WO2017145276A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2017145276A1
WO2017145276A1 PCT/JP2016/055348 JP2016055348W WO2017145276A1 WO 2017145276 A1 WO2017145276 A1 WO 2017145276A1 JP 2016055348 W JP2016055348 W JP 2016055348W WO 2017145276 A1 WO2017145276 A1 WO 2017145276A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
cooler
heat exchanger
power converter
Prior art date
Application number
PCT/JP2016/055348
Other languages
French (fr)
Japanese (ja)
Inventor
喜浩 谷口
▲高▼田 茂生
真作 楠部
貴彦 小林
万誉 篠崎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/055348 priority Critical patent/WO2017145276A1/en
Priority to EP16891433.1A priority patent/EP3421902B1/en
Priority to JP2018501460A priority patent/JP6689359B2/en
Publication of WO2017145276A1 publication Critical patent/WO2017145276A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/20Electric components for separate outdoor units
    • F24F1/24Cooling of electric components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor

Definitions

  • the present invention relates to an air conditioner using a refrigerant, and more particularly to a technique for radiating heat loss generated by components of a power conversion device that drives a compressor and a fan.
  • an air conditioning apparatus shall also contain the other cooling-heat apparatus using a refrigerant
  • An air conditioner that performs a refrigeration cycle often uses a compressor that compresses a refrigerant and a fan that generates air to exchange heat with the outside air via a heat exchanger.
  • An electric motor is generally used for rotationally driving the compressor and the fan, and a power converter is used to control the operation of the electric motor. Since driving of the power converter is accompanied by heat generation of components such as a power module constituting the power converter, it is necessary to cool the power converter so as not to cause an abnormally high temperature.
  • heat sinks with fins attached to a controller that encloses a power converter in an air conditioner are brought into close contact with the heat dissipation surface of the power converter component parts, and heat loss is transferred to the air for release and heat exchange.
  • air cooling method in which cooling is performed using the wind on the secondary side of the vessel.
  • refrigerant cooling system in which a pipe for passing a refrigerant used in the refrigeration cycle and a heat radiating surface of a power converter component are brought into close contact with each other through a plate to transmit heat loss to the refrigerant.
  • the refrigerant cooling method even when the compressor is not driven, the wind passes through the finned heat sink as long as the fan is driven. Therefore, it is possible to cool the heat generated by the power converter component that drives the fan. is there.
  • the refrigerant for cooling does not flow to the refrigerant cooler when the compressor is not driven. Therefore, for example, when the power converter that rotates the fan is driven, the power converter component may exceed the heat-resistant temperature range due to the generated heat loss.
  • Japanese Patent No. 5125355 (pages 5-7, FIGS. 2 and 3)
  • Patent Document 1 radiates heat loss generated in a state where the compressor is not driven to the atmosphere through piping and plates constituting the refrigerant cooler. Therefore, it is necessary to design the piping and plate surface area in advance in consideration of the maximum heat loss and the operating environment temperature so that the generated heat loss can be sufficiently dissipated, making the configuration of the refrigerant cooler complex, increasing the size, material costs, etc. Increasing processing costs is an issue.
  • the present invention has been made in response to the above problems, and its main object is to use a refrigerant cooler having the simplest possible structure and the smallest possible size even when the compressor of the air conditioner is not driven.
  • the heat generation (also referred to as loss heat) of the components of the power conversion device can be cooled.
  • One aspect of the air conditioner of the present invention is a refrigeration cycle in which a compressor driven by an electric motor, a use side heat exchanger, at least one expansion device, and a heat source side heat exchanger are connected by piping, and refrigerant circulates.
  • a refrigerant circuit that performs the operation, a power converter that supplies driving force to the electric motor, and a refrigerant cooler that distributes the refrigerant flowing through the refrigerant circuit and causes the refrigerant to absorb heat from the components of the power converter
  • the refrigerant cooler includes a heat radiating plate and a heat radiating pipe through which the refrigerant flows, and the heat radiating pipe includes a refrigerant inlet pipe, a refrigerant outlet pipe, and the refrigerant inlet pipe.
  • At least one bent portion connecting the refrigerant outlet pipe, the component of the power converter is in surface contact with one surface of the plate, and the heat radiating pipe is on the other surface of the plate Contacted Ri, the above the contact portion between the components of the refrigerant cooler and the power converter, a path of the heat source-side heat exchanger has to be positioned, is intended.
  • the air conditioner described above can cool the heat generated by the components of the power converter by circulating the refrigerant used in the refrigeration cycle through the refrigerant cooler.
  • the components of the power converter and the refrigerant cooler are brought into surface contact so that the thermal resistance is reduced, and the pipes constituting the refrigerant cooler are provided with bent portions so that the liquid refrigerant can easily stay.
  • the positional relationship between the refrigerant cooler and the heat exchanger is configured such that the path of the heat source side heat exchanger exists above the contact portion between the refrigerant cooler and the components of the power converter. For this reason, even when the compressor is not driven, the refrigerant remaining in the refrigerant cooler can be moved between the heat source side heat exchanger by natural convection. Therefore, the components of the power converter can be cooled without complicating the configuration of the refrigerant cooler and with a smaller size than the conventional one.
  • FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • the air conditioner of Embodiment 1 includes a compressor 1, a four-way valve 2, a use side heat exchanger 3, a use side expansion device 4a, a heat source side expansion device 4b, a heat source side heat exchanger 5, and an accumulator 14 as refrigerant piping.
  • the refrigerant circuit 17 is connected.
  • each heat exchanger 3 and 5 is equipped with the fans 3a and 5a which usually send air to each heat exchanger 3 and 5, as shown in FIG.
  • the accumulator 14 is provided, but the accumulator 14 is not necessarily required in the present invention.
  • a refrigerant cooler 6 is arranged in the refrigerant circuit between the use side expansion device 4a and the heat source side expansion device 4b. The refrigerant cooler 6 will be described in detail later.
  • the compressor 1 and the fans 3 a and 5 a are each driven by an electric motor, and these electric motors are driven by a power converter 7.
  • the power conversion device 7 includes components such as a power semiconductor, a reactor, a coil, a cement resistor, a power relay, and a transformer that are heat sources. These heat sources generate heat loss due to switching loss, Joule heat, and iron loss. Therefore, when there is no heat radiator, it may become high temperature of 100 degreeC or more, and it may exceed the heat resistance temperature of the insulation seed
  • the components of the power conversion device 7 are collectively denoted by reference numeral 8, and the compressor component of the power conversion device 7 is denoted by reference numeral 8a and the fan component is denoted by 8b.
  • the power converter component parts 8, 8 a, 8 b are arranged on the power converter sheet metal 71.
  • the power converter sheet metal 71 is preferably attached to the refrigerant cooler 6 via the heat transfer members 13, 13a, 13b.
  • the refrigerant cooler 6 includes a first plate 16 on the side to which the component 8 of the power converter is fixed, and a second plate 9 to which the pipe through which the refrigerant flows is fixed. It has.
  • coolant cooler 6 flows is comprised by the refrigerant
  • thermal radiation members 18 and 19 between the 1st plate 16 and the 2nd plate 9, and between the 1st plate 16 and the power converter device metal plate 71, respectively.
  • heat radiating members 18 and 19 include a heat radiating sheet and a heat radiating grease.
  • the component 8 of the power converter mounted on the power converter sheet metal 71 is disposed so as to be in surface contact with the first plate 16 via the power converter sheet metal 71. Heat exchange is performed with the component 8. The heat of the first plate 16 is transferred to the second plate 9, and further the heat of the second plate 9 is transferred to the refrigerant therein through a pipe constituting the refrigerant cooler 6.
  • the refrigerant cooler 6 brings the second plate 9 and the pipe through which the refrigerant in the refrigerant circuit flows into contact with each other so that the thermal resistance is small. Therefore, it fixes so that the refrigerant
  • more than half of the peripheral surfaces of the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11 are in contact with the second plate 9.
  • a groove is formed in the second plate 9, and the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11 are inserted into the groove.
  • the second plate 9 and the first plate 16 of the refrigerant cooler 6 are made of a metal having good thermal conductivity such as aluminum or copper.
  • the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11 constituting the refrigerant cooler 6 are made of a metal having good thermal conductivity such as aluminum and copper.
  • the contact may be made by brazing or pressure welding, or through a heat radiation sheet or heat radiation grease. From the viewpoint of service, it is better to configure the second plate 9 and the first plate 16 so that they can be brought into contact with each other via a heat dissipation sheet or heat dissipation grease, which is a heat dissipation member, and removed.
  • the component 8 of the power converter can be cooled by bringing the surface of the component 8 of the power converter 8 that generates heat into thermal contact with the first plate 16. At this time, it is preferable that the components 8 are brought into contact with each other via a heat dissipating sheet or a heat dissipating member 19 of heat dissipating grease so that the component 8 can be removed.
  • the first plate 16 may be omitted, and the power converter component 8 may be directly attached to the second plate 9. By doing so, the thermal resistance can be reduced by the amount of the first plate 16 and the heat radiating member 19.
  • the first plate 16, the second plate 9 and the power converter sheet metal 71 constituting the refrigerant cooler 6 use a fastening member such as a screw, and if necessary, use a fixture or the like to generate vibration or external force. It is preferable to fix so that thermal contact is not lost.
  • FIG. 2 shows a U-shaped configuration in which the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11 are connected by one turn (bending portion).
  • the number of turns of the refrigerant pipe constituting the refrigerant cooler 6 is not limited to one turn, and may be a plurality of turns such as a W shape. By increasing the number of turns, the contact area between the second plate 9 and the pipe through which the refrigerant flows can be increased, and the heat dissipation efficiency can be increased.
  • the purpose of providing a turn in the refrigerant pipe constituting the refrigerant cooler 6 is to make it easier for liquid refrigerant to stay when the compressor is stopped, in addition to the effect of increasing the contact area.
  • the diameter of the pipe may be increased, and the second plate surface in contact with the pipe may be provided with a groove in accordance with the pipe shape. You may employ
  • the refrigerant pipe constituting the refrigerant cooler 6 has one or more bent parts 15 at the lower end part between the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11.
  • the pipe constituting the refrigerant cooler 6 has a U shape having one bent portion 15 at the lower end between the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11.
  • the refrigerant cooler 6 is attached so that the contact portion between the refrigerant cooler 6 and the component 8 of the power conversion device exists below the heat source side heat exchanger path. By doing so, the liquid refrigerant stays in the refrigerant cooler 6, and even if the components of the power conversion device generate heat when the compressor 1 is stopped, thermal contact with the refrigerant cooler 6 can be maintained. The heat generated by the component 8 of the power converter is transferred to the liquid refrigerant.
  • the refrigerant pipe from the refrigerant cooler 6 to the use side heat exchanger 3 is routed as perpendicular to the ground as possible so that the refrigerant can be connected through the shortest path and the refrigerant can easily stay in the refrigerant cooler 6. It is good. However, you may provide the bending part 15 according to the structure of an outdoor unit. In addition, heat can be efficiently and efficiently transferred as the distance between the heat source side heat exchanger 5 and the pipe end 10a of the refrigerant inlet pipe 10 connected thereto or the pipe end 11a of the refrigerant outlet pipe 11 is shorter.
