JP2013185778A - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP2013185778A JP2013185778A JP2012052471A JP2012052471A JP2013185778A JP 2013185778 A JP2013185778 A JP 2013185778A JP 2012052471 A JP2012052471 A JP 2012052471A JP 2012052471 A JP2012052471 A JP 2012052471A JP 2013185778 A JP2013185778 A JP 2013185778A
- Authority
- JP
- Japan
- Prior art keywords
- rotational speed
- load
- air conditioner
- compressor motor
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
Description
本発明は、空気調和機に関するものである。 The present invention relates to an air conditioner.
ブラシレスモータの駆動装置に回転指令を入力すると、回転指令に応じてブラシレスモータが回転する。しかし、過負荷である時や急激に回転速度を変化させた時には回転指令に応じて回転せず、脱調が生じる。 When a rotation command is input to the brushless motor drive device, the brushless motor rotates in accordance with the rotation command. However, when an overload occurs or when the rotational speed is changed rapidly, the motor does not rotate in response to the rotation command, and a step-out occurs.
特許文献1は、目標加速度を実現するトルク指令量と吐出圧力値が一定値を超えると目標回転数に補正回転数を加算する技術を開示している。特許文献1によれば、負荷が増大する前に最低回転数を上げることができるので、モータの脱調を防ぐことができる。 Patent Document 1 discloses a technique for adding a corrected rotational speed to a target rotational speed when a torque command amount for realizing the target acceleration and a discharge pressure value exceed a certain value. According to Patent Document 1, since the minimum number of revolutions can be increased before the load increases, motor step-out can be prevented.
特許文献2に記載の技術に係る空気調和機の制御装置を示すブロック図である。特許文献2は、湿度検出手段で検出された湿度が高い場合は圧縮機モータの最低回転数を増加させ、湿度が低い場合は減少させる技術を開示している。特許文献2によれば、室温検出手段で検出された室温が室温設定手段で設定された温度に近づいても除湿能力低下を抑制することができる。 It is a block diagram which shows the control apparatus of the air conditioner which concerns on the technique of patent document 2. FIG. Patent Document 2 discloses a technique for increasing the minimum number of rotations of the compressor motor when the humidity detected by the humidity detecting means is high and decreasing the humidity when the humidity is low. According to Patent Document 2, even when the room temperature detected by the room temperature detection unit approaches the temperature set by the room temperature setting unit, it is possible to suppress a decrease in dehumidification capability.
しかしながら、特許文献1の電動機駆動装置は、脱調は防止できるものの、回転数を上げる必要がない場合にも目標回転数を上げるので、設定温度を維持するために運転を停止させる制御(以下「サーモオフ」という。)の回数の増加を招き快適性が損なわれる。 However, although the motor drive device of Patent Document 1 can prevent the step-out, the target rotation speed is increased even when the rotation speed does not need to be increased. "Thermo-off") increases the number of times, and comfort is impaired.
また、特許文献2の空気調和機は、過負荷状態の低速回転のときに脱調したり、トルク制御を行った結果ピーク電流が伸び、過電流停止したりする。また、脱調しないように最低回転数を上げた場合はサーモオフが多くなり快適性が損なわれる。 Moreover, the air conditioner of patent document 2 steps out at the time of the low-speed rotation of an overload state, or peak current increases as a result of performing torque control, and an overcurrent stops. Further, when the minimum number of rotations is increased so as not to step out, the thermo-off increases and the comfort is impaired.
本発明の目的は、低速領域でのモータの脱調を防ぎ、且つ、サーモオフを少なくする空気調和機を提供することである。 An object of the present invention is to provide an air conditioner that prevents motor step-out in a low speed region and reduces thermo-off.
上記課題を解決するために、本発明の空気調和機は指令回転数に基づいて圧縮機を駆動する圧縮機モータと、指令回転数を生成する指令回転数生成手段と、指令回転数が第1の回転数以下である場合に指令回転数を第1の回転数とする指令回転数補正手段と、圧縮機モータの負荷を検出する負荷検出手段と、負荷検出手段が検出した圧縮機モータの負荷により第1の回転数を可変する補正手段と、を備えた。 In order to solve the above problems, an air conditioner of the present invention has a compressor motor that drives a compressor based on a command rotational speed, command rotational speed generation means that generates the command rotational speed, and the command rotational speed is the first. Command rotation speed correction means for setting the command rotation speed to the first rotation speed when the rotation speed is equal to or lower than the load speed, load detection means for detecting the load of the compressor motor, and load of the compressor motor detected by the load detection means And a correcting means for varying the first rotational speed.
本発明によれば、低速領域でのモータの脱調を防ぎ、且つ、サーモオフを少なくする空気調和機を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the air conditioner which prevents the step-out of a motor in a low speed area | region, and reduces thermo-off can be provided.
