WO2019058464A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2019058464A1
WO2019058464A1 PCT/JP2017/033930 JP2017033930W WO2019058464A1 WO 2019058464 A1 WO2019058464 A1 WO 2019058464A1 JP 2017033930 W JP2017033930 W JP 2017033930W WO 2019058464 A1 WO2019058464 A1 WO 2019058464A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
control device
heat exchanger
valve
Prior art date
Application number
PCT/JP2017/033930
Other languages
French (fr)
Japanese (ja)
Inventor
和久 岩▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/033930 priority Critical patent/WO2019058464A1/en
Priority to DE112017008064.9T priority patent/DE112017008064T5/en
Priority to JP2019542874A priority patent/JP6785980B2/en
Publication of WO2019058464A1 publication Critical patent/WO2019058464A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to an air conditioner configured to cool a heat generating portion with a refrigerant of a refrigerant circuit.
  • the air conditioner includes a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping. Then, conventionally, for example, a heat generating portion of a control device such as an inverter circuit for controlling a compressor is cooled using a refrigerant flowing in a refrigerant circuit (see, for example, Patent Document 1).
  • coolant of the upstream of an expansion valve, and is connected to the discharge side of a compressor is provided separately from a refrigerant circuit, and the heat generation part is cooled with the refrigerant
  • Patent Document 1 it is necessary to provide a dedicated cooling circuit to cool the heat generating portion, which leads to an increase in the size of the product and a complication of the refrigerant circuit. Therefore, it is desirable to cool the heat generating portion with the refrigerant flowing through the refrigerant circuit without providing a dedicated cooling circuit for cooling the heat generating portion.
  • the pipe between the condenser and the subcooling heat exchanger is used as a cooling pipe for cooling the heat generating portion, and an electronic expansion valve is provided upstream of the cooling pipe.
  • the temperature of the refrigerant passing through the cooling pipe is adjusted by the electronic expansion valve to cool the heat generating portion.
  • the opening degree of the electronic expansion valve is narrowed relatively large to lower the temperature of the refrigerant passing through the cooling pipe.
  • the degree of opening of the electronic expansion valve is narrowed too much, the pressure on the downstream side of the electronic expansion valve decreases, and the degree of supercooling at the outlet of the subcooling heat exchanger located downstream of the electronic expansion valve during cooling operation There is a problem that it can not be secured, and the cooling capacity is reduced.
  • the degree of subcooling can not be secured at the outlet of the subcooling heat exchanger, the refrigerant flowing into the expansion valve located on the downstream side of the subcooling heat exchanger is in a gas-liquid two-phase state, and refrigerant flow noise occurs in the expansion valve. There was a problem to occur.
  • the present invention has been made to solve the problems as described above, and in an air conditioner configured to cool a control device using a refrigerant, the control device can be cooled without causing complication of a refrigerant circuit.
  • Another object of the present invention is to provide an air conditioner capable of suppressing the reduction in capacity during cooling operation and the generation of refrigerant flow noise.
  • the air conditioner according to the present invention includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping to circulate a refrigerant, and a control device that controls the refrigerant circuit.
  • a bypass pipe branched from between the outdoor heat exchanger and the expansion valve and connected to the suction side of the compressor, a bypass flow control valve provided in the bypass pipe, and between the outdoor heat exchanger and the expansion valve Of the refrigerant and the refrigerant downstream of the bypass flow control valve of the bypass piping, and the control device contacts among the piping between the outdoor heat exchanger and the subcooling heat exchanger,
  • the cooling device includes a cooling pipe which is disposed to cool the control device, and a temperature control valve which is provided between the outdoor heat exchanger and the cooling pipe and which adjusts the temperature of the refrigerant passing through the cooling pipe.
  • the temperature of the heat generating part of the control device is set in advance Less than the controls the thermostatic valve so as, in which the degree of subcooling at the outlet of the subcooling heat exchanger to control the bypass flow rate adjustment valve to exceed a pre-set value.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit configuration of the air-conditioning apparatus according to Embodiment 1 of the present invention.
  • This air conditioning apparatus performs a cooling operation or a heating operation using a refrigeration cycle in which a refrigerant is circulated.
  • solid arrows indicate the refrigerant circuit in the cooling operation
  • broken arrows indicate the refrigerant circuit in the heating operation.
  • the relationship of the size of each component may be different from the actual one.
  • the air conditioning apparatus is configured by connecting an outdoor unit 10, which is a heat source unit, and an indoor unit 50a and an indoor unit 50b, which are use side units, by refrigerant pipes.
  • the indoor unit 50 a and the indoor unit 50 b are connected in parallel to the outdoor unit 10. That is, the air conditioning apparatus forms a refrigerant circuit by connecting each device mounted on the outdoor unit 10 and each device mounted on each of the indoor unit 50a and the indoor unit 50b with a refrigerant pipe.
  • a configuration in which two outdoor units 10 are connected to one outdoor unit 10 is shown, but the number of indoor units may be one or more. Also, the number of outdoor units 10 is not limited to one, and may be more than one.
  • the refrigerant piping of the air conditioner includes gas piping and liquid piping.
  • the gas piping includes a gas piping 204 connected to the outdoor unit 10, and a gas branch pipe 206a and a gas branch pipe 206b connected to each indoor unit.
  • the gas branch pipe 206a is connected to the indoor unit 50a, and the gas branch pipe 206b is connected to the indoor unit 50b.
  • the liquid piping includes a liquid piping 205 connected to the outdoor unit 10, and a liquid branch pipe 207a and a liquid branch pipe 207b connected to each indoor unit.
  • the liquid branch pipe 207a is connected to the indoor unit 50a, and the liquid branch pipe 207b is connected to the indoor unit 50b.
  • the outdoor unit 10 and the indoor unit 50a are connected via a gas pipe 204, a gas branch pipe 206a, a liquid branch pipe 207a, and a liquid pipe 205.
  • the outdoor unit 10 and the indoor unit 50b are connected via the gas pipe 204, the gas branch pipe 206b, the liquid branch pipe 207b, and the liquid pipe 205.
  • the outdoor unit 10 includes a compressor 1, a four-way valve 4, an outdoor heat exchanger 5, a liquid side on-off valve 9, a gas side on-off valve 11, and an accumulator 12.
  • the compressor 1 compresses the sucked refrigerant to a high temperature and high pressure state.
  • the compressor 1 has an inverter circuit, and is a compressor of a type in which the compressor rotational speed is controlled by the power supply frequency conversion by the inverter circuit and the capacity is controlled.
  • the four-way valve 4 functions as a flow path switching device, and switches the flow of the refrigerant between the cooling operation and the heating operation.
  • the outdoor heat exchanger 5 functions as a condenser or a radiator at the time of cooling operation, functions as an evaporator at the time of heating operation, and performs heat exchange between the air supplied from the outdoor fan not shown and the refrigerant. is there.
  • the liquid side on-off valve 9 is opened or closed automatically by the control device 27 or manually by the user, and does not conduct the refrigerant.
  • the gas side on-off valve 11 is opened or closed automatically by the control device 27 or manually by the user, and the refrigerant is not conducted.
  • the liquid side on-off valve 9 and the gas side on-off valve 11 are installed to adjust the pressure fluctuation in the refrigeration cycle by opening and closing.
  • the accumulator 12 is provided on the suction side of the compressor 1 and stores excess refrigerant circulating in the refrigerant circuit.
  • the outdoor unit 10 further branches from the liquid pipe 26 between the outdoor heat exchanger 5 and the liquid side on-off valve 9 and is connected to the suction side of the compressor 1, specifically to the inlet side of the accumulator 12. And a bypass flow control valve 7 provided in the bypass pipe 23.
  • the bypass flow rate adjusting valve 7 functions as a pressure reducing valve or an expansion valve to decompress and expand the refrigerant.
  • the bypass flow rate adjusting valve 7 may be configured by one whose opening degree can be variably controlled, for example, an electronic expansion valve or the like.
  • the outdoor unit 10 exchanges heat between the high pressure side refrigerant between the outdoor heat exchanger 5 and the liquid side open / close valve 9 and the low pressure side refrigerant decompressed by the bypass flow rate adjustment valve 7 of the bypass pipe 23
  • a subcooling heat exchanger 6 is provided to cool the refrigerant.
  • connection point 25 a point at which the liquid pipe 26 and the bypass pipe 23 are connected is referred to as a connection point 25
  • a point at which the bypass pipe 23 and the upstream pipe of the accumulator 12 are connected is referred to as a connection point 24.
  • the upstream pipe of the accumulator 12 refers to a refrigerant pipe between the four-way valve 4 and the accumulator 12.
  • the outdoor unit 10 further includes an oil separator 2, an oil return bypass circuit 30, and a check valve 3.
  • the oil separator 2 is provided on the discharge side of the compressor 1 and has a function of separating a refrigerator oil component from a refrigerant gas discharged from the compressor 1 and mixed with a refrigerator oil.
  • the oil return bypass circuit 30 is for returning the refrigerator oil separated by the oil separator 2 to the suction side of the compressor 1.
  • the piping of the oil return bypass circuit 30 is connected to a circuit in which the oil return bypass capillary 13 and the oil return bypass solenoid valve 14 are connected in parallel, so that the flow rate of the refrigerator oil returned to the compressor 1 is adjusted. It has become. Specifically, when the oil return bypass solenoid valve 14 is open, refrigeration oil separated by the oil separator 2 is returned to the suction side of the compressor 1 as it is through the oil return bypass solenoid valve 14. On the other hand, when the oil return bypass solenoid valve 14 is closed, the refrigeration oil separated by the oil separator 2 passes through the oil return bypass capillary 13 to reduce the flow rate and is returned to the suction side of the compressor 1.
  • the check valve 3 is provided in the refrigerant pipe between the oil separator 2 and the four-way valve 4 and prevents the backflow of the refrigerant from the four-way valve 4 side to the discharge side of the compressor 1 when the compressor 1 is stopped. It is for.
  • the outdoor unit 10 is configured to cool the heat generating portion of the control device 27 described later with a refrigerant that passes through a pipe that connects the outdoor heat exchanger 5 and the subcooling heat exchanger 6.
  • a pipe which is disposed in contact with the control device 27 to cool the heat generating portion is hereinafter referred to as a cooling pipe 40.
  • a temperature control valve 8 is provided between the outdoor heat exchanger 5 and the cooling pipe 40 to adjust the temperature of the refrigerant passing through the cooling pipe 40.
  • the temperature control valve 8 functions as a pressure reducing valve or an expansion valve to decompress and expand the refrigerant.
  • the temperature control valve 8 may be configured by one whose opening degree can be variably controlled, for example, an electronic expansion valve or the like.
  • the outdoor unit 10 is mounted with a control device 27 that controls the drive of each actuator mounted on the outdoor unit 10.
  • the control device 27 controls each actuator based on signals transmitted from each pressure sensor and each temperature sensor, which will be described in detail later.
  • the actuators correspond to, for example, the compressor 1, the four-way valve 4, and an outdoor fan (not shown).
  • the control device 27 is not particularly limited in type, but may be constituted by a microcomputer or the like capable of controlling each actuator mounted on the outdoor unit 10, for example.
  • the control device 27 includes an inverter circuit for driving the motor of the compressor 1, and the power module of the inverter circuit generates heat when the compressor 1 is driven and becomes high temperature.
  • the heat generating portion such as the power module is cooled by the refrigerant of the refrigerant circuit.
  • the outdoor unit 10 is provided with a plurality of pressure sensors and a plurality of temperature sensors. Specifically, the outdoor unit 10 is provided with a first pressure sensor 15, a first temperature sensor 18, a second temperature sensor 19, a third temperature sensor 20, and a fourth temperature sensor 21.
  • the first pressure sensor 15 is provided between the oil separator 2 and the four-way valve 4 and measures the pressure of the refrigerant discharged from the compressor 1.
  • the first temperature sensor 18 is provided in the heat generating portion of the control device 27 and measures the temperature of the heat generating portion.
  • the second temperature sensor 19 is provided between the connection point 25 and the liquid side on-off valve 9 and measures the temperature of the refrigerant passing through the liquid pipe 26 between the connection point 25 and the liquid side on-off valve 9 .
  • the third temperature sensor 20 measures the temperature of the outside air around the outdoor unit 10.
  • the fourth temperature sensor 21 is provided between the cooling pipe 40 and the subcooling heat exchanger 6 and measures the temperature of the refrigerant passing between the cooling pipe 40 and the subcooling heat exchanger 6.
  • the third temperature sensor 20 corresponds to the outside air temperature sensor of the present invention
  • the fourth temperature sensor 21 corresponds to the cooling refrigerant temperature sensor of the present invention.
  • the pressure information measured by each pressure sensor and the temperature information measured by each temperature sensor are sent to the control device 27 as a signal.
  • the sensor used by the following control was demonstrated here, the sensor is provided in addition to the outdoor unit 10, and it is used for various control in an air conditioning apparatus.
  • the indoor heat exchanger 100a and the expansion valve 101a are mounted in series on the indoor unit 50a by a gas branch pipe 206a and a liquid branch pipe 207a.
  • a control device 102a that controls the drive of each actuator mounted on the indoor unit 50a is mounted on the indoor unit 50a.
  • the actuator corresponds to, for example, the expansion valve 101a and an indoor fan (not shown).
  • the indoor unit 50a is provided with a fifth temperature sensor 103a for measuring the temperature of the refrigerant at the liquid side outlet of the indoor heat exchanger 100a in the liquid branch pipe 207a connected to the indoor heat exchanger 100a. .
  • the indoor heat exchanger 100a functions as an evaporator during the cooling operation and as a condenser or a radiator during the heating operation, and performs heat exchange between the refrigerant and the air.
  • the expansion valve 101a functions as a pressure reducing valve or an expansion valve to decompress and expand the refrigerant.
  • the expansion valve 101a may be configured by one whose opening degree can be variably controlled, for example, an electronic expansion valve or the like.
  • the temperature information measured by the fifth temperature sensor 103a is sent to the control device 102a as a signal.
  • the indoor unit is additionally provided with a sensor, and the control apparatus 102a controls each actuator based on the signal transmitted from each temperature sensor It is supposed to
  • the type of the control device 102a is not particularly limited.
  • the control device 102a may be configured by a microcomputer or the like that can control each actuator mounted on the indoor unit 50a.
  • the indoor unit 50b has the same configuration as the indoor unit 50a. That is, if "a" of the component of the indoor unit 50a is changed to "b", it becomes a component of the indoor unit 50b.
  • the indoor unit 50a and the indoor unit 50b are not distinguished from each other, they are referred to as an indoor unit 50.
  • "a" and "b” may not be provided, but it may be set as the expansion valve 101 generically, for example, if it is an expansion valve. .
  • FIG. 1 shows an example in which the control unit is mounted on both the indoor unit 50a and the indoor unit 50b
  • one control unit may control both the indoor unit 50a and the indoor unit 50b.
  • the control devices of each other can communicate in a wired or wireless manner.
  • the control device mounted in the indoor unit can communicate with the control device mounted in the outdoor unit 10 in a wired or wireless manner.
  • Embodiment 1 controls the temperature control valve 8 and the bypass flow control valve 7 at the time of cooling operation, and suppresses the fall of the capability at the time of cooling operation, ensuring the cooling performance of the heat-emitting part of the control apparatus 27. It is characterized by Hereinafter, control of the temperature control valve 8 and the bypass flow control valve 7 will be described.
  • FIG. 2 is a flowchart showing a flow of control processing during cooling operation in the air conditioning apparatus according to Embodiment 1 of the present invention.
  • the flow of control processing executed by the control device 27 which is a feature of the first embodiment will be described in detail based on FIG. First, when the switch of the remote control (not shown) for operating the air conditioner is turned on by the user, the compressor 1 starts driving. Cooling operation is started by driving the compressor 1 (step S1).
  • the control device 27 determines that the temperature of the heat generating portion exceeds the allowable temperature, and controls the temperature control valve 8 as follows.
  • an opening width ⁇ LEV2 (THHS) corresponding to the measured temperature THHS, and a valve opening command to close the temperature control valve 8 are output to the temperature control valve 8 (step S3).
  • a specific command opening degree LEV2 issued from the control device 27 is an opening degree obtained by the following equation (1).
  • LEV2 LEV2 (NOW)- ⁇ LEV2 (THHS) ...
  • LEV2 (NOW) Current temperature control valve 8 opening (equivalent to previous command opening)
  • THHS Opening width of LEV2 according to measured temperature THHS
  • the opening degree width ⁇ LEV2 is a value that increases as the measured temperature THHS increases, and the control device 27 determines the correspondence between the measured temperature THHS and the opening degree width ⁇ LEV2 (THHS) in advance. Is stored in
  • the pressure and temperature of the refrigerant downstream of the temperature control valve 8 are reduced. That is, the measured temperature THHS is lowered by lowering the temperature of the refrigerant that cools the heat generating portion of the control device 27 to enhance the cooling performance.
  • the control device 27 determines whether or not the measured temperature THHS falls below the same reference value as step S2 after a predetermined time (step S4). If the measured temperature THHS is not lower than the reference value, the process returns to step S3 again, and the temperature control valve 8 is controlled to close by the opening width ⁇ LEV2 (THHS) (step S3). Then, the control device 27 repeats the processes of step S3 and step S4 at fixed time intervals until the measured temperature THHS falls below the reference value. Then, when the measured temperature THHS falls below the reference value, the control device 27 shifts to the process of step S5.
  • THHS opening width ⁇ LEV2
  • step S5 and subsequent steps the control device 27 performs corrective action for the adverse effect in the cooling operation by performing the process of step S3. That is, the degree of opening of the temperature control valve 8 is narrowed, which causes an adverse effect that the degree of subcooling is not ensured in the outlet portion of the subcooling heat exchanger 6 in the refrigerant circuit, in other words, the inlet portions of the indoor unit 50a and the indoor unit 50b. there is a possibility. Therefore, processing is performed to correct this adverse effect.
  • the control device 27 calculates the subcooling degree SCC1 of the outlet portion of the subcooling heat exchanger 6, and determines whether the subcooling degree SCC1 exceeds 0 ° C. (step S5).
  • the degree of subcooling SCC1 is obtained by subtracting the measurement temperature TH2 of the second temperature sensor 19 from the saturation temperature TC of the high pressure measured by the first pressure sensor 15.
  • the control device 27 When the degree of supercooling SCC1 is 0 ° C. or less, the degree of supercooling is insufficient, and the indoor units 50a and 50b are in a state where the cooling capacity is insufficient. For this reason, the control device 27 outputs an opening width ⁇ LEV1 (SCC1) according to the degree of supercooling SCC1 and a valve opening command to open the bypass flow control valve 7 to the bypass flow control valve 7 (step S6).
  • a specific command opening degree issued from the control device 27 is an opening degree obtained by the following equation (2).
  • “supercooling degree” refers to a temperature of 0 ° C. or higher, it is not appropriate to express the case where the calculation result of “TC-TH2” is less than 0 ° C. as the subcooling degree SCC1. , I will use this expression.
  • the opening degree width ⁇ LEV1 (SCC1) is a value that increases as the absolute value of the subcooling degree SCC1 increases, and the correspondence between the absolute value of the subcooling degree SCC1 and the opening degree width ⁇ LEV1 (SCC1) The relationship is determined in advance and stored in the control device 27.
  • step S5 when the subcooling degree SCC1 is 0 ° C. or less in step S5, the control device 27 opens the opening width ⁇ LEV1 (SCC1) corresponding to the subcooling degree SCC1, and the bypass flow control valve 7. As a result, the amount of refrigerant flowing into the bypass pipe 23 increases. As a result, the amount of heat exchanged in the subcooling heat exchanger 6 increases, the degree of subcooling SCC1 increases, and the process of step S6 is repeated at fixed time intervals until the degree of subcooling SCC1 exceeds 0 ° C. Then, when the degree of subcooling SCC1 exceeds 0 ° C., the process returns to step S2 and the same process is repeated.
  • SCC1 opening width ⁇ LEV1
  • the control device 27 is cooled by the pipe between the outdoor heat exchanger 5 and the subcooling heat exchanger 6 that constitute the refrigerant circuit. There is no need for a dedicated circuit, and cooling of the control device 27 can be performed without causing complication of the refrigerant circuit. Further, by controlling the opening degree of the temperature control valve 8 and the bypass flow control valve 7, it is possible to suppress the performance decrease during the cooling operation while securing the cooling performance of the control device 27. In addition, since the degree of supercooling is secured at the inlet portion of the indoor unit 50 and the refrigerant flowing into the expansion valve 101 becomes the liquid refrigerant, the generation of the refrigerant flow noise can be suppressed.
  • step S5 it is determined in step S5 whether the degree of supercooling SCC1 is higher than 0 ° C. However, if there is a degree of supercooling to be secured at the outlet of the subcooling heat exchanger 6, the following You may do so. That is, the degree of subcooling desired to be secured at the outlet of the subcooling heat exchanger 6 may be used as a set value to determine whether the degree of subcooling SCC1 exceeds the set value.
  • the opening width ⁇ LEV2 is a variable width corresponding to the measured temperature THHS, and thereby the measured temperature THHS is rapidly decreased, but the variable width is not necessarily limited.
  • the width may be fixed.
  • SCC1 the opening width ⁇ LEV1 (SCC1), and it may be a constant width.
  • Second Embodiment In the first embodiment described above, the technology for suppressing the decrease in cooling capacity during the cooling operation has been described, but in the second embodiment, the condensation prevention technology for the control device 27 during the heating operation will be described. The differences between the second embodiment and the first embodiment will be mainly described below.
  • the configuration of the air conditioner is the same as that of the first embodiment.
  • the control device 27 In the cooling operation, the control device 27 is cooled using the high-temperature refrigerant on the high pressure side between the outdoor heat exchanger 5 and the subcooling heat exchanger 6, but in the heating operation, after the pressure is reduced by the expansion valve 101 The controller 27 is cooled using the low temperature refrigerant on the low pressure side of For this reason, in the heating operation, unlike the cooling operation, the measured temperature THHS does not increase excessively. However, conversely, when the temperature of the refrigerant passing through the cooling pipe 40 is too low and the temperature of the control device 27 falls below the dew point temperature of air, dew condensation occurs in the control device 27. Specifically, for example, condensation may occur on a control substrate (not shown) in the control device 27. In this case, there is a possibility that the charging unit mounted on the control board may short-circuit, and the product quality may be impaired as in the cooling operation.
  • the second embodiment is characterized in that the temperature control valve 8 is controlled to prevent such condensation while suppressing the capacity decrease during heating operation.
  • control of the temperature control valve 8 will be described.
  • FIG. 3 is a flowchart showing a flow of control processing during heating operation in the air conditioning apparatus according to Embodiment 2 of the present invention.
  • the flow of control processing executed by the control device 27 which is a feature of the second embodiment will be described in detail based on FIG.
  • the bypass flow control valve 7 is closed so that the refrigerant does not flow through the bypass pipe 23.
  • the switch of the remote control (not shown) for operating the air conditioner is turned on by the user, the compressor 1 starts driving.
  • the heating operation is started by driving the compressor 1 (step S11).
  • the control device 27 determines whether condensation may occur in the control device 27 after a predetermined time has elapsed from the start of operation. Specifically, based on the outside air temperature TH3 measured by the third temperature sensor 20 and the temperature of the refrigerant flowing into the cooling pipe 40 measured by the fourth temperature sensor 21 (hereinafter referred to as a measurement temperature TH4), If the following conditional expression (3) is satisfied, it is determined that condensation may occur.
  • is selected as the correction value according to the peripheral structure of the charging unit of the control board or the like (step S12).
  • TH3 + ⁇ is less than TH4
  • the control device 27 determines that condensation is not likely to occur, and maintains the current opening degree of the temperature control valve 8.
  • TH3 + ⁇ is equal to or greater than TH4
  • the control device 27 determines that condensation may occur, and controls the temperature control valve 8 as follows.
  • the specific command opening degree issued from the control device 27 is the opening degree obtained by the following equation (4).
  • the opening width ⁇ LEV2 (DIFF1) of LEV2 according to the temperature difference DIFF1 is a value that increases as the temperature difference DIFF1 increases, and the correspondence between the temperature difference DIFF1 and the opening width ⁇ LEV2 (DIFF1) Are stored in the control unit 27 in advance.
  • the control device 27 closes the opening flow width ⁇ LEV2 (DIFF1) corresponding to the temperature difference DIFF1, and the bypass flow control valve 7.
  • DIFF1 the opening flow width corresponding to the temperature difference DIFF1
  • the bypass flow control valve 7 the opening flow width corresponding to the temperature difference DIFF1
  • the control device 27 closes the opening flow width ⁇ LEV2 (DIFF1) corresponding to the temperature difference DIFF1, and the bypass flow control valve 7.
  • the control device 27 determines whether TH3 + ⁇ is less than TH4 (step S14). If TH3 + ⁇ is not smaller than TH4, the process returns to step S13 again to perform control to close the opening width ⁇ LEV2 (DIFF1) and the bypass flow rate adjusting valve 7. The processes in steps S13 and S14 are repeated at constant time intervals until TH3 + ⁇ becomes smaller than TH4. Then, when TH3 + ⁇ becomes smaller than TH4, the control device 27 determines that the charging portion of the control board has become equal to or higher than the dew point temperature, that is, determines that condensation can be prevented, and shifts to the process of step S15.
  • step S15 and subsequent steps the control device 27 corrects the harmful effects on the heating operation by performing the process of step S13. That is, when the opening degree of the temperature control valve 8 is narrowed, the opening degree of the expansion valve 101 of the indoor unit 50 becomes insufficient. Finally, the opening of the temperature control valve 8 is too small, so that the flow rate may be insufficient, and the heating capacity may not be sufficiently exhibited.
  • control device 27 determines whether or not the current operating state is in the unheated state where the heating capacity can not be sufficiently exhibited (step S15).
  • the method of determining the unheated state is not limited to this method, and any method can be adopted.
  • the control device 27 returns to step S12 and repeats the control so far.
  • the temperature control valve 8 is controlled as follows.
  • a valve opening degree command to open the temperature control valve 8 by an opening width ⁇ LEV2 (SCC2) corresponding to the subcooling degree SCC2 at the outlet of the indoor heat exchanger 100 is output to the temperature control valve 8 (step S16).
  • the degree of subcooling SCC2 is obtained by subtracting the measured temperature TH5 of the second temperature sensor 19 from the saturation temperature TC of the high pressure measured by the first pressure sensor 15.
  • a specific command opening degree LEV2 issued from the control device 27 is an opening degree obtained by the following equation (5).
  • the opening degree width ⁇ LEV2 (SCC2) is a value that increases as the subcooling degree SCC2 increases, and the correspondence relationship between the subcooling degree SCC2 and the opening degree width ⁇ LEV2 (SCC2) is determined in advance and controlled. It is stored in the device 27.
  • the temperature control valve 8 is opened by the opening width ⁇ LEV2 (SCC2) corresponding to the degree of subcooling SCC2. Thereby, the flow rate of the refrigerant flowing to the indoor heat exchanger 100 is increased. Then, the control device 27 repeats the process of step S16 at fixed time intervals until the unheated state is resolved. Then, when the unheated state is eliminated, the control device 27 returns to step S12 and repeats the same processing.
  • the same effect as that of the first embodiment can be obtained, and the opening control of the temperature control valve 8 prevents condensation during heating operation and suppresses the reduction of the heating capacity. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air conditioner comprises: bypass piping that branches from between an outdoor heat exchanger and an expansion valve in a refrigerant circuit and is connected to the intake side of a compressor; a bypass flow rate regulating valve that is provided in the bypass piping; a supercooling heat exchanger that exchanges heat between refrigerant between the outdoor heat exchanger and the expansion valve and refrigerant downstream of the bypass flow rate regulating valve in the bypass piping; cooling piping that is constituted by a portion of the piping between the outdoor heat exchanger and the supercooling heat exchanger and that cools a control device by the control device being disposed so to be in contact with same; and a temperature regulating valve that is provided between the outdoor heat exchanger and the cooling piping and that regulates the temperature of the refrigerant passing through the cooling piping. The control device controls the temperature regulating valve so that the temperature of a heat dissipation unit of the control device is less than a preset reference value during cooling operation and controls the bypass flow rate regulating valve so that the degree of supercooling at the outlet of the supercooling heat exchanger exceeds a preset value.

Description

空気調和装置Air conditioner
 本発明は、発熱部を冷媒回路の冷媒で冷却するように構成された空気調和装置に関するものである。 The present invention relates to an air conditioner configured to cool a heat generating portion with a refrigerant of a refrigerant circuit.
 空気調和装置は、圧縮機、凝縮器、膨張弁及び蒸発器が配管で接続された冷媒回路を備えている。そして、従来より、たとえば圧縮機を制御するためのインバータ回路などの制御装置の発熱部を、冷媒回路を流れる冷媒を用いて冷却するようにしている(たとえば、特許文献1参照)。特許文献1では、膨張弁の上流の冷媒を分岐して圧縮機の吐出側に接続する冷却回路を、冷媒回路とは別に設け、冷却回路を流れる冷媒で発熱部を冷却している。 The air conditioner includes a refrigerant circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected by piping. Then, conventionally, for example, a heat generating portion of a control device such as an inverter circuit for controlling a compressor is cooled using a refrigerant flowing in a refrigerant circuit (see, for example, Patent Document 1). In patent document 1, the cooling circuit which branches the refrigerant | coolant of the upstream of an expansion valve, and is connected to the discharge side of a compressor is provided separately from a refrigerant circuit, and the heat generation part is cooled with the refrigerant | coolant which flows through a cooling circuit.
特開2015-21659号公報JP, 2015-21659, A
 ところで、従来より、凝縮器と膨張弁との間に過冷却熱交換器を設け、過冷却熱交換器の高圧側の冷媒を、過冷却熱交換器の低圧側の冷媒と熱交換して過冷却することで、冷凍効率の向上を図る空気調和装置がある。このような空気調和装置に対して、特許文献1の技術を適用して制御装置の発熱部を冷却することが考えられる。 By the way, conventionally, a supercooling heat exchanger is provided between the condenser and the expansion valve, and the refrigerant on the high pressure side of the subcooling heat exchanger is heat exchanged with the refrigerant on the low pressure side of the supercooling heat exchanger to There is an air conditioner that improves the refrigeration efficiency by cooling. It is conceivable to apply the technology of Patent Document 1 to such an air conditioning apparatus to cool the heat generating portion of the control device.
 しかし、特許文献1では、発熱部を冷却するため専用の冷却回路を設ける必要があり、製品の大型化及び冷媒回路の複雑化を招く。このため、発熱部を冷却するため専用の冷却回路を設けずに冷媒回路を流れる冷媒で発熱部を冷却することが望ましい。 However, in Patent Document 1, it is necessary to provide a dedicated cooling circuit to cool the heat generating portion, which leads to an increase in the size of the product and a complication of the refrigerant circuit. Therefore, it is desirable to cool the heat generating portion with the refrigerant flowing through the refrigerant circuit without providing a dedicated cooling circuit for cooling the heat generating portion.
 冷媒回路を流れる冷媒で発熱部を冷却するには、冷媒回路の低圧側の低温冷媒を用いる方法が考えられる。しかし、この方法では、発熱部が空気の露点温度以下まで冷却されて制御装置内部で結露が生じる可能性があるため、凝縮器と過冷却熱交換器との間の高圧側の冷媒を用いると良い。 In order to cool the heat generating portion with the refrigerant flowing through the refrigerant circuit, it is conceivable to use a low temperature refrigerant on the low pressure side of the refrigerant circuit. However, in this method, since the heat generating part is cooled to a temperature equal to or lower than the dew point temperature of air and dew condensation may occur inside the control device, using the high pressure side refrigerant between the condenser and the subcooling heat exchanger good.
 発熱部の冷却に高圧側の冷媒を用いる場合には、凝縮器と過冷却熱交換器との間の配管を発熱部を冷却する冷却配管として用いると共に、冷却配管の上流に電子膨張弁を設け、電子膨張弁によって冷却配管を通過する冷媒の温度を調整して発熱部を冷却する。この構成において、発熱部の温度が過昇した場合、電子膨張弁の開度を比較的大きく絞って冷却配管を通過する冷媒温度を下げることになる。しかし、電子膨張弁の開度を絞り過ぎると、電子膨張弁の下流側の圧力が低下し、冷房運転時に、電子膨張弁の下流側に位置する過冷却熱交換器の出口で過冷却度が確保できず、冷房能力の低下を招くという問題があった。また、過冷却熱交換器の出口で過冷却度が確保できない場合、過冷却熱交換器の下流側に位置する膨張弁に流入する冷媒が気液二相状態となり、膨張弁で冷媒流動音が発生するという問題があった。 When a high pressure side refrigerant is used to cool the heat generating portion, the pipe between the condenser and the subcooling heat exchanger is used as a cooling pipe for cooling the heat generating portion, and an electronic expansion valve is provided upstream of the cooling pipe. The temperature of the refrigerant passing through the cooling pipe is adjusted by the electronic expansion valve to cool the heat generating portion. In this configuration, when the temperature of the heat generating portion rises excessively, the opening degree of the electronic expansion valve is narrowed relatively large to lower the temperature of the refrigerant passing through the cooling pipe. However, if the degree of opening of the electronic expansion valve is narrowed too much, the pressure on the downstream side of the electronic expansion valve decreases, and the degree of supercooling at the outlet of the subcooling heat exchanger located downstream of the electronic expansion valve during cooling operation There is a problem that it can not be secured, and the cooling capacity is reduced. In addition, when the degree of subcooling can not be secured at the outlet of the subcooling heat exchanger, the refrigerant flowing into the expansion valve located on the downstream side of the subcooling heat exchanger is in a gas-liquid two-phase state, and refrigerant flow noise occurs in the expansion valve. There was a problem to occur.
 本発明は、上記のような課題を解決するためになされたもので、冷媒を用いて制御装置を冷却する構成の空気調和装置において、冷媒回路の複雑化を招くことなく制御装置の冷却を行え、また、冷房運転時の能力低下及び冷媒流動音の発生の抑制を行うことが可能な空気調和装置を提供することを目的とする。 The present invention has been made to solve the problems as described above, and in an air conditioner configured to cool a control device using a refrigerant, the control device can be cooled without causing complication of a refrigerant circuit. Another object of the present invention is to provide an air conditioner capable of suppressing the reduction in capacity during cooling operation and the generation of refrigerant flow noise.
 本発明に係る空気調和装置は、圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器とが配管で接続されて冷媒が循環する冷媒回路と、冷媒回路を制御する制御装置と、室外熱交換器と膨張弁との間から分岐して圧縮機の吸入側に接続されたバイパス配管と、バイパス配管に設けられたバイパス流量調整弁と、室外熱交換器と膨張弁との間の冷媒とバイパス配管のバイパス流量調整弁の下流の冷媒とを熱交換する過冷却熱交換器と、室外熱交換器と過冷却熱交換器との間の配管のうち、制御装置が接触して配置されて制御装置を冷却する冷却配管と、室外熱交換器と冷却配管との間に設けられ、冷却配管を通過する冷媒の温度を調整する温度調整弁とを備え、制御装置は、冷房運転時において制御装置の発熱部の温度が予め設定された基準値未満となるように温度調整弁を制御すると共に、過冷却熱交換器の出口の過冷却度が予め設定された設定値を上回るようにバイパス流量調整弁を制御するものである。 The air conditioner according to the present invention includes a refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping to circulate a refrigerant, and a control device that controls the refrigerant circuit. A bypass pipe branched from between the outdoor heat exchanger and the expansion valve and connected to the suction side of the compressor, a bypass flow control valve provided in the bypass pipe, and between the outdoor heat exchanger and the expansion valve Of the refrigerant and the refrigerant downstream of the bypass flow control valve of the bypass piping, and the control device contacts among the piping between the outdoor heat exchanger and the subcooling heat exchanger, The cooling device includes a cooling pipe which is disposed to cool the control device, and a temperature control valve which is provided between the outdoor heat exchanger and the cooling pipe and which adjusts the temperature of the refrigerant passing through the cooling pipe. At the same time, the temperature of the heat generating part of the control device is set in advance Less than the controls the thermostatic valve so as, in which the degree of subcooling at the outlet of the subcooling heat exchanger to control the bypass flow rate adjustment valve to exceed a pre-set value.
 本発明によれば、冷媒回路の構成を複雑化することなく、冷房運転時の能力低下及び冷媒流動音の発生の抑制を行うことが可能である。 According to the present invention, it is possible to suppress the reduction in capacity during cooling operation and the generation of refrigerant flow noise without complicating the configuration of the refrigerant circuit.
本発明の実施の形態1に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。It is a refrigerant circuit figure showing the refrigerant circuit composition of the air harmony device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る空気調和装置における冷房運転時の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing at the time of the air_conditioning | cooling operation in the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る空気調和装置における暖房運転時の制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing at the time of heating operation in the air conditioning apparatus which concerns on Embodiment 2 of this invention.
 以下、本発明の実施の形態に係る空気調和装置について図面を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。また、温度及び圧力の高低については、特に絶対的な値との関係で高低が定まっているものではなく、空気調和装置における状態及び動作等において相対的に定まるものとする。 Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to the drawings. Here, in the following drawings including FIG. 1, those given the same reference numerals are the same or correspond to this, and are common to the whole text of the embodiments described below. And the form of the component expressed to the whole specification is only an illustration, and is not limited to the form described in the specification. Further, the height and the height of the temperature and the pressure are not particularly determined in relation to the absolute value, but are relatively determined in the state and operation of the air conditioner.
実施の形態1.
 図1は、本発明の実施の形態1に係る空気調和装置の冷媒回路構成を示す冷媒回路図である。図1に基づいて、空気調和装置の回路構成及び動作について説明する。この空気調和装置は、冷媒を循環させる冷凍サイクルを利用して、冷房運転または暖房運転を行なうものである。なお、図1では、実線矢印が冷房運転時における冷媒回路を、破線矢印が暖房運転時における冷媒回路を、それぞれ示している。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
Embodiment 1
FIG. 1 is a refrigerant circuit diagram showing a refrigerant circuit configuration of the air-conditioning apparatus according to Embodiment 1 of the present invention. The circuit configuration and operation of the air conditioner will be described based on FIG. This air conditioning apparatus performs a cooling operation or a heating operation using a refrigeration cycle in which a refrigerant is circulated. In FIG. 1, solid arrows indicate the refrigerant circuit in the cooling operation, and broken arrows indicate the refrigerant circuit in the heating operation. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
 図1に示すように、空気調和装置は、熱源機である室外機10と、利用側ユニットである室内機50a及び室内機50bと、が冷媒配管で接続されて構成されている。室内機50a及び室内機50bは、室外機10に並列接続されている。つまり、空気調和装置は、室外機10に搭載される各機器と、室内機50a及び室内機50bのそれぞれに搭載される各機器と、を冷媒配管で接続することで冷媒回路を形成している。なお、ここでは、室外機10が1台に対して室内機が2台接続された構成を示しているが、室内機の台数は1台でも良いし、さらに複数台でもよい。また、室外機10の台数も1台に限らず、さらに複数台としてもよい。 As shown in FIG. 1, the air conditioning apparatus is configured by connecting an outdoor unit 10, which is a heat source unit, and an indoor unit 50a and an indoor unit 50b, which are use side units, by refrigerant pipes. The indoor unit 50 a and the indoor unit 50 b are connected in parallel to the outdoor unit 10. That is, the air conditioning apparatus forms a refrigerant circuit by connecting each device mounted on the outdoor unit 10 and each device mounted on each of the indoor unit 50a and the indoor unit 50b with a refrigerant pipe. . Here, a configuration in which two outdoor units 10 are connected to one outdoor unit 10 is shown, but the number of indoor units may be one or more. Also, the number of outdoor units 10 is not limited to one, and may be more than one.
 空気調和装置の冷媒配管は、ガス配管と液配管とを備えている。ガス配管は、室外機10と接続されているガス配管204と、各室内機に接続されているガス枝管206a及びガス枝管206bとからなる。ガス枝管206aは室内機50aに接続され、ガス枝管206bは室内機50bに接続されている。液配管は、室外機10と接続されている液配管205と、各室内機に接続されている液枝管207a及び液枝管207bと、からなる。液枝管207aは室内機50aに接続され、液枝管207bは室内機50bに接続されている。 The refrigerant piping of the air conditioner includes gas piping and liquid piping. The gas piping includes a gas piping 204 connected to the outdoor unit 10, and a gas branch pipe 206a and a gas branch pipe 206b connected to each indoor unit. The gas branch pipe 206a is connected to the indoor unit 50a, and the gas branch pipe 206b is connected to the indoor unit 50b. The liquid piping includes a liquid piping 205 connected to the outdoor unit 10, and a liquid branch pipe 207a and a liquid branch pipe 207b connected to each indoor unit. The liquid branch pipe 207a is connected to the indoor unit 50a, and the liquid branch pipe 207b is connected to the indoor unit 50b.
 室外機10と室内機50aとは、ガス配管204、ガス枝管206a、液枝管207a及び液配管205、を介して接続されている。また、室外機10と室内機50bとは、ガス配管204、ガス枝管206b、液枝管207b及び液配管205、を介して接続されている。 The outdoor unit 10 and the indoor unit 50a are connected via a gas pipe 204, a gas branch pipe 206a, a liquid branch pipe 207a, and a liquid pipe 205. The outdoor unit 10 and the indoor unit 50b are connected via the gas pipe 204, the gas branch pipe 206b, the liquid branch pipe 207b, and the liquid pipe 205.
[室外機]
 室外機10は、圧縮機1と、四方弁4と、室外熱交換器5と、液側開閉弁9と、ガス側開閉弁11と、アキュムレータ12と、を備えている。
[Outdoor unit]
The outdoor unit 10 includes a compressor 1, a four-way valve 4, an outdoor heat exchanger 5, a liquid side on-off valve 9, a gas side on-off valve 11, and an accumulator 12.
 圧縮機1は、吸入した冷媒を圧縮して高温且つ高圧の状態にするものである。圧縮機1はインバータ回路を有しており、インバータ回路による電源周波数変換により圧縮機回転数が制御され、容量制御されるタイプの圧縮機である。 The compressor 1 compresses the sucked refrigerant to a high temperature and high pressure state. The compressor 1 has an inverter circuit, and is a compressor of a type in which the compressor rotational speed is controlled by the power supply frequency conversion by the inverter circuit and the capacity is controlled.
 四方弁4は、流路切替装置として機能し、冷房運転時と暖房運転時とで冷媒の流れを切り替えるものである。室外熱交換器5は、冷房運転時には凝縮器または放熱器として機能し、暖房運転時には蒸発器として機能し、図示省略の室外送風機から供給される空気と冷媒との間で熱交換を行なうものである。 The four-way valve 4 functions as a flow path switching device, and switches the flow of the refrigerant between the cooling operation and the heating operation. The outdoor heat exchanger 5 functions as a condenser or a radiator at the time of cooling operation, functions as an evaporator at the time of heating operation, and performs heat exchange between the air supplied from the outdoor fan not shown and the refrigerant. is there.
 液側開閉弁9は、制御装置27による自動またはユーザによる手動で開閉されることで、冷媒を導通したりしなかったりするものである。ガス側開閉弁11も同様に、制御装置27による自動またはユーザによる手動で開閉されることで、冷媒を導通したりしなかったりするものである。液側開閉弁9及びガス側開閉弁11は、開閉されることによって、冷凍サイクル内の圧力変動を調整するために設置されている。 The liquid side on-off valve 9 is opened or closed automatically by the control device 27 or manually by the user, and does not conduct the refrigerant. Similarly, the gas side on-off valve 11 is opened or closed automatically by the control device 27 or manually by the user, and the refrigerant is not conducted. The liquid side on-off valve 9 and the gas side on-off valve 11 are installed to adjust the pressure fluctuation in the refrigeration cycle by opening and closing.
 アキュムレータ12は、圧縮機1の吸入側に設けられており、冷媒回路を循環する過剰な冷媒を貯留するものである。 The accumulator 12 is provided on the suction side of the compressor 1 and stores excess refrigerant circulating in the refrigerant circuit.
 室外機10はさらに、室外熱交換器5と液側開閉弁9との間の液配管26から分岐して圧縮機1の吸入側、具体的にはアキュムレータ12の入口側に接続されたバイパス配管23と、バイパス配管23に設けられたバイパス流量調整弁7とを備えている。バイパス流量調整弁7は、減圧弁または膨張弁として機能し、冷媒を減圧して膨張させるものである。このバイパス流量調整弁7は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。また、室外機10は、室外熱交換器5と液側開閉弁9との間の高圧側冷媒と、バイパス配管23のバイパス流量調整弁7で減圧した低圧側冷媒とを熱交換して高圧側冷媒を冷却する過冷却熱交換器6を備えている。 The outdoor unit 10 further branches from the liquid pipe 26 between the outdoor heat exchanger 5 and the liquid side on-off valve 9 and is connected to the suction side of the compressor 1, specifically to the inlet side of the accumulator 12. And a bypass flow control valve 7 provided in the bypass pipe 23. The bypass flow rate adjusting valve 7 functions as a pressure reducing valve or an expansion valve to decompress and expand the refrigerant. The bypass flow rate adjusting valve 7 may be configured by one whose opening degree can be variably controlled, for example, an electronic expansion valve or the like. Further, the outdoor unit 10 exchanges heat between the high pressure side refrigerant between the outdoor heat exchanger 5 and the liquid side open / close valve 9 and the low pressure side refrigerant decompressed by the bypass flow rate adjustment valve 7 of the bypass pipe 23 A subcooling heat exchanger 6 is provided to cool the refrigerant.
 なお、以下の説明において、液配管26とバイパス配管23とが接続しているポイントを接続点25、バイパス配管23とアキュムレータ12の上流側配管とが接続しているポイントを接続点24と称する。アキュムレータ12の上流側配管とは、四方弁4とアキュムレータ12との間における冷媒配管を指す。 In the following description, a point at which the liquid pipe 26 and the bypass pipe 23 are connected is referred to as a connection point 25, and a point at which the bypass pipe 23 and the upstream pipe of the accumulator 12 are connected is referred to as a connection point 24. The upstream pipe of the accumulator 12 refers to a refrigerant pipe between the four-way valve 4 and the accumulator 12.
 室外機10はさらに、オイルセパレータ2と、返油バイパス回路30と、逆止弁3とを備えている。オイルセパレータ2は、圧縮機1の吐出側に設けられており、圧縮機1から吐出されて冷凍機油が混在している冷媒ガスから冷凍機油成分を分離する機能を有している。 The outdoor unit 10 further includes an oil separator 2, an oil return bypass circuit 30, and a check valve 3. The oil separator 2 is provided on the discharge side of the compressor 1 and has a function of separating a refrigerator oil component from a refrigerant gas discharged from the compressor 1 and mixed with a refrigerator oil.
 返油バイパス回路30は、オイルセパレータ2で分離された冷凍機油を圧縮機1の吸入側に戻すものである。返油バイパス回路30の配管には、返油バイパスキャピラリ13と返油バイパス用電磁弁14とを並列に接続した回路が接続されており、圧縮機1に戻す冷凍機油の流量が調整されるようになっている。具体的には、返油バイパス用電磁弁14が開の場合、オイルセパレータ2で分離された冷凍機油は返油バイパス用電磁弁14を通ってそのまま圧縮機1の吸入側に返油される。一方、返油バイパス用電磁弁14が閉の場合、オイルセパレータ2で分離された冷凍機油は返油バイパスキャピラリ13を通過して流量が低減されて圧縮機1の吸入側に返油される。 The oil return bypass circuit 30 is for returning the refrigerator oil separated by the oil separator 2 to the suction side of the compressor 1. The piping of the oil return bypass circuit 30 is connected to a circuit in which the oil return bypass capillary 13 and the oil return bypass solenoid valve 14 are connected in parallel, so that the flow rate of the refrigerator oil returned to the compressor 1 is adjusted. It has become. Specifically, when the oil return bypass solenoid valve 14 is open, refrigeration oil separated by the oil separator 2 is returned to the suction side of the compressor 1 as it is through the oil return bypass solenoid valve 14. On the other hand, when the oil return bypass solenoid valve 14 is closed, the refrigeration oil separated by the oil separator 2 passes through the oil return bypass capillary 13 to reduce the flow rate and is returned to the suction side of the compressor 1.
 逆止弁3は、オイルセパレータ2と四方弁4との間における冷媒配管に設けられており、圧縮機1の停止時に四方弁4側から圧縮機1の吐出側への冷媒の逆流を防止するためのものである。 The check valve 3 is provided in the refrigerant pipe between the oil separator 2 and the four-way valve 4 and prevents the backflow of the refrigerant from the four-way valve 4 side to the discharge side of the compressor 1 when the compressor 1 is stopped. It is for.
 また、室外機10は、室外熱交換器5と過冷却熱交換器6とを接続する配管を通る冷媒で後述の制御装置27の発熱部を冷却するようにしている。室外熱交換器5と過冷却熱交換器6とを接続する配管のうち、制御装置27に接触して配置されて発熱部を冷却する配管を以下では冷却配管40という。そして、室外熱交換器5と冷却配管40との間には、冷却配管40を通過する冷媒の温度を調整する温度調整弁8が設けられている。温度調整弁8は、減圧弁または膨張弁として機能し、冷媒を減圧して膨張させるものである。この温度調整弁8は、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。 In addition, the outdoor unit 10 is configured to cool the heat generating portion of the control device 27 described later with a refrigerant that passes through a pipe that connects the outdoor heat exchanger 5 and the subcooling heat exchanger 6. Among the pipes connecting the outdoor heat exchanger 5 and the subcooling heat exchanger 6, a pipe which is disposed in contact with the control device 27 to cool the heat generating portion is hereinafter referred to as a cooling pipe 40. A temperature control valve 8 is provided between the outdoor heat exchanger 5 and the cooling pipe 40 to adjust the temperature of the refrigerant passing through the cooling pipe 40. The temperature control valve 8 functions as a pressure reducing valve or an expansion valve to decompress and expand the refrigerant. The temperature control valve 8 may be configured by one whose opening degree can be variably controlled, for example, an electronic expansion valve or the like.
 また、室外機10には、室外機10に搭載されている各アクチュエータの駆動を制御する制御装置27が搭載されている。制御装置27は、後に詳述するが、各圧力センサ及び各温度センサから送信される信号に基づいて、各アクチュエータを制御するものである。アクチュエータとは、たとえば、圧縮機1、四方弁4及び図示省略の室外送風機などが該当する。この制御装置27は、特に種類を限定するものではないが、たとえば室外機10に搭載される各アクチュエータを制御できるようなマイクロコンピュータ等で構成するとよい。 Further, the outdoor unit 10 is mounted with a control device 27 that controls the drive of each actuator mounted on the outdoor unit 10. The control device 27 controls each actuator based on signals transmitted from each pressure sensor and each temperature sensor, which will be described in detail later. The actuators correspond to, for example, the compressor 1, the four-way valve 4, and an outdoor fan (not shown). The control device 27 is not particularly limited in type, but may be constituted by a microcomputer or the like capable of controlling each actuator mounted on the outdoor unit 10, for example.
 制御装置27は、圧縮機1のモータを駆動するインバータ回路を備えており、インバータ回路のパワーモジュールが圧縮機1の駆動時に発熱して高温となる。本実施の形態1では、このようなパワーモジュール等の発熱部を上述したように冷媒回路の冷媒で冷却するようにしている。 The control device 27 includes an inverter circuit for driving the motor of the compressor 1, and the power module of the inverter circuit generates heat when the compressor 1 is driven and becomes high temperature. In the first embodiment, as described above, the heat generating portion such as the power module is cooled by the refrigerant of the refrigerant circuit.
[室外機のセンサ]
 室外機10には、複数の圧力センサ及び複数の温度センサが設けられている。具体的には、室外機10には、第1圧力センサ15、第1温度センサ18、第2温度センサ19、第3温度センサ20及び第4温度センサ21が設けられている。
[Sensor of outdoor unit]
The outdoor unit 10 is provided with a plurality of pressure sensors and a plurality of temperature sensors. Specifically, the outdoor unit 10 is provided with a first pressure sensor 15, a first temperature sensor 18, a second temperature sensor 19, a third temperature sensor 20, and a fourth temperature sensor 21.
 第1圧力センサ15は、オイルセパレータ2と四方弁4との間に設けられ、圧縮機1から吐出された冷媒の圧力を計測するものである。 The first pressure sensor 15 is provided between the oil separator 2 and the four-way valve 4 and measures the pressure of the refrigerant discharged from the compressor 1.
 第1温度センサ18は、制御装置27の発熱部に設けられ、発熱部の温度を計測するものである。第2温度センサ19は、接続点25と液側開閉弁9との間に設けられ、接続点25と液側開閉弁9との間における液配管26を通る冷媒の温度を計測するものである。第3温度センサ20は、室外機10の周囲の外気温度を計測するものである。第4温度センサ21は、冷却配管40と過冷却熱交換器6との間に設けられ、冷却配管40と過冷却熱交換器6との間を通る冷媒の温度を計測するものである。第3温度センサ20は、本発明の外気温度センサに相当し、第4温度センサ21は、本発明の冷却冷媒温度センサに相当する。 The first temperature sensor 18 is provided in the heat generating portion of the control device 27 and measures the temperature of the heat generating portion. The second temperature sensor 19 is provided between the connection point 25 and the liquid side on-off valve 9 and measures the temperature of the refrigerant passing through the liquid pipe 26 between the connection point 25 and the liquid side on-off valve 9 . The third temperature sensor 20 measures the temperature of the outside air around the outdoor unit 10. The fourth temperature sensor 21 is provided between the cooling pipe 40 and the subcooling heat exchanger 6 and measures the temperature of the refrigerant passing between the cooling pipe 40 and the subcooling heat exchanger 6. The third temperature sensor 20 corresponds to the outside air temperature sensor of the present invention, and the fourth temperature sensor 21 corresponds to the cooling refrigerant temperature sensor of the present invention.
 そして、各圧力センサで計測された圧力情報、及び、各温度センサで計測された温度情報は、信号として制御装置27に送られるようになっている。なお、ここでは、以下の制御で用いられるセンサについて説明したが、室外機10にはその他にもセンサが設けられ、空気調和装置における各種制御に用いられる。 And the pressure information measured by each pressure sensor and the temperature information measured by each temperature sensor are sent to the control device 27 as a signal. In addition, although the sensor used by the following control was demonstrated here, the sensor is provided in addition to the outdoor unit 10, and it is used for various control in an air conditioning apparatus.
[室内機]
 室内機50aには、室内熱交換器100aと膨張弁101aとが、ガス枝管206a及び液枝管207aで直列に接続されて搭載されている。また、室内機50aには、室内機50aに搭載されている各アクチュエータの駆動を制御する制御装置102aが搭載されている。アクチュエータとは、たとえば、膨張弁101a及び図示省略の室内送風機などが該当する。さらに、室内機50aには、室内熱交換器100aに接続している液枝管207aに、室内熱交換器100aの液側出口における冷媒の温度を計測する第5温度センサ103aが設けられている。
[Indoor unit]
The indoor heat exchanger 100a and the expansion valve 101a are mounted in series on the indoor unit 50a by a gas branch pipe 206a and a liquid branch pipe 207a. In addition, a control device 102a that controls the drive of each actuator mounted on the indoor unit 50a is mounted on the indoor unit 50a. The actuator corresponds to, for example, the expansion valve 101a and an indoor fan (not shown). Furthermore, the indoor unit 50a is provided with a fifth temperature sensor 103a for measuring the temperature of the refrigerant at the liquid side outlet of the indoor heat exchanger 100a in the liquid branch pipe 207a connected to the indoor heat exchanger 100a. .
 室内熱交換器100aは、冷房運転時には蒸発器、暖房運転時には凝縮器または放熱器として機能し、冷媒と空気との間で熱交換を行なうものである。膨張弁101aは、減圧弁または膨張弁として機能し、冷媒を減圧して膨張させるものである。この膨張弁101aは、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。 The indoor heat exchanger 100a functions as an evaporator during the cooling operation and as a condenser or a radiator during the heating operation, and performs heat exchange between the refrigerant and the air. The expansion valve 101a functions as a pressure reducing valve or an expansion valve to decompress and expand the refrigerant. The expansion valve 101a may be configured by one whose opening degree can be variably controlled, for example, an electronic expansion valve or the like.
 そして、第5温度センサ103aで計測された温度情報は、信号として制御装置102aに送られるようになっている。なお、ここでは、以下の制御で用いられるセンサについて説明したが、室内機にはその他にもセンサが設けられ、制御装置102aは、各温度センサから送信される信号に基づいて、各アクチュエータを制御するようになっている。この制御装置102aは、特に種類を限定するものではないが、たとえば室内機50aに搭載される各アクチュエータを制御できるようなマイクロコンピュータ等で構成するとよい。 The temperature information measured by the fifth temperature sensor 103a is sent to the control device 102a as a signal. In addition, although the sensor used by the following control was demonstrated here, the indoor unit is additionally provided with a sensor, and the control apparatus 102a controls each actuator based on the signal transmitted from each temperature sensor It is supposed to The type of the control device 102a is not particularly limited. For example, the control device 102a may be configured by a microcomputer or the like that can control each actuator mounted on the indoor unit 50a.
 ところで、室内機50bは、室内機50aと同様の構成となっている。つまり、室内機50aの構成部品の「a」を「b」に変更すれば室内機50bの構成部品となる。なお、以下において室内機50aと室内機50bとを区別しない場合は室内機50という。また、室内機50aと室内機50bとのそれぞれにおける構成部品を区別しない場合は、「a」、「b」を付与せず、総称してたとえば膨張弁であれば膨張弁101とすることがある。 The indoor unit 50b has the same configuration as the indoor unit 50a. That is, if "a" of the component of the indoor unit 50a is changed to "b", it becomes a component of the indoor unit 50b. In the following, when the indoor unit 50a and the indoor unit 50b are not distinguished from each other, they are referred to as an indoor unit 50. Moreover, when not distinguishing the component in each of the indoor unit 50a and the indoor unit 50b, "a" and "b" may not be provided, but it may be set as the expansion valve 101 generically, for example, if it is an expansion valve. .
 なお、図1では、室内機50a及び室内機50bの双方に制御装置が搭載されている状態を例に示しているが、1つの制御装置で室内機50a及び室内機50bの双方を制御するようにしてもよい。また、室内機50a及び室内機50bの双方に制御装置が搭載されている状態では、互いの制御装置が有線または無線で通信可能になっている。さらに、室内機に搭載されている制御装置は、室外機10に搭載されている制御装置と有線または無線で通信可能になっている。 Although FIG. 1 shows an example in which the control unit is mounted on both the indoor unit 50a and the indoor unit 50b, one control unit may control both the indoor unit 50a and the indoor unit 50b. You may Moreover, in the state in which the control device is mounted in both the indoor unit 50a and the indoor unit 50b, the control devices of each other can communicate in a wired or wireless manner. Furthermore, the control device mounted in the indoor unit can communicate with the control device mounted in the outdoor unit 10 in a wired or wireless manner.
 ところで、従来は、冷媒回路を循環する冷媒で制御装置を冷却するにあたり、制御装置を冷却するための専用の回路を設ける必要があった。このため、冷媒回路の複雑化及び製品コストの増加を伴うことになる。一方、図1に示した本実施の形態1では、温度調整弁8と過冷却熱交換器6とを接続する配管の一部である冷却配管40に制御装置27の発熱部を接触させることで、発熱部の冷却を可能とする構成としている。このため、冷媒回路の複雑化を招かない。 By the way, conventionally, when cooling the control device with the refrigerant circulating in the refrigerant circuit, it has been necessary to provide a dedicated circuit for cooling the control device. This entails the complication of the refrigerant circuit and the increase in the cost of the product. On the other hand, in the first embodiment shown in FIG. 1, the heat generating portion of the control device 27 is brought into contact with the cooling pipe 40 which is a part of the pipe connecting the temperature control valve 8 and the subcooling heat exchanger 6. The cooling of the heat generating part is made possible. For this reason, the refrigerant circuit is not complicated.
 そして、本実施の形態1は、冷房運転時に温度調整弁8及びバイパス流量調整弁7を制御して、制御装置27の発熱部の冷却性能を確保しつつ、冷房運転時の能力低下を抑制することを特徴としている。以下、温度調整弁8及びバイパス流量調整弁7の制御について説明する。 And this Embodiment 1 controls the temperature control valve 8 and the bypass flow control valve 7 at the time of cooling operation, and suppresses the fall of the capability at the time of cooling operation, ensuring the cooling performance of the heat-emitting part of the control apparatus 27. It is characterized by Hereinafter, control of the temperature control valve 8 and the bypass flow control valve 7 will be described.
 図2は、本発明の実施の形態1に係る空気調和装置における冷房運転時の制御処理の流れを示すフローチャートである。図2に基づいて、実施の形態1の特徴事項である制御装置27が実行する制御処理の流れについて詳細に説明する。
 まず、空気調和装置を操作するためのリモコン(図示せず)のスイッチがユーザによりONされると、圧縮機1が駆動を開始する。圧縮機1が駆動されることで冷房運転が開始される(ステップS1)。
FIG. 2 is a flowchart showing a flow of control processing during cooling operation in the air conditioning apparatus according to Embodiment 1 of the present invention. The flow of control processing executed by the control device 27 which is a feature of the first embodiment will be described in detail based on FIG.
First, when the switch of the remote control (not shown) for operating the air conditioner is turned on by the user, the compressor 1 starts driving. Cooling operation is started by driving the compressor 1 (step S1).
 制御装置27は、運転開始から一定時間経過後に、制御装置27の発熱部に取り付けられた第1温度センサ18の計測温度THHSが、予め定められた基準値(たとえば、100℃)以上であるかを判定する(ステップS2)。制御装置27は、計測温度THHSが基準値以上の場合、発熱部の温度が許容温度を超えたと判定し、温度調整弁8を以下のように制御する。 Whether the measured temperature THHS of the first temperature sensor 18 attached to the heat generating portion of the control device 27 is equal to or higher than a predetermined reference value (for example, 100 ° C.) after a predetermined time has elapsed from the start of operation Is determined (step S2). When the measured temperature THHS is equal to or higher than the reference value, the control device 27 determines that the temperature of the heat generating portion exceeds the allowable temperature, and controls the temperature control valve 8 as follows.
 すなわち、計測温度THHSに応じた開度幅ΔLEV2(THHS)、温度調整弁8を閉じる旨の弁開度指令を温度調整弁8に出力する(ステップS3)。制御装置27から発せられる具体的な指令開度LEV2は以下の(1)式で求める開度となる。 That is, an opening width ΔLEV2 (THHS) corresponding to the measured temperature THHS, and a valve opening command to close the temperature control valve 8 are output to the temperature control valve 8 (step S3). A specific command opening degree LEV2 issued from the control device 27 is an opening degree obtained by the following equation (1).
 指令開度LEV2=LEV2(NOW)-ΔLEV2(THHS)
                            ・・・(1)
 LEV2(NOW):現在の温度調整弁8の開度(前回の指令開度に相当)
 ΔLEV2(THHS):計測温度THHSに応じたLEV2の開度幅
Command opening LEV2 = LEV2 (NOW)-ΔLEV2 (THHS)
... (1)
LEV2 (NOW): Current temperature control valve 8 opening (equivalent to previous command opening)
ΔLEV2 (THHS): Opening width of LEV2 according to measured temperature THHS
 ここで、開度幅ΔLEV2(THHS)は、計測温度THHSが高くなるに連れて大きくなる値であり、計測温度THHSと開度幅ΔLEV2(THHS)との対応関係が予め求められて制御装置27に記憶されている。 Here, the opening degree width ΔLEV2 (THHS) is a value that increases as the measured temperature THHS increases, and the control device 27 determines the correspondence between the measured temperature THHS and the opening degree width ΔLEV2 (THHS) in advance. Is stored in
 このように、温度調整弁8を開度幅ΔLEV2(THHS)、閉じることで、温度調整弁8の下流側の冷媒の圧力及び温度を低下させる。つまり、制御装置27の発熱部を冷却する冷媒の温度を低下させて冷却性能を高めることで、計測温度THHSを低下させる。 Thus, by closing the temperature control valve 8 at the opening width ΔLEV2 (THHS), the pressure and temperature of the refrigerant downstream of the temperature control valve 8 are reduced. That is, the measured temperature THHS is lowered by lowering the temperature of the refrigerant that cools the heat generating portion of the control device 27 to enhance the cooling performance.
 制御装置27は、一定時間経過後に、計測温度THHSがステップS2と同様の基準値を下回ったかを判定する(ステップS4)。計測温度THHSが基準値を下回っていない場合、再度ステップS3に戻り、温度調整弁8を開度幅ΔLEV2(THHS)、閉じる制御を行う(ステップS3)。そして、制御装置27は、ステップS3及びステップS4の処理を、計測温度THHSが基準値を下回るまで、一定時間間隔で繰り返す。そして、計測温度THHSが基準値を下回ると、制御装置27はステップS5の処理に移行する。 The control device 27 determines whether or not the measured temperature THHS falls below the same reference value as step S2 after a predetermined time (step S4). If the measured temperature THHS is not lower than the reference value, the process returns to step S3 again, and the temperature control valve 8 is controlled to close by the opening width ΔLEV2 (THHS) (step S3). Then, the control device 27 repeats the processes of step S3 and step S4 at fixed time intervals until the measured temperature THHS falls below the reference value. Then, when the measured temperature THHS falls below the reference value, the control device 27 shifts to the process of step S5.
 ステップS5以降では、制御装置27は、ステップS3の処理を実施することでの冷房運転での弊害に対する是正処置を行う。つまり、温度調整弁8の開度が絞られることで、冷媒回路における過冷却熱交換器6の出口部分、言い換えれば室内機50a及び室内機50bの入口部分において過冷却度が確保されない弊害が生じる可能性がある。このため、この弊害を是正する処理を行う。 In step S5 and subsequent steps, the control device 27 performs corrective action for the adverse effect in the cooling operation by performing the process of step S3. That is, the degree of opening of the temperature control valve 8 is narrowed, which causes an adverse effect that the degree of subcooling is not ensured in the outlet portion of the subcooling heat exchanger 6 in the refrigerant circuit, in other words, the inlet portions of the indoor unit 50a and the indoor unit 50b. there is a possibility. Therefore, processing is performed to correct this adverse effect.
 具体的には、まず、制御装置27は、過冷却熱交換器6の出口部分の過冷却度SCC1を算出し、過冷却度SCC1が0℃を上回っているかを判定する(ステップS5)。過冷却度SCC1は、第1圧力センサ15で計測した高圧圧力の飽和温度TCから第2温度センサ19の計測温度TH2を減算して求められる。 Specifically, first, the control device 27 calculates the subcooling degree SCC1 of the outlet portion of the subcooling heat exchanger 6, and determines whether the subcooling degree SCC1 exceeds 0 ° C. (step S5). The degree of subcooling SCC1 is obtained by subtracting the measurement temperature TH2 of the second temperature sensor 19 from the saturation temperature TC of the high pressure measured by the first pressure sensor 15.
 過冷却度SCC1が0℃以下の場合、過冷却度が不足しており、室内機50a及び室内機50bで冷房能力が不足している状態である。このため、制御装置27は、過冷却度SCC1に応じた開度幅ΔLEV1(SCC1)、バイパス流量調整弁7を開く旨の弁開度指令をバイパス流量調整弁7に出力する(ステップS6)。制御装置27から発せられる具体的な指令開度は以下の(2)式で求める開度となる。なお、「過冷却度」は0℃以上の温度を指すため、「TC-TH2」の演算結果が0℃未満となる場合を過冷却度SCC1と表現するのは適切ではないが、説明の便宜上、この表現を用いることにする。 When the degree of supercooling SCC1 is 0 ° C. or less, the degree of supercooling is insufficient, and the indoor units 50a and 50b are in a state where the cooling capacity is insufficient. For this reason, the control device 27 outputs an opening width ΔLEV1 (SCC1) according to the degree of supercooling SCC1 and a valve opening command to open the bypass flow control valve 7 to the bypass flow control valve 7 (step S6). A specific command opening degree issued from the control device 27 is an opening degree obtained by the following equation (2). In addition, since “supercooling degree” refers to a temperature of 0 ° C. or higher, it is not appropriate to express the case where the calculation result of “TC-TH2” is less than 0 ° C. as the subcooling degree SCC1. , I will use this expression.
 指令開度LEV1=LEV1(NOW)-ΔLEV1(SCC1)
                            ・・・(2)
 LEV(NOW):現在のバイパス流量調整弁7の開度(前回の指令開度)
 ΔLEV1(SCC1):過冷却度SCC1に応じたLEV1の開度幅
Command opening LEV1 = LEV1 (NOW)-ΔLEV1 (SCC1)
... (2)
LEV (NOW): Current bypass flow control valve 7 opening (previous command opening)
ΔLEV1 (SCC1): Opening width of LEV1 according to the degree of subcooling SCC1
 ここで、開度幅ΔLEV1(SCC1)とは、過冷却度SCC1の絶対値が大きくなるに連れて大きくなる値であり、過冷却度SCC1の絶対値と開度幅ΔLEV1(SCC1)との対応関係が予め求められて制御装置27に記憶されている。 Here, the opening degree width ΔLEV1 (SCC1) is a value that increases as the absolute value of the subcooling degree SCC1 increases, and the correspondence between the absolute value of the subcooling degree SCC1 and the opening degree width ΔLEV1 (SCC1) The relationship is determined in advance and stored in the control device 27.
 このように、制御装置27は、ステップS5において過冷却度SCC1が0℃以下の場合、過冷却度SCC1に応じた開度幅ΔLEV1(SCC1)、バイパス流量調整弁7を開く。これにより、バイパス配管23への冷媒流入量が増加する。その結果、過冷却熱交換器6で熱交換される熱量が増加して過冷却度SCC1が上昇し、過冷却度SCC1が0℃を上回るまで、一定時間間隔でステップS6の処理を繰り返す。そして、過冷却度SCC1が0℃を上回ると、ステップS2に戻って同様の処理を繰り返す。 As described above, when the subcooling degree SCC1 is 0 ° C. or less in step S5, the control device 27 opens the opening width ΔLEV1 (SCC1) corresponding to the subcooling degree SCC1, and the bypass flow control valve 7. As a result, the amount of refrigerant flowing into the bypass pipe 23 increases. As a result, the amount of heat exchanged in the subcooling heat exchanger 6 increases, the degree of subcooling SCC1 increases, and the process of step S6 is repeated at fixed time intervals until the degree of subcooling SCC1 exceeds 0 ° C. Then, when the degree of subcooling SCC1 exceeds 0 ° C., the process returns to step S2 and the same process is repeated.
 以上説明したように、本実施の形態1によれば、冷媒回路を構成する室外熱交換器5と過冷却熱交換器6との間の配管で制御装置27を冷却する構成としたので、冷却専用の回路が不要であり、冷媒回路の複雑化を招くことなく制御装置27の冷却を行える。また、温度調整弁8とバイパス流量調整弁7の開度制御により、制御装置27の冷却性能を確保しつつ、冷房運転時の能力低下を抑制することが可能である。また、室内機50の入口部分において過冷却度が確保され、膨張弁101に流入する冷媒が液冷媒となるため、冷媒流動音の発生を抑制できる。 As described above, according to the first embodiment, the control device 27 is cooled by the pipe between the outdoor heat exchanger 5 and the subcooling heat exchanger 6 that constitute the refrigerant circuit. There is no need for a dedicated circuit, and cooling of the control device 27 can be performed without causing complication of the refrigerant circuit. Further, by controlling the opening degree of the temperature control valve 8 and the bypass flow control valve 7, it is possible to suppress the performance decrease during the cooling operation while securing the cooling performance of the control device 27. In addition, since the degree of supercooling is secured at the inlet portion of the indoor unit 50 and the refrigerant flowing into the expansion valve 101 becomes the liquid refrigerant, the generation of the refrigerant flow noise can be suppressed.
 なお、本実施の形態1では、ステップS5において過冷却度SCC1が0℃よりも上回っているかを判定したが、過冷却熱交換器6の出口で確保したい過冷却度がある場合には以下のようにしてもよい。すなわち、過冷却熱交換器6の出口で確保したい過冷却度を設定値として用い、過冷却度SCC1が設定値よりも上回っているかを判定するようにしてもよい。 In the first embodiment, it is determined in step S5 whether the degree of supercooling SCC1 is higher than 0 ° C. However, if there is a degree of supercooling to be secured at the outlet of the subcooling heat exchanger 6, the following You may do so. That is, the degree of subcooling desired to be secured at the outlet of the subcooling heat exchanger 6 may be used as a set value to determine whether the degree of subcooling SCC1 exceeds the set value.
 また、本実施の形態1では、開度幅ΔLEV2(THHS)を、計測温度THHSに応じた可変幅としており、これにより計測温度THHSが速やかに低下するようにしたが、必ずしも可変幅に限らず、一定幅としてもよい。開度幅ΔLEV1(SCC1)についても同様であり、一定幅としてもよい。 Further, in the first embodiment, the opening width ΔLEV2 (THHS) is a variable width corresponding to the measured temperature THHS, and thereby the measured temperature THHS is rapidly decreased, but the variable width is not necessarily limited. The width may be fixed. The same applies to the opening width ΔLEV1 (SCC1), and it may be a constant width.
実施の形態2.
 上記実施の形態1では冷房運転時における冷却能力の低下の抑制技術について説明したが、実施の形態2では暖房運転時における制御装置27の結露防止技術について説明する。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。空気調和装置の構成は実施の形態1と同じである。
Second Embodiment
In the first embodiment described above, the technology for suppressing the decrease in cooling capacity during the cooling operation has been described, but in the second embodiment, the condensation prevention technology for the control device 27 during the heating operation will be described. The differences between the second embodiment and the first embodiment will be mainly described below. The configuration of the air conditioner is the same as that of the first embodiment.
 冷房運転では、室外熱交換器5と過冷却熱交換器6との間の高圧側の高温冷媒を用いて制御装置27を冷却していたが、暖房運転では、膨張弁101で減圧された後の低圧側の低温冷媒を用いて制御装置27を冷却する。このため、暖房運転では、冷房運転と異なり、計測温度THHSが過昇することはない。しかし、逆に、冷却配管40の内を通過する冷媒の温度が低すぎて制御装置27の温度が空気の露点温度を下回った場合、制御装置27において結露が生じる。具体的にはたとえば、制御装置27内の制御基板(図示せず)に結露が生じる可能性がある。この場合、制御基板に実装された充電部がショートする可能性があり、冷房運転と同様、製品品質を損なう可能性がある。 In the cooling operation, the control device 27 is cooled using the high-temperature refrigerant on the high pressure side between the outdoor heat exchanger 5 and the subcooling heat exchanger 6, but in the heating operation, after the pressure is reduced by the expansion valve 101 The controller 27 is cooled using the low temperature refrigerant on the low pressure side of For this reason, in the heating operation, unlike the cooling operation, the measured temperature THHS does not increase excessively. However, conversely, when the temperature of the refrigerant passing through the cooling pipe 40 is too low and the temperature of the control device 27 falls below the dew point temperature of air, dew condensation occurs in the control device 27. Specifically, for example, condensation may occur on a control substrate (not shown) in the control device 27. In this case, there is a possibility that the charging unit mounted on the control board may short-circuit, and the product quality may be impaired as in the cooling operation.
 そこで、実施の形態2は、温度調整弁8を制御して、このような結露を防止しつつ暖房運転時の能力低下を抑制することを特徴としている。以下、温度調整弁8の制御について説明する。 Therefore, the second embodiment is characterized in that the temperature control valve 8 is controlled to prevent such condensation while suppressing the capacity decrease during heating operation. Hereinafter, control of the temperature control valve 8 will be described.
 図3は、本発明の実施の形態2に係る空気調和装置における暖房運転時の制御処理の流れを示すフローチャートである。図3に基づいて、実施の形態2の特徴事項である制御装置27が実行する制御処理の流れについて詳細に説明する。なお、暖房運転時はバイパス流量調整弁7は閉じられ、バイパス配管23には冷媒が流れないようになっている。
 まず、空気調和装置を操作するためのリモコン(図示せず)のスイッチがユーザによりONされると、圧縮機1が駆動を開始する。圧縮機1が駆動されることで暖房運転が開始される(ステップS11)。
FIG. 3 is a flowchart showing a flow of control processing during heating operation in the air conditioning apparatus according to Embodiment 2 of the present invention. The flow of control processing executed by the control device 27 which is a feature of the second embodiment will be described in detail based on FIG. During the heating operation, the bypass flow control valve 7 is closed so that the refrigerant does not flow through the bypass pipe 23.
First, when the switch of the remote control (not shown) for operating the air conditioner is turned on by the user, the compressor 1 starts driving. The heating operation is started by driving the compressor 1 (step S11).
 制御装置27は、運転開始から一定時間経過後、制御装置27において結露が生じる可能性があるかを判定する。具体的には、第3温度センサ20で計測された外気温度TH3と、第4温度センサ21で計測された冷却配管40に流入する冷媒の温度(以下、計測温度TH4という)とに基づいて、以下の(3)の条件式を満たす場合には結露する可能性があると判定する。 The control device 27 determines whether condensation may occur in the control device 27 after a predetermined time has elapsed from the start of operation. Specifically, based on the outside air temperature TH3 measured by the third temperature sensor 20 and the temperature of the refrigerant flowing into the cooling pipe 40 measured by the fourth temperature sensor 21 (hereinafter referred to as a measurement temperature TH4), If the following conditional expression (3) is satisfied, it is determined that condensation may occur.
 TH3+α≧TH4   ・・・(3)
 αは、補正値として、制御基板の充電部の周囲構造などにより選定するものとする(ステップS12)。
TH3 + α ≧ TH4 (3)
It is assumed that α is selected as the correction value according to the peripheral structure of the charging unit of the control board or the like (step S12).
 制御装置27は、TH3+αがTH4未満であれば、結露が生じる可能性はないと判定し、温度調整弁8の現在の開度を維持する。一方、TH3+αがTH4以上の場合、制御装置27は、結露が生じる可能性があると判定し、温度調整弁8を以下のように制御する。 If TH3 + α is less than TH4, the control device 27 determines that condensation is not likely to occur, and maintains the current opening degree of the temperature control valve 8. On the other hand, when TH3 + α is equal to or greater than TH4, the control device 27 determines that condensation may occur, and controls the temperature control valve 8 as follows.
 すなわち、まず、上記(3)の条件式の左項から右項を減算して得た温度差DIFF1、つまり「(TH3+α)-TH4」を演算して温度差DIFF1を得る。そして、温度差DIFF1に応じた開度幅ΔLEV2(DIFF1)、温度調整弁8を閉じる旨の弁開度指令を温度調整弁8に出力する(ステップS13)。制御装置27から発せられる具体的な指令開度は以下の(4)式で求める開度となる。 That is, first, the temperature difference DIFF1 obtained by subtracting the right term from the left term of the conditional expression (3), that is, “(TH3 + α) −TH4”, is calculated to obtain the temperature difference DIFF1. Then, an opening width ΔLEV2 (DIFF1) corresponding to the temperature difference DIFF1 and a valve opening command to close the temperature control valve 8 are output to the temperature control valve 8 (step S13). The specific command opening degree issued from the control device 27 is the opening degree obtained by the following equation (4).
 指令開度LEV2=LEV2(NOW)-ΔLEV2(DIFF1)
                            ・・・(4)
 LEV(NOW):現在の温度調整弁8の開度(前回の指令開度に相当)
 ΔLEV2(DIFF1):温度差DIFF1に応じたLEV2の開度幅
Command opening LEV2 = LEV2 (NOW)-ΔLEV2 (DIFF1)
... (4)
LEV (NOW): Current temperature control valve 8 opening (equivalent to previous command opening)
ΔLEV2 (DIFF1): Opening width of LEV2 according to temperature difference DIFF1
 ここで、温度差DIFF1に応じたLEV2の開度幅ΔLEV2(DIFF1)は、温度差DIFF1が大きくなるに連れて大きくなる値であり、温度差DIFF1と開度幅ΔLEV2(DIFF1)との対応関係が予め求められて制御装置27に記憶されている。 Here, the opening width ΔLEV2 (DIFF1) of LEV2 according to the temperature difference DIFF1 is a value that increases as the temperature difference DIFF1 increases, and the correspondence between the temperature difference DIFF1 and the opening width ΔLEV2 (DIFF1) Are stored in the control unit 27 in advance.
 このように、制御装置27は、結露が生じる可能性があると判定した場合、温度差DIFF1に応じた開度幅ΔLEV2(DIFF1)、バイパス流量調整弁7を閉じる。これにより、冷却配管40を通過する冷媒量が減少して温度調整弁8の上流側の圧力及び温度が上昇し、第4温度センサ21で計測される計測温度TH4が上昇する。 Thus, when it is determined that condensation may occur, the control device 27 closes the opening flow width ΔLEV2 (DIFF1) corresponding to the temperature difference DIFF1, and the bypass flow control valve 7. As a result, the amount of refrigerant passing through the cooling pipe 40 decreases, the pressure and temperature on the upstream side of the temperature control valve 8 rise, and the measured temperature TH4 measured by the fourth temperature sensor 21 rises.
 そして、制御装置27は、一定時間経過後に、TH3+αがTH4未満であるかを判定する(ステップS14)。TH3+αがTH4未満となっていない場合には、再度ステップS13に戻り、開度幅ΔLEV2(DIFF1)、バイパス流量調整弁7を閉じる制御を行う。ステップS13及びステップS14の処理を、TH3+αがTH4未満となるまで一定時間間隔で繰り返す。そして、TH3+αがTH4未満となると、制御装置27は、制御基板の充電部が露点温度以上となった判定し、つまり結露の防止が可能と判定し、ステップS15の処理に移行する。 Then, after a predetermined time has elapsed, the control device 27 determines whether TH3 + α is less than TH4 (step S14). If TH3 + α is not smaller than TH4, the process returns to step S13 again to perform control to close the opening width ΔLEV2 (DIFF1) and the bypass flow rate adjusting valve 7. The processes in steps S13 and S14 are repeated at constant time intervals until TH3 + α becomes smaller than TH4. Then, when TH3 + α becomes smaller than TH4, the control device 27 determines that the charging portion of the control board has become equal to or higher than the dew point temperature, that is, determines that condensation can be prevented, and shifts to the process of step S15.
 ステップS15以降では、制御装置27は、ステップS13の処理を実施することでの暖房運転への弊害について、是正処置を行う。つまり、温度調整弁8の開度が絞られることで、室内機50の膨張弁101の開度が絞り不足となる。そして、最終的に温度調整弁8の開度が小さすぎることで流量不足に陥り、十分に暖房能力が発揮できない可能性がある。 In step S15 and subsequent steps, the control device 27 corrects the harmful effects on the heating operation by performing the process of step S13. That is, when the opening degree of the temperature control valve 8 is narrowed, the opening degree of the expansion valve 101 of the indoor unit 50 becomes insufficient. Finally, the opening of the temperature control valve 8 is too small, so that the flow rate may be insufficient, and the heating capacity may not be sufficiently exhibited.
 そこで、制御装置27は、現在の運転状態が暖房能力を十分に発揮できない不暖状態となっているかどうかを判定する(ステップS15)。ここで、不暖状態となっているかどうかの判定は以下のようにして行う。すなわち、以下(1)、(2)及び(3)の全てを満足する場合に不暖状態と判断する。 Therefore, the control device 27 determines whether or not the current operating state is in the unheated state where the heating capacity can not be sufficiently exhibited (step S15). Here, it is determined as follows whether or not it is in the unheated state. That is, when all of the following (1), (2) and (3) are satisfied, it is determined that the heating condition is not reached.
 (1)ユーザ設定温度>室内機吸込み温度(室温)
 (2)圧縮機1の駆動周波数Fが、室温に応じた目標周波数よりも低い。
 (3)第1圧力センサ15で計測した圧力から換算した飽和温度=凝縮温度が目標凝縮温度に到達している。つまり暖房能力が発揮できていると誤認識。
(1) User setting temperature> Indoor unit suction temperature (room temperature)
(2) The driving frequency F of the compressor 1 is lower than the target frequency according to the room temperature.
(3) Saturation temperature converted from the pressure measured by the first pressure sensor 15 = condensation temperature has reached the target condensation temperature. In other words, it is misrecognized that the heating capacity can be demonstrated.
 なお、不暖状態の判定方法はこの方法に限られたものではなく、任意の方法を採用できる。 Note that the method of determining the unheated state is not limited to this method, and any method can be adopted.
 不暖状態となっていない場合は現状の制御を継続して問題ない。このため、制御装置27は、ステップS12に戻り、これまでの制御を繰り返す。一方、不暖状態となっている場合は、不暖状態を解消するため、温度調整弁8を以下のように制御する。 If it is not in the warm state, the current control is continued and there is no problem. Therefore, the control device 27 returns to step S12 and repeats the control so far. On the other hand, in the case of the unheated state, in order to eliminate the unheated state, the temperature control valve 8 is controlled as follows.
 すなわち、室内熱交換器100の出口の過冷却度SCC2に応じた開度幅ΔLEV2(SCC2)だけ温度調整弁8を開く旨の弁開度指令を温度調整弁8に出力する(ステップS16)。過冷却度SCC2は、第1圧力センサ15で計測した高圧圧力の飽和温度TCから第2温度センサ19の計測温度TH5を減算して得られる。制御装置27から発せられる具体的な指令開度LEV2は以下の(5)式で求める開度となる。 That is, a valve opening degree command to open the temperature control valve 8 by an opening width ΔLEV2 (SCC2) corresponding to the subcooling degree SCC2 at the outlet of the indoor heat exchanger 100 is output to the temperature control valve 8 (step S16). The degree of subcooling SCC2 is obtained by subtracting the measured temperature TH5 of the second temperature sensor 19 from the saturation temperature TC of the high pressure measured by the first pressure sensor 15. A specific command opening degree LEV2 issued from the control device 27 is an opening degree obtained by the following equation (5).
 指令開度LEV2=LEV2(NOW)+ΔLEV2(SCC2)
                            ・・・(5)
 LEV(NOW):現在の温度調整弁8の開度(前回の指令開度)
 ΔLEV2(SCC2):過冷却度SCC2に応じたLEV2の開度幅
Command opening LEV2 = LEV2 (NOW) + ΔLEV2 (SCC2)
... (5)
LEV (NOW): Current temperature control valve 8 opening (previous command opening)
ΔLEV2 (SCC2): Opening width of LEV2 according to the degree of subcooling SCC2
 ここで、開度幅ΔLEV2(SCC2)は、過冷却度SCC2が高くなるに連れて大きくなる値であり、過冷却度SCC2と開度幅ΔLEV2(SCC2)との対応関係が予め求められて制御装置27に記憶されている。 Here, the opening degree width ΔLEV2 (SCC2) is a value that increases as the subcooling degree SCC2 increases, and the correspondence relationship between the subcooling degree SCC2 and the opening degree width ΔLEV2 (SCC2) is determined in advance and controlled. It is stored in the device 27.
 このように、過冷却度SCC2に応じた開度幅ΔLEV2(SCC2)、温度調整弁8を開く。これにより、室内熱交換器100に流れる冷媒流量が増加する。そして、制御装置27は、不暖状態が解消されるまで、一定時間間隔でステップS16の処理を繰り返す。そして、不暖状態が解消されると、制御装置27は、ステップS12に戻って同様の処理を繰り返す。 As described above, the temperature control valve 8 is opened by the opening width ΔLEV2 (SCC2) corresponding to the degree of subcooling SCC2. Thereby, the flow rate of the refrigerant flowing to the indoor heat exchanger 100 is increased. Then, the control device 27 repeats the process of step S16 at fixed time intervals until the unheated state is resolved. Then, when the unheated state is eliminated, the control device 27 returns to step S12 and repeats the same processing.
 以上説明したように、本実施の形態2によれば、実施の形態1と同様の効果が得られると共に、温度調整弁8の開度制御により、暖房運転時の結露防止及び暖房能力の低下抑制が可能となる。 As described above, according to the second embodiment, the same effect as that of the first embodiment can be obtained, and the opening control of the temperature control valve 8 prevents condensation during heating operation and suppresses the reduction of the heating capacity. Is possible.
 1 圧縮機、2 オイルセパレータ、3 逆止弁、4 四方弁、5 室外熱交換器、6 過冷却熱交換器、7 バイパス流量調整弁、8 温度調整弁、9 液側開閉弁、10 室外機、11 ガス側開閉弁、12 アキュムレータ、13 返油バイパスキャピラリ、14 返油バイパス用電磁弁、15 第1圧力センサ、18 第1温度センサ、19 第2温度センサ、20 第3温度センサ、21 第4温度センサ、23 バイパス配管、24 接続点、25 接続点、26 液配管、27 制御装置、30 返油バイパス回路、40 冷却配管、50 室内機、50a 室内機、50b 室内機、100a 室内熱交換器、100b 室内熱交換器、101a 膨張弁、101b 膨張弁、102a 制御装置、102b 制御装置、103a 第5温度センサ、103b 第5温度センサ、204 ガス配管、205 液配管、206a ガス枝管、206b ガス枝管、207a 液枝管、207b 液枝管。 Reference Signs List 1 compressor, 2 oil separator, 3 check valve, 4 four-way valve, 5 outdoor heat exchanger, 6 subcooling heat exchanger, 7 bypass flow control valve, 8 temperature control valve, 9 liquid side on-off valve, 10 outdoor unit , 11 gas side open / close valve, 12 accumulator, 13 oil return bypass capillary, 14 solenoid valve for oil return, 15 first pressure sensor, 18 first temperature sensor, 19 second temperature sensor, 20 third temperature sensor, 21 first 4 temperature sensor, 23 bypass piping, 24 connection points, 25 connection points, 26 fluid piping, 27 control devices, 30 oil return bypass circuit, 40 cooling piping, 50 indoor units, 50a indoor units, 50b indoor units, 100a indoor heat exchange , 100b indoor heat exchanger, 101a expansion valve, 101b expansion valve, 102a controller, 102b controller, 03a fifth temperature sensor, 103b fifth temperature sensor, 204 a gas pipe, 205 liquid pipe, 206a gas branch pipe, 206 b gas branch pipe, 207a liquid branch pipes, 207b liquid branch pipe.

Claims (5)

  1.  圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器とが配管で接続されて冷媒が循環する冷媒回路と、
     前記冷媒回路を制御する制御装置と、
     前記室外熱交換器と前記膨張弁との間から分岐して前記圧縮機の吸入側に接続されたバイパス配管と、
     前記バイパス配管に設けられたバイパス流量調整弁と、
     前記室外熱交換器と前記膨張弁との間の冷媒と前記バイパス配管の前記バイパス流量調整弁の下流の冷媒とを熱交換する過冷却熱交換器と、
     前記室外熱交換器と前記過冷却熱交換器との間の前記配管のうち、前記制御装置が接触して配置されて前記制御装置を冷却する冷却配管と、
     前記室外熱交換器と前記冷却配管との間に設けられ、前記冷却配管を通過する冷媒の温度を調整する温度調整弁とを備え、
     前記制御装置は、冷房運転時において前記制御装置の発熱部の温度が予め設定された基準値未満となるように前記温度調整弁を制御すると共に、前記過冷却熱交換器の出口の過冷却度が予め設定された設定値を上回るように前記バイパス流量調整弁を制御する空気調和装置。
    A refrigerant circuit in which a compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are connected by piping to circulate a refrigerant;
    A controller for controlling the refrigerant circuit;
    A bypass pipe branched from between the outdoor heat exchanger and the expansion valve and connected to the suction side of the compressor;
    A bypass flow control valve provided in the bypass pipe;
    A subcooling heat exchanger that exchanges heat between the refrigerant between the outdoor heat exchanger and the expansion valve and the refrigerant downstream of the bypass flow control valve of the bypass pipe;
    Among the pipes between the outdoor heat exchanger and the subcooling heat exchanger, a cooling pipe which is disposed in contact with the control device to cool the control device;
    And a temperature control valve provided between the outdoor heat exchanger and the cooling pipe, for adjusting the temperature of the refrigerant passing through the cooling pipe.
    The control device controls the temperature control valve so that the temperature of the heat generating portion of the control device becomes lower than a preset reference value during cooling operation, and the degree of supercooling of the outlet of the subcooling heat exchanger An air conditioner controlling the bypass flow control valve so that the value exceeds a preset set value.
  2.  前記制御装置は、前記発熱部の温度が前記基準値以上の場合、前記温度調整弁の開度を絞る動作を、前記発熱部の温度が前記基準値未満となるまで繰り返し行い、
     前記発熱部の温度が前記基準値未満となり、そして、前記過冷却熱交換器の出口の前記過冷却度が前記設定値以下の場合、前記バイパス流量調整弁の開度を大きくする動作を、前記過冷却度が前記設定値を上回るまで繰り返す請求項1記載の空気調和装置。
    When the temperature of the heat generating portion is equal to or higher than the reference value, the control device repeatedly performs an operation of reducing the opening degree of the temperature control valve until the temperature of the heat generating portion becomes lower than the reference value.
    When the temperature of the heat generating part is less than the reference value, and the degree of subcooling of the outlet of the subcooling heat exchanger is less than the set value, the operation of increasing the opening degree of the bypass flow control valve is The air conditioner according to claim 1, wherein the air conditioning apparatus is repeated until the degree of subcooling exceeds the set value.
  3.  前記冷媒回路における冷媒の流れを切り替えて前記冷房運転と暖房運転とを可能とする四方弁を備え、
     前記制御装置は、前記暖房運転時において前記冷却配管による冷却により前記制御装置で結露が生じないように前記温度調整弁を制御すると共に、前記冷媒回路における運転状態が暖房能力を発揮できない不暖状態とならないように前記温度調整弁を制御する請求項1または請求項2記載の空気調和装置。
    It has a four-way valve that enables the cooling operation and the heating operation by switching the flow of the refrigerant in the refrigerant circuit,
    The control device controls the temperature control valve so that condensation does not occur in the control device due to cooling by the cooling pipe during the heating operation, and the operating condition in the refrigerant circuit can not exhibit the heating capacity. The air conditioning apparatus according to claim 1 or 2, wherein the temperature control valve is controlled so as not to occur.
  4.  前記制御装置は、前記制御装置で結露が生じる可能性がある場合、前記温度調整弁の開度を絞る動作を、結露が生じる可能性が無くなるまで繰り返し行い、
     結露が生じる可能性が無くなり、そして、前記冷媒回路における運転状態が前記不暖状態となっている場合、前記温度調整弁の開度を開く動作を、前記不暖状態が解消されるまで繰り返す請求項3記載の空気調和装置。
    When condensation may occur in the control device, the control device repeatedly performs the operation of reducing the opening degree of the temperature adjustment valve until the possibility of condensation is eliminated.
    If there is no possibility that condensation will occur, and the operating condition in the refrigerant circuit is the unwarmed condition, the operation of opening the opening degree of the temperature control valve is repeated until the unheated condition is eliminated. The air conditioner according to Item 3.
  5.  外気温度を計測する外気温度センサと、
     前記暖房運転時に前記冷却配管に流入する冷媒の温度を計測する冷却冷媒温度センサとを備え、
     前記制御装置は、前記外気温度センサの計測温度と前記冷却冷媒温度センサの計測温度とに基づいて前記制御装置で結露が生じる可能性があるかどうかを判定する請求項4記載の空気調和装置。
    An outside air temperature sensor that measures the outside air temperature,
    A cooling refrigerant temperature sensor that measures the temperature of the refrigerant flowing into the cooling pipe during the heating operation;
    The air conditioning apparatus according to claim 4, wherein the control device determines whether condensation may occur in the control device based on the temperature measured by the outside air temperature sensor and the temperature measured by the cooling refrigerant temperature sensor.
PCT/JP2017/033930 2017-09-20 2017-09-20 Air conditioner WO2019058464A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/033930 WO2019058464A1 (en) 2017-09-20 2017-09-20 Air conditioner
DE112017008064.9T DE112017008064T5 (en) 2017-09-20 2017-09-20 air conditioning
JP2019542874A JP6785980B2 (en) 2017-09-20 2017-09-20 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/033930 WO2019058464A1 (en) 2017-09-20 2017-09-20 Air conditioner

Publications (1)

Publication Number Publication Date
WO2019058464A1 true WO2019058464A1 (en) 2019-03-28

Family

ID=65811096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033930 WO2019058464A1 (en) 2017-09-20 2017-09-20 Air conditioner

Country Status (3)

Country Link
JP (1) JP6785980B2 (en)
DE (1) DE112017008064T5 (en)
WO (1) WO2019058464A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044547A1 (en) * 2019-09-04 2021-03-11 ダイキン工業株式会社 Compressor unit and refrigeration device
JPWO2021044548A1 (en) * 2019-09-04 2021-03-11
JP7514393B2 (en) 2020-12-31 2024-07-10 広東美的制冷設備有限公司 Air conditioner, control method, and computer-readable storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134640A (en) * 1997-07-24 1999-02-09 Denso Corp Vehicle air conditioner
JPH11325639A (en) * 1998-05-20 1999-11-26 Mitsubishi Electric Corp Air conditioner
JP2007198638A (en) * 2006-01-25 2007-08-09 Hitachi Ltd Refrigerating device and its operation control method
JP2009085526A (en) * 2007-10-01 2009-04-23 Daikin Ind Ltd Air conditioner
JP2014102050A (en) * 2012-11-21 2014-06-05 Daikin Ind Ltd Refrigeration device
JP2015040680A (en) * 2013-08-23 2015-03-02 三菱電機株式会社 Air conditioner
WO2017145276A1 (en) * 2016-02-24 2017-08-31 三菱電機株式会社 Air conditioning device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134640A (en) * 1997-07-24 1999-02-09 Denso Corp Vehicle air conditioner
JPH11325639A (en) * 1998-05-20 1999-11-26 Mitsubishi Electric Corp Air conditioner
JP2007198638A (en) * 2006-01-25 2007-08-09 Hitachi Ltd Refrigerating device and its operation control method
JP2009085526A (en) * 2007-10-01 2009-04-23 Daikin Ind Ltd Air conditioner
JP2014102050A (en) * 2012-11-21 2014-06-05 Daikin Ind Ltd Refrigeration device
JP2015040680A (en) * 2013-08-23 2015-03-02 三菱電機株式会社 Air conditioner
WO2017145276A1 (en) * 2016-02-24 2017-08-31 三菱電機株式会社 Air conditioning device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021044547A1 (en) * 2019-09-04 2021-03-11 ダイキン工業株式会社 Compressor unit and refrigeration device
JPWO2021044548A1 (en) * 2019-09-04 2021-03-11
JPWO2021044547A1 (en) * 2019-09-04 2021-03-11
WO2021044548A1 (en) * 2019-09-04 2021-03-11 ダイキン工業株式会社 Compressor unit and refrigeration device
CN114341570A (en) * 2019-09-04 2022-04-12 大金工业株式会社 Compressor unit and refrigeration device
CN114364932A (en) * 2019-09-04 2022-04-15 大金工业株式会社 Compressor unit and refrigeration device
JP7528099B2 (en) 2019-09-04 2024-08-05 ダイキン工業株式会社 Compressor unit and refrigeration device
JP7514393B2 (en) 2020-12-31 2024-07-10 広東美的制冷設備有限公司 Air conditioner, control method, and computer-readable storage medium

Also Published As

Publication number Publication date
JPWO2019058464A1 (en) 2020-03-26
DE112017008064T5 (en) 2020-06-18
JP6785980B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
US10323862B2 (en) Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
US8096139B2 (en) Refrigerant system with variable speed drive
JP5182358B2 (en) Refrigeration equipment
JP4411870B2 (en) Refrigeration equipment
KR100766177B1 (en) Method for controlling operating of air conditioner
WO2009119023A1 (en) Freezing apparatus
US10955160B2 (en) Air conditioner including a plurality of utilization units connected in parallel to a heat source unit
JP5341622B2 (en) Air conditioner
JP2004340470A (en) Refrigeration unit
JP2005156017A (en) Air conditioner
EP1431677B1 (en) Air conditioner
WO2018193537A1 (en) Air conditioner and control method for fan speed of air conditioner
WO2019058464A1 (en) Air conditioner
US20100307177A1 (en) Rapid compressor cycling
JP4105413B2 (en) Multi-type air conditioner
JP2007003015A (en) Refrigerating device
JP7241866B2 (en) refrigeration cycle equipment
JP2003222368A (en) Air conditioner and method of controlling the same
JP2017067320A (en) Air conditioner
JP2020070994A (en) Refrigeration device
KR20000047501A (en) Control method for electro-drive expansion valve
JPH1038421A (en) Refrigerating cycle
WO2022054584A1 (en) Air conditioning apparatus
JP2005283078A (en) Air conditioner
KR100637672B1 (en) Control method of air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542874

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17926306

Country of ref document: EP

Kind code of ref document: A1