  • the high-temperature and high-pressure refrigerant that has flowed out of the compressor 1 is condensed in the use-side heat exchanger 3, radiates heat to the use side at that time, and further, the refrigerant is brought into a low-temperature low-pressure liquid or gas-liquid two-phase state by the use-side expansion device 4a. Become. Thereafter, the refrigerant becomes low-temperature and low-pressure gas by the heat source side heat exchanger 5, passes through the accumulator 14, and returns to the compressor 1.
  • the refrigerant cooler 6 allows the entire flow rate used in the refrigeration cycle to flow to the piping of the refrigerant cooler 6, where the component 8 of the power converter is cooled.
  • the refrigerant cooler 6 In the cooling by the refrigerant cooler 6, by adjusting the temperature of the refrigerant flowing into the refrigerant cooler 6 on the refrigerant circuit using an electronic expansion valve, a capillary tube, a double tube, an electromagnetic valve, or a thin tube, The cooling capacity of the refrigerant cooler 6 can be adjusted. By doing in this way, lack of cooling capacity and dew condensation can be avoided.
  • the high-temperature and high-pressure refrigerant that has flowed out of the compressor 1 becomes a high-pressure liquid by the heat source side heat exchanger 5 and flows to the piping of the refrigerant cooler 6 to cool the components of the power converter and to the use side heat exchanger 3 side. Sent.
  • the refrigerant becomes a low-temperature and low-pressure liquid by the use-side expansion device 4a, exchanges heat in the use-side heat exchanger 3 to become a low-temperature and low-pressure gas, and returns to the compressor 1 through the accumulator 14.
  • the piping of the refrigerant cooler 6 passes the entire flow rate of the refrigerant used in the refrigeration cycle, and cools the component 8 of the power converter.
  • the cooling capacity of the refrigerant cooler 6 can be adjusted. By doing in this way, lack of cooling capacity and dew condensation can be avoided.
  • the snow sensor operation mode (1) is a mode in which only the fan 5a for the heat source side heat exchanger 5 is driven while the compressor 1 is stopped so that the snow does not accumulate or the accumulated snow is blown away. Since the power conversion device that drives the fan 5a operates, heat loss of the component 8b of the power conversion device occurs.
  • the inverter overheating operation mode (2) when the refrigerant is accumulated in the compressor 1 while the outdoor unit is stopped, the compressor 1 is heated to gasify the liquid refrigerant in the compressor 1. This is an operation in which the motor winding in the compressor 1 is energized and heated without rotating the compressor 1. Also at this time, since the power conversion device operates, heat loss of the component 8a of the power conversion device is generated.
  • the operation mode of driving a compressor connected to another system in (3) is, for example, a first system provided with a refrigerant cooler 6 that cools the power converter for trial operation or operation check of the air conditioner.
  • a compressor connected to another second system is driven using the power conversion device used in the first system, the refrigerant does not circulate in the first system where the compressor is not driven.
  • Equipment components generate heat loss.
  • the heat loss can be efficiently radiated by moving the gas refrigerant into the path of the heat source side heat exchanger 5.
  • the refrigerant that has dissipated the heat becomes liquid refrigerant 33 and repeats the natural circulation of returning to the refrigerant cooler 6 by gravity through the inner wall surface 34 of the pipe.
  • the gasified refrigerant may release the heat loss from the pipe surface before reaching the heat source side heat exchanger 5 and return to the liquid. Since it returns to the refrigerant cooler 6, continuous cooling is possible.
  • the fan 5a is driven to allow the wind to flow, the heat exchange capability in the heat source side heat exchanger 5 is improved, so that the gas refrigerant can be efficiently changed to the liquid refrigerant. Furthermore, when the component 8 of the power conversion device is generating heat by driving the fan 5a, the heat source side heat exchanger 5 is in a forced air cooling state, so that the lost heat is more efficiently transferred to the outside air. Has the effect of releasing. These effects can also be obtained in embodiments described later.
  • FIG. FIG. 5 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 2 of the present invention.
  • the air conditioner of Embodiment 2 is basically the same as that of Embodiment 1, and is different from Embodiment 1 in the following points. That is, there is no heat source side expansion device, branching from the refrigerant circuit 17 between the heat source side heat exchanger 5 and the use side expansion device 4a, and the suction side of the compressor 1 (if the accumulator 14 is provided, the accumulator is A bypass circuit 17A is provided which leads to the suction side of the compressor 1).
  • the refrigerant cooler 6 similar to Embodiment 1 is installed in the middle of the bypass circuit 17A, and the bypass throttle device 4c and the bypass throttle device 4d are provided before and after the refrigerant cooler 6. is there.
  • the configuration of the refrigerant cooler 6 and the mounting position of the refrigerant cooler 6 may be the same as those in the first embodiment.
  • a heating operation operation of the air-conditioning apparatus will be described.
  • the high-temperature and high-pressure refrigerant that has flowed out of the compressor 1 is condensed in the use side heat exchanger 3 and radiated to the use side. Thereafter, the refrigerant becomes a low-temperature low-pressure liquid or a gas-liquid two-phase state by the use side expansion device 4a, and further becomes a low-temperature low-pressure gas by the heat source side heat exchanger 5, and returns to the compressor 1 through the accumulator 14.
  • the refrigerant cooler 6 branches the refrigerant from any position between the use side expansion device 4a and the heat source side heat exchanger 5 in the refrigerant circuit 17, and converts power through the refrigerant after passing through the bypass expansion device 4c.
  • the component 8 of the device is cooled.
  • the refrigerant that has passed through the refrigerant cooler 6 is further throttled by the bypass throttle device 4d and enters the accumulator 14 on the low pressure side.
  • the bypass expansion devices 4c and 4d to control the intermediate pressure, it is possible to avoid insufficient cooling capacity and condensation.
  • an electronic expansion valve, a capillary tube, a double tube, a solenoid valve, a thin tube, or the like can be used as the throttling device.
  • the high-temperature and high-pressure refrigerant that has flowed out of the compressor 1 becomes a high-pressure liquid by the heat source side heat exchanger 5 and is sent to the use side heat exchanger 3 side.
  • the refrigerant that has become a low-temperature and low-pressure liquid by the use-side expansion device 4a exchanges heat in the use-side heat exchanger 3, becomes a low-temperature and low-pressure gas, returns to the compressor 1 through the accumulator 14.
  • a part of the refrigerant that has exited the heat source side heat exchanger 5 flows through the bypass circuit 17A according to the throttle amount of the bypass throttle devices 4c and 4d, and flows to the pipe of the refrigerant cooler 6.
  • the refrigerant that has passed through the refrigerant cooler 6 cools the component 8 of the power converter, and then returns to the compressor 1 through the bypass expansion device 4d and the accumulator 14.
  • the bypass expansion devices 4c and 4d to control the intermediate pressure, it is possible to avoid insufficient cooling capacity and condensation.
  • an electronic expansion valve, a capillary tube, a double tube, a solenoid valve, a thin tube, or the like can be used as the throttling device.
  • Cooling of the component 8 of the power conversion device during the operations (1) to (3) described in the second embodiment is performed as follows.
  • the heat loss is absorbed by the liquid refrigerant remaining in the pipe constituting the refrigerant cooler 6, and the refrigerant changes its state to become gas. Since the specific gravity of the refrigerant turned into gas is smaller than that of air, it rises through the bypass circuit 17 ⁇ / b> A and the refrigerant circuit 17 and reaches the heat source side heat exchanger 5.
  • the gas refrigerant that has moved into the path of the heat source side heat exchanger 5 dissipates lost heat and becomes liquid refrigerant.
  • the liquid refrigerant repeats the natural circulation of returning to the refrigerant cooler 6 through the refrigerant circuit 17 and the bypass circuit 17A due to gravity. Thereby, even when the compressor 1 is stopped, it is possible to dissipate heat by moving the heat loss of the component 8 of the power converter to the heat source side heat exchanger 5.
  • the front-stage bypass expansion device 4c is located between the refrigerant cooler 6 and the heat source side heat exchanger 5, it is necessary to open the refrigerant circulation.
  • the downstream bypass throttle device 4d is connected to a path leading to the suction side of the compressor 1 or the inlet of the accumulator 14, it is preferably closed in order to continuously cool the refrigerant.
  • FIG. 6 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the liquid refrigerant and the gas refrigerant move in the same pipe to move the heat.
  • the configuration of FIG. By changing the path, the refrigerant in the refrigerant cooler 6 can be circulated efficiently.
  • the configuration of the air-conditioning apparatus of the third embodiment, and heating and cooling operations are basically the same as those of the first embodiment, and are different from the first embodiment in the following points.
  • a bypass circuit 17B which branches from the refrigerant circuit 17 between the refrigerant cooler 6 and the use side expansion device 4a and reaches the inlet of the heat source side heat exchanger for the refrigerant during the cooling operation.
  • a bypass throttle device 42 is provided in the middle of the bypass circuit 17B.
  • An on-off valve that shuts off the refrigerant flow in the middle of the refrigerant circuit between the connection point between the bypass circuit 17B and the refrigerant inlet side of the heat source side heat exchanger 5 and the discharge side of the compressor 1 during the cooling operation. 43 is provided. Note that the configuration of the refrigerant cooler 6 and the mounting position of the refrigerant cooler 6 may be the same as those in the first embodiment.
  • Cooling of the component 8 of the power conversion device during the operations (1) to (3) described above in the third embodiment is performed as follows.
  • the heat loss is absorbed by the liquid refrigerant remaining in the pipe constituting the refrigerant cooler 6, and the refrigerant changes its state to become gas. Since the specific gravity of the refrigerant turned into gas is smaller than that of air, if the expansion device 42 is opened, the gas refrigerant 32 rises through the bypass circuit 17B and reaches the piping in the heat source side heat exchanger 5.
  • a plurality of fins are attached to the heat source side heat exchanger 5 path piping for heat radiation, and a large area for heat radiation to the air is provided.
  • the heat loss is efficiently dissipated by moving the gas refrigerant into the heat source side heat exchanger path, and the gas refrigerant becomes a liquid refrigerant.
  • the liquid refrigerant 33 repeats the natural circulation of returning to the refrigerant cooler 6 through the refrigerant circuit 17 by gravity. Thereby, even when the compressor 1 is stopped, it is possible to dissipate heat by moving the heat loss of the component 8 of the power converter to the heat source side heat exchanger 5.
  • the heat source side expansion device 4b is located between the heat source side heat exchanger 5 and the refrigerant cooler 6, it is necessary to open the refrigerant so that the refrigerant is circulated.
  • the use side expansion device 4a is connected to a path connected to the use side heat exchanger 3, it is preferable to close the use side expansion device 4a in order to continuously cool the refrigerant. Further, when the refrigerant flowing through the bypass circuit 17B moves toward the inlet side of the accumulator 14 or the suction side of the compressor 1 during heating and toward the discharge side of the compressor 1 during cooling, the on-off valve 43 is closed. It is good to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A refrigerant cooler disposed in the refrigerant circuit of a refrigeration cycle has: a plate for radiating heat; and piping for radiating heat, through which a refrigerant flows. The piping for radiating heat has refrigerant inlet piping, refrigerant outlet piping, and at least one bend which connects the refrigerant inlet piping and the refrigerant outlet piping. A component which constitutes an electric power conversion device is in surface contact with one surface of the plate, and the piping for radiating heat is in surface contact with the other surface of the plate. A pass for a heat source-side heat exchanger is located above the portion where the refrigerant cooler and the component which constitutes the electric power conversion device are in contact with each other.