実施例では、直流ブラシレスモータとして永久磁石型同期電動機(以下、「PMモータ」という。)を用いて説明するが、巻線型同期電動機、リラクタンスモータ等の他の同期電動機にも、同様に適用することができる。 In the embodiment, a permanent magnet type synchronous motor (hereinafter referred to as “PM motor”) is described as a DC brushless motor. However, the present invention is similarly applied to other synchronous motors such as a wound type synchronous motor and a reluctance motor. be able to.
また、1回転中に発生する負荷トルク変動が大きい1ピストンロータリ圧縮機を用いて説明するが、1回転中にトルク変動が発生する他の圧縮機にも同様に適用することができる。 Further, the description will be made using a one-piston rotary compressor having a large load torque fluctuation generated during one rotation, but the present invention can be similarly applied to other compressors in which a torque fluctuation occurs during one rotation.
以下、本発明の実施例1を図面を用いて説明する。図2は本発明の実施例1に係る空気調和機100の制御装置を示すブロック図である。回転数指令生成手段3は室温検出手段1によって検出された室内温度と室温設定手段2によって設定された設定温度の差から圧縮機モータ9の指令回転数を生成する。インバータ制御手段7はインバータ8に信号を出力し、インバータ8は圧縮機モータ9を駆動する。 Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram illustrating the control device of the air conditioner 100 according to the first embodiment of the present invention. The rotation speed command generation means 3 generates the command rotation speed of the compressor motor 9 from the difference between the room temperature detected by the room temperature detection means 1 and the set temperature set by the room temperature setting means 2. The inverter control means 7 outputs a signal to the inverter 8, and the inverter 8 drives the compressor motor 9.
図1に示すように、空気調和機100は室外機101と室内機102を備え、空気調和機100の冷凍サイクルは、圧縮機104、四方弁、室外熱交換器105、電動膨張弁、室内熱交換器106を有しており、これら構成要素がこの順で配管103によって接続されている。冷房運転時の冷凍サイクルの動作を説明する。圧縮機104によって圧縮された高温高圧のガス冷媒は、冷房運転側に切り替えられた四方弁を介して室外熱交換器105に流入し、この室外熱交換器105で外気に熱を放出することで凝縮して高圧の液冷媒となる。この冷媒は電動膨張弁を通過することで減圧されて低温低圧の冷媒となって室内熱交換器106に流入する。室内熱交換器106では、冷却や除湿の対象となる部屋の空気が送風機107によって室内熱交換器106に送られ、冷媒と熱交換することで、冷たい空気を室内へ送ることができる。 As shown in FIG. 1, the air conditioner 100 includes an outdoor unit 101 and an indoor unit 102. The refrigeration cycle of the air conditioner 100 includes a compressor 104, a four-way valve, an outdoor heat exchanger 105, an electric expansion valve, and indoor heat. An exchange 106 is provided, and these components are connected by a pipe 103 in this order. The operation of the refrigeration cycle during the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 104 flows into the outdoor heat exchanger 105 through the four-way valve switched to the cooling operation side, and releases heat to the outside air by the outdoor heat exchanger 105. It condenses into a high-pressure liquid refrigerant. This refrigerant is reduced in pressure by passing through the electric expansion valve, becomes a low-temperature and low-pressure refrigerant, and flows into the indoor heat exchanger 106. In the indoor heat exchanger 106, air in the room to be cooled or dehumidified is sent to the indoor heat exchanger 106 by the blower 107, and heat is exchanged with the refrigerant, whereby cold air can be sent indoors.
また、冷媒温度が流入空気の露点以上であれば流入空気を冷却し、冷媒温度が流入空気の露点以下であれば流入空気中の水分を液化してドレン水として室外に排出することで渇いた空気を室内へ送ることができる。 Also, if the refrigerant temperature is higher than the dew point of the inflowing air, the inflowing air is cooled, and if the refrigerant temperature is lower than the dew point of the inflowing air, the water in the inflowing air is liquefied and drained to the outside as drain water. Air can be sent indoors.
また、指令回転数が第1の回転数以下の場合、指令回転数は第1の回転数に置き換えられる。 Further, when the command rotational speed is equal to or lower than the first rotational speed, the command rotational speed is replaced with the first rotational speed.
ここで、図3を用いて、従来の制御における冷房運転のときの室内温度と設定温度、指令回転数、及び圧縮機モータ9の負荷の関係について説明する。室内温度と設定温度の差が大きい場合は指令回転数が大きく、差が小さい場合は指令回転数が小さい。回転数指令生成手段により計算された回転数が第1の回転数より小さい場合は第1の回転数に置き換えられ圧縮機104は運転される。第1の回転数を圧縮機モータ9が脱調しない値に設定することで、脱調を防止することができる。 Here, the relationship between the room temperature and the set temperature, the command rotation speed, and the load of the compressor motor 9 during the cooling operation in the conventional control will be described with reference to FIG. When the difference between the room temperature and the set temperature is large, the command rotational speed is large, and when the difference is small, the command rotational speed is small. When the rotation speed calculated by the rotation speed command generation means is smaller than the first rotation speed, the compressor 104 is operated by replacing it with the first rotation speed. By setting the first rotation speed to a value that the compressor motor 9 does not step out, step-out can be prevented.
