JP2013155064A - Dielectric ceramic composition and electronic component - Google Patents

Dielectric ceramic composition and electronic component Download PDF

Info

Publication number
JP2013155064A
JP2013155064A JP2012015474A JP2012015474A JP2013155064A JP 2013155064 A JP2013155064 A JP 2013155064A JP 2012015474 A JP2012015474 A JP 2012015474A JP 2012015474 A JP2012015474 A JP 2012015474A JP 2013155064 A JP2013155064 A JP 2013155064A
Authority
JP
Japan
Prior art keywords
phase
ceramic composition
dielectric ceramic
cacu
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012015474A
Other languages
Japanese (ja)
Inventor
Masashi Ito
将志 伊藤
Hidesada Natsui
秀定 夏井
Gakuo Tsukada
岳夫 塚田
Hide Terada
秀 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012015474A priority Critical patent/JP2013155064A/en
Publication of JP2013155064A publication Critical patent/JP2013155064A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition that has high specific resistance characteristics while keeping a high dielectric constant.SOLUTION: A dielectric ceramic composition includes a first phase having as a principal component a compound represented by general formula CaCuTiO, a second phase having as a principal component a compound represented by general formula CaTiSiO, and a mixed-phase structure of the first phase and the second phase.

Description

本発明は、誘電体磁器組成物および電子部品に関するものである。   The present invention relates to a dielectric ceramic composition and an electronic component.

近年の電子機器は、特性の小型化および高性能化の要求が強い。こうした電子機器の高性能化の要求に答えるべく、発振器、共振器、多層回路基板、マイクロ波回路など、各種電子デバイスに用いられている電子部品の高特性化が検討されてきた。中でも、電子部品のコンデンサにおいては、さらなる小型で高容量化が強く求められており、その誘電体磁器組成物すなわち誘電体材料の高特性化として、より高い比誘電率特性が求められている。こうした誘電体材料の比誘電率特性への要求には、特許文献1に開示される高い比誘電率を有するCaCuTi12(CCTO)で表される化合物が開示されている。 There is a strong demand for downsizing and high performance of electronic devices in recent years. In order to meet the demand for higher performance of such electronic equipment, higher performance of electronic components used in various electronic devices such as oscillators, resonators, multilayer circuit boards, and microwave circuits has been studied. In particular, capacitors for electronic parts are strongly demanded to be smaller and have a higher capacity, and higher dielectric constant characteristics are required as higher performance of the dielectric ceramic composition, that is, the dielectric material. The requirement for the dielectric constant characteristics of such a dielectric material discloses a compound represented by CaCu 3 Ti 4 O 12 (CCTO) having a high dielectric constant disclosed in Patent Document 1.

しかしながら、このCCTO化合物は、高い比誘電率特性を有するものの、コンデンサとして必要な比抵抗特性が十分に得ることができず、比抵抗特性が要求されるコンデンサの誘電体材料として適用することが出来なかった。   However, although this CCTO compound has a high specific dielectric constant characteristic, it cannot obtain a sufficient specific resistance characteristic necessary for a capacitor, and can be applied as a dielectric material for a capacitor that requires a specific resistance characteristic. There wasn't.

このため、CCTOにMnO(非特許文献1)を、ZrO(非特許文献2)、SiO(非特許文献3)などの物質を添加した化合物を得え、CCTO化合物の高抵抗特性化を達成するための多様な試みがされてきた。
ところが、CCTO化合物の高抵抗化を試みると比誘電率特性が低下してしまうという課題がある。このため、CCTO化合物では、高い比誘電率を維持しながら積層セラミックスコンデンサに必要な比抵抗特性を達成する結果を未だ得ていない。
Therefore, the MnO (Non-Patent Document 1) in CCTO, ZrO 2 (Non-patent Document 2), SiO 2 (non-patent document 3) compound material was added such Tokue, a high resistance characteristic of the CCTO compound Various attempts have been made to achieve this.
However, there is a problem that the relative dielectric constant characteristics are lowered when an attempt is made to increase the resistance of the CCTO compound. For this reason, the CCTO compound has not yet obtained the result of achieving the specific resistance characteristics necessary for the multilayer ceramic capacitor while maintaining a high relative dielectric constant.

特開2008−143758号公報JP 2008-143758 A

APPLIED PHYSICS LETTERS 88、232903、2006APPLYED PHYSICS LETTERS 88, 23903, 2006 APPLIED PHYSICS LETTERS 87、182911、2005APPLYED PHYSICS LETTERS 87, 182911, 2005 Jornal Of European Ceramic Society 27、3991−3995、2007Journal Of European Ceramic Society 27, 3991-3995, 2007

このため、本発明の目的は、高い比誘電率を維持しつつ、かつ比抵抗特性の高い誘電体磁器組成物を提供することを目的とする。   Therefore, an object of the present invention is to provide a dielectric ceramic composition having a high specific resistance while maintaining a high specific dielectric constant.