Description

空気調和装置Air conditioner
 この発明は、冷媒を用いた空気調和装置に係り、特に圧縮機やファンを駆動する電力変換装置の構成部品が発生する損失熱を放熱させる技術に関する。なお、本願において空気調和装置は、冷媒及び圧縮機を用いた他の冷熱装置も含むものとする。 The present invention relates to an air conditioner using a refrigerant, and more particularly to a technique for radiating heat loss generated by components of a power conversion device that drives a compressor and a fan. In addition, in this application, an air conditioning apparatus shall also contain the other cooling-heat apparatus using a refrigerant | coolant and a compressor.
 冷凍サイクルを行う空気調和装置は、冷媒を圧縮する圧縮機と、熱交換器を介して外気と熱交換させるための風を発生させるファンとを使用することが多い。これら圧縮機とファンの回転駆動のためには一般的に電動機が用いられ、その電動機の運転を制御するためには電力変換装置が使用される。電力変換装置の駆動には、電力変換装置を構成しているパワーモジュール等の構成部品の発熱が伴うため、異常高温とならないように、冷却することが必要である。 An air conditioner that performs a refrigeration cycle often uses a compressor that compresses a refrigerant and a fan that generates air to exchange heat with the outside air via a heat exchanger. An electric motor is generally used for rotationally driving the compressor and the fan, and a power converter is used to control the operation of the electric motor. Since driving of the power converter is accompanied by heat generation of components such as a power module constituting the power converter, it is necessary to cool the power converter so as not to cause an abnormally high temperature.
 従来の冷却方式として、空気調和装置における電力変換装置を内包する制御器に取り付けたフィン付きヒートシンクに、電力変換装置構成部品の放熱面を密着させ、損失熱を空気へ伝達して放出し熱交換器2次側の風を利用して冷却する空冷方式がある。また、冷凍サイクルに用いる冷媒を通流する配管と電力変換装置構成部品の放熱面とを、プレートを介して密着させ、損失熱を冷媒に伝達する冷媒冷却方式もある。 As a conventional cooling method, heat sinks with fins attached to a controller that encloses a power converter in an air conditioner are brought into close contact with the heat dissipation surface of the power converter component parts, and heat loss is transferred to the air for release and heat exchange. There is an air cooling method in which cooling is performed using the wind on the secondary side of the vessel. There is also a refrigerant cooling system in which a pipe for passing a refrigerant used in the refrigeration cycle and a heat radiating surface of a power converter component are brought into close contact with each other through a plate to transmit heat loss to the refrigerant.
 上記空冷方式では、圧縮機が駆動していない状態においてもファンが駆動している限りフィン付きヒートシンクを風が通過するため、ファンを駆動させる電力変換装置構成部品の発熱を冷却することが可能である。
 これに対して冷媒冷却方式は、圧縮機が駆動していない状態では、冷却のための冷媒が冷媒冷却器へ通流しない。そのため、例えば、ファンを回転させる電力変換装置を駆動した場合、発生する損失熱によって電力変換装置構成部品が、その耐熱温度範囲を上回り破壊する可能性がある。これに対応するため、電力変換装置構成部品の放熱面にある冷媒配管を電装品箱の外方で屈曲させ、その上下方向で放熱を阻害するものがないようにして、冷媒が流れていない状態で、折曲部からの自然放熱を促進するようにしたものがある(例えば、特許文献1)。
In the above air cooling method, even when the compressor is not driven, the wind passes through the finned heat sink as long as the fan is driven. Therefore, it is possible to cool the heat generated by the power converter component that drives the fan. is there.
On the other hand, in the refrigerant cooling method, the refrigerant for cooling does not flow to the refrigerant cooler when the compressor is not driven. Therefore, for example, when the power converter that rotates the fan is driven, the power converter component may exceed the heat-resistant temperature range due to the generated heat loss. In order to cope with this, the refrigerant pipe on the heat radiation surface of the power converter component is bent outside the electrical component box so that there is no obstacle to heat radiation in the vertical direction, and no refrigerant flows Thus, there is one that promotes natural heat dissipation from the bent portion (for example, Patent Document 1).
特許第5125355号公報(第5―7頁、第2図、第3図)Japanese Patent No. 5125355 (pages 5-7, FIGS. 2 and 3)
 しかし、特許文献1の構成は、圧縮機が駆動していない状態において発生する損失熱を、冷媒冷却器を構成する配管やプレートを介して大気へ放熱するものである。従って、発生する損失熱が十分放熱できるよう最大損失熱および使用環境温度を考慮して配管やプレート表面積を予め設計する必要があり、冷媒冷却器の構成の複雑化、サイズの増大、材料費や加工費の増加が課題となっている。 However, the configuration of Patent Document 1 radiates heat loss generated in a state where the compressor is not driven to the atmosphere through piping and plates constituting the refrigerant cooler. Therefore, it is necessary to design the piping and plate surface area in advance in consideration of the maximum heat loss and the operating environment temperature so that the generated heat loss can be sufficiently dissipated, making the configuration of the refrigerant cooler complex, increasing the size, material costs, etc. Increasing processing costs is an issue.
 この発明は上記の課題に対応してなされたもので、その主目的は、空気調和装置の圧縮機が駆動していない状態においても、できるだけ簡易な構成及びできるだけ小さなサイズの冷媒冷却器を利用して、電力変換装置の構成部品の発熱(損失熱ともいう)を冷却できるようにするものである。 The present invention has been made in response to the above problems, and its main object is to use a refrigerant cooler having the simplest possible structure and the smallest possible size even when the compressor of the air conditioner is not driven. Thus, the heat generation (also referred to as loss heat) of the components of the power conversion device can be cooled.
 この発明の空気調和装置の一態様は、電動機で駆動される圧縮機、利用側熱交換器、少なくとも1つの絞り装置、及び熱源側熱交換器が配管で接続され、冷媒が循環して冷凍サイクルが実行される冷媒回路と、前記電動機に駆動力を供給する電力変換装置と、前記冷媒回路を流れる冷媒を流通させて、前記電力変換装置の構成部品の放熱を前記冷媒に吸熱させる冷媒冷却器と、を備え、前記冷媒冷却器は、放熱用のプレートと、冷媒が流れる放熱用の配管とを有し、前記放熱用の配管は、冷媒入口配管、冷媒出口配管、及び前記冷媒入口配管と前記冷媒出口配管とをつなぐ少なくとも1つの曲げ部とを有し、前記プレートの一方の面に前記電力変換装置の構成部品が面接触され、前記プレートの他方の面に前記放熱用の配管が面接触されており、前記冷媒冷却器と前記電力変換装置の構成部品との接触部より上部に、前記熱源側熱交換器のパスが位置するようにした、ものである。 One aspect of the air conditioner of the present invention is a refrigeration cycle in which a compressor driven by an electric motor, a use side heat exchanger, at least one expansion device, and a heat source side heat exchanger are connected by piping, and refrigerant circulates. A refrigerant circuit that performs the operation, a power converter that supplies driving force to the electric motor, and a refrigerant cooler that distributes the refrigerant flowing through the refrigerant circuit and causes the refrigerant to absorb heat from the components of the power converter The refrigerant cooler includes a heat radiating plate and a heat radiating pipe through which the refrigerant flows, and the heat radiating pipe includes a refrigerant inlet pipe, a refrigerant outlet pipe, and the refrigerant inlet pipe. At least one bent portion connecting the refrigerant outlet pipe, the component of the power converter is in surface contact with one surface of the plate, and the heat radiating pipe is on the other surface of the plate Contacted Ri, the above the contact portion between the components of the refrigerant cooler and the power converter, a path of the heat source-side heat exchanger has to be positioned, is intended.
 上記の空気調和装置は、冷媒冷却器に冷凍サイクルで使用する冷媒を流通させて電力変換装置の構成部品の発熱を冷却できる。
 電力変換装置の構成部品と冷媒冷却器とは熱抵抗が小さくなるように面接触され、しかも冷媒冷却器を構成する配管は液冷媒が留まり易いように曲げ部が設けられている。さらに冷媒冷却器と熱交換器の位置関係は、冷媒冷却器と電力変換装置の構成部品との接触部より上部に熱源側熱交換器のパスが存在するように構成している。このため、圧縮機が駆動していない状態においても、冷媒冷却器に留まった冷媒を自然対流により熱源側熱交換器との間で移動させることができる。従って、冷媒冷却器の構成を複雑化することなく、しかも従来よりも小さなサイズで、電力変換装置の構成部品を冷却することができる。
The air conditioner described above can cool the heat generated by the components of the power converter by circulating the refrigerant used in the refrigeration cycle through the refrigerant cooler.
The components of the power converter and the refrigerant cooler are brought into surface contact so that the thermal resistance is reduced, and the pipes constituting the refrigerant cooler are provided with bent portions so that the liquid refrigerant can easily stay. Furthermore, the positional relationship between the refrigerant cooler and the heat exchanger is configured such that the path of the heat source side heat exchanger exists above the contact portion between the refrigerant cooler and the components of the power converter. For this reason, even when the compressor is not driven, the refrigerant remaining in the refrigerant cooler can be moved between the heat source side heat exchanger by natural convection. Therefore, the components of the power converter can be cooled without complicating the configuration of the refrigerant cooler and with a smaller size than the conventional one.
この発明の実施の形態1における空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus in Embodiment 1 of this invention. この発明の実施の形態1における冷媒冷却器の構造を示す図であり、(A)は冷媒配管の設置面側から見た正面図、(B)は(A)を上方から見た平面図である。It is a figure which shows the structure of the refrigerant cooler in Embodiment 1 of this invention, (A) is the front view seen from the installation surface side of refrigerant | coolant piping, (B) is the top view which looked at (A) from the upper direction. is there. 冷媒冷却器の室外機への取り付け状態を示す説明図である。It is explanatory drawing which shows the attachment state to the outdoor unit of a refrigerant cooler. 圧縮機停止状態における、冷媒冷却器と熱交換器との間での冷媒流れの状態を示す説明図である。It is explanatory drawing which shows the state of the refrigerant | coolant flow between a refrigerant cooler and a heat exchanger in a compressor stop state. この発明の実施の形態2における空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus in Embodiment 2 of this invention. この発明の実施の形態3における空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus in Embodiment 3 of this invention.
 実施の形態1.
 図1はこの発明の実施の形態1における空気調和装置の冷媒回路図である。実施の形態1の空気調和装置は、圧縮機1、四方弁2、利用側熱交換器3、利用側絞り装置4a、熱源側絞り装置4b、熱源側熱交換器5、及びアキュムレータ14が冷媒配管で接続された冷媒回路17を有する。また、各熱交換器3,5は、通常は図1に示すように、各熱交換器3,5に空気を送るファン3a,5aを備えている。
 なお、図1では、アキュムレータ14を備えた構成にしているが、アキュムレータ14は本発明において必ずしも必要なものではない。また、利用側絞り装置4aと熱源側絞り装置4bは、いずれか一方だけを使用する場合もある。
 さらに、利用側絞り装置4aと熱源側絞り装置4bとの間の冷媒回路には、冷媒冷却器6を配置している。冷媒冷却器6については後で詳しく説明する。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 1 of the present invention. The air conditioner of Embodiment 1 includes a compressor 1, a four-way valve 2, a use side heat exchanger 3, a use side expansion device 4a, a heat source side expansion device 4b, a heat source side heat exchanger 5, and an accumulator 14 as refrigerant piping. The refrigerant circuit 17 is connected. Moreover, each heat exchanger 3 and 5 is equipped with the fans 3a and 5a which usually send air to each heat exchanger 3 and 5, as shown in FIG.
In FIG. 1, the accumulator 14 is provided, but the accumulator 14 is not necessarily required in the present invention. Further, only one of the use side expansion device 4a and the heat source side expansion device 4b may be used.
Further, a refrigerant cooler 6 is arranged in the refrigerant circuit between the use side expansion device 4a and the heat source side expansion device 4b. The refrigerant cooler 6 will be described in detail later.
 圧縮機1、及びファン3a,5aはそれぞれ電動機により駆動されるが、それらの電動機は電力変換装置7により駆動される。電力変換装置7は、発熱源であるパワー半導体、リアクトル、コイル、セメント抵抗、パワーリレー、トランス等の構成部品を有している。これら発熱源はスイッチング損失やジュール熱、鉄損により損失熱が発生する。そのため放熱器がない場合は100℃以上の高温となる場合があり、部品が備える絶縁種の耐熱温度を超え破壊に至る可能性がある。
 以下では、電力変換装置7の構成部品を総称する場合は符号8で表し、電力変換装置7のうち圧縮機用構成部品は符号8aで、ファン用構成部品は8bでそれぞれ表す。ここでは、電力変換装置の構成部品8,8a,8bは、電力変換装置板金71上に配置されている。電力変換装置板金71は伝熱部材13,13a,13bを介して冷媒冷却器6に取り付けられるのが好ましい。