さらに、負荷検出手段5によって圧縮機モータ9の負荷を検出する。そして、補正手段6は圧縮機モータ9の負荷に基づいて第1の回転数4を変更し、インバータ制御手段7に伝達する。 Furthermore, the load of the compressor motor 9 is detected by the load detection means 5. Then, the correction means 6 changes the first rotational speed 4 based on the load of the compressor motor 9 and transmits it to the inverter control means 7.
しかし、図3に記載の従来の制御では、負荷に応じて第1の回転数4が変化しない。一方、圧縮機モータ9の負荷が小さいほど、脱調しない回転数の下限値は低い。従って、図3に記載の従来の制御では、圧縮機モータ9の負荷が小さく、回転数指令生成手段により計算された回転数を第1の回転数4に置き換える必要がない場合にも、第1の回転数4に置き換えるので、サーモオフの回数の増加を招く。 However, in the conventional control shown in FIG. 3, the first rotational speed 4 does not change according to the load. On the other hand, as the load on the compressor motor 9 is smaller, the lower limit value of the rotational speed at which the motor does not step out is lower. Therefore, in the conventional control shown in FIG. 3, even when the load on the compressor motor 9 is small and the rotation speed calculated by the rotation speed command generation means does not need to be replaced with the first rotation speed 4, Therefore, the number of thermo-offs is increased.
次に、図4を用いて、本発明の制御における冷房運転のときの室内温度と設定温度、指令回転数、及び圧縮機モータ9の負荷の関係について説明する。負荷検出手段が検出した圧縮機モータ9の負荷が軽いほど第1の回転数4を低くする。圧縮機モータ9の負荷が重い間は第1の回転数4を上げて、脱調しないようにする。室内温度と設定温度が離れている間の空気調和機100の動作は図3に記載の従来の制御と変わりないが、室内温度と設定温度が近くなると回転数を下げていくときに脱調しない回転数で運転を維持する。負荷が軽くなったときは第1の回転数4を下げ、圧縮機104の運転範囲を広げより低い能力が出せるようにする。従って、室内温度を検出する室温検出手段1と、設定温度を設定する室温設定手段2と、を備え、設定温度と室内温度との差に基づいて圧縮機モータ9の負荷を検出することで、サーモオフを減らし、より快適な空気調和機100を実現できる。 Next, the relationship between the room temperature and the set temperature, the command rotational speed, and the load on the compressor motor 9 during the cooling operation in the control of the present invention will be described using FIG. As the load on the compressor motor 9 detected by the load detecting means is lighter, the first rotational speed 4 is lowered. While the load of the compressor motor 9 is heavy, the first rotational speed 4 is increased so as not to step out. The operation of the air conditioner 100 while the room temperature is away from the set temperature is the same as the conventional control shown in FIG. 3, but does not step out when the rotation speed is lowered when the room temperature and the set temperature are close. Maintain operation at speed. When the load becomes lighter, the first rotational speed 4 is lowered to widen the operating range of the compressor 104 so that a lower ability can be produced. Accordingly, the room temperature detecting means 1 for detecting the room temperature and the room temperature setting means 2 for setting the set temperature are provided, and by detecting the load of the compressor motor 9 based on the difference between the set temperature and the room temperature, It is possible to reduce the thermo-off and realize a more comfortable air conditioner 100.
また、一般にインバータで圧縮機駆動用ブラシレスモータまたは誘導電動機の回転数を制御する場合、特に圧縮機構部の潤滑油を摺動部に供給し得る最低回転数が存在する。 In general, when the rotation speed of a brushless motor for driving a compressor or an induction motor is controlled by an inverter, there is a minimum rotation speed at which lubricating oil of the compression mechanism can be supplied to the sliding portion.
したがって、インバータによって0から無段階に回転数制御可能であったとしても必ず最低回転数が存在する。また、圧縮機104がスクロール圧縮機である場合、冷媒を含有した潤滑油を背圧室に供給することで、背圧を制御する。そのため、背圧を制御するために所定量の潤滑油をスクロール圧縮機に供給しなければならず、最低回転数が存在する。本発明は、圧縮機構部の潤滑油を摺動部に供給し得る回転数以上の値として最低回転数を備え、第1の回転数4が最低回転数以下である場合に第1の回転数を最低回転数とすることで、圧縮機構部の潤滑油を摺動部に供給するのを維持することができる。 Therefore, there is always a minimum number of revolutions even if the number of revolutions can be controlled steplessly from 0 by an inverter. When the compressor 104 is a scroll compressor, the back pressure is controlled by supplying lubricating oil containing a refrigerant to the back pressure chamber. Therefore, a predetermined amount of lubricating oil must be supplied to the scroll compressor in order to control the back pressure, and there is a minimum number of revolutions. The present invention has a minimum rotation speed as a value equal to or higher than the rotation speed at which the lubricating oil of the compression mechanism section can be supplied to the sliding portion, and the first rotation speed when the first rotation speed 4 is less than the minimum rotation speed By setting the minimum rotational speed, it is possible to maintain the supply of the lubricating oil of the compression mechanism portion to the sliding portion.