上記目的を達成するために、本発明の誘電体磁器組成物では、一般式CaCuTi12で表される化合物を主成分とする第一の相と、一般式CaTiSiOで表される化合物を主成分とする第二の相と、前記第一の相と前記第二の相の混相体構造を有することを特徴とする。(yは、0<y<3の範囲の任意の数値) In order to achieve the above object, the dielectric ceramic composition of the present invention is represented by a first phase mainly composed of a compound represented by the general formula CaCu y Ti 4 O 12 and a general formula CaTiSiO 5. It has the mixed phase structure of the 2nd phase which has a compound as a main component, and said 1st phase and said 2nd phase, It is characterized by the above-mentioned. (Y is an arbitrary number in the range of 0 <y <3)

高い誘電率を持つ第一の相と高抵抗の第二の相の混相体構造を有するために、本発明の誘電体磁器組成物は、高い比誘電率を維持しつつ、かつ比抵抗特性の高い誘電体磁器組成物を得ることができる。   In order to have a mixed phase structure of a first phase having a high dielectric constant and a second phase having a high resistance, the dielectric ceramic composition of the present invention maintains a high relative dielectric constant and has a specific resistance characteristic. A high dielectric ceramic composition can be obtained.

さらに、好ましくは、前記誘電体磁器組成物のX線回折測定において、第二の相の(21−1)面のX線回折強度を第一の相の(222)面のX線回折強度で割った商の値を0.03以上、1.00以下にする。
これによって、比抵抗の高い特性と比誘電率を5000以上というさらに高い値を得ることができる。比誘電率が5000以上であると、例えば積層セラミックスコンデンサの小型大容量化に有用であり好ましい。
Furthermore, preferably, in the X-ray diffraction measurement of the dielectric ceramic composition, the X-ray diffraction intensity of the (21-1) plane of the second phase is the X-ray diffraction intensity of the (222) plane of the first phase. The value of the divided quotient is set to 0.03 or more and 1.00 or less.
As a result, it is possible to obtain characteristics with high specific resistance and a higher dielectric constant of 5000 or more. A relative dielectric constant of 5000 or more is useful, for example, for increasing the size and capacity of multilayer ceramic capacitors.

また、前記第一の相の一般式(CaCuTi12)で表される化合物のyは、2.9以上3.1以下の範囲の値にする。これによって、銅酸化物やチタン酸カルシウムなどの比誘電率や比抵抗に影響を及ぼす異相の生成が抑制することができる。異相が存在すると、誘電率、及び抵抗値の低下が予測されるため、異相が生成しない条件で誘電体磁器組成物を作成する必要がある。 Moreover, y of the compound represented by the general formula (CaCu y Ti 4 O 12 ) of the first phase is set to a value in the range of 2.9 to 3.1. As a result, it is possible to suppress the generation of heterogeneous phases such as copper oxide and calcium titanate that affect the specific permittivity and specific resistance. If a different phase exists, the dielectric constant and the resistance value are expected to decrease. Therefore, it is necessary to prepare a dielectric ceramic composition under the condition that no different phase is generated.

本発明によれば、高い比誘電率を維持しつつ、かつ比抵抗特性の高い誘電体磁器組成物として提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it can provide as a dielectric ceramic composition with a high specific resistance characteristic, maintaining a high dielectric constant.

本発明の一実施形態に係る積層セラミックコンデンサの概略断面図である。1 is a schematic cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention. 実施例4のX線回折測定の結果のパターンを示す。The pattern of the result of the X-ray diffraction measurement of Example 4 is shown.

本発明の一実施形態に係る誘電体磁器組成物は、一般式CaCuTi12で表される化合物を主成分とする第一の相と、一般式CaTiSiOで表される化合物を主成分とする第二の相と、前記第一の相と前記第二の相の混相体構造を有することで、高い比誘電率を維持しつつ、かつ比抵抗の高い特性を得ることができる。(yは、0<y<3の範囲の任意の数値) The dielectric ceramic composition according to an embodiment of the present invention mainly includes a first phase mainly composed of a compound represented by the general formula CaCu y Ti 4 O 12 and a compound represented by the general formula CaTiSiO 5. By having the second phase as a component and the mixed phase structure of the first phase and the second phase, it is possible to obtain a characteristic having a high specific resistance while maintaining a high specific dielectric constant. (Y is an arbitrary number in the range of 0 <y <3)

この混相体構造は、例えばX線回折法(XRD)や、電子線回折分析などによって判断できる。X線回折分析より具体的には、CaCuTi12とCaTiSiOの2種の結晶相に帰属されるX線回折ピークや、電子線回折ピークが確認することができる。さらに、これらの相は、誘電体磁器組成物の断面観察などから、その割合や大きさや分散などを確認することもできる。 This mixed phase structure can be determined by, for example, X-ray diffraction (XRD) or electron diffraction analysis. More specifically, X-ray diffraction peaks attributed to two crystal phases of CaCu y Ti 4 O 12 and CaTiSiO 5 and electron beam diffraction peaks can be confirmed from the X-ray diffraction analysis. Furthermore, the ratio, size, dispersion, and the like of these phases can be confirmed from cross-sectional observation of the dielectric ceramic composition.