The compressor 1 and the fans 3 a and 5 a are each driven by an electric motor, and these electric motors are driven by a power converter 7. The power conversion device 7 includes components such as a power semiconductor, a reactor, a coil, a cement resistor, a power relay, and a transformer that are heat sources. These heat sources generate heat loss due to switching loss, Joule heat, and iron loss. Therefore, when there is no heat radiator, it may become high temperature of 100 degreeC or more, and it may exceed the heat resistance temperature of the insulation seed | species with which a component is provided, and may be destroyed.
Hereinafter, the components of the power conversion device 7 are collectively denoted by reference numeral 8, and the compressor component of the power conversion device 7 is denoted by reference numeral 8a and the fan component is denoted by 8b. Here, the power converter component parts 8, 8 a, 8 b are arranged on the power converter sheet metal 71. The power converter sheet metal 71 is preferably attached to the refrigerant cooler 6 via the heat transfer members 13, 13a, 13b.
 図2(A),(B)に示すように、冷媒冷却器6は、電力変換装置の構成部品8が固着される側の第1プレート16、冷媒が流れる配管が固着される第2プレート9を備えている。冷媒冷却器6を構成している冷媒が流れる配管は、冷媒入口配管10と冷媒出口配管11と、それらを接続する曲げ部15とで構成されており、曲げ部15が下端に位置する形状をしている。
 なお、第1プレート16と第2プレート9との間、及び第1プレート16と電力変換装置板金71との間には、放熱部材18,19をそれぞれ設けてもよい。放熱部材18,19としては、例えば放熱シートや放熱グリスがあげられる。
As shown in FIGS. 2A and 2B, the refrigerant cooler 6 includes a first plate 16 on the side to which the component 8 of the power converter is fixed, and a second plate 9 to which the pipe through which the refrigerant flows is fixed. It has. The pipe | tube with which the refrigerant | coolant which comprises the refrigerant | coolant cooler 6 flows is comprised by the refrigerant | coolant inlet piping 10, the refrigerant | coolant outlet piping 11, and the bending part 15 which connects them, and the shape where the bending part 15 is located in a lower end is comprised. is doing.
In addition, you may provide the thermal radiation members 18 and 19 between the 1st plate 16 and the 2nd plate 9, and between the 1st plate 16 and the power converter device metal plate 71, respectively. Examples of the heat radiating members 18 and 19 include a heat radiating sheet and a heat radiating grease.
 電力変換装置板金71に載置された電力変換装置の構成部品8は、電力変換装置板金71を介して第1プレート16と面接触するように配置されており、第1プレートと電力変換装置の構成部品8との間で熱交換が行われる。第1プレート16の熱は第2プレート9へ熱伝達され、さらに第2プレート9の熱は冷媒冷却器6を構成する配管を介してその中の冷媒に熱伝達される。 The component 8 of the power converter mounted on the power converter sheet metal 71 is disposed so as to be in surface contact with the first plate 16 via the power converter sheet metal 71. Heat exchange is performed with the component 8. The heat of the first plate 16 is transferred to the second plate 9, and further the heat of the second plate 9 is transferred to the refrigerant therein through a pipe constituting the refrigerant cooler 6.
 熱伝達効率を向上させるため、冷媒冷却器6は、第2プレート9と冷媒回路中の冷媒を通流する配管とを、熱抵抗が小さいように接触させる。そのために、冷媒入口配管10と冷媒出口配管11とが、第2プレート9とにできるだけ多くの領域で接触するように固定する。好ましくは、冷媒入口配管10と冷媒出口配管11の周囲表面の半分以上が第2プレート9と接触するようする。具体的には、図2(b)に示すように、第2プレート9に溝を形成し、その溝内に冷媒入口配管10と冷媒出口配管11を挿入するとよい。 In order to improve the heat transfer efficiency, the refrigerant cooler 6 brings the second plate 9 and the pipe through which the refrigerant in the refrigerant circuit flows into contact with each other so that the thermal resistance is small. Therefore, it fixes so that the refrigerant | coolant inlet piping 10 and the refrigerant | coolant outlet piping 11 may contact the 2nd plate 9 in as many area | regions as possible. Preferably, more than half of the peripheral surfaces of the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11 are in contact with the second plate 9. Specifically, as shown in FIG. 2B, a groove is formed in the second plate 9, and the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11 are inserted into the groove.
 冷媒冷却器6の第2プレート9や第1プレート16は、アルミ、銅といった熱伝導率のよい金属で構成される。冷媒冷却器6を構成する冷媒入口配管10及び冷媒出口配管11も同様にアルミ、銅といった熱伝導率のよい金属で構成される。熱抵抗を小さくするため、ろう付けや圧接により、あるいは放熱シート、放熱グリスなどを介して接触させてもよい。第2プレート9と第1プレート16とは、放熱部材である放熱シートや放熱グリスを介して接触させ、取り外しできるように構成する方がサービスの観点からは良い。
 第1プレート16には、電力変換装置の構成部品8のうち、発熱を伴うものの表面を熱的に接触させておくことで、電力変換装置の構成部品8を冷却することができる。このとき構成部品8を取り外しできるよう放熱シートや放熱グリスの放熱部材19を介して接触させるのが良い。しかし、熱抵抗が大きくなる場合には、第1プレート16を省き、直接、第2プレート9へ電力変換装置の構成部品8を取り付けてもよい。こうすることで、第1プレート16と放熱部材19の分、熱抵抗を減らすことができる。
 また、冷媒冷却器6を構成する第1プレート16、第2プレート9及び電力変換装置板金71は、ねじなどの締結部材を用いて、必要に応じて固定具等を使用して、振動や外力で熱的な接触が失われないよう固定するのが好ましい。
The second plate 9 and the first plate 16 of the refrigerant cooler 6 are made of a metal having good thermal conductivity such as aluminum or copper. Similarly, the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11 constituting the refrigerant cooler 6 are made of a metal having good thermal conductivity such as aluminum and copper. In order to reduce the thermal resistance, the contact may be made by brazing or pressure welding, or through a heat radiation sheet or heat radiation grease. From the viewpoint of service, it is better to configure the second plate 9 and the first plate 16 so that they can be brought into contact with each other via a heat dissipation sheet or heat dissipation grease, which is a heat dissipation member, and removed.
The component 8 of the power converter can be cooled by bringing the surface of the component 8 of the power converter 8 that generates heat into thermal contact with the first plate 16. At this time, it is preferable that the components 8 are brought into contact with each other via a heat dissipating sheet or a heat dissipating member 19 of heat dissipating grease so that the component 8 can be removed. However, when the thermal resistance increases, the first plate 16 may be omitted, and the power converter component 8 may be directly attached to the second plate 9. By doing so, the thermal resistance can be reduced by the amount of the first plate 16 and the heat radiating member 19.
The first plate 16, the second plate 9 and the power converter sheet metal 71 constituting the refrigerant cooler 6 use a fastening member such as a screw, and if necessary, use a fixture or the like to generate vibration or external force. It is preferable to fix so that thermal contact is not lost.
 次に、冷媒冷却器6を構成する冷媒が流れる配管の形状について説明する。図2に示した例は、冷媒入口配管10と冷媒出口配管11とが、1回のターン(曲げ部)で接続されたU字形状ものを示している。しかし、冷媒冷却器6を構成する冷媒配管のターン数は1ターンに限らず、W字形状のような複数ターンとしてもよい。ターン数を増やすことで、第2プレート9と冷媒が流れる配管との接触面積が増加し、放熱効率を高めることができる。
 なお、冷媒冷却器6を構成する冷媒配管にターンを設ける意図としては、接触面積を増加させる効果と伴に、圧縮機の停止時に液冷媒が留まり易いようにするためである。勿論、接触面積を増加させる効果を得るためであるから、配管の径を大きくし、配管と接触する第2プレート面を配管形状にあわせて溝を設けておいてもよいし、扁平管等の第2プレートとの接触面積を大きくできる形状の配管を採用してもよい。
Next, the shape of the piping through which the refrigerant constituting the refrigerant cooler 6 flows will be described. The example shown in FIG. 2 shows a U-shaped configuration in which the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11 are connected by one turn (bending portion). However, the number of turns of the refrigerant pipe constituting the refrigerant cooler 6 is not limited to one turn, and may be a plurality of turns such as a W shape. By increasing the number of turns, the contact area between the second plate 9 and the pipe through which the refrigerant flows can be increased, and the heat dissipation efficiency can be increased.
The purpose of providing a turn in the refrigerant pipe constituting the refrigerant cooler 6 is to make it easier for liquid refrigerant to stay when the compressor is stopped, in addition to the effect of increasing the contact area. Of course, in order to obtain the effect of increasing the contact area, the diameter of the pipe may be increased, and the second plate surface in contact with the pipe may be provided with a groove in accordance with the pipe shape. You may employ | adopt piping of the shape which can enlarge a contact area with a 2nd plate.
 次に、図3により、冷媒冷却器6の取り付け位置について説明する。空気調和装置の圧縮機停止時は冷媒を強制的に循環させる機構がないため、重力により冷媒冷却器6に液冷媒が留まるようにしている。そのため、冷媒冷却器6を構成する冷媒配管は、冷媒入口配管10と冷媒出口配管11との間の下端部に1以上の曲げ部15を有している。
 図3では、冷媒冷却器6を構成する配管は、冷媒入口配管10と冷媒出口配管11との間の下端に1つの曲げ部15を有したU字形状となっている。さらに、冷媒を多く留めるには、熱源側熱交換器パスの下部に冷媒冷却器6と電力変換装置の構成部品8の接触部が存在するように、冷媒冷却器6を取り付ける。このようにすることで、冷媒冷却器6に液冷媒が留まり、圧縮機1の停止時に電力変換装置の構成部品の発熱があったとしても冷媒冷却器6と熱的な接触が保てることになり、電力変換装置の構成部品8が発生した熱は液冷媒へ伝達される。
Next, the attachment position of the refrigerant cooler 6 will be described with reference to FIG. Since there is no mechanism for forcibly circulating the refrigerant when the compressor of the air conditioner is stopped, the liquid refrigerant stays in the refrigerant cooler 6 by gravity. Therefore, the refrigerant pipe constituting the refrigerant cooler 6 has one or more bent parts 15 at the lower end part between the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11.
In FIG. 3, the pipe constituting the refrigerant cooler 6 has a U shape having one bent portion 15 at the lower end between the refrigerant inlet pipe 10 and the refrigerant outlet pipe 11. Further, in order to retain a large amount of refrigerant, the refrigerant cooler 6 is attached so that the contact portion between the refrigerant cooler 6 and the component 8 of the power conversion device exists below the heat source side heat exchanger path. By doing so, the liquid refrigerant stays in the refrigerant cooler 6, and even if the components of the power conversion device generate heat when the compressor 1 is stopped, thermal contact with the refrigerant cooler 6 can be maintained. The heat generated by the component 8 of the power converter is transferred to the liquid refrigerant.
 また、冷媒冷却器6から利用側熱交換器3までの冷媒配管は、冷媒が最短経路で接続できるよう、かつ冷媒が冷媒冷却器6に留まり易くなるように、大地に対してできるだけ垂直に引き回すのがよい。ただし、室外機の構造に合せて曲げ部15を設けてもよい。
 なお、熱源側熱交換器5とそれに接続されている冷媒入口配管10の配管端部10aまたは冷媒出口配管11の配管端部11aとの距離が、短いほどよく効率的に熱を移動できる。
Further, the refrigerant pipe from the refrigerant cooler 6 to the use side heat exchanger 3 is routed as perpendicular to the ground as possible so that the refrigerant can be connected through the shortest path and the refrigerant can easily stay in the refrigerant cooler 6. It is good. However, you may provide the bending part 15 according to the structure of an outdoor unit.
In addition, heat can be efficiently and efficiently transferred as the distance between the heat source side heat exchanger 5 and the pipe end 10a of the refrigerant inlet pipe 10 connected thereto or the pipe end 11a of the refrigerant outlet pipe 11 is shorter.