また、室内温度が設定温度付近に到達し、室内温度を設定温度付近に維持する際は、第1の回転数4での運転とサーモオフとを繰り返す運転を行う。サーモオフを繰り返す運転を行う場合、圧縮機モータ9の負荷は低い。従って、一度サーモオフを行った後は、第1の回転数4を最低回転数としてもよい。第1の回転数4を最低回転数まで下げることで、サーモオフを減らすことができる。サーモオフを減らすことで、室内温度をより設定温度付近に維持しやすくなり、また、消費電力の削減にも寄与することができる。 Further, when the room temperature reaches near the set temperature and the room temperature is maintained near the set temperature, the operation at the first rotational speed 4 and the thermo-off are repeated. When performing an operation that repeats thermo-off, the load on the compressor motor 9 is low. Therefore, after the thermo-off is performed once, the first rotation speed 4 may be set as the minimum rotation speed. The thermo-off can be reduced by lowering the first rotational speed 4 to the minimum rotational speed. By reducing the thermo-off, it becomes easier to maintain the room temperature near the set temperature, and it is possible to contribute to the reduction of power consumption.
なお、負荷検出手段5で検出された負荷が軽い場合に補正手段6は第1の回転数4を減少させるようにしてもよい。負荷が軽い場合にだけ最低回転数を下げることで安定性を損なうことなく、サーモオフが少なくなり室内の快適性を保つことができる。 Note that when the load detected by the load detection unit 5 is light, the correction unit 6 may decrease the first rotational speed 4. By reducing the minimum speed only when the load is light, the thermo-off is reduced and the comfort in the room can be maintained without sacrificing stability.
また、負荷検出手段5で検出された負荷が重い場合に補正手段6は第1の回転数4を増加させるようにしてもよい。負荷が重い場合にだけ安定性を重視した運転とすることで室内の快適性をできるだけ保つことができる。 Further, when the load detected by the load detection means 5 is heavy, the correction means 6 may increase the first rotational speed 4. The comfort in the room can be kept as much as possible by making the operation with an emphasis on stability only when the load is heavy.
また、第1の回転数4は、冷房モード、暖房モード、除湿モード等のいずれかの運転モードで変えたものである。圧縮機モータ9の負荷の重さと回転数の関係は各運転モードにより異なるので第1の回転数4を運転モードに応じて変えることで、より室内の快適性を増すことができる。 The first rotational speed 4 is changed in any one of the operation modes such as the cooling mode, the heating mode, and the dehumidifying mode. Since the relationship between the load weight of the compressor motor 9 and the rotational speed varies depending on each operation mode, the comfort in the room can be further increased by changing the first rotational speed 4 according to the operation mode.
また、室外に位置する室外マイコンを備え、室外マイコンは第1の回転数、最低回転数及び補正手段6を備える。また、第1の回転数4は室内マイコンが備え、最低回転数の補正限界と最低回転数補正部は、室外マイコンが備える。室外機101にある圧縮機モータ9を室外機101にある室外マイコンで制御するため、最終的な最低回転数の決定を室外マイコンが行うことで、室内マイコンを介さずに済み、室内機のマイコンのソフトを変更する必要がない。 In addition, an outdoor microcomputer located outside the room is provided, and the outdoor microcomputer includes a first rotation speed, a minimum rotation speed, and correction means 6. The first rotational speed 4 is provided in the indoor microcomputer, and the minimum rotational speed correction limit and the minimum rotational speed correction unit are provided in the outdoor microcomputer. Since the compressor motor 9 in the outdoor unit 101 is controlled by the outdoor microcomputer in the outdoor unit 101, the final minimum rotational speed is determined by the outdoor microcomputer, so that it is not necessary to go through the indoor microcomputer. There is no need to change the software.
また、第1の回転数4及び最低回転数選択部を、室内マイコンが備えるものである。最終的な最低回転数の決定を室内マイコンが行うことで室外機101のマイコンのソフトを変更することなく本発明を実施することができる。 Further, the indoor microcomputer includes the first rotation speed 4 and the minimum rotation speed selection unit. By determining the final minimum number of rotations by the indoor microcomputer, the present invention can be implemented without changing the microcomputer software of the outdoor unit 101.