前記第一の相と前記第二の相の混相構造は、高比誘電率で低比抵抗の前記第一の相と、低比誘電率、高比抵抗の前記第二の相を組み合わせることで、より高比抵抗の誘電体磁器組成物を得ることができる。
つまり、比誘電率の高い第一の相であるCaCuTi12と比抵抗の高い第二の相であるCaTiSiOの混相体構造を有することで、CaCuTi12単体で構成されるよりも、実質の電気伝導パスが長くなり、抵抗値が高くなる。その際、CaCuTi12の元から持つ高い誘電率を保持するため、CaCuTi12とCaTiSiOは2つの相を有することが必要である。
The mixed phase structure of the first phase and the second phase is obtained by combining the first phase having a high relative dielectric constant and a low specific resistance and the second phase having a low relative dielectric constant and a high specific resistance. A dielectric ceramic composition having a higher specific resistance can be obtained.
In other words, it has a mixed phase structure of CaCu y Ti 4 O 12 which is the first phase having a high relative dielectric constant and CaTiSiO 5 which is the second phase having a high specific resistance, so that it is composed of CaCu y Ti 4 O 12 alone. Instead, the substantial electrical conduction path becomes longer and the resistance value becomes higher. At that time, CaCu y Ti 4 O 12 and CaTiSiO 5 are required to have two phases in order to maintain the high dielectric constant inherent in CaCu y Ti 4 O 12 .

さらに、CaCuTi12で表される化合物を主成分とする第一の相は、2.9≦y≦3.1の範囲の複酸化物であることが好ましい。yが前記範囲外であると、CaTiOやCuOなどの異相が生成し、CaCuTi12の誘電率が低下する恐れがある。また、CuOに関しては半導体であり、この相が比抵抗を低下させる可能性もある。 Further, the first phase mainly composed of a compound represented by CaCu y Ti 4 O 12 is preferably a mixed oxide in the range of 2.9 ≦ y ≦ 3.1. If y is out of the above range, a foreign phase such as CaTiO 3 or CuO is generated, and the dielectric constant of CaCu y Ti 4 O 12 may be reduced. In addition, CuO is a semiconductor, and this phase may reduce the specific resistance.

そして、CaCuTi12とCaTiSiOの相は、この2種の結晶相が混在した構造が形成されるのを阻害したり、それによって誘電率特性を低下させたりしない範囲で、各種金属の酸化物、複酸化物などを副成分として含有することもできる。そのような副成分としては、例えばSrTiO、TiO、MgTiO、La、Bi等が挙げられる。 And, the phase of CaCu y Ti 4 O 12 and CaTiSiO 5 is not limited to the formation of a structure in which these two types of crystal phases are mixed, and various metals can be used as long as the dielectric constant characteristics are not lowered thereby. These oxides, double oxides and the like can also be contained as subcomponents. Examples of such subcomponents include SrTiO 3 , TiO 2 , MgTiO 3 , La 2 O 3 , Bi 2 O 3 and the like.

化合物のyや副成分は、例えば蛍光X線分析法(XRF)や誘導結合プラズマ(ICP)発光分光分析法などの元素分析により判別することができる。   The y and subcomponents of the compound can be determined by elemental analysis such as X-ray fluorescence analysis (XRF) or inductively coupled plasma (ICP) emission spectroscopy.

また、CaTiSiOで表される化合物を主成分とする第二の相は、それぞれCa、Ti、Siの元素が、同程度の元素比率で存在する複酸化化合物である。 The second phase mainly composed of a compound represented by CaTiSiO 5 is a double oxide compound in which Ca, Ti, and Si elements are present in the same element ratio.

ここでの前記第一の相と前記第二の相の混相体構造とは、CaCuTi12の結晶相とCaTiSiOの結晶相を含む構造である。好ましくは、それぞれ均一に分散しており、前記第一の相は粒径が0.1〜10μmの大きさであることが好ましい。これらの相は、それぞれが均一に分散しているとCaTiSiOの相が電気伝導を阻害することによる高抵抗化の効果が大きく得られ好ましい。また、粒子は積層体構造への応用を考慮して、0.1〜10μmが好ましい。 Here, the mixed phase structure of the first phase and the second phase is a structure including a crystal phase of CaCu y Ti 4 O 12 and a crystal phase of CaTiSiO 5 . Preferably, each is uniformly dispersed, and the first phase preferably has a particle size of 0.1 to 10 μm. It is preferable that these phases are uniformly dispersed because the CaTiSiO 5 phase has the effect of increasing resistance due to the inhibition of electrical conduction. Further, the particle is preferably 0.1 to 10 μm in consideration of application to a laminate structure.