 次に、実施の形態1の空気調和装置の暖房運転動作を説明する。圧縮機1から流出した高温高圧冷媒は、利用側熱交換器3にて凝縮され、その際に利用側に放熱し、さらに利用側絞り装置4aにより冷媒は低温低圧液若しくは気液二相状態となる。その後、冷媒は熱源側熱交換器5により低温低圧ガスとなり、アキュムレータ14を通り圧縮機1へ戻る。冷媒冷却器6は冷凍サイクルで使用する全流量を冷媒冷却器6の配管へ通流し、そこで電力変換装置の構成部品8を冷却する。この冷媒冷却器6による冷却においては、冷媒回路上に、電子膨張弁、キャピラリーチューブ、二重管、電磁弁、または細管を使用して冷媒冷却器6へ流入する冷媒温度を調整することで、冷媒冷却器6の冷却能力を調整することができる。このようにすることで、冷却能力不足や結露を回避することができる。 Next, the heating operation of the air conditioner of Embodiment 1 will be described. The high-temperature and high-pressure refrigerant that has flowed out of the compressor 1 is condensed in the use-side heat exchanger 3, radiates heat to the use side at that time, and further, the refrigerant is brought into a low-temperature low-pressure liquid or gas-liquid two-phase state by the use-side expansion device 4a. Become. Thereafter, the refrigerant becomes low-temperature and low-pressure gas by the heat source side heat exchanger 5, passes through the accumulator 14, and returns to the compressor 1. The refrigerant cooler 6 allows the entire flow rate used in the refrigeration cycle to flow to the piping of the refrigerant cooler 6, where the component 8 of the power converter is cooled. In the cooling by the refrigerant cooler 6, by adjusting the temperature of the refrigerant flowing into the refrigerant cooler 6 on the refrigerant circuit using an electronic expansion valve, a capillary tube, a double tube, an electromagnetic valve, or a thin tube, The cooling capacity of the refrigerant cooler 6 can be adjusted. By doing in this way, lack of cooling capacity and dew condensation can be avoided.
 次に、実施の形態1の空気調和装置の冷房運転動作を説明する。圧縮機1から流出した高温高圧冷媒は、熱源側熱交換器5により高圧液となり、冷媒冷却器6の配管へ通流し、電力変換装置の構成部品を冷却し、利用側熱交換器3側へ送られる。利用側熱交換器3側で、冷媒は利用側絞り装置4aにより低温低圧液になり、利用側熱交換器3で熱交換して低温低圧ガスとなりアキュムレータ14を通り圧縮機1へ戻る。冷媒冷却器6の配管は冷凍サイクルで使用する冷媒の全流量を通流し、電力変換装置の構成部品8を冷却する。この冷媒冷却器6による冷却においては、冷媒回路上に、電子膨張弁、キャピラリーチューブ、二重管、電磁弁、または細管を使用して冷媒冷却器6へ流入する冷媒温度を調整することで、冷媒冷却器6の冷却能力を調整することができる。このようにすることで、冷却能力不足や結露を回避することができる。 Next, the cooling operation of the air conditioner of Embodiment 1 will be described. The high-temperature and high-pressure refrigerant that has flowed out of the compressor 1 becomes a high-pressure liquid by the heat source side heat exchanger 5 and flows to the piping of the refrigerant cooler 6 to cool the components of the power converter and to the use side heat exchanger 3 side. Sent. On the use side heat exchanger 3 side, the refrigerant becomes a low-temperature and low-pressure liquid by the use-side expansion device 4a, exchanges heat in the use-side heat exchanger 3 to become a low-temperature and low-pressure gas, and returns to the compressor 1 through the accumulator 14. The piping of the refrigerant cooler 6 passes the entire flow rate of the refrigerant used in the refrigeration cycle, and cools the component 8 of the power converter. In the cooling by the refrigerant cooler 6, by adjusting the temperature of the refrigerant flowing into the refrigerant cooler 6 on the refrigerant circuit using an electronic expansion valve, a capillary tube, a double tube, an electromagnetic valve, or a thin tube, The cooling capacity of the refrigerant cooler 6 can be adjusted. By doing in this way, lack of cooling capacity and dew condensation can be avoided.
 次に、圧縮機1の停止時の冷媒冷却を説明するため空気調和装置の室外機の機能の一つである以下の3つの運転モードについて説明する。なお、以下のモードは例として取り上げるものであり、それらのモードに限定するものではない。実施の形態1は、圧縮機が運転していない状態での発熱の全てが冷却の対象となり得る。
 (1)スノーセンサ運転モード
 (2)インバータ過熱運転モード
 (3)別系統に繋がる圧縮機を駆動しての運転モード
Next, in order to explain the cooling of the refrigerant when the compressor 1 is stopped, the following three operation modes, which are one of the functions of the outdoor unit of the air conditioner, will be described. The following modes are taken as examples and are not limited to these modes. In the first embodiment, all the heat generated in a state where the compressor is not in operation can be the target of cooling.
(1) Snow sensor operation mode (2) Inverter overheat operation mode (3) Operation mode by driving a compressor connected to another system
 (1)のスノーセンサ運転モードは、雪が積もらないよう、または積もった雪を吹き飛ばすよう、圧縮機1の停止中に熱源側熱交換器5用のファン5aのみ駆動するモードである。ファン5aを駆動する電力変換装置が動作する為、電力変換装置の構成部品8bの損失熱が発生する。
 (2)のインバータ過熱運転モードは、室外機の停止中に圧縮機1の内部に冷媒が溜まってしまった場合に、圧縮機1を加熱して、圧縮機1内の液冷媒をガス化させる運転であり、圧縮機1を回転させること無く、圧縮機1内のモータ巻線に通電し加熱する運転である。この時も電力変換装置が動作することになるため、電力変換装置の構成部品8aの損失熱が発生する。
 (3)の別系統に繋がる圧縮機を駆動しての運転モードは、例えば空気調和装置の試運転や動作確認のために、電力変換装置を冷却する冷媒冷却器6が設けられた第1系統とは別の第2系統に接続される圧縮機を、第1系統で使用していた電力変換装置を使用して駆動する場合、圧縮機が駆動されない第1系統では冷媒が循環しないので、電力変換装置の構成部品が損失熱を発生する。
The snow sensor operation mode (1) is a mode in which only the fan 5a for the heat source side heat exchanger 5 is driven while the compressor 1 is stopped so that the snow does not accumulate or the accumulated snow is blown away. Since the power conversion device that drives the fan 5a operates, heat loss of the component 8b of the power conversion device occurs.
In the inverter overheating operation mode (2), when the refrigerant is accumulated in the compressor 1 while the outdoor unit is stopped, the compressor 1 is heated to gasify the liquid refrigerant in the compressor 1. This is an operation in which the motor winding in the compressor 1 is energized and heated without rotating the compressor 1. Also at this time, since the power conversion device operates, heat loss of the component 8a of the power conversion device is generated.
The operation mode of driving a compressor connected to another system in (3) is, for example, a first system provided with a refrigerant cooler 6 that cools the power converter for trial operation or operation check of the air conditioner. When a compressor connected to another second system is driven using the power conversion device used in the first system, the refrigerant does not circulate in the first system where the compressor is not driven. Equipment components generate heat loss.
 次に、図4を基に、上記(1)~(3)の運転時における、冷媒冷却器6と接触している電力変換装置の構成部品8の冷却について説明する。
 電力変換装置の構成部品8に損失熱が生じた場合、損失熱は冷媒冷却器6を構成している配管内部31に留まっている液冷媒に発熱部30付近で吸熱され、吸熱した冷媒は状態変化しガスとなる。ガス冷媒32は配管中心部を通り上昇して熱源側熱交換器5へ至る。一般的に熱源側熱交換器パスの配管には複数のフィンが放熱のために取り付けられており空気中へ放熱できる面積が広く設けられている。このため、熱源側熱交換器5のパス内へガス冷媒を移動することで損失熱を効率よく放熱できる。熱を放熱した冷媒は液冷媒33となり、配管内壁面34をつたって重力でもって冷媒冷却器6へ戻る、という自然循環を繰り返す。これにより、圧縮機1が停止している状態においても、電力変換装置の構成部品8の損失熱を熱交換器へ移動させ放熱することが可能となる。
 また、損失熱が小さい場合、ガス化した冷媒が熱源側熱交換器5に至る前に配管表面より損失熱を放出し液に戻る場合があるが、この場合も同様に、液冷媒は重力により冷媒冷却器6へ戻るため、連続的な冷却が可能である。
 また、ファン5aを駆動して風が流れる状態とすれば、熱源側熱交換器5での熱交換能力が向上するため、効率よくガス冷媒を液冷媒へ変化させることができる。
 さらに、ファン5aが駆動することで電力変換装置の構成部品8が発熱していた場合には、熱源側熱交換器5に強制空冷されている状態であるから、より効率よく損失熱を外気へ放出する効果を奏する。これらの効果は後で説明する実施の形態でも得られる。
Next, cooling of the component 8 of the power converter that is in contact with the refrigerant cooler 6 during the operations (1) to (3) will be described with reference to FIG.
When heat loss is generated in the component 8 of the power converter, the heat loss is absorbed by the liquid refrigerant remaining in the pipe interior 31 constituting the refrigerant cooler 6 in the vicinity of the heat generating unit 30, and the absorbed heat is in a state. Change to gas. The gas refrigerant 32 rises through the center of the pipe and reaches the heat source side heat exchanger 5. In general, a plurality of fins are attached to the piping of the heat source side heat exchanger path for heat radiation, and a large area for heat radiation into the air is provided. For this reason, the heat loss can be efficiently radiated by moving the gas refrigerant into the path of the heat source side heat exchanger 5. The refrigerant that has dissipated the heat becomes liquid refrigerant 33 and repeats the natural circulation of returning to the refrigerant cooler 6 by gravity through the inner wall surface 34 of the pipe. Thereby, even in a state where the compressor 1 is stopped, it is possible to dissipate heat by moving the heat loss of the component 8 of the power converter to the heat exchanger.
In addition, when the heat loss is small, the gasified refrigerant may release the heat loss from the pipe surface before reaching the heat source side heat exchanger 5 and return to the liquid. Since it returns to the refrigerant cooler 6, continuous cooling is possible.
Further, if the fan 5a is driven to allow the wind to flow, the heat exchange capability in the heat source side heat exchanger 5 is improved, so that the gas refrigerant can be efficiently changed to the liquid refrigerant.
Furthermore, when the component 8 of the power conversion device is generating heat by driving the fan 5a, the heat source side heat exchanger 5 is in a forced air cooling state, so that the lost heat is more efficiently transferred to the outside air. Has the effect of releasing. These effects can also be obtained in embodiments described later.
 実施の形態2.
 図5はこの発明の実施の形態2における空気調和装置の冷媒回路図である。実施の形態2の空気調和装置は基本的に実施の形態1と同様であり、以下の点で実施の形態1と相違する。
 すなわち、熱源側絞り装置がなく、熱源側熱交換器5と利用側絞り装置4aとの間の冷媒回路17から分岐して、圧縮機1の吸入側(アキュムレータ14を備えている場合はアキュムレータを経由して圧縮機1の吸入側)に至るバイパス回路17Aが設けられている。そして、バイパス回路17Aの途中に、実施の形態1と同様の冷媒冷却器6が設置され、冷媒冷却器6の前後には、バイパス絞り装置4cとバイパス絞り装置4dとが設けられている点である。
 なお、冷媒冷却器6の構成及び冷媒冷却器6の取り付け位置等については、実施の形態1と同様としてよい。
Embodiment 2. FIG.
FIG. 5 is a refrigerant circuit diagram of the air-conditioning apparatus according to Embodiment 2 of the present invention. The air conditioner of Embodiment 2 is basically the same as that of Embodiment 1, and is different from Embodiment 1 in the following points.
That is, there is no heat source side expansion device, branching from the refrigerant circuit 17 between the heat source side heat exchanger 5 and the use side expansion device 4a, and the suction side of the compressor 1 (if the accumulator 14 is provided, the accumulator is A bypass circuit 17A is provided which leads to the suction side of the compressor 1). And the refrigerant cooler 6 similar to Embodiment 1 is installed in the middle of the bypass circuit 17A, and the bypass throttle device 4c and the bypass throttle device 4d are provided before and after the refrigerant cooler 6. is there.
Note that the configuration of the refrigerant cooler 6 and the mounting position of the refrigerant cooler 6 may be the same as those in the first embodiment.
 実施の形態2における空気調和装置の暖房運転動作について説明する。圧縮機1から流出した高温高圧冷媒は、利用側熱交換器3にて凝縮し利用側に放熱する。その後、冷媒は利用側絞り装置4aにより低温低圧液若しくは気液二相状態となり、さらに熱源側熱交換器5により低温低圧ガスとなり、アキュムレータ14を通り圧縮機1へ戻る。
 冷媒冷却器6は、冷媒回路17中の利用側絞り装置4aと熱源側熱交換器5の間のいずれかの位置から冷媒を分岐し、バイパス絞り装置4cを通った後の冷媒を通して、電力変換装置の構成部品8を冷却する。冷媒冷却器6を通過した冷媒は、さらにバイパス絞り装置4dにより絞られ、低圧側のアキュムレータ14に入る。この冷媒冷却器6による冷却においては、バイパス絞り装置4c,4dで中間圧を制御とすることで冷却能力不足や結露を回避することができる。この場合の絞り装置としては、電子膨張弁やキャピラリーチューブ、二重管、電磁弁、細管などを使用することができる。
A heating operation operation of the air-conditioning apparatus according to Embodiment 2 will be described. The high-temperature and high-pressure refrigerant that has flowed out of the compressor 1 is condensed in the use side heat exchanger 3 and radiated to the use side. Thereafter, the refrigerant becomes a low-temperature low-pressure liquid or a gas-liquid two-phase state by the use side expansion device 4a, and further becomes a low-temperature low-pressure gas by the heat source side heat exchanger 5, and returns to the compressor 1 through the accumulator 14.
The refrigerant cooler 6 branches the refrigerant from any position between the use side expansion device 4a and the heat source side heat exchanger 5 in the refrigerant circuit 17, and converts power through the refrigerant after passing through the bypass expansion device 4c. The component 8 of the device is cooled. The refrigerant that has passed through the refrigerant cooler 6 is further throttled by the bypass throttle device 4d and enters the accumulator 14 on the low pressure side. In the cooling by the refrigerant cooler 6, by using the bypass expansion devices 4c and 4d to control the intermediate pressure, it is possible to avoid insufficient cooling capacity and condensation. In this case, an electronic expansion valve, a capillary tube, a double tube, a solenoid valve, a thin tube, or the like can be used as the throttling device.
 次に、実施の形態2における空気調和装置の冷房運転動作について説明する。圧縮機1から流出した高温高圧冷媒は、熱源側熱交換器5により高圧液となり、利用側熱交換器3側へ送られる。利用側熱交換器側では、利用側絞り装置4aにより低温低圧液になった冷媒は利用側熱交換器3で熱交換し、低温低圧ガスとなりアキュムレータ14を通り圧縮機1へ戻る。
 また、熱源側熱交換器5を出た冷媒の一部は、バイパス絞り装置4c,4dの絞り量に応じてバイパス回路17Aを流れて冷媒冷却器6の配管へ通流する。冷媒冷却器6を通過した冷媒は、電力変換装置の構成部品8を冷却した後、バイパス絞り装置4d及びアキュムレータ14を経て圧縮機1に戻る。この冷媒冷却器6による冷却においては、バイパス絞り装置4c,4dで中間圧を制御とすることで冷却能力不足や結露を回避することができる。この場合の絞り装置としては、電子膨張弁やキャピラリーチューブ、二重管、電磁弁、細管などを使用することができる。
Next, the cooling operation of the air conditioner according to Embodiment 2 will be described. The high-temperature and high-pressure refrigerant that has flowed out of the compressor 1 becomes a high-pressure liquid by the heat source side heat exchanger 5 and is sent to the use side heat exchanger 3 side. On the use side heat exchanger side, the refrigerant that has become a low-temperature and low-pressure liquid by the use-side expansion device 4a exchanges heat in the use-side heat exchanger 3, becomes a low-temperature and low-pressure gas, returns to the compressor 1 through the accumulator 14.
Further, a part of the refrigerant that has exited the heat source side heat exchanger 5 flows through the bypass circuit 17A according to the throttle amount of the bypass throttle devices 4c and 4d, and flows to the pipe of the refrigerant cooler 6. The refrigerant that has passed through the refrigerant cooler 6 cools the component 8 of the power converter, and then returns to the compressor 1 through the bypass expansion device 4d and the accumulator 14. In the cooling by the refrigerant cooler 6, by using the bypass expansion devices 4c and 4d to control the intermediate pressure, it is possible to avoid insufficient cooling capacity and condensation. In this case, an electronic expansion valve, a capillary tube, a double tube, a solenoid valve, a thin tube, or the like can be used as the throttling device.
 実施の形態2における前述の(1)~(3)の運転時における電力変換装置の構成部品8の冷却は、以下のように作用で行われる。
 電力変換装置の構成部品8に損失熱が生じた場合、損失熱は冷媒冷却器6を構成している配管内に留まっている液冷媒に吸熱され、冷媒は状態変化しガスとなる。ガスとなった冷媒の比重は空気よりも小さいため、バイパス回路17A及び冷媒回路17を通って上昇し熱源側熱交換器5内へ至る。熱源側熱交換器5のパス内へ移動したガス冷媒は損失熱を放熱し液冷媒となる。液冷媒は、重力により冷媒回路17及びバイパス回路17Aを通って冷媒冷却器6へ戻る、という自然循環を繰り返す。これにより、圧縮機1が停止している状態においても電力変換装置の構成部品8の損失熱を熱源側熱交換器5へ移動させ放熱することが可能となる。
 この時、前段のバイパス絞り装置4cは冷媒冷却器6と熱源側熱交換器5の間にあるため、冷媒の循環が発生するよう開放状態にする必要がある。また、後段のバイパス絞り装置4dは圧縮機1の吸入側またはアキュムレータ14の入口へ繋がる経路に接続されているため、冷媒の連続的な冷却を行うためには閉状態にするのが良い。
Cooling of the component 8 of the power conversion device during the operations (1) to (3) described in the second embodiment is performed as follows.
When heat loss is generated in the component 8 of the power converter, the heat loss is absorbed by the liquid refrigerant remaining in the pipe constituting the refrigerant cooler 6, and the refrigerant changes its state to become gas. Since the specific gravity of the refrigerant turned into gas is smaller than that of air, it rises through the bypass circuit 17 </ b> A and the refrigerant circuit 17 and reaches the heat source side heat exchanger 5. The gas refrigerant that has moved into the path of the heat source side heat exchanger 5 dissipates lost heat and becomes liquid refrigerant. The liquid refrigerant repeats the natural circulation of returning to the refrigerant cooler 6 through the refrigerant circuit 17 and the bypass circuit 17A due to gravity. Thereby, even when the compressor 1 is stopped, it is possible to dissipate heat by moving the heat loss of the component 8 of the power converter to the heat source side heat exchanger 5.
At this time, since the front-stage bypass expansion device 4c is located between the refrigerant cooler 6 and the heat source side heat exchanger 5, it is necessary to open the refrigerant circulation. Further, since the downstream bypass throttle device 4d is connected to a path leading to the suction side of the compressor 1 or the inlet of the accumulator 14, it is preferably closed in order to continuously cool the refrigerant.
 実施の形態3.
 図6はこの発明の実施の形態3における空気調和装置の冷媒回路図である。実施の形態1、2では、圧縮機1の停止時、同じ配管内部を液冷媒とガス冷媒が移動することで熱の移動を行っていたが、図6の構成は、液冷媒とガス冷媒の経路を違えることで、冷媒冷却器6内の冷媒の循環を効率よくできるようにしたものである。
 実施の形態3の空気調和装置の構成、暖房及び冷房の動作は基本的に実施の形態1と同様であり、以下の点で実施の形態1と相違する。
 すなわち、冷媒冷却器6と利用側絞り装置4aとの間の冷媒回路17から分岐して、冷房運転時の冷媒の熱源側熱交換器の入口に至るバイパス回路17Bが設けられている。そして、バイパス回路17Bの途中に、バイパス絞り装置42が設けられている。
 また、バイパス回路17Bの熱源側熱交換器5の冷媒入口側との接続ポイントと、冷房運転時の圧縮機1の吐出側との間の冷媒回路の途中に、冷媒の流通を遮断する開閉弁43が設けられている点である。
 なお、冷媒冷却器6の構成及び冷媒冷却器6の取り付け位置等については、実施の形態1と同様でよい。
Embodiment 3 FIG.
6 is a refrigerant circuit diagram of an air-conditioning apparatus according to Embodiment 3 of the present invention. In the first and second embodiments, when the compressor 1 is stopped, the liquid refrigerant and the gas refrigerant move in the same pipe to move the heat. However, the configuration of FIG. By changing the path, the refrigerant in the refrigerant cooler 6 can be circulated efficiently.
The configuration of the air-conditioning apparatus of the third embodiment, and heating and cooling operations are basically the same as those of the first embodiment, and are different from the first embodiment in the following points.
That is, a bypass circuit 17B is provided which branches from the refrigerant circuit 17 between the refrigerant cooler 6 and the use side expansion device 4a and reaches the inlet of the heat source side heat exchanger for the refrigerant during the cooling operation. A bypass throttle device 42 is provided in the middle of the bypass circuit 17B.
An on-off valve that shuts off the refrigerant flow in the middle of the refrigerant circuit between the connection point between the bypass circuit 17B and the refrigerant inlet side of the heat source side heat exchanger 5 and the discharge side of the compressor 1 during the cooling operation. 43 is provided.
Note that the configuration of the refrigerant cooler 6 and the mounting position of the refrigerant cooler 6 may be the same as those in the first embodiment.
 実施の形態3における前述の(1)~(3)の運転時における電力変換装置の構成部品8の冷却は、以下のように行われる。
 電力変換装置の構成部品8に損失熱が生じた場合、損失熱は冷媒冷却器6を構成している配管内に留まっている液冷媒に吸熱され、冷媒は状態変化しガスとなる。ガスとなった冷媒の比重は空気よりも小さいため絞り装置42が開放させていれば、ガス冷媒32はバイパス回路17Bを通って上昇し熱源側熱交換器5内の配管へ至る。一般的に熱源側熱交換器5パスの配管には複数のフィンが放熱のために取り付けられており空気中へ放熱できる面積が広く設けられている。したがって、この熱源側熱交換器パス内へガス冷媒を移動することで損失熱が効率よく放熱され、ガス冷媒は液冷媒となる。液冷媒33は、重力により冷媒回路17を通って冷媒冷却器6へ戻る、という自然循環を繰り返す。これにより、圧縮機1が停止している状態においても電力変換装置の構成部品8の損失熱を熱源側熱交換器5へ移動させ放熱することが可能となる。
 この時、熱源側絞り装置4bは熱源側熱交換器5と冷媒冷却器6との間にあるため、冷媒の循環が発生するよう開放状態にする必要がある。また、利用側絞り装置4aは利用側熱交換器3へ繋がる経路に接続されているため、冷媒の連続的な冷却を行うためには閉状態にするのが良い。さらに、バイパス回路17Bを流れる冷媒が、暖房時にアキュムレータ14の入口側または圧縮機1の吸入側へ、冷房時に圧縮機1の吐出側に向かって移動してしまう場合には、開閉弁43を閉にするとよい。
Cooling of the component 8 of the power conversion device during the operations (1) to (3) described above in the third embodiment is performed as follows.
When heat loss is generated in the component 8 of the power converter, the heat loss is absorbed by the liquid refrigerant remaining in the pipe constituting the refrigerant cooler 6, and the refrigerant changes its state to become gas. Since the specific gravity of the refrigerant turned into gas is smaller than that of air, if the expansion device 42 is opened, the gas refrigerant 32 rises through the bypass circuit 17B and reaches the piping in the heat source side heat exchanger 5. In general, a plurality of fins are attached to the heat source side heat exchanger 5 path piping for heat radiation, and a large area for heat radiation to the air is provided. Therefore, the heat loss is efficiently dissipated by moving the gas refrigerant into the heat source side heat exchanger path, and the gas refrigerant becomes a liquid refrigerant. The liquid refrigerant 33 repeats the natural circulation of returning to the refrigerant cooler 6 through the refrigerant circuit 17 by gravity. Thereby, even when the compressor 1 is stopped, it is possible to dissipate heat by moving the heat loss of the component 8 of the power converter to the heat source side heat exchanger 5.
At this time, since the heat source side expansion device 4b is located between the heat source side heat exchanger 5 and the refrigerant cooler 6, it is necessary to open the refrigerant so that the refrigerant is circulated. In addition, since the use side expansion device 4a is connected to a path connected to the use side heat exchanger 3, it is preferable to close the use side expansion device 4a in order to continuously cool the refrigerant. Further, when the refrigerant flowing through the bypass circuit 17B moves toward the inlet side of the accumulator 14 or the suction side of the compressor 1 during heating and toward the discharge side of the compressor 1 during cooling, the on-off valve 43 is closed. It is good to.
 1 圧縮機、2 四方弁、3 利用側熱交換器、3a ファン、4a 利用側絞り装置、4b 熱源側絞り装置、4c,4d バイパス絞り装置、5 熱源側熱交換器、5a ファン、6 冷媒冷却器、7 電力変換装置、8 電力変換装置の構成部品、8a 電力変換装置の圧縮機用構成部品、8b 電力変換装置のファン用構成部品、9 第2プレート、10 冷媒入口配管、10a 冷媒入口配管の端部、11 冷媒出口配管、11a 冷媒出口配管の端部、12 熱接触面、13 伝熱部材、13a 圧縮機用伝熱部材、13b ファン用伝熱部材、14 アキュムレータ、15 曲げ部、16 第1プレート、17 冷媒回路、17A,17B バイパス回路、18 放熱部材、19 放熱部材、30 発熱部、31 配管内部、42 バイパス絞り装置、43 開閉弁、71 電力変換装置板金、100 室外機。 1 compressor, 2 way valve, 3 use side heat exchanger, 3a fan, 4a use side throttle device, 4b heat source side throttle device, 4c, 4d bypass throttle device, 5 heat source side heat exchanger, 5a fan, 6 refrigerant cooling 7, power converter, 8 power converter component, 8a power converter compressor component, 8b power converter fan component, 9 second plate, 10 refrigerant inlet pipe, 10a refrigerant inlet pipe , 11 refrigerant outlet pipe, 11a refrigerant outlet pipe end, 12 heat contact surface, 13 heat transfer member, 13a compressor heat transfer member, 13b fan heat transfer member, 14 accumulator, 15 bending part, 16 1st plate, 17 refrigerant circuit, 17A, 17B bypass circuit, 18 heat radiating member, 19 heat radiating member, 30 heat generating part, 31 inside pipe 42 bypass throttle device 43 on-off valve, 71 power converter sheet metal, 100 outdoor unit.