以上のように、指令回転数に基づいて圧縮機104を駆動する圧縮機モータ9と、指令回転数を生成する指令回転数生成手段と、指令回転数が第1の回転数以下である場合に指令回転数を第1の回転数とする補正手段6と、圧縮機モータ9の負荷を検出する負荷検出手段と、負荷検出手段が検出した圧縮機モータ9の負荷により第1の回転数を可変する補正手段6と、を備えることで、低速での脱調の防止とサーモオフの低減を両立することができる。 As described above, when the compressor motor 9 that drives the compressor 104 based on the command rotational speed, the command rotational speed generation means that generates the command rotational speed, and the command rotational speed is equal to or less than the first rotational speed. The correction means 6 for setting the command rotational speed to the first rotational speed, the load detecting means for detecting the load of the compressor motor 9, and the first rotational speed can be varied by the load of the compressor motor 9 detected by the load detecting means. By providing the correcting means 6 that performs this, it is possible to achieve both prevention of step-out at low speed and reduction of thermo-off.
また、空気調和機100において圧縮機モータ9の負荷を検出する手段として圧縮機モータ9のトルクを演算するトルク演算部と回転数を検出する回転数検出部を備え、圧縮機モータ9のトルクと回転数から負荷の重さを判断する。圧縮機モータ9の負荷の増大に比例して圧縮機モータ9に流れる電流が増大する。トルク演算部は、圧縮機モータ9に流れる電流に基づいて圧縮機モータ9の負荷を演算する。正確に圧縮機モータ9の負荷の重さを知ることにより、より正確に負荷の重さを判断することができる。 The air conditioner 100 includes a torque calculation unit that calculates the torque of the compressor motor 9 and a rotation number detection unit that detects the rotation number as means for detecting the load of the compressor motor 9. The load weight is determined from the rotation speed. The current flowing through the compressor motor 9 increases in proportion to the increase in the load on the compressor motor 9. The torque calculation unit calculates the load of the compressor motor 9 based on the current flowing through the compressor motor 9. Knowing the load weight of the compressor motor 9 accurately makes it possible to determine the load weight more accurately.
また、圧縮機モータ9の負荷を検出する手段として室外機101の温度を検出する外気温検出手段を備え、室内機の温度と室外機101の温度から負荷の重さを判断する。一般に空気調和機100は室内温度を検出する室温検出手段と室外機101の温度を検出する外気温検出部を備えているので新たな検出手段を増やすことなく負荷の重さを判断することができる。 Further, an outside air temperature detecting means for detecting the temperature of the outdoor unit 101 is provided as means for detecting the load of the compressor motor 9, and the weight of the load is determined from the temperature of the indoor unit and the temperature of the outdoor unit 101. In general, the air conditioner 100 includes a room temperature detection unit that detects the room temperature and an outside air temperature detection unit that detects the temperature of the outdoor unit 101. Therefore, the weight of the load can be determined without adding new detection units. .
また、冷房時に室外温度が高いとき、及び、暖房時に室外温度が低いときは、圧縮機モータ9の負荷が重くなるので、最低回転数を上げ、脱調しないようにする。冷房時に室外温度が低いとき、及び、暖房時に室外温度が高いときは、脱調しない範囲で最低回転数を下げることによっても、サーモオフを減らすことができる。従って、室外温度を検出する外気温検出手段を備え、室外温度に基づいて圧縮機モータ9の負荷を検出することで、新たな検出手段を増やすことなく負荷の重さを判断することができる。 Further, when the outdoor temperature is high during cooling and when the outdoor temperature is low during heating, the load on the compressor motor 9 becomes heavy, so the minimum number of revolutions is increased so as not to step out. When the outdoor temperature is low during cooling and when the outdoor temperature is high during heating, the thermo-off can also be reduced by lowering the minimum number of revolutions within a range that does not step out. Accordingly, the outside air temperature detecting means for detecting the outdoor temperature is provided, and the load of the compressor motor 9 is detected based on the outdoor temperature, so that the weight of the load can be determined without increasing new detecting means.
また、設定温度と室内温度との差及び室外温度に基づいて圧縮機モータ9の負荷を検出してもよい。 Further, the load of the compressor motor 9 may be detected based on the difference between the set temperature and the indoor temperature and the outdoor temperature.
また、圧縮機104の吐出温度を検出する吐出温度検出手段と、圧縮機モータ9の回転数を検出する回転数検出部を備え、吐出温度検出手段により検出した吐出温度と回転数検出部により検出した回転数から圧縮機モータ9の負荷の重さを判断する。一般に空気調和機100は圧縮機104の吐出温度を検出する吐出温度検出手段と、圧縮機モータ9の回転数を検出する回転数検出部を備えているので新たな検出手段を増やすことなく負荷の重さを判断することができる。 In addition, a discharge temperature detecting means for detecting the discharge temperature of the compressor 104 and a rotation speed detecting section for detecting the rotation speed of the compressor motor 9 are provided, and detected by the discharge temperature and the rotation speed detecting section detected by the discharge temperature detecting means. The weight of the load on the compressor motor 9 is determined from the determined rotation speed. In general, the air conditioner 100 includes discharge temperature detection means for detecting the discharge temperature of the compressor 104 and a rotation speed detection unit for detecting the rotation speed of the compressor motor 9, so that the load can be reduced without increasing new detection means. The weight can be determined.
冷房運転における場合について説明したが、暖房運転及び除湿運転においても同様に、本発明の制御を適用することができる。 Although the case of the cooling operation has been described, the control of the present invention can be similarly applied to the heating operation and the dehumidifying operation.
実施例2について図5を用いて説明する。実施例2の空気調和機100は第1の回転数4と第1の回転数4より高い第2の回転数10を備え、補正手段6は、圧縮機モータ9の負荷が設定値以上の場合は第1の回転数を第2の回転数とする。負荷検出手段5によって検出された圧縮機モータ9の負荷が設定値以下の場合、第1の回転数4を選択し、圧縮機モータ9の負荷が重い場合、第2の回転数10を選択する選択手段11を持ち、最低回転数をインバータ制御手段7に伝達する。2種類の最低回転数をあらかじめもつことでより簡単に制御の安定性と室内の快適性を両立した空気調和機100を実現することができる。 Example 2 will be described with reference to FIG. The air conditioner 100 according to the second embodiment includes a first rotation speed 4 and a second rotation speed 10 higher than the first rotation speed 4, and the correction unit 6 is configured such that the load of the compressor motor 9 is equal to or higher than a set value. Uses the first rotational speed as the second rotational speed. When the load of the compressor motor 9 detected by the load detection means 5 is equal to or less than the set value, the first rotation speed 4 is selected, and when the load of the compressor motor 9 is heavy, the second rotation speed 10 is selected. It has a selection means 11 and transmits the minimum number of revolutions to the inverter control means 7. By having the two minimum rotation speeds in advance, the air conditioner 100 that achieves both control stability and indoor comfort can be realized more easily.
また、第1の回転数4及び第2の回転数10は、冷房モード、暖房モード、除湿モード等のいずれかの運転モードで変えたものである。圧縮機モータ9の負荷の重さと回転数の関係は各運転モードにより異なるので、運転モードに応じて第1の回転数4を変えることで、より室内の快適性を増すことができる。 Further, the first rotation speed 4 and the second rotation speed 10 are changed in any one of the operation modes such as the cooling mode, the heating mode, and the dehumidifying mode. Since the relationship between the load weight of the compressor motor 9 and the number of rotations varies depending on each operation mode, indoor comfort can be further increased by changing the first number of rotations 4 according to the operation mode.
また、室外に位置する室外マイコンを備え、室外マイコンは第1の回転数、最低回転数及び補正手段6を備える。また、第1の回転数4は室内マイコンが備え、第2の回転数10と最低回転数選択部は、室外マイコンが備える。室外機101にある圧縮機モータ9を室外機101にある室外マイコンで制御するため、最終的な最低回転数の決定を室外マイコンが行うことで、室内マイコンを介さずに済み、室内機のマイコンのソフトを変更する必要がない。 In addition, an outdoor microcomputer located outside the room is provided, and the outdoor microcomputer includes a first rotation speed, a minimum rotation speed, and correction means 6. Further, the first rotation speed 4 is provided in the indoor microcomputer, and the second rotation speed 10 and the minimum rotation speed selection unit are provided in the outdoor microcomputer. Since the compressor motor 9 in the outdoor unit 101 is controlled by the outdoor microcomputer in the outdoor unit 101, the final minimum rotational speed is determined by the outdoor microcomputer, so that it is not necessary to go through the indoor microcomputer. There is no need to change the software.
また、第1の回転数4あるいは第2の回転数10あるいはその第1と第2の回転数10両方と最低回転数選択部とを、室内マイコンが備えるものである。最終的な最低回転数の決定を室内マイコンが行うことで室外機101のマイコンのソフトを変更することなく本発明を実施することができる。 The indoor microcomputer includes the first rotation speed 4 or the second rotation speed 10 or both the first and second rotation speeds 10 and the minimum rotation speed selection unit. By determining the final minimum number of rotations by the indoor microcomputer, the present invention can be implemented without changing the microcomputer software of the outdoor unit 101.
また、室内温度が設定温度付近に到達し、室内温度を設定温度付近に維持する際は、第1の回転数4での運転とサーモオフとを繰り返す運転を行う。一度サーモオフを行った後は、第1の回転数4を指令回転数とすることで、サーモオフを減らすことができる。 Further, when the room temperature reaches near the set temperature and the room temperature is maintained near the set temperature, the operation at the first rotational speed 4 and the thermo-off are repeated. Once the thermo-off is performed, the thermo-off can be reduced by setting the first rotation speed 4 as the command rotation speed.
また、室外に位置する室外マイコンを備え、室外マイコンは第1の回転数4、第2の回転数10及び選択手段11を備える。また、第1の回転数4は室内マイコンが備え、最低回転数の補正限界と最低回転数補正部は、室外マイコンが備える。室外機101にある圧縮機モータ9を室外機101にある室外マイコンで制御するため、最終的な最低回転数の決定を室外マイコンが行うことで、室内マイコンを介さずに済み、室内機のマイコンのソフトを変更する必要がない。 In addition, an outdoor microcomputer located outside the room is provided, and the outdoor microcomputer includes a first rotation speed 4, a second rotation speed 10, and selection means 11. The first rotational speed 4 is provided in the indoor microcomputer, and the minimum rotational speed correction limit and the minimum rotational speed correction unit are provided in the outdoor microcomputer. Since the compressor motor 9 in the outdoor unit 101 is controlled by the outdoor microcomputer in the outdoor unit 101, the final minimum rotational speed is determined by the outdoor microcomputer, so that it is not necessary to go through the indoor microcomputer. There is no need to change the software.
1 室温検出手段
2 室温設定手段
3 回転数指令生成手段
4 第1の回転数
5 負荷検出手段
6 補正手段
7 インバータ制御手段
8 インバータ
9 圧縮機モータ
10 第2の回転数
11 選択手段
100 空気調和機
101 室外機
102 室内機
103 配管
104 圧縮機
105 室外熱交換器
106 室内熱交換器
107 送風機
DESCRIPTION OF SYMBOLS 1 Room temperature detection means 2 Room temperature setting means 3 Rotation speed command production | generation means 4 1st rotation speed 5 Load detection means 6 Correction means 7 Inverter control means 8 Inverter 9 Compressor motor 10 2nd rotation speed 11 Selection means 100 Air conditioner DESCRIPTION OF SYMBOLS 101 Outdoor unit 102 Indoor unit 103 Piping 104 Compressor 105 Outdoor heat exchanger 106 Indoor heat exchanger 107 Blower
Claims (11)
前記指令回転数を生成する指令回転数生成手段と、
前記指令回転数が第1の回転数以下である場合に前記指令回転数を前記第1の回転数とする指令回転数補正手段と、
前記圧縮機モータの負荷を検出する負荷検出手段と、
前記負荷検出手段が検出した前記圧縮機モータの負荷により前記第1の回転数を可変する補正手段と、を備えた空気調和機。 A compressor motor that drives the compressor based on the command rotational speed;
Command rotational speed generating means for generating the command rotational speed;
Command rotational speed correction means for setting the command rotational speed to the first rotational speed when the command rotational speed is equal to or lower than the first rotational speed;
Load detecting means for detecting a load of the compressor motor;
An air conditioner comprising: correction means for varying the first rotation speed according to the load of the compressor motor detected by the load detection means.
前記補正手段は、前記負荷検出手段が検出した前記圧縮機モータの負荷が設定値以上の場合は前記第1の回転数を第2の回転数とすることを特徴とする請求項1に記載の空気調和機。 A second rotational speed higher than the first rotational speed,
The said correction | amendment means makes the said 1st rotation speed the 2nd rotation speed when the load of the said compressor motor detected by the said load detection means is more than a setting value, The said rotation speed is 2nd. Air conditioner.
室内温度を検出する室温検出手段と、
室外温度を検出する外気温検出手段と、を備え、
前記設定温度と前記室内温度との差、前記室外温度、または、前記設定温度と前記室内温度との差及び前記室外温度の両方に基づいて前記圧縮機モータの負荷を検出することを特徴とする請求項1乃至3のいずれかに記載の空気調和機。 Room temperature setting means for setting the set temperature;
Room temperature detecting means for detecting the room temperature;
An outside air temperature detecting means for detecting the outdoor temperature,
The compressor motor load is detected based on a difference between the set temperature and the indoor temperature, the outdoor temperature, or a difference between the set temperature and the indoor temperature and the outdoor temperature. The air conditioner according to any one of claims 1 to 3.
圧縮機モータの回転数を検出する回転数検出手段と、を備え、
前記吐出温度と前記回転数検出手段で検出された回転数に基づいて前記圧縮機モータの負荷を検出することを特徴とする請求項1乃至3のいずれかに記載の空気調和機。 A discharge temperature detecting means for detecting a discharge temperature of the compressor;
A rotational speed detection means for detecting the rotational speed of the compressor motor,
The air conditioner according to any one of claims 1 to 3, wherein a load of the compressor motor is detected based on the discharge temperature and the rotation speed detected by the rotation speed detection means.
前記室外マイコンは前記第1の回転数及び前記補正手段を有することを特徴とする請求項1乃至9のいずれかに記載の空気調和機。 It has an outdoor microcomputer located outside,
The air conditioner according to any one of claims 1 to 9, wherein the outdoor microcomputer includes the first rotational speed and the correction unit.
室内に位置する室内マイコンと、を備え、
前記室内マイコンは前記第1の回転数を有し、
前記室外マイコンは前記第2の回転数及び前記補正手段を有することを特徴とする請求項3乃至9のいずれかに記載の空気調和機。 An outdoor microcomputer located outside the room,
An indoor microcomputer located in the room,
The indoor microcomputer has the first rotational speed;
The air conditioner according to any one of claims 3 to 9, wherein the outdoor microcomputer includes the second rotational speed and the correction unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012052471A JP5779527B2 (en) | 2012-03-09 | 2012-03-09 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012052471A JP5779527B2 (en) | 2012-03-09 | 2012-03-09 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013185778A true JP2013185778A (en) | 2013-09-19 |
JP5779527B2 JP5779527B2 (en) | 2015-09-16 |
Family
ID=49387363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012052471A Active JP5779527B2 (en) | 2012-03-09 | 2012-03-09 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5779527B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015133836A (en) * | 2014-01-14 | 2015-07-23 | 三菱電機株式会社 | Inverter controller |
CN105241007A (en) * | 2015-09-29 | 2016-01-13 | 海信(广东)空调有限公司 | Variable frequency air conditioner control method and device |
JP2016032375A (en) * | 2014-07-29 | 2016-03-07 | 株式会社前川製作所 | Motor and cooling system |
JP2018146159A (en) * | 2017-03-03 | 2018-09-20 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
CN108613324A (en) * | 2017-01-25 | 2018-10-02 | 珠海格力电器股份有限公司 | Motor load matching state detection system and method and air conditioner |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62112962A (en) * | 1985-11-12 | 1987-05-23 | 株式会社東芝 | Air conditioner |
JPH09243144A (en) * | 1996-03-05 | 1997-09-16 | Noritz Corp | Method for controlling inverter type air conditioner |
JPH10153336A (en) * | 1996-11-21 | 1998-06-09 | Fujitsu General Ltd | Method for controlling air-conditioner |
JP2003065587A (en) * | 2001-08-28 | 2003-03-05 | Hitachi Ltd | Air conditioner |
-
2012
- 2012-03-09 JP JP2012052471A patent/JP5779527B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62112962A (en) * | 1985-11-12 | 1987-05-23 | 株式会社東芝 | Air conditioner |
JPH09243144A (en) * | 1996-03-05 | 1997-09-16 | Noritz Corp | Method for controlling inverter type air conditioner |
JPH10153336A (en) * | 1996-11-21 | 1998-06-09 | Fujitsu General Ltd | Method for controlling air-conditioner |
JP2003065587A (en) * | 2001-08-28 | 2003-03-05 | Hitachi Ltd | Air conditioner |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015133836A (en) * | 2014-01-14 | 2015-07-23 | 三菱電機株式会社 | Inverter controller |
JP2016032375A (en) * | 2014-07-29 | 2016-03-07 | 株式会社前川製作所 | Motor and cooling system |
CN105241007A (en) * | 2015-09-29 | 2016-01-13 | 海信(广东)空调有限公司 | Variable frequency air conditioner control method and device |
CN105241007B (en) * | 2015-09-29 | 2018-01-26 | 海信(广东)空调有限公司 | Variable frequency air conditioner control method and device |
CN108613324A (en) * | 2017-01-25 | 2018-10-02 | 珠海格力电器股份有限公司 | Motor load matching state detection system and method and air conditioner |
JP2018146159A (en) * | 2017-03-03 | 2018-09-20 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP5779527B2 (en) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5558400B2 (en) | Heat source system and number control method for heat source system | |
JP5779527B2 (en) | Air conditioner | |
JP5910719B1 (en) | Air conditioner | |
WO2013145844A1 (en) | Heat source system, device for controlling same, and method for controlling same | |
WO2014061129A1 (en) | Air conditioner | |
JP2015113993A (en) | Air conditioner | |
JP2012220126A (en) | Air conditioner | |
JP6084297B2 (en) | Air conditioner | |
WO2018164253A1 (en) | Air-conditioning device | |
JP5407342B2 (en) | Air conditioner | |
JP6019773B2 (en) | Air conditioner control device | |
JP2008275216A (en) | Air conditioner | |
JP2012202581A (en) | Refrigeration cycle device and control method thereof | |
JP6266942B2 (en) | Air conditioner | |
JP2006234295A (en) | Multiple air conditioner | |
WO2019058464A1 (en) | Air conditioner | |
JP2011257097A (en) | Multi-room type air conditioning apparatus | |
JP2006162214A (en) | Air conditioner | |
JP4859483B2 (en) | Air conditioner | |
WO2015190525A1 (en) | Heat source machine and heat source device | |
JP6415019B2 (en) | Air conditioner | |
JP3870736B2 (en) | Air conditioner | |
JP2011158172A (en) | Air-conditioner | |
JP2007225230A5 (en) | ||
JP2015052438A (en) | Refrigeration unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140226 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140730 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150616 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150713 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5779527 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |