JP2013184846A - Dielectric ceramic composition and electronic component - Google Patents

Dielectric ceramic composition and electronic component Download PDF

Info

Publication number
JP2013184846A
JP2013184846A JP2012050453A JP2012050453A JP2013184846A JP 2013184846 A JP2013184846 A JP 2013184846A JP 2012050453 A JP2012050453 A JP 2012050453A JP 2012050453 A JP2012050453 A JP 2012050453A JP 2013184846 A JP2013184846 A JP 2013184846A
Authority
JP
Japan
Prior art keywords
mol
ceramic composition
dielectric
dielectric ceramic
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012050453A
Other languages
Japanese (ja)
Inventor
Yusuke Sato
祐介 佐藤
Gakuo Tsukada
岳夫 塚田
Hidesada Natsui
秀定 夏井
Masashi Ito
将志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012050453A priority Critical patent/JP2013184846A/en
Publication of JP2013184846A publication Critical patent/JP2013184846A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition having a high relative dielectric constant and good resistivity, and excellent in acid resistance, and to provide an electronic component.SOLUTION: A dielectric ceramic composition includes a calcium titanate copper compound as a main component, and also includes, with respect to the 100 mol main component, ≥0.1 and ≤8.0 mol of SiO, ≥0.1 and ≤4.0 mol of BaO, and ≥0.1 and ≤5.0 mol of ZnO. An electronic component includes a dielectric layer containing the dielectric ceramic composition.

Description

本発明は、誘電体磁器組成物、および前記誘電体磁器組成物を含有する誘電体層を備える電子部品に関するものである。   The present invention relates to a dielectric ceramic composition and an electronic component including a dielectric layer containing the dielectric ceramic composition.

近年の電子機器の小型化・高性能化に伴い、構成する各種電子部品に対しても小型化・高性能化が求められている。その中でも多数を占めるセラミックコンデンサにおいては、小型化・大容量化が特に強く求められている。これに対応し、各セラミックコンデンサメーカーでは、比誘電率が高い誘電体材料の開発を行ってきた。   With recent downsizing and high performance of electronic devices, downsizing and high performance are also required for various electronic components to be configured. Among them, ceramic capacitors occupying a large number are particularly strongly demanded to be downsized and large in capacity. In response to this, each ceramic capacitor manufacturer has developed a dielectric material having a high relative dielectric constant.

しかしながら、現在セラミックコンデンサで主流となっているチタン酸バリウム(以下BTと表記)系材料での比誘電率の改善は限界に来ており、更に小型かつ大容量なコンデンサを提供するには、巨大な誘電率を持つ新しい誘電体材料を開発しなければならない。   However, the improvement of the relative dielectric constant of barium titanate (hereinafter referred to as BT) material, which is currently the mainstream in ceramic capacitors, has reached its limit. New dielectric materials with a high dielectric constant must be developed.

こうした巨大誘電率材料の候補のひとつとして、チタン酸カルシウム銅(以下CCTOと表記)化合物が挙げられる。   One candidate for such a giant dielectric constant material is a calcium copper titanate (hereinafter referred to as CCTO) compound.

室温かつKHz帯の交流回路で測定した場合において、従来のBT系材料の比誘電率が数千程度であるのに対し、CCTOの比誘電率は数万程度と報告されている(特許文献1)。   When measured with an AC circuit at room temperature and in a KHz band, the relative dielectric constant of a conventional BT material is about several thousand, whereas the relative dielectric constant of CCTO is reported to be about several tens of thousands (Patent Document 1) ).

しかしながら、CCTOは巨大な比誘電率を持つものの、比抵抗が低いことから、コンデンサ用の誘電体材料としては実用に至っていない。   However, although CCTO has a huge dielectric constant, it has not been practically used as a dielectric material for capacitors because of its low specific resistance.

そのため、CCTOの高い比誘電率を維持しつつ、比抵抗を改善する試みが多くなされている。例えば、非特許文献1ではMnOを、非特許文献2ではZrOを添加することで比抵抗を改善している。 For this reason, many attempts have been made to improve the specific resistance while maintaining the high dielectric constant of CCTO. For example, specific resistance is improved by adding MnO in Non-Patent Document 1 and ZrO 2 in Non-Patent Document 2.

以上のように多様な試みがなされつつも、比誘電率を高く維持し、かつ比抵抗と比誘電率の周波数特性を共に改善できる有効な技術は未だ見出されていない。CCTOを実用化するためには、更なる改善が必要となる。   While various attempts have been made as described above, an effective technique that maintains a high dielectric constant and can improve both the frequency characteristics of the specific resistance and the relative dielectric constant has not yet been found. In order to put CCTO into practical use, further improvements are required.

