JP2013179722A - エネルギー管理システム - Google Patents

エネルギー管理システム Download PDF

Info

Publication number
JP2013179722A
JP2013179722A JP2010149455A JP2010149455A JP2013179722A JP 2013179722 A JP2013179722 A JP 2013179722A JP 2010149455 A JP2010149455 A JP 2010149455A JP 2010149455 A JP2010149455 A JP 2010149455A JP 2013179722 A JP2013179722 A JP 2013179722A
Authority
JP
Japan
Prior art keywords
power
battery
energy management
management system
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010149455A
Other languages
English (en)
Inventor
Mamoru Kubo
守 久保
Hiroyuki Uehashi
浩之 上橋
Yoshihiro Nakamura
由浩 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2010149455A priority Critical patent/JP2013179722A/ja
Priority to PCT/JP2011/064940 priority patent/WO2012002449A1/ja
Publication of JP2013179722A publication Critical patent/JP2013179722A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】直流電源から出力される電力をより有効に利用できるようにする。
【解決手段】電池システム4からの電力を交流電力に変換し、商用電力系統11から電力が供給される配線に重畳するDC/ACコンバータ33と、DC/ACコンバータ33から出力された交流電力が商用電力系統11へ逆潮流するのを所定の第1周期で監視するとともに、前記配線へ重畳する交流電力の量を所定の第2周期で変更可能にDC/ACコンバータ33を制御する制御部51と、を備え、前記第1周期を前記第2周期より短くした。
【選択図】図1