Claims (10)

  1.  電動機で駆動される圧縮機、利用側熱交換器、少なくとも1つの絞り装置、及び熱源側熱交換器が配管で接続され、冷媒が循環して冷凍サイクルが実行される冷媒回路と、
     前記電動機に駆動力を供給する電力変換装置と、
     前記冷媒回路を流れる前記冷媒を流通させて、前記電力変換装置の構成部品の放熱を前記冷媒に吸熱させる冷媒冷却器と、を備え、
     前記冷媒冷却器は、
     放熱用のプレートと、冷媒が流れる放熱用の配管とを有し、
     前記放熱用の配管は、冷媒入口配管、冷媒出口配管、及び前記冷媒入口配管と前記冷媒出口配管とをつなぐ少なくとも1つの曲げ部とを有し、
     前記プレートの一方の面に前記電力変換装置の構成部品が面接触され、前記プレートの他方の面に前記放熱用の配管が面接触されており、
     前記冷媒冷却器と前記電力変換装置の構成部品との接触部より上部に、前記熱源側熱交換器のパスが位置するようにした
    空気調和装置。
    A refrigerant circuit in which a compressor driven by an electric motor, a use side heat exchanger, at least one expansion device, and a heat source side heat exchanger are connected by piping, and the refrigerant circulates to execute a refrigeration cycle;
    A power converter for supplying driving force to the electric motor;
    A refrigerant cooler that circulates the refrigerant flowing through the refrigerant circuit and causes the refrigerant to absorb heat from the heat dissipation of the components of the power converter,
    The refrigerant cooler is
    It has a heat dissipation plate and a heat dissipation pipe through which the refrigerant flows,
    The heat radiation pipe includes a refrigerant inlet pipe, a refrigerant outlet pipe, and at least one bent portion that connects the refrigerant inlet pipe and the refrigerant outlet pipe.
    The components of the power converter are in surface contact with one surface of the plate, and the heat radiating pipe is in surface contact with the other surface of the plate,
    An air conditioner in which a path of the heat source side heat exchanger is positioned above a contact portion between the refrigerant cooler and a component of the power converter.
  2.  前記冷媒冷却器を構成する放熱用の配管が、前記プレートに形成された溝内に収容され、前記配管の外周面と前記溝の内周面とが面接触している
     請求請1記載の空気調和装置。
    The air according to claim 1, wherein a heat radiating pipe constituting the refrigerant cooler is accommodated in a groove formed in the plate, and an outer peripheral surface of the pipe and an inner peripheral surface of the groove are in surface contact. Harmony device.
  3.  前記電力変換装置の構成部品は板金上に固定されており、前記構成部品は前記板金を介して前記プレート上に配置されており、
     前記板金と前記プレートとが締結部材で固定されている
     請求項1または2に記載の空気調和装置。
    The components of the power converter are fixed on a sheet metal, the components are arranged on the plate via the sheet metal,
    The air conditioner according to claim 1 or 2, wherein the sheet metal and the plate are fixed by a fastening member.
  4.  前記プレートは、
     前記電力変換装置の構成部品の冷却面が固着された第1プレートと、
     前記放熱用の配管が固着された第2プレートを含み、
     両プレートが放熱部材を介して固着されている
     請求項1~3のいずれか一項に記載の空気調和装置。
    The plate is
    A first plate to which a cooling surface of a component of the power converter is fixed;
    Including a second plate to which the pipe for heat dissipation is fixed;
    The air conditioner according to any one of claims 1 to 3, wherein both plates are fixed via a heat radiating member.
  5.  前記冷媒冷却器が前記冷媒回路の中に配置され、
     前記冷媒冷却器に通流する冷媒が、前記冷凍サイクルで使用する冷媒全流量である
     請求項1~4のいずれか一項に記載の空気調和装置。
    The refrigerant cooler is disposed in the refrigerant circuit;
    The air conditioner according to any one of claims 1 to 4, wherein the refrigerant flowing through the refrigerant cooler is a total refrigerant flow rate used in the refrigeration cycle.
  6.  前記冷媒回路のうちの前記熱源側熱交換器と前記利用側熱交換器との間から分岐して、圧縮機1の吸入側に至るバイパス回路が設けられ、
     前記冷媒冷却器が前記バイパス回路の途中に配置されている
     請求項1~4のいずれか一項に記載の空気調和装置。
    A bypass circuit is provided that branches from between the heat source side heat exchanger and the use side heat exchanger in the refrigerant circuit and reaches the suction side of the compressor 1;
    The air conditioner according to any one of claims 1 to 4, wherein the refrigerant cooler is disposed in the middle of the bypass circuit.
  7.  前記バイパス回路の前記冷媒冷却器の前段と後段とに、冷媒の絞り装置を備えた
     請求項6に記載の空気調和装置。
    The air conditioner according to claim 6, wherein a refrigerant throttling device is provided at a front stage and a rear stage of the refrigerant cooler of the bypass circuit.
  8.  前記冷媒冷却器が前記冷媒回路の中に配置され、
     前記冷媒冷却器と前記利用側熱交換器の間の位置から分岐し、冷房運転時の前記熱源側熱交換器の冷媒入口側に接続するバイパス回路と、
     前記バイパス回路の途中に設置されたバイパス絞り装置と、を備え、
     前記バイパス絞り装置は前記圧縮機が駆動していない場合にのみ開とされる
     請求項1~4のいずれか一項に記載の空気調和装置。
    The refrigerant cooler is disposed in the refrigerant circuit;
    A bypass circuit branched from a position between the refrigerant cooler and the use side heat exchanger and connected to the refrigerant inlet side of the heat source side heat exchanger during cooling operation;
    A bypass throttle device installed in the middle of the bypass circuit,
    The air conditioner according to any one of claims 1 to 4, wherein the bypass throttling device is opened only when the compressor is not driven.
  9.  前記冷媒回路のうち、前記バイパス回路が前記熱源側熱交換器の前記冷媒入口側に接続する接続ポイントと、冷房運転時の前記圧縮機の吐出側との間に、冷媒の流通を遮断する開閉弁を備えた請求項8に記載の空気調和装置。 Among the refrigerant circuits, the bypass circuit opens and closes a refrigerant between a connection point where the heat source side heat exchanger is connected to the refrigerant inlet side and a discharge side of the compressor during cooling operation. The air conditioning apparatus according to claim 8, further comprising a valve.
  10.  熱源側熱交換器に送風を行うファンと、
     前記ファンを駆動するファン用電動機を備え、
     前記ファン用電動機が前記電力変換装置で駆動される
     請求請1~9のいずれか一項に記載の空気調和装置。
    A fan for blowing air to the heat source side heat exchanger;
    A fan electric motor for driving the fan;
    The air conditioner according to any one of claims 1 to 9, wherein the fan motor is driven by the power converter.
PCT/JP2016/055348 2016-02-24 2016-02-24 Air conditioning device WO2017145276A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2016/055348 WO2017145276A1 (en) 2016-02-24 2016-02-24 Air conditioning device
EP16891433.1A EP3421902B1 (en) 2016-02-24 2016-02-24 Air conditioning device
JP2018501460A JP6689359B2 (en) 2016-02-24 2016-02-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055348 WO2017145276A1 (en) 2016-02-24 2016-02-24 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2017145276A1 true WO2017145276A1 (en) 2017-08-31

Family

ID=59684858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055348 WO2017145276A1 (en) 2016-02-24 2016-02-24 Air conditioning device

Country Status (3)

Country Link
EP (1) EP3421902B1 (en)
JP (1) JP6689359B2 (en)
WO (1) WO2017145276A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108759193A (en) * 2018-06-20 2018-11-06 广东美的暖通设备有限公司 Air-conditioning system and its refrigerant radiator and method
WO2019058464A1 (en) * 2017-09-20 2019-03-28 三菱電機株式会社 Air conditioner
JP2019148417A (en) * 2019-06-04 2019-09-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JPWO2021166753A1 (en) * 2020-02-21 2021-08-26

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111140938B (en) * 2019-12-04 2021-04-09 浙江大学山东工业技术研究院 Heat radiator for outer quick-witted thermal management of air conditioner

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114121A (en) * 2008-11-04 2010-05-20 Daikin Ind Ltd Heat radiator of electrical component
JP2011099577A (en) * 2009-11-04 2011-05-19 Daikin Industries Ltd Refrigerant cooling structure
WO2011077720A1 (en) * 2009-12-22 2011-06-30 ダイキン工業株式会社 Refrigeration device
JP2012093076A (en) * 2010-09-30 2012-05-17 Daikin Industries Ltd Cooler and refrigeration device including the same
WO2012105047A1 (en) * 2011-02-04 2012-08-09 トヨタ自動車株式会社 Cooling device
JP2013204935A (en) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp Refrigeration cycle apparatus and outdoor heat source unit
JP2013232519A (en) * 2012-04-27 2013-11-14 Daikin Ind Ltd Attachment structure of refrigerant pipeline
JP2015218939A (en) * 2014-05-16 2015-12-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120577U (en) * 1991-04-08 1992-10-28 ダイキン工業株式会社 air conditioner
JPH0634208A (en) * 1992-07-21 1994-02-08 Mitsubishi Electric Corp Cooling device of electric article box of air conditioner
JP2003318341A (en) * 2002-04-25 2003-11-07 Matsushita Electric Ind Co Ltd Cooling device for semiconductor element
JP5446064B2 (en) * 2006-11-13 2014-03-19 ダイキン工業株式会社 Heat exchange system
JP5125355B2 (en) * 2007-09-27 2013-01-23 ダイキン工業株式会社 Air conditioner
JP4488093B2 (en) * 2008-07-24 2010-06-23 ダイキン工業株式会社 Air conditioner
JP2012242024A (en) * 2011-05-20 2012-12-10 Daikin Industries Ltd Outdoor unit of refrigerating device
CN104254738B (en) * 2012-04-27 2017-11-03 大金工业株式会社 Refrigerating plant
JP2014102050A (en) * 2012-11-21 2014-06-05 Daikin Ind Ltd Refrigeration device
KR102128584B1 (en) * 2013-09-16 2020-06-30 엘지전자 주식회사 An air conditioner
JP6320731B2 (en) * 2013-11-26 2018-05-09 三菱重工サーマルシステムズ株式会社 Air conditioner
CN104748272A (en) * 2014-01-01 2015-07-01 广东美的制冷设备有限公司 Air conditioner
WO2015167116A1 (en) * 2014-04-30 2015-11-05 삼성전자주식회사 Outdoor unit of air conditioner, cooling unit applied thereto, and method for manufacturing cooling unit
CN104596142A (en) * 2015-01-21 2015-05-06 广东美的制冷设备有限公司 Air conditioner and control method thereof
CN204693625U (en) * 2015-05-20 2015-10-07 广东志高暖通设备股份有限公司 Convertible frequency air-conditioner and air-conditioner outdoor unit heat abstractor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114121A (en) * 2008-11-04 2010-05-20 Daikin Ind Ltd Heat radiator of electrical component
JP2011099577A (en) * 2009-11-04 2011-05-19 Daikin Industries Ltd Refrigerant cooling structure
WO2011077720A1 (en) * 2009-12-22 2011-06-30 ダイキン工業株式会社 Refrigeration device
JP2012093076A (en) * 2010-09-30 2012-05-17 Daikin Industries Ltd Cooler and refrigeration device including the same
WO2012105047A1 (en) * 2011-02-04 2012-08-09 トヨタ自動車株式会社 Cooling device
JP2013204935A (en) * 2012-03-28 2013-10-07 Mitsubishi Electric Corp Refrigeration cycle apparatus and outdoor heat source unit
JP2013232519A (en) * 2012-04-27 2013-11-14 Daikin Ind Ltd Attachment structure of refrigerant pipeline
JP2015218939A (en) * 2014-05-16 2015-12-07 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058464A1 (en) * 2017-09-20 2019-03-28 三菱電機株式会社 Air conditioner
JPWO2019058464A1 (en) * 2017-09-20 2020-03-26 三菱電機株式会社 Air conditioner
CN108759193A (en) * 2018-06-20 2018-11-06 广东美的暖通设备有限公司 Air-conditioning system and its refrigerant radiator and method
JP2019148417A (en) * 2019-06-04 2019-09-05 日立ジョンソンコントロールズ空調株式会社 Air conditioner
JPWO2021166753A1 (en) * 2020-02-21 2021-08-26
JP7250208B2 (en) 2020-02-21 2023-03-31 三菱電機株式会社 air conditioner

Also Published As

Publication number Publication date
JP6689359B2 (en) 2020-04-28
EP3421902A1 (en) 2019-01-02
EP3421902A4 (en) 2019-03-13
JPWO2017145276A1 (en) 2018-09-13
EP3421902B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2017145276A1 (en) Air conditioning device
KR200487943Y1 (en) Semiconductor-based air conditioning device
JP4488093B2 (en) Air conditioner
JP6639689B2 (en) Refrigeration cycle device
JP2011122779A (en) Refrigerating cycle device
KR102207199B1 (en) Vehicle air-conditioning device using semiconductor as cooling core
JP6860005B2 (en) Phase change cooler and electronic equipment
CN108885017B (en) Air conditioner
JP2016057902A (en) Server cooling system and method for cooling thereof
JP2008076008A (en) Air conditioner
JP2005331141A (en) Cooling system, air conditioner, refrigeration air conditioning device, and cooling method
CN109099523B (en) Radiator and air conditioning system
CN107850323A (en) The outdoor unit and air conditioner of air conditioner
JP2015031450A (en) Air conditioning device
JP2011112254A (en) Refrigeration device
WO2012081055A1 (en) Cooling device and air conditioner provided therewith
JP2017227413A (en) Air conditioner
JP2010085054A (en) Outdoor unit for air-conditioning apparatus
JP2015116910A (en) Heat exchange system
CN213983805U (en) Outdoor air conditioner
JP2014122724A (en) Air conditioner and freezer
CN210638192U (en) Heat radiation structure and air conditioner
KR20070052547A (en) Air condition
CN209882431U (en) Heat dissipation component, air condensing units and air conditioner
JP2017129311A (en) Controller for air conditioner, and air conditioner with the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016891433

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016891433

Country of ref document: EP

Effective date: 20180924

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891433

Country of ref document: EP

Kind code of ref document: A1