さらに発明者らが検討したところ、第二の相の(21−1)面のX線回折強度を第一の相の(222)面のX線回折強度で割った商の値を0.03以上、1.00以下にすることによって、比誘電率を5000以上というさらに高い値を得ることができる。
商の値が1.00以下の範囲にすると、比抵抗の高い特性と誘電率が5000以上であるという点でより好ましく、それは第二の相と比較して、第一の相の誘電率が高く、比抵抗が低いためである。
Further, when the inventors examined, the quotient obtained by dividing the X-ray diffraction intensity of the (21-1) plane of the second phase by the X-ray diffraction intensity of the (222) plane of the first phase was 0.03. As described above, by setting it to 1.00 or less, a higher dielectric constant of 5000 or more can be obtained.
When the value of the quotient is in the range of 1.00 or less, it is more preferable in terms of a characteristic having a high specific resistance and a dielectric constant of 5000 or more. This is because the dielectric constant of the first phase is higher than that of the second phase. This is because it is high and the specific resistance is low.

そして、第二の相の面積割合が0.03以上の範囲にすると比抵抗が2.5×1010Ω・μm以上であるという点でより好ましく、それは第一の相と比較して、第二の相の誘電率が低く、比抵抗が高いためである。 And, when the area ratio of the second phase is in the range of 0.03 or more, it is more preferable in that the specific resistance is 2.5 × 10 10 Ω · μm or more. This is because the dielectric constant of the second phase is low and the specific resistance is high.

CaCuyTi12で表される化合物のyは、2.9以上3.1以下の範囲の値であり、yは、CuOやCaTiOの異相を析出させないという点で、2.9以上にすることが望まれる。2.9以下にするとCaTiOの異相が析出し、より高い比誘電率を得る点で好ましくない。3.1以上とすると、誘電体磁器組成物中にCuO異相が析出する傾向にあり、高い比誘電率を得る点で好ましくない。 Y of the compound represented by CaCuyTi 4 O 12 is a value in the range of 2.9 to 3.1, and y is set to 2.9 or more in that it does not precipitate a heterogeneous phase of CuO or CaTiO 3. It is desirable. If it is 2.9 or less, a CaTiO 3 heterogeneous phase is precipitated, which is not preferable in terms of obtaining a higher relative dielectric constant. If it is 3.1 or more, a CuO heterogeneous phase tends to precipitate in the dielectric ceramic composition, which is not preferable in terms of obtaining a high relative dielectric constant.

なお、本実施形態に係わる誘電体磁器組成は、コンデンサ以外にも、例えば、LCフィルタ、カプラ、モジュール部品用基板などにも適用することができる。   The dielectric ceramic composition according to the present embodiment can be applied to, for example, an LC filter, a coupler, a module component substrate, etc. in addition to the capacitor.

本実施形態に係わる誘電体磁器組成物の製造方法の一例を説明する。CaCuTi12相をもつ化合物にCaCO、SiO2、TiO、を添加し、焼成することにより第一の相と第二の相が形成される点で好ましい。
まず、Ca、Cu、およびTiを含む化合物の粉末を所定組成になるように配合し混合し、混合粉末を得る。次いで、得られた混合粉末を、例えば、大気中で660℃〜900℃程度のCCTOの結晶相を有することができる温度で仮焼きし、仮焼粉を得る。
さらに、得られた仮焼粉は、ポリビニルブチラール、ポリビニルアルコール等のバインダ樹脂と有機溶媒とCaを含む化合物、Siを含む化合物、Tiを含む化合物の粉末を所定の割合で混合し、誘電体ペーストとして調整する。これらの化合物はCaTiSiO5を予め作製してから添加しても良い。この誘電体ペーストは、シート状に形成し、そして、積層し得られた成型物を、例えば大気中で900℃〜1100℃の温度で焼成することによって、誘電体磁器組成物を得る。
An example of a method for producing a dielectric ceramic composition according to this embodiment will be described. It is preferable in that a first phase and a second phase are formed by adding CaCO 3 , SiO 2, TiO 2 to a compound having a CaCu y Ti 4 O 12 phase and baking it.
First, a compound powder containing Ca, Cu, and Ti is blended and mixed so as to have a predetermined composition to obtain a mixed powder. Next, the obtained mixed powder is calcined at a temperature capable of having a CCTO crystal phase of about 660 ° C. to 900 ° C. in the air, for example, to obtain a calcined powder.
Furthermore, the obtained calcined powder is obtained by mixing a binder resin such as polyvinyl butyral and polyvinyl alcohol, a compound containing an organic solvent and Ca, a compound containing Si, and a powder of a compound containing Ti at a predetermined ratio, and a dielectric paste. To adjust as. These compounds may be added after preparing CaTiSiO5 in advance. This dielectric paste is formed into a sheet shape, and the molded product obtained by laminating is fired, for example, in the atmosphere at a temperature of 900 ° C. to 1100 ° C. to obtain a dielectric ceramic composition.

特に、図1に本発明の一実施形態に係る電子部品としての積層セラミックコンデンサ1を示す。積層セラミックコンデンサ1は、誘電体層2と内部電極層3とが交互に積層されたコンデンサ素子本体10を有する。誘電体磁器組成物を積層コンデンサに適用する場合には、上記仮焼物をバインダ樹脂と所定の割合のCa、Ti、Siを含む化合物の粉末と共に有機溶媒に混合して誘電体層のもととなるペーストを調整し、このペーストを内部電極層のもとになるペーストと交互に印刷して積層するか、または、仮焼物を、バインダ樹脂と混合してセラミックスグリーンシートを形成し、このシートと内部電極層のもとになるペーストとを交互に積層し積層体を得る。さらに積層体を焼成し、端子電極を備えることで、誘電体層2である誘電体磁器組成物が交互に積層された積層セラミックコンデンサが製造される。   In particular, FIG. 1 shows a multilayer ceramic capacitor 1 as an electronic component according to an embodiment of the present invention. The multilayer ceramic capacitor 1 has a capacitor element body 10 in which dielectric layers 2 and internal electrode layers 3 are alternately stacked. When the dielectric ceramic composition is applied to a multilayer capacitor, the calcined product is mixed with an organic solvent together with a binder resin and a powder of a compound containing Ca, Ti, and Si in a predetermined ratio, and the base of the dielectric layer. This paste is alternately printed and laminated with the paste that forms the internal electrode layer, or the calcined material is mixed with a binder resin to form a ceramic green sheet. A paste is obtained by alternately laminating pastes that form the internal electrode layers. Further, the multilayer body is fired and provided with terminal electrodes, whereby a multilayer ceramic capacitor in which the dielectric ceramic compositions as the dielectric layers 2 are alternately stacked is manufactured.

以下に、本発明を実施例に基づいて説明するが、本発明の構成は、これらの実施例に限定されるものではない。
(実施例1)
Hereinafter, the present invention will be described based on examples, but the configuration of the present invention is not limited to these examples.
Example 1

CaCO、CuO、およびTiOの粉末を、焼成後の誘電体磁器組成物における化学式がCaCuyTi12となるようにCaCOとCuOとTiOをそれぞれ15.0g、34.6g、47.8gずつYTZボールと水中で混合させ、その混合粉末を含む液体を乾燥させ、乳鉢ですりつぶし、混合粉末を作製した。このとき、yの値は2.95であり、その値は2.9以上3.1以下の範囲である。 CaCO 3, CuO, and TiO 2 powder, each chemical formula CaCuyTi 4 O 12 and so as to CaCO 3 and CuO and TiO 2 to the dielectric ceramic composition after firing 15.0 g, 34.6 g, 47. 8 g each was mixed with YTZ balls in water, and the liquid containing the mixed powder was dried and ground in a mortar to prepare a mixed powder. At this time, the value of y is 2.95, and the value is in the range of 2.9 to 3.1.

次に、この混合粉末を大気中、700℃で仮焼して仮焼粉末を得た。XRDでCaCu2.95Ti12が作製されていることを確認できた。 Next, this mixed powder was calcined at 700 ° C. in the air to obtain a calcined powder. It was confirmed that CaCu 2.95 Ti 4 O 12 was produced by XRD.

次に、この仮焼粉にCaCO、TiO、SiOをCaCu2.95Ti12粉末100gに対し1.30、1.04、0.78gを表1に示すように混合したのち、バインダ樹脂と有機溶媒を混合し、誘電体ペーストを得た。 Next, after mixing CaCO 3 , TiO 2 and SiO 2 with 100 g of CaCu 2.95 Ti 4 O 12 powder as shown in Table 1, the calcined powder is mixed with 1.30, 1.04 and 0.78 g. Then, a binder resin and an organic solvent were mixed to obtain a dielectric paste.

次に、上記各組成のペーストをドクターブレード法により10μm程度の厚みのセラミックスグリーンシートを成型し、600μm程度の厚みまで積層し、12mm×12mmに切断して、積層体の誘電体磁器組成物を得た。   Next, a ceramic green sheet having a thickness of about 10 μm is molded from the paste of each composition by a doctor blade method, laminated to a thickness of about 600 μm, cut into 12 mm × 12 mm, and a dielectric ceramic composition of the laminated body is obtained. Obtained.

次に、得られた積層体を1000℃で2時間、大気中で維持し、CaCu2.95Ti12を第一の相とし、CaTiSiOを第二の相とする混相体構造を持った誘電体磁器組成物を得た。この誘電体磁器組成物はXRDによりCaCu2.95Ti12とCaTiSiOの混相体構造が示された。XRDにより示されるピーク強度は、CaCu2.95Ti12の(222)面の強度が896.22のとき、CaTiSiOの(21−1)面の強度が245.69であり、(222)面強度に対する(21−1)面の強度の商が0.27であった。 Next, the obtained laminate is maintained in the atmosphere at 1000 ° C. for 2 hours, and has a mixed phase structure in which CaCu 2.95 Ti 4 O 12 is the first phase and CaTiSiO 5 is the second phase. A dielectric ceramic composition was obtained. This dielectric ceramic composition showed a mixed phase structure of CaCu 2.95 Ti 4 O 12 and CaTiSiO 5 by XRD. The peak intensity indicated by XRD is that when the intensity of the (222) plane of CaCu 2.95 Ti 4 O 12 is 896.22, the intensity of the (21-1) plane of CaTiSiO 5 is 245.69, (222 ) The quotient of the strength of the (21-1) plane relative to the plane strength was 0.27.

(実施例2〜9)
CaCu2.95Ti12とCaCO、TiO、SiOを表1に示す割合で用いた以外は、実施例1と同様の方法により、実施例2〜9の誘電体磁器組成物を得た。
(Examples 2-9)
Except for using CaCu 2.95 Ti 4 O 12 and CaCO 3 , TiO 2 , and SiO 2 in the ratios shown in Table 1, the dielectric ceramic compositions of Examples 2 to 9 were produced in the same manner as in Example 1. Obtained.

(実施例10、11、12)
CaCuTi12仮焼粉作製の際、CaCO、CuO、TiOをそれぞれ実施例10においては、yが2.90となるように15.0g、34.6g、48.0g、実施例11においては、yが3.0となるようにCaCO、CuO、TiOをそれぞれ14.9g、35.5g、47.6g、実施例12においては、yが3.1となるようにCaCO、CuO、TiOをそれぞれ14.8g、36.4g、47.2gと表1に示すように混合させた。それ以外は実施例3と同じ方法で誘電体磁器組成物を得た。
(Examples 10, 11, and 12)
In the preparation of CaCu y Ti 4 O 12 calcined powder, CaCO 3 , CuO, and TiO 2 were respectively 15.0 g, 34.6 g, and 48.0 g so that y was 2.90 in Example 10. In Example 11, 14.9 g, 35.5 g, and 47.6 g of CaCO 3 , CuO, and TiO 2 are used so that y is 3.0, and in Example 12, y is 3.1. CaCO 3 , CuO, and TiO 2 were mixed with 14.8 g, 36.4 g, and 47.2 g, respectively, as shown in Table 1. Otherwise, a dielectric ceramic composition was obtained in the same manner as in Example 3.

(実施例13)
CaCu2.95Ti12仮焼粉作製の際、CaCO、SiO、TiOを表1に示す割合でそれぞれを一緒に加え、仮焼き粉を作製したこと以外は実施例1と同じ方法で誘電体磁器組成物を得た。
(Example 13)
In preparing CaCu 2.95 Ti 4 O 12 calcined powder, CaCO 3 , SiO 2 , and TiO 2 were added together in the proportions shown in Table 1 to produce a calcined powder, which was the same as Example 1. The dielectric ceramic composition was obtained by this method.

表1にCaCuTi12とCaCO、TiO、SiOを混合する割合の表を示す。 Table 1 shows a table of ratios of mixing CaCu y Ti 4 O 12 and CaCO 3 , TiO 2 , and SiO 2 .

Figure 2013155064
Figure 2013155064

(比較例1)
CaCu2.95Ti12の仮焼き粉にCaCO、TiO、SiOを混合しなかったこと以外は、実施例1と同様の方法により、比較例1の誘電体磁器組成物を得た。
(Comparative Example 1)
A dielectric ceramic composition of Comparative Example 1 was obtained in the same manner as in Example 1 except that CaCO 3 , TiO 2 , and SiO 2 were not mixed into the CaCu 2.95 Ti 4 O 12 calcined powder. It was.

比誘電率特性は、それぞれ得られたサンプルを誘電体磁器組成物の上部、下部両面にIn−Gaペーストを塗布し、電極を形成した後、室温でLCRメータ(HPWLETT社製 4284A)を用いて測定した結果から、平行板コンデンサとしてみなした際の比誘電率ε’を算出して評価した。測定周波数は1kHz、電圧は1Vとした。結果を表2に示す。   The relative dielectric constant characteristics were determined by applying an In-Ga paste to the upper and lower surfaces of each dielectric porcelain composition, forming electrodes, and using an LCR meter (4284A manufactured by HPWLETT) at room temperature. From the measured results, the relative permittivity ε ′ when regarded as a parallel plate capacitor was calculated and evaluated. The measurement frequency was 1 kHz and the voltage was 1V. The results are shown in Table 2.

また、得られた誘電体磁器組成物に直流電流1V印加し、チャージ時間を30秒とした際の抵抗値を、抵抗測定器(R8240 ULTRA HIGH RESISTANCE METER)にて測定し比抵抗特性とした。結果を表2に示す。   Further, a resistance value when a direct current of 1 V was applied to the obtained dielectric ceramic composition and the charge time was 30 seconds was measured with a resistance measuring instrument (R8240 ULTRA HIGH RESISTANCE METER) to obtain specific resistance characteristics. The results are shown in Table 2.

第一の相と第二の相のXRD強度の比はXRD(Panalytical社製X‘Pert PRO MPD)により示される強度からバックグラウンドを引いた値をX線回折強度としたとき、CaCuTi12の(222)面のピーク強度でCaTiSiOの(21−1)面のピークの強度を割った商の値とした。結果を表2に示す。
作製したサンプルに線源をCuKαとするX線を照射してサンプルの回折パターンを得た。図1に実施例4のX線回折パターンを示す。なおX線回折パターンにおけるCaCuTi12の(222)面は、2θで34.5°近傍に得られるピーク、CaTiSiOの(21−1)面は、2θで27.7°近傍に得られるピークとする。
The ratio of the XRD intensity of the first phase and the second phase is CaCu y Ti 4 when the value obtained by subtracting the background from the intensity indicated by XRD (X'Pert PRO MPD manufactured by Panallytical) is the X-ray diffraction intensity. A quotient obtained by dividing the peak intensity of the (21-1) plane of CaTiSiO 5 by the peak intensity of the (222) plane of O 12 was used. The results are shown in Table 2.
The produced sample was irradiated with X-rays with a source of CuKα to obtain a diffraction pattern of the sample. FIG. 1 shows the X-ray diffraction pattern of Example 4. In the X-ray diffraction pattern, the (222) plane of CaCu 3 Ti 4 O 12 is a peak obtained in the vicinity of 34.5 ° at 2θ, and the (21-1) plane of CaTiSiO 5 is in the vicinity of 27.7 ° at 2θ. This is the peak obtained.

これに対し、表2より、比抵抗特性は、比較例1のCaTiSiOを含まないもの(0mol%)が5.53×1010Ω・μmの比抵抗を持つのに対し、CaTiSiOの(21−1)面のX線回折強度をCaCuyTi12の(222)面のX線回折強度で割った商の値が0.514となる実施例5では、比抵抗が6.4×1011Ω・μmとなった。これにより、CCTO単体よりも10倍以上、比抵抗割合を向上させることが確認できた。 On the other hand, from Table 2, the specific resistance characteristics of the comparative example 1 that does not contain CaTiSiO 5 (0 mol%) have a specific resistance of 5.53 × 10 10 Ω · μm, while that of CaTiSiO 5 ( In Example 5 in which the quotient obtained by dividing the X-ray diffraction intensity of the 21-1) plane by the X-ray diffraction intensity of the (222) plane of CaCuyTi 4 O 12 is 0.514, the specific resistance is 6.4 × 10 6. 11 Ω · μm. As a result, it was confirmed that the specific resistance ratio was improved 10 times or more than that of the single CCTO.

Figure 2013155064
Figure 2013155064

実施例1から実施例13では、いずれも、XRDで第一の相であるCaCuTi12とで第一の相であるCaTiSiOが確認された。傾向として、第二の相の割合が大きいほど比抵抗が大きく(比抵抗特性が1.00×1010(Ω・μm)以上)、第一の相の割合が大きいほど誘電率が大きいことがわかった。 In each of Example 1 to Example 13, CaTiSiO 5 as the first phase was confirmed by CaCu y Ti 4 O 12 as the first phase in XRD. As a tendency, the larger the ratio of the second phase, the larger the specific resistance (the specific resistance characteristic is 1.00 × 10 10 (Ω · μm) or more), and the larger the ratio of the first phase, the larger the dielectric constant. all right.

比較例1は、XRDで第一の相がCaCuTi12で、第二の相であるCaTiSiOが確認されず、CaCuTi12単相の状態であった。
このため、比抵抗の高いCaTiSiOが存在せず、比抵抗特性が1.00×1010(Ω・μm)に満たなく、誘電体磁器組成物としての十分な特性が得られなかった。
In Comparative Example 1, the first phase was CaCu y Ti 4 O 12 by XRD, and the second phase CaTiSiO 5 was not confirmed, and the single phase was CaCu y Ti 4 O 12 .
For this reason, CaTiSiO 5 having a high specific resistance does not exist, the specific resistance characteristics are less than 1.00 × 10 10 (Ω · μm), and sufficient characteristics as a dielectric ceramic composition cannot be obtained.

実施例1〜5、10〜13では、XRDの強度において、第一の相の(222)面と第二の相の(21−1)面の強度比が0.03以上1.000未満の範囲内に存在し、実施例7、8、9よりも高い比誘電率(比誘電率が5000以上)が得られ、また実施例9よりもより高い比抵抗特性(比抵抗特性が1.00×1011(Ω・μm)以上)が得られた。
In Examples 1 to 5 and 10 to 13, in the strength of XRD, the intensity ratio of the (222) plane of the first phase and the (21-1) plane of the second phase is 0.03 or more and less than 1.000. The specific permittivity (relative permittivity is 5000 or more) higher than that of Examples 7, 8, and 9 is obtained, and the specific resistance characteristic higher than that of Example 9 (specific resistance characteristic is 1.00). × 10 11 (Ω · μm) or more) was obtained.

本発明に係る誘電体磁器組成物は、誘電体磁器組成物を含有する誘電体層を備えた発振器、共振器、多層回路基板、マイクロ波回路など、各種電子デバイス電子機器の電子部品に有用である。
The dielectric ceramic composition according to the present invention is useful for electronic parts of various electronic devices such as an oscillator, a resonator, a multilayer circuit board, and a microwave circuit including a dielectric layer containing the dielectric ceramic composition. is there.

1 積層セラミックコンデンサ
2 誘電体層
3 内部電極層
4 外部電極
10 コンデンサ素子本体
DESCRIPTION OF SYMBOLS 1 Multilayer ceramic capacitor 2 Dielectric layer 3 Internal electrode layer 4 External electrode 10 Capacitor element body

Claims (4)

一般式CaCuTi12で表される化合物を主成分とする第一の相と、
一般式CaTiSiOで表される化合物を主成分とする第二の相と、
前記第一の相と前記第二の相の混相体構造を有することを特徴とする誘電体磁器組成物。(yは、0<y<3の範囲の任意の数値)
A first phase mainly comprising a compound represented by the general formula CaCu y Ti 4 O 12 ;
A second phase mainly composed of a compound represented by the general formula CaTiSiO 5 ;
A dielectric ceramic composition having a mixed phase structure of the first phase and the second phase. (Y is an arbitrary number in the range of 0 <y <3)
前記誘電体磁器組成物の前記第二の相CaTiSiOの(21−1)面のX線回折強度を前記第一の相CaCuTi12の(222)面のX線回折強度で割った商の値が0.03以上1.00以下であることを特徴とする請求項1に記載の誘電体磁器組成物。 The X-ray diffraction intensity of the (21-1) plane of the second phase CaTiSiO 5 of the dielectric ceramic composition is divided by the X-ray diffraction intensity of the (222) plane of the first phase CaCu y Ti 4 O 12. The dielectric ceramic composition according to claim 1, wherein the quotient value is 0.03 or more and 1.00 or less. 前記第一の相の一般式CaCuTi12で表される化合物のyは、2.9以上3.1以下の範囲の値であることを特徴とする請求項1または2のいずれかに記載の誘電体磁器組成物。 3. The compound according to claim 1, wherein y of the compound represented by the general formula CaCu y Ti 4 O 12 of the first phase is a value in a range of 2.9 to 3.1. The dielectric ceramic composition as described in 1. 請求項1から3のいずれかに記載の誘電体磁器組成物を含有する誘電体層を備えたことを特徴とする電子部品。   An electronic component comprising a dielectric layer containing the dielectric ceramic composition according to any one of claims 1 to 3.
JP2012015474A 2012-01-27 2012-01-27 Dielectric ceramic composition and electronic component Pending JP2013155064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012015474A JP2013155064A (en) 2012-01-27 2012-01-27 Dielectric ceramic composition and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012015474A JP2013155064A (en) 2012-01-27 2012-01-27 Dielectric ceramic composition and electronic component

Publications (1)

Publication Number Publication Date
JP2013155064A true JP2013155064A (en) 2013-08-15

Family

ID=49050643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012015474A Pending JP2013155064A (en) 2012-01-27 2012-01-27 Dielectric ceramic composition and electronic component

Country Status (1)

Country Link
JP (1) JP2013155064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012317A1 (en) 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
JP2018002499A (en) * 2016-06-28 2018-01-11 Tdk株式会社 Dielectric composition and electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015012317A1 (en) 2013-07-25 2015-01-29 新日鐵住金株式会社 Steel plate for line pipe, and line pipe
JP2018002499A (en) * 2016-06-28 2018-01-11 Tdk株式会社 Dielectric composition and electronic component

Similar Documents

Publication Publication Date Title
JP6809528B2 (en) Dielectric compositions, dielectric elements, electronic components and laminated electronic components
US7271115B2 (en) Dielectric ceramic composition and monolithic ceramic capacitor
JP4809152B2 (en) Multilayer ceramic capacitor
US8593038B2 (en) Dielectric composition and ceramic electronic component including the same
JP5664228B2 (en) Dielectric porcelain composition and electronic component
WO2017163844A1 (en) Dielectric composition, dielectric element, electronic component and laminate electronic component
JP6588620B2 (en) Multilayer ceramic capacitor
JP6316985B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP6535733B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP5835012B2 (en) Dielectric porcelain composition and electronic component
JP6641178B2 (en) Dielectric porcelain composition, method for producing the same, and ceramic electronic component
JP2018529221A (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP6467648B2 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
WO2014010273A1 (en) Laminate ceramic capacitor and method for producing same
JP2006347782A (en) Dielectric ceramic composition and laminated ceramic capacitor
JP2013209239A (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP2013184846A (en) Dielectric ceramic composition and electronic component
JP6413861B2 (en) Dielectric porcelain composition and electronic component
WO2014207900A1 (en) Dielectric ceramic composition and layered ceramic capacitor
JP2013155064A (en) Dielectric ceramic composition and electronic component
JP5159682B2 (en) Multilayer ceramic capacitor
JP6020252B2 (en) Dielectric porcelain composition and electronic component
JP5289239B2 (en) Dielectric porcelain and capacitor
JP6766848B2 (en) Dielectric porcelain compositions and electronic components
JP2006321670A (en) Dielectric ceramic composition and laminated ceramic capacitor