APPLIED PHYSICS LETTERS 88、232903_2006APPLYED PHYSICS LETTERS 88, 232903_2006 APPLIED PHYSICS LETTERS 87、182911_2005APPLYED PHYSICS LETTERS 87, 1829111_2005

近年、電子部品および電子機器に対する地球環境への配慮が強く求められている。電子部品の開発を行うに当たっては、その性能を上げるだけではなく、環境に対する影響も考えなければならない。セラミックコンデンサに対しては、使用される電子機器が野外に廃棄され酸性雨を浴びた場合も考慮し、酸性環境下においても成分の溶出が起こらない、酸耐性の強い誘電体材料を選択しなければならない。   In recent years, consideration for the global environment for electronic parts and electronic devices has been strongly demanded. When developing electronic components, you must not only improve their performance, but also consider the impact on the environment. For ceramic capacitors, it is necessary to select a dielectric material with strong acid resistance that does not cause elution of components even in an acidic environment, considering the fact that the electronic devices used are discarded outdoors and exposed to acid rain. I must.

以上の状況を鑑み、本発明は、高い比誘電率と比抵抗を有し、かつ酸耐性にも優れた誘電体磁器組成物および電子部品を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a dielectric ceramic composition and an electronic component which have a high relative dielectric constant and a specific resistance and are excellent in acid resistance.

上記目的を達成するために、本発明の誘電体磁器組成物では、チタン酸カルシウム銅(CCTO)化合物を主成分とし、前記主成分を100モルとしたときに、SiOを0.1モル以上8.0モル以下、Bを0.1モル以上4.0モル以下、かつZnOを0.1モル以上5.0モル以下含むことを特徴とする。 In order to achieve the above object, in the dielectric ceramic composition of the present invention, a calcium copper titanate (CCTO) compound is a main component, and when the main component is 100 mol, SiO 2 is 0.1 mol or more. 8.0 mol, B 2 O 3 0.1 mol to 4.0 mol, and characterized in that it comprises 0.1 mol or more and 5.0 mol or less of ZnO.

CCTOおよび添加物の組成を前記組成範囲とすることにより、実際のコンデンサ素子として実用可能な高い比誘電率(5000以上)を維持しつつ、高い比抵抗(従来のCCTO単体の約2倍である、3.8×1010Ω・μm以上)を得ることができる。さらに、酸耐性にも優れる。 By setting the composition of the CCTO and the additive within the above-mentioned composition range, a high specific resistance (about twice as high as that of a conventional CCTO alone) is maintained while maintaining a high dielectric constant (5000 or more) that can be practically used as an actual capacitor element. 3.8 × 10 10 Ω · μm or more). Furthermore, it is excellent in acid resistance.

本発明によれば、BTを主成分とする従来の誘電体磁器組成物よりも高い比誘電率と比抵抗を有し、かつ酸耐性にも優れた誘電体磁器組成物を得ることができる。そしてこのような誘電体磁器組成物は、コンデンサ等の電子部品に非常に有用である。   ADVANTAGE OF THE INVENTION According to this invention, the dielectric ceramic composition which has a higher dielectric constant and specific resistance than the conventional dielectric ceramic composition which has BT as a main component, and was excellent also in acid tolerance can be obtained. Such a dielectric ceramic composition is very useful for electronic parts such as capacitors.

以下、本発明の誘電体磁器組成物の好適な実施形態について詳細に説明するが、本発明は以下の実施形態に限定されるものではない。   Hereinafter, preferred embodiments of the dielectric ceramic composition of the present invention will be described in detail, but the present invention is not limited to the following embodiments.

本実施形態の誘電体磁器組成物では、チタン酸カルシウム銅(CCTO)化合物を主成分とし、主成分を100モルとしたときに、副成分として、SiOを0.1モル以上8.0モル以下、Bを0.1モル以上4.0モル以下、かつZnOを0.1モル以上5.0モル以下含む。 In the dielectric ceramic composition of this embodiment, when the main component is a calcium copper titanate (CCTO) compound and the main component is 100 mol, SiO 2 is 0.1 mol or more and 8.0 mol as a subcomponent. Hereinafter, B 2 O 3 is contained in an amount of 0.1 mol to 4.0 mol, and ZnO is contained in an amount of 0.1 mol to 5.0 mol.

チタン酸カルシウム銅(CCTO)は一般式CaCuTi12で表され、xは2.9≦x≦3.1の範囲の複酸化物であることが好ましい。xが前記範囲外であると、CaTiOやCuOなどの異相が生成し、CaCuTi12の誘電率が低下する可能性がある。また、CuOに関しては半導体であり、この相が比抵抗を低下させる可能性もある。 Calcium copper titanate (CCTO) is represented by the general formula CaCu x Ti 4 O 12 , and x is preferably a double oxide in the range of 2.9 ≦ x ≦ 3.1. When x is out of the above range, a different phase such as CaTiO 3 or CuO is generated, and the dielectric constant of CaCu x Ti 4 O 12 may be lowered. In addition, CuO is a semiconductor, and this phase may reduce the specific resistance.

本実施形態の誘電体磁器組成物は、CCTOを主成分とする複数の誘電体結晶粒子(誘電体粒子)で構成されている。CCTOの比抵抗を増大させるには、誘電体結晶粒子の粒成長を抑制し、かつ粒界を形成する高抵抗成分を添加することが効果的と考えられる。   The dielectric ceramic composition of the present embodiment is composed of a plurality of dielectric crystal particles (dielectric particles) whose main component is CCTO. In order to increase the specific resistance of CCTO, it is considered effective to suppress the grain growth of dielectric crystal grains and to add a high resistance component that forms a grain boundary.

SiOは誘電体材料に添加するガラスの主成分であり、液相焼結することで各誘電体粒子における焼結の進行を均一に進めることが出来るため粒成長を抑制できる。しかも、焼成後は高抵抗成分として粒界に存在すると考えられる。SiOが少な過ぎる場合には、粒界での存在量が減るために比抵抗が低下し、また多過ぎる場合には、比誘電率の低下を招くため、主成分のCCTOを100モルとしたときに、SiOの量は0.1モル以上8.0モル以下であることが好ましい。 SiO 2 is a main component of glass added to the dielectric material, and by performing liquid phase sintering, the progress of sintering in each dielectric particle can be promoted uniformly, so that grain growth can be suppressed. Moreover, after firing, it is considered to exist at the grain boundary as a high resistance component. If the SiO 2 content is too small, the abundance at the grain boundary is reduced, so that the specific resistance is lowered. If it is too large, the relative permittivity is lowered, so that the main component CCTO is 100 mol. Sometimes, the amount of SiO 2 is preferably 0.1 mol or more and 8.0 mol or less.

CCTOの焼結温度は900℃以上1100℃以下であり、SiOのガラス転移温度と同程度であるため、SiOのみの添加では満足な液相焼結効果が発揮されない。そこでBを共に添加することによって、ガラス転移温度を下げる効果が得られる。Bは、添加量を多くするほど効果が高まるが、必要量以上に添加した場合には粒成長を促進し、逆に比誘電率および比抵抗の低下を招く。そのため、主成分のCCTOを100モルとしたときに、Bの量は0.1モル以上4.0モル以下であることが好ましい。 The sintering temperature of CCTO is 900 ° C. or more and 1100 ° C. or less, which is about the same as the glass transition temperature of SiO 2 , so that a satisfactory liquid phase sintering effect cannot be exhibited by adding only SiO 2 . Therefore, the effect of lowering the glass transition temperature can be obtained by adding B 2 O 3 together. The effect of B 2 O 3 increases as the addition amount increases. However, when the addition amount exceeds the necessary amount, grain growth is promoted, and conversely, the relative permittivity and resistivity decrease. Therefore, when the main component CCTO is 100 mol, the amount of B 2 O 3 is preferably 0.1 mol or more and 4.0 mol or less.

上記のように、CCTOを焼成する際の液相焼結効果を高め、誘電体粒子の異常粒成長を抑制するためには、SiOおよびBを添加する必要がある。これらは焼成中にガラスとなり、CCTO焼結体の粒界成分を形成するが、これらのみでは安定なガラス成分と成らず、酸等の化学的耐性に劣る。そこで、ガラス組成物の安定化成分としてZnOを添加する。ZnOには、ガラス組成物の熱膨張を抑制し、クラック等が無く信頼性の高い誘電体磁器組成物を得られるという効果もある。ZnOの量を増やすほど、CCTO焼結体の粒界を形成するガラス成分の化学的耐性が高まり、誘電体磁器組成物の化学的耐性も改善するが、必要量以上に添加した場合にはCCTO粒子と反応することによって異常粒成長を引き起こし、結果比抵抗の低下を招く。そのため、主成分のCCTOを100モルとしたときに、ZnOの量は0.1モル以上5.0モル以下であることが好ましい。なお、SiOとBは相分離し易い傾向があり、相分離によって発生する異相が酸性等の腐食性環境下に晒された際に腐食の起点となり得ると考えられることから、SiO、BおよびZnOは、予めガラス組成物として合成した後に添加するのがより好ましい。 As described above, it is necessary to add SiO 2 and B 2 O 3 in order to enhance the liquid phase sintering effect when firing CCTO and to suppress abnormal grain growth of dielectric particles. These become glass during firing and form the grain boundary component of the CCTO sintered body, but these alone are not stable glass components and are inferior in chemical resistance such as acid. Therefore, ZnO is added as a stabilizing component of the glass composition. ZnO also has the effect of suppressing the thermal expansion of the glass composition and obtaining a highly reliable dielectric ceramic composition free from cracks and the like. As the amount of ZnO increases, the chemical resistance of the glass component forming the grain boundary of the CCTO sintered body increases and the chemical resistance of the dielectric ceramic composition also improves. Reacting with the particles causes abnormal grain growth, resulting in a decrease in resistivity. Therefore, when the main component CCTO is 100 mol, the amount of ZnO is preferably 0.1 mol or more and 5.0 mol or less. Since SiO 2 and B 2 O 3 tend to phase-separate, it is considered that a heterogeneous phase generated by phase separation can be a starting point of corrosion when exposed to a corrosive environment such as an acid. 2 , B 2 O 3 and ZnO are more preferably added after previously synthesized as a glass composition.

前記主成分CCTOの一般式CaCuTi12におけるxや副成分は、例えば蛍光X線分析法(XRF)や誘導結合プラズマ(ICP)発光分光分析法などの元素分析により判別することができる。なお、主成分CCTO、副成分SiO、B、ZnOのほか、本発明の効果を著しく損なわない範囲で、たとえばBa、Sr、Mn、Mg、Al、V、Co、Ga、Ge、In、Sn、希土類等の元素を含む添加物や、Zr、Na、P等の不可避不純物などが含有されていても良い。 The x and subcomponents in the general formula CaCu x Ti 4 O 12 of the main component CCTO can be discriminated by elemental analysis such as fluorescent X-ray analysis (XRF) or inductively coupled plasma (ICP) emission spectrometry. . In addition to the main component CCTO, the subcomponents SiO 2 , B 2 O 3 and ZnO, for example, Ba, Sr, Mn, Mg, Al, V, Co, Ga, Ge, An additive containing an element such as In, Sn, or a rare earth, or an inevitable impurity such as Zr, Na, or P may be contained.

本実施形態において、焼結体の誘電体粒子の平均粒径は1.0μm以下となっている。このように粒成長が抑制されることにより、誘電体層一層中に含まれる誘電体粒子の層間粒子数が増加し、比抵抗が増大する効果が得られる。   In the present embodiment, the average particle size of the dielectric particles of the sintered body is 1.0 μm or less. By suppressing the grain growth in this way, the number of interlayer particles of the dielectric particles contained in one dielectric layer is increased, and the effect of increasing the specific resistance is obtained.

本実施形態に係わる誘電体磁器組成物の製造方法の一例を説明する。まず、Ca、Cu、およびTiを含む化合物の粉末を所定の組成になるように配合、混合し、混合粉末を得る。次いで、得られた混合粉末を、例えば大気中で660℃以上900℃以下のCCTO結晶相を有することができる温度で仮焼きし、仮焼粉を得る。さらに、得られた仮焼粉と、予め合成したSi、BおよびZnを含む化合物からなるガラス組成物を所定の組成になるように配合し、さらにポリビニルブチラール、ポリビニルアルコール等のバインダ樹脂と有機溶媒とを所定の割合で混合し、誘電体ペーストとして調整する。この誘電体ペーストをシート状に形成、積層し得られた成型物を、例えば大気中で900℃以上1100℃以下の温度で焼成することによって、誘電体磁器組成物を得る。   An example of a method for producing a dielectric ceramic composition according to this embodiment will be described. First, a powder of a compound containing Ca, Cu, and Ti is blended and mixed so as to have a predetermined composition to obtain a mixed powder. Next, the obtained mixed powder is calcined at a temperature capable of having a CCTO crystal phase of, for example, 660 ° C. or more and 900 ° C. or less in the air to obtain calcined powder. Further, the obtained calcined powder and a glass composition comprising a compound containing Si, B and Zn synthesized in advance are blended so as to have a predetermined composition, and further, a binder resin such as polyvinyl butyral and polyvinyl alcohol, and an organic solvent Are mixed at a predetermined ratio to prepare a dielectric paste. A dielectric ceramic composition is obtained by firing a molded product obtained by forming and laminating the dielectric paste into a sheet, for example, in the atmosphere at a temperature of 900 ° C. or higher and 1100 ° C. or lower.

特に、誘電体磁器組成物を積層コンデンサに適用する場合には、上記仮焼粉をバインダ樹脂と有機溶媒に混合して誘電体層のもととなるペーストを調整し、このペーストを内部電極層のもとになるペーストと交互に印刷して積層するか、または、仮焼粉をバインダ樹脂と混合してセラミックスグリーンシートを形成し、セラミックグリーンシートに内部電極のもとになるペーストを印刷したものを交互に積層した後、積層物を同時に焼成すればよい。焼成後、端子電極を接続することで、交互に積層された積層コンデンサが製造される。   In particular, when the dielectric ceramic composition is applied to a multilayer capacitor, the above-mentioned calcined powder is mixed with a binder resin and an organic solvent to prepare a paste as a base of the dielectric layer, and this paste is used as an internal electrode layer. Alternately printing and laminating pastes that form the base, or mixing the calcined powder with a binder resin to form a ceramic green sheet, and printing the paste that forms the internal electrode on the ceramic green sheet After the layers are alternately laminated, the laminate may be fired at the same time. After firing, by connecting terminal electrodes, multilayer capacitors that are alternately stacked are manufactured.

なお、本実施形態に係わる誘電体磁器組成物は、上述した積層コンデンサ以外にも、例えば、LCフィルタ、カプラなどの各種チップ型電子部品にも適用することができる。   The dielectric ceramic composition according to the present embodiment can be applied to various chip-type electronic components such as LC filters and couplers in addition to the multilayer capacitor described above.

以下に、本発明を実施例に基づいて説明するが、本発明の構成は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described based on examples, but the configuration of the present invention is not limited to these examples.

CaCO、CuO、およびTiOの粉末を、焼成後の誘電体磁器組成物における化学式がCaCuTi12となるようにCaCOとCuOとTiOをそれぞれ15.0、35.1、47.8gずつ秤量し、ジルコニアボールを用いて水中で混合させ、その混合粉末を含む液体を乾燥させ、乳鉢ですりつぶし、混合粉末を作製した。このとき、xの値は2.95であった。 CaCO 3 , CuO, and TiO 2 powders are made to have CaCO 3 , CuO, and TiO 2 of 15.0, 35.1, respectively, so that the chemical formula in the dielectric ceramic composition after firing is CaCu x Ti 4 O 12 . 47.8 g each was weighed and mixed in water using zirconia balls, and the liquid containing the mixed powder was dried and ground in a mortar to prepare a mixed powder. At this time, the value of x was 2.95.

次に、この混合粉末を大気中、700℃で仮焼して仮焼粉末を得た。X線回折(XRD)でCaCuTi12が作製されていることを確認できた。 Next, this mixed powder was calcined at 700 ° C. in the air to obtain a calcined powder. It was confirmed by X-ray diffraction (XRD) that CaCu x Ti 4 O 12 was produced.

次に、この仮焼粉CaCuTi12粉末100モルに対し、以下の表1から表3の各実施例および比較例に示す量の副成分(SiO、B、ZnO)を所定の分量で配合したガラス組成物、バインダ樹脂および有機溶媒を混合し、誘電体ペーストを得た。 Next, with respect to 100 moles of the calcined powder CaCu x Ti 4 O 12 powder, subcomponents (SiO 2 , B 2 O 3 , ZnO) in amounts shown in the following Examples and Comparative Examples in Table 1 to Table 3 below. A glass composition, a binder resin and an organic solvent blended in a predetermined amount were mixed to obtain a dielectric paste.

次に、上記各組成のペーストについてドクターブレード法により10μm程度の厚みのセラミックスグリーンシートを成型し、600μm程度の厚みまで積層し、12mm×12mmに切断して、積層体を得た。   Next, a ceramic green sheet having a thickness of about 10 μm was molded by the doctor blade method for the paste of each composition described above, laminated to a thickness of about 600 μm, and cut into 12 mm × 12 mm to obtain a laminate.

次に、得られた積層体を900℃以上1100℃以下で2時間、大気中で維持し、CaCuTi12を主成分、SiO、B、ZnOからなる化合物を副成分とする誘電体磁器組成物を得た。この誘電体磁器組成物はXRDによりCaCuTi12の結晶構造が示された。また、得られた誘電体磁器組成物を粉砕し、誘導結合プラズマ(ICP)発光分光分析法を用い、調合組成が目的の組成となっていることを確認した。 Next, the obtained laminate is maintained at 900 ° C. or higher and 1100 ° C. or lower for 2 hours in the air, and a compound composed of CaCu x Ti 4 O 12 as a main component, SiO 2 , B 2 O 3 , and ZnO is used as a subcomponent. A dielectric ceramic composition was obtained. This dielectric ceramic composition showed a crystal structure of CaCu x Ti 4 O 12 by XRD. Moreover, the obtained dielectric ceramic composition was pulverized and it was confirmed that the prepared composition was the target composition using inductively coupled plasma (ICP) emission spectroscopy.

比誘電率は、それぞれの誘電体磁器組成物の上部、下部両面にIn−Gaペーストを塗布し電極を形成した後、室温でLCRメータ(ヒューレットパッカード社製 4284A)を用いて測定した結果から、平行板コンデンサとしてみなした際の比誘電率εを算出して評価した。測定周波数は1kHz、電圧は1Vrmsとした。また、比誘電率は5000以上を良好と判断した。 The relative dielectric constant was measured by using an LCR meter (4284A manufactured by Hewlett-Packard Company) at room temperature after applying an In-Ga paste on both upper and lower surfaces of each dielectric ceramic composition to form an electrode. The relative dielectric constant ε 1 when regarded as a parallel plate capacitor was calculated and evaluated. The measurement frequency was 1 kHz and the voltage was 1 Vrms. The relative dielectric constant was determined to be good at 5000 or more.

また、得られた誘電体磁器組成物に上記同様、上部、下部両面にIn−Gaペーストにて電極を形成した後、直流電流1Vを印加し、チャージ時間を30秒とした際の抵抗値を、抵抗測定器(アドバンテスト社製 R8340)にて測定し比抵抗特性とした。比抵抗は、3.8×1010Ω・μm以上を良好と判断した。 Similarly to the above, after forming electrodes with In-Ga paste on both upper and lower surfaces of the obtained dielectric ceramic composition, the resistance value when applying a direct current of 1 V and setting the charging time to 30 seconds is shown. , Measured by a resistance measuring instrument (R8340, manufactured by Advantest Corp.) to obtain specific resistance characteristics. The specific resistance was determined to be 3.8 × 10 10 Ω · μm or more.

また、得られた誘電体磁器組成物を1モルパーセントの濃度に調製した希塩酸中に入れ、24時間経過した後に取り出して純水で洗浄、乾燥させた後、上記同様、上部、下部両面にIn−Gaペーストにて電極を形成した後、室温でLCRメータ(ヒューレットパッカード社製 4284A)を用いて測定した結果から、平行板コンデンサとしてみなした際の比誘電率εを算出して評価し、以下の式(1)から酸浸漬による比誘電率の減少率(酸耐性度)を計算した。酸耐性度は、15%以内を良好と判断した。測定周波数は1kHz、電圧は1Vとした。
1−(ε/ε) ・・・(1)
Further, the obtained dielectric ceramic composition was put in dilute hydrochloric acid adjusted to a concentration of 1 mole percent, taken out after 24 hours, washed with pure water and dried, and then the upper and lower surfaces were both in the same manner as above. -After forming an electrode with Ga paste, from a result measured using an LCR meter (4284A manufactured by Hewlett-Packard Company) at room temperature, a relative dielectric constant ε 2 when regarded as a parallel plate capacitor was calculated and evaluated, From the following formula (1), the reduction rate of the dielectric constant (acid resistance) by acid immersion was calculated. The acid resistance was judged to be good within 15%. The measurement frequency was 1 kHz and the voltage was 1V.
1- (ε 2 / ε 1 ) (1)

また、得られた誘電体磁器組成物の平均粒径を求めた方法を以下に示す。誘電体磁器組成物の断面を研磨し、焼成温度より100℃低い温度で処理することによりサーマルエッチングを施した。このようにして得られたサンプルを、低加速SEM(日立製 S4800)を用いて15000倍の倍率で観察、撮影しサンプル粒子断面の画像を得た。得られた画像に任意の間隔で縦もしくは横に直線を5本引き、直線と粒子境界の交点から各粒子の粒径を測定し、その平均値を平均粒径とした。なお、同じ粒子の粒径は2度測定しないものとした。また、測定粒子数は少なくとも100個とした。   Moreover, the method of calculating | requiring the average particle diameter of the obtained dielectric ceramic composition is shown below. The cross section of the dielectric ceramic composition was polished and subjected to thermal etching by processing at a temperature 100 ° C. lower than the firing temperature. The sample thus obtained was observed and photographed at a magnification of 15000 times using a low-acceleration SEM (Hitachi S4800) to obtain an image of a sample particle cross section. Five straight lines were drawn vertically or horizontally at arbitrary intervals on the obtained image, the particle size of each particle was measured from the intersection of the straight line and the particle boundary, and the average value was taken as the average particle size. In addition, the particle size of the same particle was not measured twice. The number of measured particles was at least 100.

SiO添加量の検討結果を表1に示す。SiOの添加量を増やすほど、粒界ガラス成分比率が増えるため、比誘電率は低下傾向、比抵抗は増大傾向となる。比較例3のようにSiO添加量が0.04モルと少ない場合、粒界のガラス成分不足により、比抵抗の上昇が小さく、CCTO単体(比較例1)の比抵抗と比較して2倍以上の上昇が見られない。比較例4のようにSiO添加量が8.5モルと多い場合、ガラス成分過剰となり比誘電率が5000以上を維持出来ていない。以上より、SiOの添加量は0.1モル以上8.0モル以下が好ましい。 Table 1 shows the results of studying the amount of SiO 2 added. As the added amount of SiO 2 is increased, the grain boundary glass component ratio is increased, so that the relative permittivity tends to decrease and the specific resistance tends to increase. When the amount of SiO 2 added is as small as 0.04 mol as in Comparative Example 3, the increase in specific resistance is small due to the lack of glass components at the grain boundaries, which is twice that of the specific resistance of CCTO alone (Comparative Example 1). No further increase is seen. When the amount of SiO 2 added is as large as 8.5 mol as in Comparative Example 4, the glass component becomes excessive and the relative dielectric constant cannot be maintained at 5000 or more. From the above, the addition amount of SiO 2 is preferably 0.1 mol or more and 8.0 mol or less.

Figure 2013184846
Figure 2013184846

次に、B添加量の検討結果を表2に示す。Bの添加量を増やすほど、ガラス焼結効果が高まり比誘電率および比抵抗が上昇する。比較例6のようにB添加量が0.04モルと少ない場合、ガラス焼結効果の不足により、比抵抗の上昇が小さく、CCTO単体(比較例1)の比抵抗と比較して2倍以上の上昇が見られない。比較例7のようにB添加量が5.0モルと多い場合、過剰焼結となり、比抵抗が低下する。以上より、Bの添加量は0.1モル以上4.0モル以下が好ましい。 Next, Table 2 shows the results of studying the amount of B 2 O 3 added. As the amount of B 2 O 3 added is increased, the glass sintering effect is increased and the specific permittivity and specific resistance are increased. When the amount of B 2 O 3 added is as small as 0.04 mol as in Comparative Example 6, the increase in specific resistance is small due to insufficient glass sintering effect, compared with the specific resistance of CCTO alone (Comparative Example 1). There is no increase of more than 2 times. When the amount of addition of B 2 O 3 is as large as 5.0 mol as in Comparative Example 7, oversintering occurs and the specific resistance decreases. From the above, the amount of B 2 O 3 added is preferably 0.1 mol or more and 4.0 mol or less.

Figure 2013184846
Figure 2013184846

次に、ZnO添加量の検討結果を表3に示す。ZnOの添加量を増やすほど、ガラス組成物および誘電体磁器組成物の酸耐性度が改善傾向、比抵抗は増大傾向となる。比較例9のようにZnO添加量が少ない場合、比抵抗の上昇が小さく、CCTO単体(比較例1)の比抵抗と比較して2倍以上の上昇が見られず、酸耐性度も低い。比較例10のようにZnO添加量が多い場合、異常粒成長により比抵抗が低くなる。以上より、ZnOの添加量は0.1モル以上5.0モル以下が好ましい。   Next, Table 3 shows the results of studying the ZnO addition amount. As the added amount of ZnO is increased, the acid resistance of the glass composition and the dielectric ceramic composition tends to improve, and the specific resistance tends to increase. When the amount of ZnO added is small as in Comparative Example 9, the increase in specific resistance is small, no increase of more than twice as much as the specific resistance of CCTO alone (Comparative Example 1), and the acid resistance is low. When the ZnO addition amount is large as in Comparative Example 10, the specific resistance is lowered due to abnormal grain growth. From the above, the addition amount of ZnO is preferably 0.1 mol or more and 5.0 mol or less.

Figure 2013184846
Figure 2013184846

本発明に係る誘電体磁器組成物は、積層コンデンサ、LCフィルタ、カプラなどのチップ型電子部品のほか、誘電体磁器組成物を含有する誘電体層を備えた発振器、共振器、多層回路基板、マイクロ波回路など、各種電子デバイスや電子機器の電子部品に有用である。   In addition to chip-type electronic components such as multilayer capacitors, LC filters, and couplers, the dielectric ceramic composition according to the present invention includes an oscillator, a resonator, a multilayer circuit board, and a dielectric layer containing the dielectric ceramic composition. It is useful for electronic parts of various electronic devices and electronic equipment such as microwave circuits.

Claims (4)

チタン酸カルシウム銅化合物を主成分とし、前記主成分を100モルとしたときに、SiOを0.1モル以上8.0モル以下、Bを0.1モル以上4.0モル以下、かつZnOを0.1モル以上5.0モル以下含むことを特徴とする誘電体磁器組成物。 When the main component is a calcium copper titanate compound and the main component is 100 mol, SiO 2 is 0.1 mol or more and 8.0 mol or less, and B 2 O 3 is 0.1 mol or more and 4.0 mol or less. And a dielectric ceramic composition comprising ZnO in an amount of 0.1 mol to 5.0 mol. 前記誘電体磁器組成物を構成する誘電体粒子は平均粒径が1.0μm以下であることを特徴とする、請求項1に記載の誘電体磁器組成物。   The dielectric ceramic composition according to claim 1, wherein the dielectric particles constituting the dielectric ceramic composition have an average particle size of 1.0 μm or less. 前記主成分は、一般式CaCuTi12で表され、xは2.9から3.1の範囲の値であることを特徴とする、請求項1または2のいずれかに記載の誘電体磁器組成物。 3. The dielectric according to claim 1, wherein the main component is represented by a general formula CaCu x Ti 4 O 12 , and x is a value in a range of 2.9 to 3.1. Body porcelain composition. 請求項1から3のいずれかに記載の誘電体磁器組成物を含有する誘電体層を備えたことを特徴とする電子部品。   An electronic component comprising a dielectric layer containing the dielectric ceramic composition according to any one of claims 1 to 3.
JP2012050453A 2012-03-07 2012-03-07 Dielectric ceramic composition and electronic component Pending JP2013184846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050453A JP2013184846A (en) 2012-03-07 2012-03-07 Dielectric ceramic composition and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050453A JP2013184846A (en) 2012-03-07 2012-03-07 Dielectric ceramic composition and electronic component

Publications (1)

Publication Number Publication Date
JP2013184846A true JP2013184846A (en) 2013-09-19

Family

ID=49386611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050453A Pending JP2013184846A (en) 2012-03-07 2012-03-07 Dielectric ceramic composition and electronic component

Country Status (1)

Country Link
JP (1) JP2013184846A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107417967A (en) * 2017-05-22 2017-12-01 清华大学深圳研究生院 Nanoparticle fillers, silicon rubber composite material and preparation method thereof
EP3435391A3 (en) * 2016-05-28 2019-05-08 Blue Horizon Innovations L.L.C. Advanced dielectric energy storage device and method of fabrication
CN109912305A (en) * 2019-04-25 2019-06-21 重庆大学 A kind of high-potential gracient, low-dielectric loss CaCu3Ti4O12Voltage-sensitive ceramic and preparation method thereof
US10347433B2 (en) 2009-04-13 2019-07-09 Blue Horizon Innovations, Llc. Advanced dielectric energy storage device and method of fabrication
CN113053662A (en) * 2019-12-27 2021-06-29 株式会社村田制作所 Multilayer ceramic capacitor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347433B2 (en) 2009-04-13 2019-07-09 Blue Horizon Innovations, Llc. Advanced dielectric energy storage device and method of fabrication
US10847325B2 (en) 2009-04-13 2020-11-24 Blue Horizon Innovations, Llc. Advanced dielectric energy storage device and method of fabrication
EP3435391A3 (en) * 2016-05-28 2019-05-08 Blue Horizon Innovations L.L.C. Advanced dielectric energy storage device and method of fabrication
CN107417967A (en) * 2017-05-22 2017-12-01 清华大学深圳研究生院 Nanoparticle fillers, silicon rubber composite material and preparation method thereof
CN109912305A (en) * 2019-04-25 2019-06-21 重庆大学 A kind of high-potential gracient, low-dielectric loss CaCu3Ti4O12Voltage-sensitive ceramic and preparation method thereof
CN109912305B (en) * 2019-04-25 2022-03-04 重庆大学 CaCu with high potential gradient and low dielectric loss3Ti4O12Pressure-sensitive ceramic and preparation method thereof
CN113053662A (en) * 2019-12-27 2021-06-29 株式会社村田制作所 Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JP5272754B2 (en) Dielectric porcelain composition and electronic component
JP5035016B2 (en) Dielectric porcelain composition and electronic component
JP5835011B2 (en) Dielectric porcelain composition and electronic component
JP5077362B2 (en) Dielectric ceramic and multilayer ceramic capacitor
TWI413630B (en) Dielectric ceramic and laminated ceramic capacitor
JP6535733B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
KR102097969B1 (en) Dielectric composition, dielectric element, electronic component and multilayer electronic component
JP6257802B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP6716679B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP5835012B2 (en) Dielectric porcelain composition and electronic component
JP2008109120A (en) Multilayer ceramic capacitor and its fabrication process
JP2013184846A (en) Dielectric ceramic composition and electronic component
JP6467648B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
KR101432442B1 (en) Dielectic ceramic composition and electronic device
JP2006347782A (en) Dielectric ceramic composition and laminated ceramic capacitor
JPWO2009119614A1 (en) Multilayer ceramic capacitor
JP2013211398A (en) Multilayer ceramic capacitor
JP6635126B2 (en) Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JP5289239B2 (en) Dielectric porcelain and capacitor
JP2013155064A (en) Dielectric ceramic composition and electronic component
JP5241328B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP2013173627A (en) Dielectric ceramic composition and electronic component
JP2009227483A (en) Dielectric ceramic composition
JP2010235325A (en) Dielectric ceramic composition
JP2008285373A (en) Dielectric ceramic composition and electronic component