concrete
JP2015189634A (en) Manufacturing method of grout filler material of post-foaming type
JP6400426B2 (en) Underwater inseparable concrete composition and cured body thereof
JP2014166927A (en) Cement-containing powder composition and hydraulic composition
JP7046563B2 (en) Method for producing hydraulic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6259555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees