JPH09243144A - Method for controlling inverter type air conditioner - Google Patents

Method for controlling inverter type air conditioner

Info

Publication number
JPH09243144A
JPH09243144A JP8073083A JP7308396A JPH09243144A JP H09243144 A JPH09243144 A JP H09243144A JP 8073083 A JP8073083 A JP 8073083A JP 7308396 A JP7308396 A JP 7308396A JP H09243144 A JPH09243144 A JP H09243144A
Authority
JP
Japan
Prior art keywords
temperature
operating frequency
compressor
mmin
thermo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8073083A
Other languages
Japanese (ja)
Inventor
Hironobu Fujita
博信 藤田
Yukikazu Hashimoto
幸和 橋本
Akio Kofukada
明生 小深田
Kazuhiro Nishida
和弘 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritz Corp
Original Assignee
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritz Corp filed Critical Noritz Corp
Priority to JP8073083A priority Critical patent/JPH09243144A/en
Publication of JPH09243144A publication Critical patent/JPH09243144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling an inverter type air conditioner which can continuously operate a compressor by reducing the number of stopping times of the compressor as much as possible even when any controlling method of PID control, fuzzy control and zone control is used. SOLUTION: The operating frequency M of a compressor 12 is lowered at a normal change speed ΔM until the indoor temperature Th approaches a set temperature Ts to arrive at a thermometal cutoff temperature Toff. When the temperature Th approaches the temperature Ts and arrives at the temperature Toff exceeding the temperature Ts, the change speed of the frequency M of the compressor 12 is lowered from the speed ΔM to off-time change speed ΔML0 , and approached to the minimum operating frequency Mmin. When it does not arrive at the control restart temperature Tre at the time of arriving at the frequency Mmin, the operation of the compressor 12 is continued at the frequency Mmin for a first stand-by time t1 , and when the temperature Th is not returned even after the time t1 is elapsed, the compressor is stopped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒循環回路を備
えた空気調和装置(以下、単にエアコンという)におい
て、冷媒回路に設けられた圧縮機の運転周波数を変更す
ることのできるインバータ式エアコンの制御方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with a refrigerant circulation circuit (hereinafter simply referred to as an air conditioner), which is an inverter type air conditioner capable of changing the operating frequency of a compressor provided in the refrigerant circuit. Regarding control method.

【0002】[0002]

【従来の技術】従来、冷媒循環回路を備えたインバータ
式エアコンにおいては、冷媒循環回路に設けられた圧縮
機の回転数即ち圧縮機の運転周波数を制御可能とし、予
め設定された設定温度と、検出された室内温度との温度
差に応じて圧縮機の運転周波数を制御することが行われ
ている。即ち、インバータ式エアコンにおいては、室内
温度と設定温度との温度差に基づいて、PID制御、フ
ァジイ制御或いはゾーン制御等により、圧縮機の運転周
波数を制御している。PID制御、ファジイ制御または
ゾーン制御の何れの制御方法を用いた場合でも、「室内
温度を設定温度に一致させる」ことを最優先に制御して
いるため、室内温度が設定温度に達した時、或いは設定
温度から一定値以上行き過ぎた時には圧縮機を停止させ
ている(サーモ・オフ)。
2. Description of the Related Art Conventionally, in an inverter type air conditioner having a refrigerant circulation circuit, it is possible to control the number of revolutions of the compressor provided in the refrigerant circulation circuit, that is, the operating frequency of the compressor, and to set a preset temperature. The operating frequency of the compressor is controlled according to the detected temperature difference from the indoor temperature. That is, in the inverter type air conditioner, the operating frequency of the compressor is controlled by PID control, fuzzy control, zone control or the like based on the temperature difference between the room temperature and the set temperature. Regardless of which control method is used, PID control, fuzzy control, or zone control, "matching the room temperature to the set temperature" is controlled with the highest priority, so when the room temperature reaches the set temperature, Alternatively, the compressor is stopped when the temperature exceeds the set temperature by a certain amount (thermo off).

【0003】例えば、特公平 4− 47219号公報に記載さ
れたものは、運転周波数を制御可能とした圧縮機を備
え、室内温度が設定温度以下の時圧縮機を停止させるオ
フ位置と、室内温度が上記設定温度を超えて所定温度に
達した時、停止している圧縮機を再起動させるオン位置
との間に、圧縮機を低速回転させる安定ゾーンBを形成
し、安定ゾーンBを超えた領域における室内温度と設定
温度との温度差の変化幅を複数のゾーンC〜Fに分け、
各ゾーンC〜Fに対応する圧縮機の回転数即ち運転周波
数を設定し、室内温度変化の勾配が設定温度に対して遠
ざかる側に変化する時、各ゾーンB〜Fを上記温度差の
変化幅が上昇する側にシフトアップする制御装置におい
て、圧縮機が停止した後に、室内温度がオフ位置を超
え、且つ室内温度変化の勾配が設定温度に対して遠ざか
る側に変化する勾配変化を検出した時に、安定ゾーンB
のシフトアップを中止するものである。
For example, the one disclosed in Japanese Examined Patent Publication No. 4-47219 is equipped with a compressor whose operating frequency is controllable, and an off position for stopping the compressor when the room temperature is below a set temperature and the room temperature. When the temperature exceeds the preset temperature and reaches a predetermined temperature, a stable zone B for rotating the compressor at a low speed is formed between the on-position for restarting the stopped compressor and the stable zone B is exceeded. The variation range of the temperature difference between the room temperature and the set temperature in the region is divided into a plurality of zones C to F,
When the number of revolutions of the compressor corresponding to each zone C to F, that is, the operating frequency is set, and when the gradient of the indoor temperature change changes to the side distant from the set temperature, each zone B to F is set to the change width of the temperature difference. In the control device that shifts up to the side where the temperature rises, when the indoor temperature exceeds the OFF position and the gradient of the indoor temperature change changes to the side that moves away from the set temperature after the compressor stops, , Stability zone B
It is to stop the shift up.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のインバータ式エアコンの制御方法においては、次の
ような問題があった。即ち、エアコンの有する空調能力
に対して空調される部屋が狭い場合等に、室内温度が急
激に設定温度に近づいた時、室内温度と設定温度との温
度差に応じて次々と低い運転周波数を指令し、圧縮機の
運転周波数を下げるように制御するものである。ところ
が、圧縮機の運転周波数を、高い運転周波数から低い運
転周波数に急激に変化させると、圧縮機の吐出圧力が運
転周波数の変化に追従できず、圧縮機の吐出側の圧力が
高い状態で、圧縮機の運転周波数が低くなり、圧縮機の
トルクが小さくなって過負荷状態となる。このような過
負荷状態の発生を防止するために、制御的に急激な運転
周波数の低下を防止しているものであり、そのために、
運転周波数が十分に低下しないうちにサーモ・オフす
る、即ち最低運転周波数まで低下する前に、室内温度が
設定温度に達して、さらに行き過ぎてサーモ・オフし、
圧縮機が停止すると、予め定めた時間(例えば、3分
間)が経過するまで、サーモ・オンの温度差になっても
圧縮機の再起動させないという問題があった(図8参
照)。
However, the above-described conventional inverter type air conditioner control method has the following problems. That is, when the room temperature is abruptly approaching the set temperature, such as when the room to be air-conditioned is small compared to the air conditioning capacity of the air conditioner, the operating frequency becomes lower one after another according to the temperature difference between the room temperature and the set temperature. It is instructed and controlled so as to lower the operating frequency of the compressor. However, when the operating frequency of the compressor is rapidly changed from a high operating frequency to a low operating frequency, the discharge pressure of the compressor cannot follow the change of the operating frequency, and the pressure on the discharge side of the compressor is high, The operating frequency of the compressor becomes low and the torque of the compressor becomes small, resulting in an overload condition. In order to prevent the occurrence of such an overload state, a sudden decrease in the operating frequency is controllably prevented, and therefore,
The thermostat turns off before the operating frequency drops sufficiently, that is, before the operating frequency drops to the minimum operating frequency, the room temperature reaches the set temperature and the thermostat turns off too far.
When the compressor stops, there is a problem that the compressor is not restarted even if the temperature difference of the thermo-on is reached until a predetermined time (for example, 3 minutes) elapses (see FIG. 8).

【0005】例えば、特公平 4− 47219号公報に記載さ
れたゾーン制御において、前述の過負荷状態の発生を防
止するために、運転周波数の変化速度を2Hz/秒に制限
すると、運転周波数が60Hzのゾーン(Eゾーン)から運
転周波数が30Hzのゾーン(Bゾーン)に急変した時、運
転周波数が30Hzに達するまでに15秒間を要する。ところ
が、運転周波数が30Hzに達する前に、室内温度と設定温
度との温度差がサーモ・オフの領域(Aゾーン)に達す
ると、圧縮機を停止させてしまうことになる。圧縮機を
一旦停止させると、圧縮機の保護のために、一般に3分
間程度は再起動をさせないものであるから、この3分間
が経過する前にサーモ・オンの温度差になっても圧縮機
は再起動することができないという問題があった。
For example, in the zone control disclosed in Japanese Patent Publication No. 4-47219, if the changing speed of the operating frequency is limited to 2 Hz / sec in order to prevent the occurrence of the above-mentioned overload condition, the operating frequency is 60 Hz. When the operating frequency suddenly changes from the zone (E zone) to the operating frequency of 30 Hz (B zone), it takes 15 seconds for the operating frequency to reach 30 Hz. However, if the temperature difference between the room temperature and the set temperature reaches the thermo-off region (A zone) before the operating frequency reaches 30 Hz, the compressor will be stopped. Once the compressor is stopped, it is generally not restarted for about 3 minutes in order to protect the compressor, so even if the temperature difference of the thermo-on is reached before the 3 minutes have passed, the compressor will not restart. Had the problem that it could not be restarted.

【0006】本発明の目的は、PID制御、ファジイ制
御またはゾーン制御等の何れの制御方法を用いた場合に
おいても、圧縮機の停止回数を可能な限り低減させ、圧
縮機を連続運転させることのできるインバータ式エアコ
ンの制御方法を提供することである。
An object of the present invention is to reduce the number of times of stopping the compressor as much as possible and to continuously operate the compressor regardless of which control method such as PID control, fuzzy control or zone control is used. It is to provide a control method of an inverter type air conditioner that can be performed.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明のインバータ式エアコンの制御方法は、運転周
波数Mを変更制御可能とした圧縮機を備えたインバータ
式エアコンにおいて、設定温度Ts と、設定温度Ts の
上下に所定の温度差を有するサーモ・オフ温度Toff 及
びサーモ・オン温度Tonと、最低運転周波数Mmin.とを
設定し、室内温度Th が設定温度Ts を越えてサーモ・
オフ温度Toff に達した時に、運転周波数Mが最低運転
周波数Mmin.に低下していない場合、予め定めたオフ時
変化速度ΔMLOで運転周波数Mを最低運転周波数Mmin.
にまで低下させた後、運転周波数Mを最低運転周波数M
min.に保持して圧縮機を運転することにより、室内温度
Th がサーモ・オフ温度Toff に達しても、即圧縮機を
停止させることなく、圧縮機の運転周波数Mをオフ時変
化速度ΔMLOで低下させることにより、吹出温度が上昇
(冷房またはドライ運転時)または下降(暖房運転時)
し、室内温度分布を均一化することができ、サーモ・オ
フ温度Toff 近傍においても快適な空気調和を行うこと
ができるとともに、検出した室内温度Th の信頼性が向
上する。また、十分にサーモ・オフ状態となったことを
確認してから圧縮機を停止させることができ、圧縮機の
再起動時までの停止時間を確保することができる。運転
周波数Mを最低運転周波数Mmin.に保持して、予め設定
した第1待機時間t1 が経過しても室内温度Th が戻ら
ない場合は、圧縮機を停止させることにより、第1待機
時間t1 の間最低運転周波数Mmin.で圧縮機を運転し
て、部屋の広さに基づく室内の位置による空気調和のア
ンバランス即ち室内温度Th のバラツキを抑制すること
ができる。オフ時変化速度ΔMLOは、通常の制御状態に
おける運転周波数の変化速度である通常変化速度ΔMよ
りも小であることにより、圧縮機の運転周波数Mを緩や
かに低下させて、室内温度分布を均一化することがで
き、サーモ・オフ温度Toff近傍においても快適な空気
調和を行うことができるとともに、検出した室内温度T
h の信頼性が向上する。運転周波数Mを変更制御可能と
した圧縮機を備えたインバータ式エアコンにおいて、設
定温度Ts と、設定温度Ts の上下に所定の温度差を有
するサーモ・オフ温度Toff 及びサーモ・オン温度Ton
と、最低運転周波数Mmin.とを設定し、室内温度Th が
設定温度Ts を越えてサーモ・オフ温度Toff に達した
時、既に運転周波数Mが最低運転周波数Mmin.に低下し
ている場合、予め設定した第2待機時間t2 経過後にサ
ーモ・オフ状態である時、圧縮機を停止させることによ
り、十分にサーモ・オフ状態となったことを確認してか
ら圧縮機を停止させることができ、圧縮機の再起動時ま
での停止時間を確保することができる。
In order to achieve the above object, the control method of an inverter type air conditioner of the present invention is an inverter type air conditioner equipped with a compressor whose operating frequency M can be changed and controlled. , A thermo-off temperature Toff and a thermo-on temperature Ton having a predetermined temperature difference above and below the set temperature Ts, and a minimum operating frequency Mmin. Are set, and the indoor temperature Th exceeds the set temperature Ts.
Off-when reaching a temperature Toff, the operation when the frequency M is not reduced to the lowest operating frequency Mmin., The lowest operating frequency Mmin the operating frequency M with a predetermined off-time change rate .DELTA.M LO.
After lowering the operating frequency M to the minimum operating frequency M
Even if the room temperature Th reaches the thermo-off temperature Toff by operating the compressor while keeping it at min., the operating frequency M of the compressor is not changed immediately without changing the compressor operating frequency M and the change speed ΔM LO at the time of OFF. By decreasing with, the outlet temperature rises (during cooling or dry operation) or falls (during heating operation)
However, the indoor temperature distribution can be made uniform, comfortable air conditioning can be performed even near the thermo-off temperature Toff, and the reliability of the detected indoor temperature Th is improved. Further, the compressor can be stopped after confirming that the thermo-off state is sufficiently obtained, and the stop time until the compressor is restarted can be secured. When the room temperature Th does not return even after the preset first waiting time t 1 is maintained by keeping the operating frequency M at the minimum operating frequency Mmin., The first waiting time t is stopped by stopping the compressor. During the period 1 , the compressor is operated at the minimum operating frequency Mmin., And it is possible to suppress the imbalance of air conditioning due to the position of the room based on the size of the room, that is, the variation in the room temperature Th. Since the off-time change speed ΔM LO is smaller than the normal change speed ΔM, which is the change speed of the operating frequency in the normal control state, the operation frequency M of the compressor is gradually decreased to make the indoor temperature distribution uniform. And the comfortable air conditioning can be performed even near the thermo-off temperature Toff, and the detected indoor temperature T
The reliability of h is improved. In an inverter type air conditioner equipped with a compressor capable of changing and controlling an operating frequency M, a set temperature Ts and a thermo-off temperature Toff and a thermo-on temperature Ton having a predetermined temperature difference above and below the set temperature Ts.
And the minimum operating frequency Mmin. Are set, and when the indoor temperature Th exceeds the set temperature Ts and reaches the thermo-off temperature Toff, if the operating frequency M has already dropped to the minimum operating frequency Mmin. By stopping the compressor when it is in the thermo-off state after the elapse of the set second waiting time t 2 , it is possible to stop the compressor after confirming that the thermo-off state has been sufficiently achieved, It is possible to secure the stop time until the compressor is restarted.

【0008】[0008]

【発明の実施の形態】図を参照して本発明の実施例を説
明する。図5において、本発明を適用する運転制御装置
について説明すると、設定温度Ts を設定する温度設定
手段1と、室内温度Th を検出するサーモスタット等の
室内温度検出手段2と、設定温度Ts と室内温度Th と
の差である温度差ΔTを算出する温度差算出手段3と、
温度差ΔT、室内温度勾配変化及び予め定めたゾーンに
基づいて運転周波数Mを算出する運転周波数演算手段4
と、温度差記憶手段5と、温度差ΔTを基に室内温度勾
配の変化を検出する室内温度勾配変化検出手段6と、予
め定めた各ゾーンを記憶したゾーン記憶手段7と、シフ
トアップ手段8と、シフトアップ中止手段9と、出力周
波数指令手段10と、周波数変換器11とを備え、圧縮機12
の運転周波数Mを制御している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. Referring to FIG. 5, an operation control device to which the present invention is applied will be described. Temperature setting means 1 for setting a set temperature Ts, indoor temperature detecting means 2 for detecting an indoor temperature Th, such as a thermostat, set temperature Ts and indoor temperature. A temperature difference calculating means 3 for calculating a temperature difference ΔT which is a difference from Th;
Operating frequency calculation means 4 for calculating the operating frequency M based on the temperature difference ΔT, the indoor temperature gradient change, and a predetermined zone.
A temperature difference storage means 5, an indoor temperature gradient change detection means 6 for detecting a change in the indoor temperature gradient based on the temperature difference ΔT, a zone storage means 7 storing predetermined zones, and a shift up means 8. A shift up stop means 9, an output frequency command means 10, and a frequency converter 11, and a compressor 12
It controls the operating frequency M of.

【0009】ゾーン制御においては、ゾーン記憶手段7
に記憶した温度差ΔTに応じて運転周波数Mが定められ
て設定された複数のゾーンが記憶されており、設定温度
Tsと室内温度Th との温度差ΔTに基づいて、室内温
度Th がどのゾーンにあるかをチェックし、室内温度T
h が異なるゾーンに移動した時は、移動先のゾーンにお
ける運転周波数Mに変更させる。
In zone control, zone storage means 7
A plurality of zones in which the operating frequency M is set and set according to the temperature difference ΔT stored in are stored, and which zone the indoor temperature Th is based on the temperature difference ΔT between the set temperature Ts and the room temperature Th. Check if there is a room temperature T
When h moves to a different zone, the operating frequency M in the destination zone is changed.

【0010】本発明の制御においては、サーモ・オフ温
度Toff 、制御再開温度Tre及びサーモ・オン温度Ton
を予め設定する。サーモ・オフ温度Toff は、圧縮機の
運転周波数Mを所定の変化速度ΔM(例えば、ΔM=2
Hz/10秒)で低下させ、最低周波数Mmin.まで低下する
と待機時間t(例えば、t=6分間)経過した後に圧縮
機12を停止させる動作を開始する温度で、サーモ・オン
温度Tonは圧縮機を再起動させる温度で、制御再開温度
Treは、従来から行われている通常のゾーン制御に移行
する温度である。これらの値は、冷房及びドライ運転時
と暖房運転時とで異なり、次のようになる。
In the control of the present invention, the thermo-off temperature Toff, the control restart temperature Tre, and the thermo-on temperature Ton.
Is set in advance. The thermo-off temperature Toff is determined by changing the operating frequency M of the compressor at a predetermined change rate ΔM (eg, ΔM = 2).
Hz / 10 seconds), and when the frequency reaches the minimum frequency Mmin., The temperature at which the operation of stopping the compressor 12 is started after the waiting time t (for example, t = 6 minutes) has elapsed and the thermo-on temperature Ton is compressed. The temperature at which the machine is restarted, and the control restart temperature Tre is a temperature at which normal zone control that has been conventionally performed is transitioned to. These values differ between the cooling / drying operation and the heating operation, and are as follows.

【0011】〔冷房運転時及びドライ運転時〕 サーモ・オフ温度Toff :室内温度Th の降下時に、室
内温度Th <設定温度Ts であって、サーモ・オフ温度
Toff =設定温度Ts −1.0 deg で、圧縮機12の運転周
波数Mを、予め定めたオフ時変化速度ΔMLO(例えば、
ΔMLO=2Hz/10秒)で低下させ、最低周波数Mmin.ま
で低下すると予め定めた第1待機時間t1 (例えば、t
1 =6分間)経過した後に圧縮機12を停止させる。 制御再開温度Tre:室内温度Th の上昇時に、室内温度
Th <設定温度Ts であって、制御再開温度Tre=設定
温度Ts −0.5 deg で通常のゾーン制御に移行する。 サーモ・オン温度Ton:室内温度Th の上昇時に、室内
温度Th >設定温度Ts であって、サーモ・オン温度T
on=設定温度Ts +1.0 deg で、圧縮機12を再起動させ
る。サーモ・オン温度Ton>設定温度Ts >制御再開温
度Tre>サーモ・オフ温度Toff が成立する。
[Cooling Operation and Dry Operation] Thermo-off temperature Toff: When the room temperature Th drops, the room temperature Th <set temperature Ts, and the thermo-off temperature Toff = set temperature Ts -1.0 deg, The operating frequency M of the compressor 12 is set to a predetermined off-time change speed ΔM LO (for example,
ΔM LO = 2 Hz / 10 seconds), and the first waiting time t 1 (for example, t
The compressor 12 is stopped after the elapse of 1 = 6 minutes). Control restart temperature Tre: When the room temperature Th rises, the room temperature Th <the set temperature Ts, and the control restart temperature Tre = the set temperature Ts −0.5 deg. Thermo-on temperature Ton: When the room temperature Th rises, the room temperature Th> the set temperature Ts, and the thermo-on temperature T
The compressor 12 is restarted at on = set temperature Ts + 1.0 deg. Thermo-on temperature Ton> set temperature Ts> control restart temperature Tre> thermo-off temperature Toff.

【0012】〔暖房運転時〕 サーモ・オフ温度Toff :室内温度Th の上昇時に、室
内温度Th >設定温度Ts であって、サーモ・オフ温度
Toff =設定温度Ts +1.0 deg で、圧縮機12の運転周
波数Mを、予め定めたオフ時変化速度ΔMLO(例えば、
ΔMLO=2Hz/10秒)で低下させ、最低周波数Mmin.ま
で低下すると第1待機時間t1 (例えば、t1 =6分
間)経過した後に圧縮機12を停止させる。 制御再開温度Tre:室内温度Th の下降時に、室内温度
Th >設定温度Ts であって、制御再開温度Tre=設定
温度Ts +0.5 deg で通常のゾーン制御に復帰する。。 サーモ・オン温度Ton:室内温度Th の下降時に、室内
温度Th <設定温度Ts であって、サーモ・オン温度T
on=設定温度Ts −1.0 deg で、圧縮機12を再起動させ
る。サーモ・オン温度Ton<設定温度Ts <制御再開温
度Tre<サーモ・オフ温度Toff が成立する。
[During heating operation] Thermo-off temperature Toff: When the room temperature Th rises, the room temperature Th> the set temperature Ts, and the thermo-off temperature Toff = set temperature Ts + 1.0 deg. Of the operating frequency M of the change rate ΔM LO (for example,
ΔM LO = 2 Hz / 10 seconds), and when the frequency reaches the minimum frequency Mmin., The compressor 12 is stopped after the first waiting time t 1 (for example, t 1 = 6 minutes) has elapsed. Control restart temperature Tre: When the room temperature Th falls, the room temperature Th> the set temperature Ts, and the control restart temperature Tre = the set temperature Ts + 0.5 deg. . Thermo-on temperature Ton: When the room temperature Th drops, the room temperature Th <set temperature Ts, and the thermo-on temperature T
The compressor 12 is restarted at on = the set temperature Ts −1.0 deg. Thermo-on temperature Ton <set temperature Ts <control restart temperature Tre <thermo-off temperature Toff holds.

【0013】図1のフローチャートを参照して制御動作
について説明する。冷房運転、ドライ運転または暖房運
転の何れかの場合において、室内温度Thが設定温度Ts
に近づき、室内温度Th が設定温度Ts を下方(低温
側)または上方(高温側)に超えてサーモ・オフ温度T
off に達するまでは、通常のゾーン制御で運転し、圧縮
機12の運転周波数を通常変化速度ΔM(例えば、ΔM=
2Hz/秒)で低下させる。
The control operation will be described with reference to the flowchart of FIG. In any of the cooling operation, the dry operation, and the heating operation, the room temperature Th is set to the set temperature Ts.
As the indoor temperature Th approaches the set temperature Ts below (low temperature side) or above (high temperature side), the thermo-off temperature T
Until it reaches off, the operation is carried out under normal zone control, and the operating frequency of the compressor 12 is changed at a normal rate of change ΔM (eg
2Hz / sec).

【0014】室内温度Th が設定温度Ts に高温側から
(冷房運転時またはドライ運転時)または低温側から
(暖房運転時)近づき、さらに設定温度Ts を下方(低
温側)または上方(高温側)に超えてサーモ・オフ温度
Toff に達すると、圧縮機12の運転周波数Mの変化速度
を、通常変化速度ΔM(例えば、ΔM=2Hz/秒)から
オフ時変化速度ΔMLO(例えば、ΔMLO=2Hz/10秒)
に低下させて、運転周波数Mを緩やかに低下させ、予め
設定した最低運転周波数Mmin.に近づける。例えば、圧
縮機としてシングルロータリーコンプレッサを用いた場
合最低運転周波数Mmin.=30Hz、ツインロータリーコン
プレッサを用いた場合最低運転周波数Mmin.=10Hz〜20
Hzとする。
The room temperature Th approaches the set temperature Ts from the high temperature side (during cooling operation or dry operation) or from the low temperature side (during heating operation), and further lowers the set temperature Ts below (low temperature side) or above (high temperature side). When the thermo-off temperature Toff is exceeded, the rate of change of the operating frequency M of the compressor 12 is changed from the normal change rate ΔM (for example, ΔM = 2 Hz / sec) to the off-time change rate ΔM LO (for example, ΔM LO = 2Hz / 10 seconds)
To gradually decrease the operating frequency M to approach the preset minimum operating frequency Mmin. For example, when a single rotary compressor is used as a compressor, the minimum operating frequency Mmin. = 30Hz, and when a twin rotary compressor is used, the minimum operating frequency Mmin. = 10Hz to 20Hz.
Hz.

【0015】空気調和負荷が比較的大きい場合等に、図
2に示すように、室内温度Th がサーモ・オフ温度Tof
f に達し、その時点で圧縮機12の運転周波数Mが最低運
転周波数Mmin.まで低下していない時は、圧縮機12の運
転周波数Mをオフ時変化速度ΔMLO(例えば、ΔMLO
2Hz/10秒)で低下させるが、最低運転周波数Mmin.に
達する前に室内温度Th が上昇(冷房運転時またはドラ
イ運転時)または下降(暖房運転時)して、制御再開温
度Treに達すると、通常のゾーン制御に復帰する。通常
のゾーン制御に復帰する際、圧縮機の運転周波数Mは、
空調負荷に見合った運転周波数M(即ち各ゾーンに設定
された設定周波数Ms )で運転する。
When the air conditioning load is comparatively large, as shown in FIG. 2, the room temperature Th becomes lower than the thermo-off temperature Tof.
When the operating frequency M of the compressor 12 is not reduced to the minimum operating frequency Mmin. at that time, the operating frequency M of the compressor 12 is changed to the off speed change speed ΔM LO (for example, ΔM LO =
2 Hz / 10 seconds), but if the room temperature Th rises (during cooling operation or dry operation) or falls (during heating operation) before reaching the minimum operating frequency Mmin., And reaches the control restart temperature Tre. , Return to normal zone control. When returning to the normal zone control, the operating frequency M of the compressor is
The operation is carried out at the operating frequency M corresponding to the air conditioning load (that is, the set frequency Ms set in each zone).

【0016】空気調和負荷が小さい場合等に、図3に示
すように、室内温度Th がサーモ・オフ温度Toff に達
し、その時点で圧縮機12の運転周波数Mが最低運転周波
数Mmin.まで低下していない時は、圧縮機12の運転周波
数Mをオフ時変化速度ΔMLO(例えば、ΔMLO=2Hz/
10秒)で低下させるが、室内温度Th の変化が緩やか
で、最低運転周波数Mmin.に達した時点で制御再開温度
Treに達していない時は、第1待機時間t1 (例えば、
1 =6分間)の間、最低運転周波数Mmin.で圧縮機12
の運転を継続する。第1待機時間t1 (例えば、t1
6分間)が経過する前に、室内温度Th が上昇(冷房運
転時またはドライ運転時)または下降(暖房運転時)し
て、制御再開温度Treに達すると、通常のゾーン制御に
復帰する。通常のゾーン制御に復帰する際、圧縮機の運
転周波数Mは、空調負荷に見合った運転周波数Mで運転
される。
When the air conditioning load is small, as shown in FIG. 3, the room temperature Th reaches the thermo-off temperature Toff, at which point the operating frequency M of the compressor 12 drops to the minimum operating frequency Mmin. If not, the operating frequency M of the compressor 12 is changed to the change speed ΔM LO at the time of OFF (eg, ΔM LO = 2 Hz /
Although it is decreased in 10 seconds), when the room temperature Th changes slowly and the control restart temperature Tre has not been reached when the minimum operating frequency Mmin. Is reached, the first waiting time t 1 (for example,
t 1 = 6 minutes), the compressor 12 at the minimum operating frequency Mmin.
Continue driving. First waiting time t 1 (for example, t 1 =
If the indoor temperature Th rises (during the cooling operation or the dry operation) or falls (during the heating operation) before reaching 6 minutes) and reaches the control restart temperature Tre, the normal zone control is restored. When returning to the normal zone control, the operating frequency M of the compressor is operated at the operating frequency M commensurate with the air conditioning load.

【0017】空気調和負荷が極めて小さい場合等に、図
4に示すように、室内温度Th がサーモ・オフ温度Tof
f に達し、その時点で圧縮機12の運転周波数Mが最低運
転周波数Mmin.まで低下していない時は、圧縮機12の運
転周波数Mをオフ時変化速度ΔMLO(例えば、ΔMLO
2Hz/10秒)で低下させるが、室内温度Th の変化が緩
やかで、最低運転周波数Mmin.に達した時点で制御再開
温度Treに達していない時は、第1待機時間t1 (例え
ば、t1 =6分間)の間、最低運転周波数Mmin.で圧縮
機12の運転を継続する。第1待機時間t1 (例えば、t
1 =6分間)が経過しても室内温度Th が制御再開温度
Treに達していない時は、サーモ・オフ(圧縮機停止)
させる。圧縮機の停止を保持した状態で、室内温度Th
がサーモ・オン温度Tonに達すると、圧縮機12が再起動
するとともに、通常のゾーン制御に復帰する。通常のゾ
ーン制御に復帰する際、圧縮機の運転周波数Mは、空調
負荷に見合った運転周波数Mで運転される。なお、室内
温度Th が制御再開温度Treとサーモ・オフ温度Toff
との間にある時は、第1待機時間t1 (例えば、t1
6分間)が経過しても圧縮機12を停止させず、最低運転
周波数Mmin.で運転を継続する。
When the air-conditioning load is extremely small, as shown in FIG. 4, the room temperature Th becomes lower than the thermo-off temperature Tof.
When the operating frequency M of the compressor 12 is not reduced to the minimum operating frequency Mmin. at that time, the operating frequency M of the compressor 12 is changed to the off speed change speed ΔM LO (for example, ΔM LO =
2 Hz / 10 seconds), but the change in the room temperature Th is gradual, and when the control restart temperature Tre is not reached when the minimum operating frequency Mmin. Is reached, the first waiting time t 1 (for example, t 1 = 6 minutes), the operation of the compressor 12 is continued at the minimum operation frequency Mmin. First waiting time t 1 (for example, t
If the room temperature Th has not reached the control restart temperature Tre even after ( 1 = 6 minutes), the thermostat is turned off (compressor stopped).
Let it. Room temperature Th with the compressor stopped
Reaches the thermo-on temperature Ton, the compressor 12 is restarted and the normal zone control is resumed. When returning to the normal zone control, the operating frequency M of the compressor is operated at the operating frequency M commensurate with the air conditioning load. Note that the room temperature Th is the control restart temperature Tre and the thermo-off temperature Toff.
And the first waiting time t 1 (for example, t 1 =
Even after 6 minutes), the compressor 12 is not stopped and the operation is continued at the minimum operation frequency Mmin.

【0018】また、室内温度Th がサーモ・オフ温度T
off に達した時、既に圧縮機12の運転周波数Mが最低運
転周波数Mmin.まで低下している場合は、予め定めた第
2待機時間t2 (例えば、t2 ≦t1 ,t2 =4分間)
だけ最低運転周波数Mmin.で運転を継続し、第2待機時
間t2 経過後も室内温度Th が制御再開温度Treに達し
ていない時は、サーモ・オフ(圧縮機停止)させる。
The room temperature Th is the thermo-off temperature T.
When the operating frequency M of the compressor 12 has already dropped to the minimum operating frequency Mmin. when it reaches off, the second waiting time t 2 (for example, t 2 ≦ t 1 , t 2 = 4) is set in advance. Minutes)
Only continue to operate at the lowest operating frequency Mmin., When after the second waiting time t 2 elapses even indoor temperature Th has not reached the control resumption temperature Tre is causing thermo-off (compressor stopped).

【0019】上述の構成によると、室内温度Th がサー
モ・オフ温度Toff に達しても、即サーモ・オフ(圧縮
機停止)させずに、圧縮機の運転周波数Mを、オフ時変
化速度ΔMLO(例えば、ΔMLO=2Hz/10秒)で緩やか
に低下させることにより、吹出温度が上昇(冷房または
ドライ運転時)または下降(暖房運転時)し、室内温度
分布を均一化することができ、サーモ・オフ温度Toff
近傍においても快適な空気調和を行うことができるとと
もに、検出した室内温度Th の信頼性が向上する。
According to the above-mentioned configuration, even if the room temperature Th reaches the thermo-off temperature Toff, the operating frequency M of the compressor is changed to the off change speed ΔM LO without immediately turning the thermo-off (the compressor is stopped). (For example, ΔM LO = 2 Hz / 10 seconds) By gently lowering, the outlet temperature rises (during cooling or dry operation) or falls (during heating operation), and the indoor temperature distribution can be made uniform. Thermo-off temperature Toff
Comfortable air conditioning can be performed even in the vicinity, and the reliability of the detected indoor temperature Th is improved.

【0020】また、十分にサーモ・オフ状態となったこ
とを確認してから圧縮機を停止させることができ、圧縮
機の再起動時までの停止時間を確保することができる。
また、圧縮機を、所定の第1待機時間t1 (例えば、t
1 =6分間)の間、運転周波数Mを最低運転周波数Mmi
n.にして運転を継続することにより、部屋の広さに基づ
く室内の位置による空気調和のアンバランス即ち室内温
度Th のバラツキを抑制することができる。さらに、通
常のゾーン制御に復帰する際、圧縮機の運転周波数Mを
空調負荷に見合った運転周波数M(即ち設定周波数Ms
)で運転することにより、その後の室内温度Th の安
定性が向上する。
Further, it is possible to stop the compressor after confirming that the thermostat is sufficiently turned off, and it is possible to secure a stop time until the compressor is restarted.
In addition, the compressor is set to a predetermined first standby time t 1 (for example, t
1 = 6 minutes), the operating frequency M is set to the minimum operating frequency Mmi
By continuing the operation at n., it is possible to suppress the imbalance of the air conditioning due to the position in the room based on the size of the room, that is, the variation in the room temperature Th. Further, when returning to the normal zone control, the operating frequency M of the compressor is set to the operating frequency M corresponding to the air conditioning load (that is, the set frequency Ms.
), The stability of the room temperature Th thereafter is improved.

【0021】上記実施例においては、ゾーン制御のみを
用いているが、通常のゾーン制御にファジイ制御等を付
加することにより、さらに良好な空気調和を行うことが
できるもので、特に、ゾーン制御において、同一ゾーン
にある時は一定時間毎にファジイ制御等で補正すると良
いものである。また、本発明は、ゾーン制御、ファジイ
制御またはPID制御等、基本的に制御方法に関係なく
適用することができる。
In the above embodiment, only zone control is used, but by adding fuzzy control or the like to normal zone control, it is possible to perform better air conditioning. Particularly, in zone control. When in the same zone, it is good to correct by a fuzzy control or the like at regular intervals. Further, the present invention can be applied basically regardless of the control method such as zone control, fuzzy control or PID control.

【0022】[0022]

【実施例】本発明の実施例を適用した制御動作の一例を
説明する。一例として、圧縮機としてシングルロータリ
ーコンプレッサを用いたものとして、予め定められた最
低の運転周波数である最低運転周波数Mmin.=30Hzと
し、運転周波数Mの制御範囲を、冷房運転時及びドライ
運転時には運転周波数M=30Hz〜85Hzで、冷房定格運転
周波数Ms =68Hzとし、暖房運転時には運転周波数M=
36Hz〜 135Hzで、冷房定格運転周波数Ms =87Hzとす
る。なお、ツインロータリーコンプレッサを用いた場合
は、最低運転周波数Mmin.=10Hz〜20Hzとなる。
EXAMPLE An example of the control operation to which the example of the present invention is applied will be described. As an example, assuming that a single rotary compressor is used as a compressor, a minimum operating frequency Mmin. = 30 Hz, which is a predetermined minimum operating frequency, is set, and the control range of the operating frequency M is operated during cooling operation and dry operation. Frequency M = 30Hz-85Hz, cooling rated operating frequency Ms = 68Hz, operating frequency M = during heating operation
36 Hz-135 Hz, cooling rated operating frequency Ms = 87 Hz. When a twin rotary compressor is used, the minimum operating frequency Mmin. = 10Hz to 20Hz.

【0023】図6に冷房運転時及びドライ運転時におけ
るゾーンの一例を示す。 サーモ・オフ温度Toff :室内温度Th の下降時に、サ
ーモ・オフ温度Toffとして温度差ΔT=−1.0 deg
で、圧縮機12を停止させる。 制御再開温度Tre:室内温度Th の上昇時に、制御再開
温度Treとして温度差ΔT=−0.5 deg で通常のゾーン
制御に移行する。 サーモ・オン温度Ton:室内温度Th の上昇時に、サー
モ・オン温度Tonとして温度差ΔT=+1.0 deg で、圧
縮機12を再起動させる。 aゾーン:室内温度Th 下降時は+2.0 deg <温度差Δ
T、室内温度Th 上昇時は+2.5 deg <温度差ΔTで、
設定周波数Ms =85Hz。 bゾーン:室内温度Th 下降時は+1.5 deg <温度差Δ
T≦+2.0 deg 、上昇時は+2.0 deg <温度差ΔT≦+
2.5 deg で、設定周波数Ms =68Hz。 cゾーン:室内温度Th 下降時は+1.0 deg <温度差Δ
T≦+1.5 deg 、上昇時は+1.5 deg <温度差ΔT≦+
2.0 deg で、設定周波数Ms =53Hz。 dゾーン:室内温度Th 下降時は+0.5 deg <温度差Δ
T≦+1.0 deg 、上昇時は+1.0 deg <温度差ΔT≦+
1.5 deg で、設定周波数Ms =42Hz。 eゾーン:室内温度Th 下降時は0deg <温度差ΔT≦
+0.5 deg 、上昇時は+0.5 deg <温度差ΔT≦+1.0
deg で、設定周波数Ms =36Hz。 fゾーン:室内温度Th 下降時は−0.5 deg <温度差Δ
T≦0deg (室内温度Th =設定温度Ts )、上昇時は
0deg <温度差ΔT≦+0.5 deg で、設定周波数Ms =
30Hz。 gゾーン:室内温度Th 下降時は−1.0 deg <温度差Δ
T≦−0.5 deg 、上昇時は−0.5 deg <温度差ΔT≦0
deg で、設定周波数Ms =30Hz。 hゾーン:室内温度Th 下降時は温度差ΔT≦−1.0 de
g 、上昇時はΔT≦−0.5 deg で、設定周波数Ms =最
低周波数Mmin.(=30Hz)、但し室内温度Th≦サーモ
・オフ温度Toff (即ち、温度差ΔT≦−1.0 deg )が
第1待機時間t1 継続すると圧縮機12はオフ。
FIG. 6 shows an example of zones during the cooling operation and the dry operation. Thermo-off temperature Toff: Temperature difference ΔT = -1.0 deg as the thermo-off temperature Toff when the room temperature Th falls.
Then, the compressor 12 is stopped. Control restart temperature Tre: When the indoor temperature Th rises, the control restart temperature Tre shifts to normal zone control with a temperature difference ΔT = −0.5 deg. Thermo-on temperature Ton: When the indoor temperature Th rises, the compressor 12 is restarted with the temperature difference ΔT = + 1.0 deg as the thermo-on temperature Ton. Zone a: +2.0 deg when the room temperature Th drops <Temperature difference Δ
T, when the indoor temperature Th rises, +2.5 deg <temperature difference ΔT,
Set frequency Ms = 85Hz. Zone b: +1.5 deg <temperature difference Δ when the room temperature Th drops
T ≦ + 2.0 deg, +2.0 deg when rising <Temperature difference ΔT ≦ +
At 2.5 deg, set frequency Ms = 68Hz. c zone: +1.0 deg <temperature difference Δ when the room temperature Th drops
T ≦ + 1.5 deg, +1.5 deg when rising <Temperature difference ΔT ≦ +
At 2.0 deg, set frequency Ms = 53Hz. d zone: +0.5 deg when the room temperature Th drops <temperature difference Δ
T ≦ + 1.0 deg, +1.0 deg when rising <Temperature difference ΔT ≦ +
Setting frequency Ms = 42Hz at 1.5deg. e zone: 0 deg when the room temperature Th decreases <temperature difference ΔT ≤
+0.5 deg, +0.5 deg when rising <Temperature difference ΔT ≤ +1.0
At deg, set frequency Ms = 36Hz. f zone: -0.5 deg <temperature difference Δ when the room temperature Th drops
T ≤ 0 deg (indoor temperature Th = set temperature Ts), when rising 0 deg <temperature difference ΔT ≤ +0.5 deg, set frequency Ms =
30Hz. g zone: -1.0 deg <temperature difference Δ when the room temperature Th drops
T ≦ −0.5 deg, −0.5 deg when rising <Temperature difference ΔT ≦ 0
At deg, set frequency Ms = 30Hz. h zone: Temperature difference ΔT ≦ −1.0 de when the room temperature Th drops
g, ΔT ≦ −0.5 deg when rising, set frequency Ms = minimum frequency Mmin. (= 30 Hz), but room temperature Th ≦ thermo-off temperature Toff (that is, temperature difference ΔT ≦ −1.0 deg) waits first When the time t 1 continues, the compressor 12 turns off.

【0024】冷房運転またはドライ運転における動作に
ついて説明すると、室内温度Th が十分高く、aゾーン
にある時は圧縮機を運転周波数M=85Hzで運転する即ち
最大能力で運転し、室内温度Th が下降してbゾーンに
移行すると圧縮機を運転周波数M=68Hzに変更して運転
する即ち冷房能力を低下させる。同様に、室内温度Th
が下降し続けてbゾーンからcゾーン、dゾーン、eゾ
ーン、gゾーンに達すると順次圧縮機の運転周波数M
を、各ゾーンで設定されたM=68Hzから53Hz,42Hz,36
Hz,30Hzの各設定周波数Ms に変更するものであるが、
この時は通常変化速度ΔM(例えば、ΔM=2Hz/秒)
で運転周波数Mを変更していく。
Explaining the operation in the cooling operation or the dry operation, when the room temperature Th is sufficiently high and the zone a is in operation, the compressor is operated at the operation frequency M = 85 Hz, that is, at the maximum capacity, and the room temperature Th is lowered. Then, when the operation shifts to the b zone, the compressor is operated by changing the operating frequency to M = 68 Hz, that is, the cooling capacity is lowered. Similarly, the room temperature Th
Continues to fall and reaches the operating frequency M of the compressor in sequence from the b zone to the c zone, the d zone, the e zone, and the g zone.
From M = 68Hz set in each zone to 53Hz, 42Hz, 36
It is to change to each set frequency Ms of Hz and 30Hz.
At this time, the normal change speed ΔM (for example, ΔM = 2 Hz / sec)
Change the operating frequency M with.

【0025】さらに室内温度Th が下降して、hゾーン
即ち、室内温度Th がサーモ・オフ温度Toff に達する
と、圧縮機の運転周波数Mの変化速度を、通常変化速度
ΔMよりも小さいオフ時変化速度ΔMLO(例えば、ΔM
LO=2Hz/10秒)に変更して緩やかに低下させる。室内
温度Th が下降して室内温度Th =サーモ・オフ温度T
off になった時、運転周波数Mが最低運転周波数Mmin.
=30Hzに達していない(M>Mmin.)場合は、運転周波
数Mをオフ時変化速度ΔMLOで、最低運転周波数Mmin.
=30Hzに達するまで低下させ続ける。
When the indoor temperature Th further decreases and the h zone, that is, the indoor temperature Th reaches the thermo-off temperature Toff, the change speed of the operating frequency M of the compressor is changed at the time of off which is smaller than the normal change speed ΔM. Speed ΔM LO (eg ΔM
Change to LO = 2Hz / 10 seconds) and gradually lower. The room temperature Th decreases, and the room temperature Th is equal to the thermo-off temperature T.
When turned off, the operating frequency M is the minimum operating frequency Mmin.
= 30Hz is not reached (M> Mmin.), The operating frequency M is the off speed change speed ΔM LO and the minimum operating frequency Mmin.
Continue decreasing until reaching = 30Hz.

【0026】運転周波数Mが最低運転周波数Mmin.=30
Hzに達する前に室内温度Th が上昇し、室内温度Th が
hゾーンからgゾーンに移行し、制御再開温度Tre(=
Ts−0.5 deg )に達すると、通常のゾーン制御に移行
して、圧縮機は空調負荷と見合った設定周波数Ms =30
Hzで運転される。室内温度Th が上昇せず、運転周波数
Mが最低運転周波数Mmin.=30Hzに低下しても室内温度
Th が制御再開温度Treにまで上昇しなかった場合は、
第1待機時間t1 (例えば、6分間)の間、運転周波数
Mを最低運転周波数Mmin.=30Hzで運転を継続し、第1
待機時間t1 (例えば、6分間)の経過前に室内温度T
hが制御再開温度Treに上昇した時は、通常のゾーン制
御に移行する。
The operating frequency M is the minimum operating frequency Mmin. = 30
The room temperature Th rises before reaching Hz, the room temperature Th shifts from the h zone to the g zone, and the control restart temperature Tre (=
When Ts-0.5 deg) is reached, the normal zone control is started and the compressor sets the frequency Ms = 30 corresponding to the air conditioning load.
Driven at Hz. If the room temperature Th does not rise and the room temperature Th does not rise to the control restart temperature Tre even if the operating frequency M drops to the minimum operating frequency Mmin. = 30 Hz,
During the first standby time t 1 (for example, 6 minutes), the operation is continued at the operating frequency M at the minimum operating frequency Mmin.
Before the waiting time t 1 (for example, 6 minutes) elapses, the room temperature T
When h rises to the control restart temperature Tre, the normal zone control is performed.

【0027】第1待機時間t1 (例えば、6分間)が経
過しても室内温度Th が制御再開温度Treにまで上昇し
なかった場合は、サーモ・オフして圧縮機を停止させ
る。サーモ・オフして圧縮機が停止すると、室内温度T
h が上昇してサーモ・オン温度Tonに達して(即ちdゾ
ーンに入って)、サーモ・オン即ち圧縮機が再起動され
ると同時に通常のゾーン制御に移行する。なお、室内温
度Th がサーモ・オフ温度Toff と制御再開温度Treと
の間にある時は、圧縮機の運転周波数Mを最低運転周波
数Mmin.=30Hzで運転を継続し、圧縮機を停止させない
ものである。
If the room temperature Th has not risen to the control restart temperature Tre even after the lapse of the first waiting time t 1 (for example, 6 minutes), the thermostat is turned off to stop the compressor. When the compressor is stopped by turning the thermo off, the room temperature T
When h rises to reach the thermo-on temperature Ton (that is, in the d zone), the thermo-on, that is, the compressor is restarted, and at the same time, the normal zone control is performed. When the room temperature Th is between the thermo-off temperature Toff and the control restart temperature Tre, the operation frequency M of the compressor is kept at the minimum operation frequency Mmin. = 30 Hz, and the compressor is not stopped. Is.

【0028】図7に暖房運転時におけるゾーンの一例を
示す。 サーモ・オフ温度Toff :室内温度Th の上昇時に、サ
ーモ・オフ温度Toffとして温度差ΔT=+1.0 deg
で、圧縮機12を停止させる。 制御再開温度Tre:室内温度Th の下降時に、制御再開
温度Treとして温度差ΔT=+0.5 deg で、通常のゾー
ン制御に移行する。 サーモ・オン温度Ton:室内温度Th の下降時に、サー
モ・オン温度Tonとして温度差ΔT=−1.0 deg で、圧
縮機12を再起動させる。 aゾーン:室内温度Th 上昇時は温度差ΔT≦−2.5 de
g 、下降時は温度差ΔT≦−3.0 deg で、設定周波数M
s = 135Hz。 bゾーン:室内温度Th 上昇時は−2.5 deg <温度差Δ
T≦−2.0 deg 、下降時は−3.0 deg <温度差ΔT≦−
2.5 deg で、設定周波数Ms = 115Hz。 cゾーン:室内温度Th 上昇時は−2.0 deg <温度差Δ
T≦−1.5 deg 、下降時は−2.5 deg <温度差ΔT≦−
2.0 deg で、設定周波数Ms =95Hz。 dゾーン:室内温度Th 上昇時は−1.5 deg <温度差Δ
T≦−1.0 deg 、下降時は−2.0 deg <温度差ΔT≦−
1.5 deg で、設定周波数Ms =75Hz。 eゾーン:室内温度Th 上昇時は−1.0deg <温度差Δ
T≦−0.5 deg 、下降時は−1.5 deg <温度差ΔT≦−
1.0 deg で、設定周波数Ms =60Hz。 fゾーン:室内温度Th 上昇時は−0.5 deg <温度差Δ
T≦0deg (室内温度Th =設定温度Ts )、下降時は
−1.0deg <温度差ΔT≦−0.5 deg で、設定周波数M
s =45Hz。 gゾーン:室内温度Th 上昇時は0deg <温度差ΔT≦
+0.5 deg 、下降時は−0.5 deg <温度差ΔT≦0deg
で、設定周波数Ms =36Hz。 hゾーン:室内温度Th 上昇時は+0.5 deg <温度差Δ
T≦+1.0 deg 、下降時は0deg <温度差ΔT≦+0.5
deg で、設定周波数Ms =36Hz。 iゾーン:室内温度Th 上昇時は温度差ΔT≧+1.0 de
g 、下降時は温度差ΔT≧+0.5 deg で、設定周波数M
s =最低周波数Mmin.(=30Hz)、但し室内温度Th ≧
サーモ・オフ温度Toff (即ち、温度差ΔT≧+1.0 de
g )が第1待機時間t1 継続すると圧縮機12はオフ。
FIG. 7 shows an example of zones during heating operation. Thermo-off temperature Toff: Temperature difference ΔT = + 1.0 deg as thermo-off temperature Toff when the room temperature Th rises
Then, the compressor 12 is stopped. Control restart temperature Tre: When the indoor temperature Th is lowered, the control restart temperature Tre is changed to the normal zone control with a temperature difference ΔT = + 0.5 deg. Thermo-on temperature Ton: When the indoor temperature Th drops, the compressor 12 is restarted with the temperature difference ΔT = -1.0 deg as the thermo-on temperature Ton. Zone a: Temperature difference ΔT ≦ −2.5 de when room temperature Th rises
g, temperature difference ΔT ≤ -3.0 deg at the time of falling, set frequency M
s = 135Hz. Zone b: -2.5 deg <temperature difference Δ when room temperature Th rises
T ≦ −2.0 deg, −3.0 deg when descending <Temperature difference ΔT ≦ −
At 2.5 deg, the set frequency Ms = 115Hz. c zone: -2.0 deg <temperature difference Δ when room temperature Th rises
T ≦ −1.5 deg, −2.5 deg when descending <Temperature difference ΔT ≦ −
At 2.0 deg, set frequency Ms = 95Hz. d zone: -1.5 deg <temperature difference Δ when room temperature Th rises
T ≦ −1.0 deg, −2.0 deg when descending <Temperature difference ΔT ≦ −
Set frequency Ms = 75Hz at 1.5deg. e zone: -1.0deg <increase of room temperature Th <temperature difference Δ
T ≦ −0.5 deg, −1.5 deg when descending <Temperature difference ΔT ≦ −
At 1.0 deg, set frequency Ms = 60Hz. f zone: -0.5 deg <temperature difference Δ when room temperature Th rises
T ≤ 0 deg (indoor temperature Th = set temperature Ts), -1.0 deg <temperature difference ΔT ≤ -0.5 deg when set, and set frequency M
s = 45Hz. g zone: 0 deg when the room temperature Th rises <temperature difference ΔT ≤
+0.5 deg, -0.5 deg when descending <Temperature difference ΔT ≤ 0 deg
Then, set frequency Ms = 36Hz. h zone: +0.5 deg <temperature difference Δ when room temperature Th rises
T ≤ +1.0 deg, 0 deg when descending <Temperature difference ΔT ≤ +0.5
At deg, set frequency Ms = 36Hz. i zone: Temperature difference ΔT ≧ + 1.0 de when the room temperature Th rises
g, temperature difference ΔT ≥ +0.5 deg at the time of falling, set frequency M
s = minimum frequency Mmin. (= 30Hz), but room temperature Th ≥
Thermo-off temperature Toff (Temperature difference ΔT ≧ + 1.0 de
When g) continues for the first waiting time t 1 , the compressor 12 is turned off.

【0029】暖房運転における動作について説明する
と、室内温度Th が十分低く、aゾーンにある時は圧縮
機を運転周波数M= 135Hz(最大能力)で運転し、室内
温度Th が上昇してbゾーンに移行すると圧縮機を運転
周波数M= 115Hzに変更して運転する即ち暖房能力を低
下させる。同様に、室内温度Th が上昇し続けてbゾー
ンからcゾーン、dゾーン、eゾーン、gゾーン、hゾ
ーンに達すると順次圧縮機の運転周波数Mを、各ゾーン
で設定されたM= 115Hzかか95Hz、75Hz,60Hz,45Hz,
36Hzの各設定周波数Ms に変更するものであるが、この
時は通常変化速度ΔM(例えば、ΔM=2Hz/秒)で運
転周波数Mを変更していく。
Explaining the operation in the heating operation, when the room temperature Th is sufficiently low and the zone a is in operation, the compressor is operated at an operating frequency M = 135 Hz (maximum capacity), and the room temperature Th rises to the zone b. When the shift is made, the compressor is operated by changing the operating frequency to M = 115 Hz, that is, the heating capacity is reduced. Similarly, when the indoor temperature Th continues to rise and reaches from zone b to zone c, zone d, zone e, zone g, and zone h, the operating frequency M of the compressor is set to M = 115 Hz set in each zone. Or 95Hz, 75Hz, 60Hz, 45Hz,
The set frequency Ms is changed to 36 Hz. At this time, the operating frequency M is changed at a normal change speed ΔM (eg, ΔM = 2 Hz / sec).

【0030】さらに室内温度Th が上昇して、iゾーン
即ち、室内温度Th がサーモ・オフ温度Toff に達する
と、圧縮機の運転周波数Mの変化速度を、通常変化速度
ΔMよりも小さいオフ時変化速度ΔMLO(例えば、ΔM
LO=2Hz/10秒)に変更して緩やかに低下させる。室内
温度Th が上昇して室内温度Th =サーモ・オフ温度T
off になった時、運転周波数Mが最低運転周波数Mmin.
=30Hzに達していない(M>Mmin.)場合は、運転周波
数Mをオフ時変化速度ΔMLOで、最低運転周波数Mmin.
=30Hzに達するまで低下させ続ける。
When the indoor temperature Th further rises and the i-zone, that is, the indoor temperature Th reaches the thermo-off temperature Toff, the change speed of the operating frequency M of the compressor is changed at the time of off which is smaller than the normal change speed ΔM. Speed ΔM LO (eg ΔM
Change to LO = 2Hz / 10 seconds) and gradually lower. Room temperature Th rises and room temperature Th = Thermo-off temperature T
When turned off, the operating frequency M is the minimum operating frequency Mmin.
= 30Hz is not reached (M> Mmin.), The operating frequency M is the off speed change speed ΔM LO and the minimum operating frequency Mmin.
Continue decreasing until reaching = 30Hz.

【0031】運転周波数Mが最低運転周波数Mmin.=30
Hzに達する前に室内温度Th が下降し、室内温度Th が
iゾーンからhゾーンに移行し、制御再開温度Treに達
すると、通常のゾーン制御に移行して、圧縮機は空調負
荷と見合った設定周波数Ms=30Hzで運転される。室内
温度Th が下降せず、運転周波数Mが最低運転周波数M
min.=30Hzに低下しても室内温度Th が制御再開温度T
reにまで下降しなかった場合は、第1待機時間t1 (例
えば、6分間)の間、運転周波数Mを最低運転周波数M
min.=36Hzで運転を継続し、第1待機時間t1 (例え
ば、6分間)の経過前に室内温度Thが制御再開温度Tr
eに下降した時は、通常のゾーン制御に移行する。
The operating frequency M is the minimum operating frequency Mmin. = 30
The indoor temperature Th decreases before reaching Hz, the indoor temperature Th shifts from the i zone to the h zone, and when the control restart temperature Tre is reached, it shifts to normal zone control and the compressor matches the air conditioning load. It operates at the set frequency Ms = 30Hz. The indoor temperature Th does not fall and the operating frequency M is the minimum operating frequency M.
Even if it decreases to min. = 30Hz, the room temperature Th is the control restart temperature T
If it does not fall to re, the operating frequency M is changed to the minimum operating frequency M during the first waiting time t 1 (for example, 6 minutes).
The operation is continued at min. = 36 Hz, and the room temperature Th is the control restart temperature Tr before the first waiting time t 1 (for example, 6 minutes) has elapsed.
When it descends to e, it shifts to normal zone control.

【0032】第1待機時間t1 (例えば、6分間)が経
過しても室内温度Th が制御再開温度Treにまで下降し
なかった場合は、サーモ・オフして圧縮機を停止させ
る。サーモ・オフして圧縮機が停止すると、室内温度T
h が下降してサーモ・オン温度Tonに達して(即ちdゾ
ーンに入って)、サーモ・オン即ち圧縮機が再起動され
ると同時に通常のゾーン制御に移行する。なお、室内温
度Th がサーモ・オフ温度Toff と制御再開温度Treと
の間にある時は、圧縮機の運転周波数Mを最低運転周波
数Mmin.=36Hzで運転を継続し、圧縮機を停止させない
ものである。
If the room temperature Th has not dropped to the control restart temperature Tre even after the lapse of the first waiting time t 1 (for example, 6 minutes), the thermostat is turned off to stop the compressor. When the compressor is stopped by turning the thermo off, the room temperature T
When h decreases to reach the thermo-on temperature Ton (that is, in the d zone), the thermo-on, that is, the compressor is restarted, and at the same time, the normal zone control is performed. When the room temperature Th is between the thermo-off temperature Toff and the control restart temperature Tre, the operation frequency M of the compressor is kept at the minimum operation frequency Mmin. = 36 Hz, and the compressor is not stopped. Is.

【0033】[0033]

【発明の効果】本発明は、上述のとおり構成されている
から次に述べる効果を奏する。設定温度Ts と、設定温
度Ts の上下に所定の温度差を有するサーモ・オフ温度
Toff 及びサーモ・オン温度Tonと、最低運転周波数M
min.とを設定し、室内温度Th が設定温度Ts を越えて
サーモ・オフ温度Toff に達した時に、運転周波数Mが
最低運転周波数Mmin.に低下していない場合、予め定め
たオフ時変化速度ΔMLOで運転周波数Mを最低運転周波
数Mmin.にまで低下させた後、運転周波数Mを最低運転
周波数Mmin.に保持して圧縮機を運転することにより、
室内温度Th がサーモ・オフ温度Toff に達しても、即
圧縮機を停止させることなく、圧縮機の運転周波数Mを
オフ時変化速度ΔMLOで低下させることにより、吹出温
度が上昇(冷房またはドライ運転時)または下降(暖房
運転時)し、室内温度分布を均一化することができ、サ
ーモ・オフ温度Toff 近傍においても快適な空気調和を
行うことができるとともに、検出した室内温度Th の信
頼性が向上する。また、十分にサーモ・オフ状態となっ
たことを確認してから圧縮機を停止させることができ、
圧縮機の再起動時までの停止時間を確保することができ
る。運転周波数Mを最低運転周波数Mmin.に保持して、
予め設定した第1待機時間t1 が経過しても室内温度T
h が戻らない場合は、圧縮機を停止させることにより、
第1待機時間t1 の間最低運転周波数Mmin.で圧縮機を
運転して、部屋の広さに基づく室内の位置による空気調
和のアンバランス即ち室内温度Th のバラツキを抑制す
ることができる。オフ時変化速度ΔMLOは、通常の制御
状態における運転周波数の変化速度である通常変化速度
ΔMよりも小であることにより、圧縮機の運転周波数M
を緩やかに低下させて、室内温度分布を均一化すること
ができ、サーモ・オフ温度Toff近傍においても快適な
空気調和を行うことができるとともに、検出した室内温
度Th の信頼性が向上する。特に、吹出温度が緩やかに
変化するので、使用者の違和感がなく、快適な空気調和
を行うことができる。運転周波数Mを変更制御可能とし
た圧縮機を備えたインバータ式エアコンにおいて、設定
温度Ts と、設定温度Ts の上下に所定の温度差を有す
るサーモ・オフ温度Toff 及びサーモ・オン温度Ton
と、最低運転周波数Mmin.とを設定し、室内温度Th が
設定温度Ts を越えてサーモ・オフ温度Toff に達した
時、既に運転周波数Mが最低運転周波数Mmin.に低下し
ている場合、予め設定した第2待機時間t2 経過後にサ
ーモ・オフ状態である時、圧縮機を停止させることによ
り、十分にサーモ・オフ状態となったことを確認してか
ら圧縮機を停止させることができ、圧縮機の再起動時ま
での停止時間を確保することができる。
Since the present invention is constructed as described above, it has the following effects. The set temperature Ts, the thermo-off temperature Toff and the thermo-on temperature Ton having a predetermined temperature difference above and below the set temperature Ts, and the minimum operating frequency M
min. and when the room temperature Th exceeds the set temperature Ts and reaches the thermo-off temperature Toff, if the operating frequency M has not dropped to the minimum operating frequency Mmin. By lowering the operating frequency M to the minimum operating frequency Mmin. With ΔM LO , and then operating the compressor while maintaining the operating frequency M at the minimum operating frequency Mmin.
Even if the room temperature Th reaches the thermo-off temperature Toff, the operating temperature M of the compressor is decreased at the off-time change speed ΔM LO without stopping the compressor immediately, so that the blow-out temperature rises (cooling or drying). During operation) or lowering (during heating operation), the indoor temperature distribution can be made uniform, comfortable air conditioning can be performed even near the thermo-off temperature Toff, and the reliability of the detected indoor temperature Th can be achieved. Is improved. In addition, the compressor can be stopped after confirming that the thermo-off state has been sufficiently achieved.
It is possible to secure the stop time until the compressor is restarted. Hold the operating frequency M at the minimum operating frequency Mmin.
Even if the preset first waiting time t 1 elapses, the room temperature T
If h does not return, stop the compressor,
By operating the compressor at the minimum operation frequency Mmin. During the first standby time t 1 , it is possible to suppress the imbalance of air conditioning depending on the position of the room based on the size of the room, that is, the variation in the room temperature Th. Since the off-time change speed ΔM LO is smaller than the normal change speed ΔM that is the change speed of the operating frequency in the normal control state, the operating frequency M of the compressor is reduced.
Is gradually reduced to make the indoor temperature distribution uniform, and comfortable air conditioning can be performed even near the thermo-off temperature Toff, and the reliability of the detected indoor temperature Th is improved. In particular, since the blowout temperature changes gently, the user does not feel uncomfortable and comfortable air conditioning can be performed. In an inverter type air conditioner equipped with a compressor capable of changing and controlling an operating frequency M, a set temperature Ts and a thermo-off temperature Toff and a thermo-on temperature Ton having a predetermined temperature difference above and below the set temperature Ts.
And the minimum operating frequency Mmin. Are set, and when the indoor temperature Th exceeds the set temperature Ts and reaches the thermo-off temperature Toff, if the operating frequency M has already dropped to the minimum operating frequency Mmin. By stopping the compressor when it is in the thermo-off state after the elapse of the set second waiting time t 2 , it is possible to stop the compressor after confirming that the thermo-off state has been sufficiently achieved, It is possible to secure the stop time until the compressor is restarted.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の動作を示すフローチャートである。FIG. 1 is a flowchart showing the operation of the present invention.

【図2】 本発明の動作を示すタイムチャートである。FIG. 2 is a time chart showing the operation of the present invention.

【図3】 本発明の異なる動作を示すタイムチャートで
ある。
FIG. 3 is a time chart showing a different operation of the present invention.

【図4】 本発明のさらに異なる動作を示すタイムチャ
ートである。
FIG. 4 is a time chart showing still another operation of the present invention.

【図5】 本発明を適用する運転制御装置の一例を示す
ブロック図である。
FIG. 5 is a block diagram showing an example of an operation control device to which the present invention is applied.

【図6】 冷房運転またはドライ運転時における室内温
度と設定温度との温度差に応じた圧縮機の制御態様を示
す説明図である。
FIG. 6 is an explanatory diagram showing a control mode of the compressor according to a temperature difference between an indoor temperature and a set temperature during a cooling operation or a dry operation.

【図7】 暖房運転時における室内温度と設定温度との
温度差に応じた圧縮機の制御態様を示す説明図である。
FIG. 7 is an explanatory diagram showing a control mode of the compressor according to a temperature difference between an indoor temperature and a set temperature during a heating operation.

【図8】 従来の制御動作を示すタイムチャートであ
る。
FIG. 8 is a time chart showing a conventional control operation.

【符号の説明】[Explanation of symbols]

1 温度設定手段、2 室内温度検出手段、3 温度差
算出手段 4 運転周波数演算手段、5 温度差記憶手段 6 室内温度勾配変化検出手段、7 ゾーン記憶手段、
8 シフトアップ手段 9 シフトアップ中止手段、10 出力周波数指令手段、
11 周波数変換器 12 圧縮機
1 temperature setting means, 2 indoor temperature detecting means, 3 temperature difference calculating means, 4 operating frequency calculating means, 5 temperature difference storing means, 6 indoor temperature gradient change detecting means, 7 zone storing means,
8 shift up means 9 shift up stop means, 10 output frequency command means,
11 Frequency converter 12 Compressor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 和弘 兵庫県神戸市中央区江戸町93番地 株式会 社ノーリツ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuhiro Nishida 93 No. Edo-cho, Chuo-ku, Kobe-shi, Hyogo In stock company Noritsu

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 運転周波数Mを変更制御可能とした圧縮
機を備えたインバータ式エアコンにおいて、設定温度T
s と、設定温度Ts の上下に所定の温度差を有するサー
モ・オフ温度Toff 及びサーモ・オン温度Tonと、最低
運転周波数Mmin.とを設定し、室内温度Th が設定温度
Ts を越えてサーモ・オフ温度Toffに達した時に、運
転周波数Mが最低運転周波数Mmin.に低下していない場
合、予め定めたオフ時変化速度ΔMLOで運転周波数Mを
最低運転周波数Mmin.にまで低下させた後、運転周波数
Mを最低運転周波数Mmin.に保持して圧縮機を運転する
ことを特徴とするインバータ式エアコンの制御方法。
1. An inverter type air conditioner equipped with a compressor capable of changing and controlling an operating frequency M, wherein a set temperature T
s, a thermo-off temperature Toff and a thermo-on temperature Ton having a predetermined temperature difference above and below the set temperature Ts, and a minimum operating frequency Mmin. are set, and the room temperature Th exceeds the set temperature Ts. When the operating frequency M does not decrease to the minimum operating frequency Mmin. When the off temperature Toff is reached, after the operating frequency M is decreased to the minimum operating frequency Mmin. At a predetermined off-time change speed ΔM LO , A method for controlling an inverter type air conditioner, which comprises operating a compressor while maintaining an operating frequency M at a minimum operating frequency Mmin.
【請求項2】 運転周波数Mを最低運転周波数Mmin.に
保持して、予め設定した第1待機時間t1 が経過しても
室内温度Th が戻らない場合は、圧縮機を停止させるこ
とを特徴とする請求項1記載のインバータ式エアコンの
制御方法。
2. The operating frequency M is kept at the minimum operating frequency Mmin., And if the room temperature Th does not return even after the preset first waiting time t 1 , the compressor is stopped. The method for controlling an inverter type air conditioner according to claim 1.
【請求項3】 オフ時変化速度ΔMLOは、通常の制御状
態における運転周波数の変化速度である通常変化速度Δ
Mよりも小であることを特徴とする請求項1または2記
載のインバータ式エアコンの制御方法。
3. The off change rate ΔM LO is a normal change rate Δ that is a change rate of the operating frequency in a normal control state.
It is smaller than M, The control method of the inverter type air conditioner of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 運転周波数Mを変更制御可能とした圧縮
機を備えたインバータ式エアコンにおいて、設定温度T
s と、設定温度Ts の上下に所定の温度差を有するサー
モ・オフ温度Toff 及びサーモ・オン温度Tonと、最低
運転周波数Mmin.とを設定し、室内温度Th が設定温度
Ts を越えてサーモ・オフ温度Toffに達した時、既に
運転周波数Mが最低運転周波数Mmin.に低下している場
合、予め設定した第2待機時間t2 経過後にサーモ・オ
フ状態である時、圧縮機を停止させることを特徴とする
インバータ式エアコンの制御方法。
4. An inverter type air conditioner equipped with a compressor capable of changing and controlling an operating frequency M, wherein a set temperature T
s, a thermo-off temperature Toff and a thermo-on temperature Ton having a predetermined temperature difference above and below the set temperature Ts, and a minimum operating frequency Mmin. are set, and the room temperature Th exceeds the set temperature Ts. When the operating temperature M has already dropped to the minimum operating frequency Mmin. When the off temperature Toff is reached, the compressor is stopped when the thermostat is off after the preset second waiting time t 2. A method for controlling an inverter type air conditioner characterized by:
JP8073083A 1996-03-05 1996-03-05 Method for controlling inverter type air conditioner Pending JPH09243144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8073083A JPH09243144A (en) 1996-03-05 1996-03-05 Method for controlling inverter type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8073083A JPH09243144A (en) 1996-03-05 1996-03-05 Method for controlling inverter type air conditioner

Publications (1)

Publication Number Publication Date
JPH09243144A true JPH09243144A (en) 1997-09-16

Family

ID=13508093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8073083A Pending JPH09243144A (en) 1996-03-05 1996-03-05 Method for controlling inverter type air conditioner

Country Status (1)

Country Link
JP (1) JPH09243144A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210198A (en) * 2009-03-12 2010-09-24 Panasonic Corp Method of controlling air conditioning device
JP2010249452A (en) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp Air conditioner
KR101147735B1 (en) * 2004-12-10 2012-05-25 엘지전자 주식회사 Control method for air conditioner
JP2013185778A (en) * 2012-03-09 2013-09-19 Hitachi Appliances Inc Air conditioner
JP2015203541A (en) * 2014-04-15 2015-11-16 サンポット株式会社 heat pump system
JP2016109372A (en) * 2014-12-09 2016-06-20 株式会社富士通ゼネラル Air conditioner
WO2016132466A1 (en) * 2015-02-18 2016-08-25 三菱電機株式会社 Air conditioning system
CN104266305B (en) * 2014-09-02 2017-02-22 广东美的集团芜湖制冷设备有限公司 Variable-frequency air conditioner control device and method and variable-frequency air conditioner
CN106595364A (en) * 2016-12-21 2017-04-26 烟台东方能源科技有限公司 Intelligent control method for off-peak electricity solid heat storage equipment
CN108224697A (en) * 2018-01-08 2018-06-29 珠海亚丁科技有限公司 Air conditioner electronic expansion valve adjusting method, computer installation, storage medium
CN108917117A (en) * 2018-09-26 2018-11-30 美的集团股份有限公司 Air-conditioning and its control method, device
CN109269217A (en) * 2018-11-06 2019-01-25 泰州市沪江特种设备有限公司 A kind of control method of the more library frequency conversion refrigerating systems of high/low temperature
CN110567093A (en) * 2019-09-26 2019-12-13 上海朗绿建筑科技股份有限公司 supercooling degree control method and system applied to air treatment unit
CN110895015A (en) * 2019-11-27 2020-03-20 南京亚派软件技术有限公司 Fuzzy self-adaptation based air conditioner temperature control method and control system
CN113091274A (en) * 2021-03-12 2021-07-09 青岛海尔空调器有限总公司 Control method of air conditioner and air conditioner
CN113915756A (en) * 2020-07-08 2022-01-11 广东美的制冷设备有限公司 Refrigeration operation control method of air conditioner, air conditioner and readable storage medium
CN114234450A (en) * 2021-12-24 2022-03-25 山东雅士股份有限公司 Variable-frequency CO2Water heater unit and control method thereof
CN114838469A (en) * 2022-02-28 2022-08-02 青岛海尔空调器有限总公司 Control method and control device of air conditioner and air conditioner
CN115540196A (en) * 2022-08-01 2022-12-30 青岛海尔空调器有限总公司 Control method and device for air conditioner overheating protection and air conditioner

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101147735B1 (en) * 2004-12-10 2012-05-25 엘지전자 주식회사 Control method for air conditioner
JP2010210198A (en) * 2009-03-12 2010-09-24 Panasonic Corp Method of controlling air conditioning device
JP2010249452A (en) * 2009-04-17 2010-11-04 Mitsubishi Electric Corp Air conditioner
JP2013185778A (en) * 2012-03-09 2013-09-19 Hitachi Appliances Inc Air conditioner
JP2015203541A (en) * 2014-04-15 2015-11-16 サンポット株式会社 heat pump system
CN104266305B (en) * 2014-09-02 2017-02-22 广东美的集团芜湖制冷设备有限公司 Variable-frequency air conditioner control device and method and variable-frequency air conditioner
JP2016109372A (en) * 2014-12-09 2016-06-20 株式会社富士通ゼネラル Air conditioner
WO2016132466A1 (en) * 2015-02-18 2016-08-25 三菱電機株式会社 Air conditioning system
JPWO2016132466A1 (en) * 2015-02-18 2017-08-03 三菱電機株式会社 Air conditioning system
CN106595364A (en) * 2016-12-21 2017-04-26 烟台东方能源科技有限公司 Intelligent control method for off-peak electricity solid heat storage equipment
CN106595364B (en) * 2016-12-21 2017-12-08 烟台东方能源科技有限公司 A kind of trough-electricity solid heat storage device intelligence control method
CN108224697A (en) * 2018-01-08 2018-06-29 珠海亚丁科技有限公司 Air conditioner electronic expansion valve adjusting method, computer installation, storage medium
CN108917117A (en) * 2018-09-26 2018-11-30 美的集团股份有限公司 Air-conditioning and its control method, device
CN109269217A (en) * 2018-11-06 2019-01-25 泰州市沪江特种设备有限公司 A kind of control method of the more library frequency conversion refrigerating systems of high/low temperature
CN110567093A (en) * 2019-09-26 2019-12-13 上海朗绿建筑科技股份有限公司 supercooling degree control method and system applied to air treatment unit
CN110895015A (en) * 2019-11-27 2020-03-20 南京亚派软件技术有限公司 Fuzzy self-adaptation based air conditioner temperature control method and control system
CN113915756A (en) * 2020-07-08 2022-01-11 广东美的制冷设备有限公司 Refrigeration operation control method of air conditioner, air conditioner and readable storage medium
CN113915756B (en) * 2020-07-08 2023-03-31 广东美的制冷设备有限公司 Refrigeration operation control method of air conditioner, air conditioner and readable storage medium
CN113091274A (en) * 2021-03-12 2021-07-09 青岛海尔空调器有限总公司 Control method of air conditioner and air conditioner
CN114234450A (en) * 2021-12-24 2022-03-25 山东雅士股份有限公司 Variable-frequency CO2Water heater unit and control method thereof
CN114234450B (en) * 2021-12-24 2023-09-08 山东雅士股份有限公司 Variable frequency CO 2 Control method of water heater unit
CN114838469A (en) * 2022-02-28 2022-08-02 青岛海尔空调器有限总公司 Control method and control device of air conditioner and air conditioner
CN115540196A (en) * 2022-08-01 2022-12-30 青岛海尔空调器有限总公司 Control method and device for air conditioner overheating protection and air conditioner
CN115540196B (en) * 2022-08-01 2023-12-15 青岛海尔空调器有限总公司 Control method and device for overheat protection of air conditioner and air conditioner
WO2024027129A1 (en) * 2022-08-01 2024-02-08 青岛海尔空调器有限总公司 Control method and apparatus for air conditioner overheat protection, and air conditioner

Similar Documents

Publication Publication Date Title
JPH09243144A (en) Method for controlling inverter type air conditioner
CN111033143B (en) Air conditioner
JP3167372B2 (en) Air conditioner
KR900005721B1 (en) Control apparatus for airconditioner
JPH05340690A (en) Cooling tower and cooling capacity control method
CN110454944B (en) Control method and device of air conditioner and air conditioner
JP2000055485A (en) Air conditioner
EP3671064B1 (en) Air conditioner
JP3187167B2 (en) Air conditioner
JP2739865B2 (en) Control device for air conditioner
JPH06341692A (en) Operation control method for air conditioner
JPH10246516A (en) Control for air conditioner
JP2571333B2 (en) Control method of heat pump type air conditioner
JPH10205851A (en) Power demand controller air conditioner
JP2001165491A (en) Control method for multi-type air conditioner
JPH07310959A (en) Air conditioner
JP2550094B2 (en) Air conditioner operation control method
KR20010004761A (en) Frequency control method of a compressor for an inverter air conditioner
JP2538675B2 (en) Inverter operating frequency control method
JPH0518618A (en) Method of controlling operation of air conditioner
JPH03122440A (en) Method for controlling operation of air conditioner
JP2600815B2 (en) Heat pump system
JP2945731B2 (en) Air conditioner
JPH06185795A (en) Controlling method of air conditioner
JPH03199844A (en) Air conditioner