Description

本発明は、太陽電池を配電系統に連系させたエネルギー管理システムに関する。
近年、太陽電池をパワーコンディショナにより配電系統と連系させ、太陽電池の発電電力あるいは配電系統からの電力を負荷に供給すると共に、夜間に配電系統からの電力を貯蔵するようにした系統連系型のエネルギー管理システムが知られている(例えば、特許文献1参照)。
この種のエネルギー管理システムでは、昼間、太陽電池で発電された直流電力をパワーコンディショナにより交流電力に変換し、配電系統と連系して電力を負荷に供給するようにしている。このパワーコンディショナは、配電系統と連系していることから、太陽電池の発電電力が負荷の消費電力よりも小さい場合、太陽電池の発電電力は全て負荷で消費され、不足分が配電系統から供給される。また、太陽電池の発電電力が負荷の消費電力よりも大きい場合には、余剰電力が発生するので、その余剰電力を配電系統に逆潮流電力として供給するようにしている。一方、太陽電池の発電電力が得られない夜間では、配電系統からの電力をパワーコンディショナを介して蓄電池に充電し、昼間にこれを利用することにより配電系統における昼間の発電電力のピークを抑制し、夜間電力の有効利用を図るようにしている。
特開2002−171674号公報
ところで、従来のエネルギー管理システムでは、太陽電池の発電電力が負荷の消費電力よりも小さい場合、太陽電池の発電電力は全て負荷で消費される。ここで、蓄電池に充電されて蓄えられた電力が十分でなければ、負荷の消費電力に対する太陽電池の発電電力の不足分を配電系統からの電力で補っている。
また、蓄電池の充電電力が十分な場合、太陽電池の発電電力の不足分を蓄電池の放電電力で補うようにしている。
この場合において、配電系統における昼間の発電電力のピークを抑制し、蓄電池に蓄えられた夜間電力(蓄電池から出力される電力)をより有効に利用するためには、都合の良い時に蓄電池から負荷へ電力が供給できるように、蓄電池への蓄電時により多くの電力を蓄えることが望まれる。
一方、上述のエネルギー管理システムは、直流電源(太陽電池、蓄電池など)が出力する電力が消費電力よりも大きい場合、余剰電力が発生するので、その余剰電力を配電系統に逆潮流させることも可能である。
しかしながら、直流電源(太陽電池、蓄電池)の出力を逆潮流してしまうと、せっかく発電した電力(太陽電池の場合)や、買電して蓄えられていた電力(蓄電池の場合)をエネルギー管理システムの使用者が使用することができないため、直流電源から出力される電力をより有効に利用できるように、逆潮流をさせずに負荷において消費されることも望まれており、エネルギー管理システムが有する直流電源からの電力の逆潮流を防止することが可能な機器が模索されている。
そこで、本発明の目的は、直流電源から出力される電力をより有効に利用できるようにするエネルギー管理システムを提供することにある。
上記目的を達成するために、本発明は、直流電源と、前記直流電源からの電力を交流電力に変換し、配電系統から電力が供給される配線に重畳するインバータ回路と、前記インバータ回路から出力された交流電力が前記配電系統へ逆潮流するのを所定の第1周期で監視する逆潮流監視手段と、前記配線へ重畳する交流電力の量を所定の第2周期で変更可能に前記インバータ回路を制御する制御手段と、を備え、前記第1周期を前記第2周期より短くしたことを特徴とする。
ここで、直流電源としては、蓄電池、太陽電池、燃料電池などが適用が可能である。
この場合において、前記直流電源から前記配電系統へ向かって流れる逆潮流電力を遮断状態にする開閉機構を設け、前記制御手段は、前記逆潮流監視において、前記直流電源からの逆潮流を検出した場合に、前記開閉機構を作動させるようにしてもよい。
また、前記制御手段は、前記開閉機構を作動させた後、復帰させる場合、前記インバータ回路の出力を前記開閉機構が作動する前よりも減じて動作させるようにしてもよい。
さらに、前記制御手段は、予め前記直流電源からの電力供給のタイムスケジュールを記憶しており、前記タイムスケジュールに沿って前記直流電源からの電力供給を管理するようにしてもよい。
また、本発明は、複数の電池セルを収容した電池モジュールを直列に接続して構成した電池システムと、前記電池システムの出力を交流電力に変換し、前記蓄電システムと前記配電系統とを連系して、前記配電系統に接続される負荷へ交流電力を供給するインバータ回路と、前記配電系統の交流電力を整流して前記電池システムの充電を行う充電器と、前記複数の電池モジュールの蓄電容量をバランスさせる電池バランス手段と、前記充電器、前記電池バランス手段及び前記インバータ回路を制御する制御手段と、を備え、前記制御手段は、所定の第1周期毎に前記充電における電流電圧制御を行うように、前記充電器を制御し、所定の第2周期毎に前記複数の電池モジュールの電池容量を監視してバランスさせるように前記電池バランス手段を制御し、前記第1周期は前記第2周期より短く設定されていることを特徴とする。
この場合において、前記制御手段は、前記電池システムの充電と並行して前記蓄電容量をバランスさせる処理を行うようにしてもよい。
本発明によれば、直流電源からの出力される電力をより有効に利用できるようにするエネルギー管理システムを提供することができる。
本発明の実施形態に係る系統連系システムの構成を示す図である。 系統連系システムの概要動作を示すフローチャートである。 蓄電池の概要構成図である。 バッテリバランス制御タイミング及び充電電流電圧制御タイミングのタイミングチャートである。 逆潮流監視処理の処理フローチャートである。 充放電時間管理タイミング及び逆潮流監視タイミングのタイミングチャートである。 蓄電池の充電制御の説明図である。
以下、図面を参照して本発明の実施形態について説明する。
図1は、本発明を適用した実施形態に係る系統連系システム1の構成を示す図である。
系統連系システム1は、図1に示すように、電力会社から供給される商用電力系統(配電系統)11と、太陽電池(太陽電池)21とを電力源として備えている。これらの電力は分電盤12の下流側の配線(主線路)13に供給され、配線(主線路)13を介して負荷15に供給される。また、系統連系システム1は充放電可能な電池モジュールを有する蓄電池(電池システム)4を備えており、商用電力系統11の電力または太陽電池21が発電した電力によって電池システム4を充電するとともに、電池システム4が放電する電力は配線13に供給される。
電池システム4(直流電源)の構成については、後に詳述するが、直列及び/又は並列に相互接続された複数の電池モジュールと、電池モジュールの温度や電圧を監視するコントローラとを備える組電池として構成されている。
また、太陽電池21には分配器22が接続され、太陽電池21で発電された電力は、分配器22にて第1DC/ACコンバータ23(第1インバータ回路)及び/又は充電器31に分配して出力される。第1DC/ACコンバータ23は、太陽電池21が出力した直流電流を、商用電力系統11と同一またはほぼ同じ周波数の交流電力を得るに必要な電圧まで昇圧した後、これを交流電力に変換して、配線13に出力する。配線13に出力された交流電力は、配線13に重畳される。分配器22及び第1DC/ACコンバータ23は第1出力線路24上に設けられ、この第1出力線路24は配線13と第1連系点25にて接続される。
電池システム4を充電する充電器31は、整流器32を介して配線13に接続されている。整流器32は、配線13の交流電力を整流・平滑した直流電力を充電器31に出力し、充電器31は、整流器32から入力される直流電力により充電される。また、充電器31には分配器22を介して太陽電池21が接続され、分配器22から太陽電池21が発電した直流電力が入力される。充電器31は、分配器22から入力される電力によって電池システム4を充電する。
また、電池システム4の出力側は、第2DC/ACコンバータ(第2インバータ回路)33及びリレー(電流遮断器)34を介して配線13に接続され、電池システム4は第2DC/ACコンバータ33とともに商用電力系統11から解列可能である。第2DC/ACコンバータ33は、電池システム4に充電された電力を、商用電力系統11と同一またはほぼ同じ周波数の交流電力を得るに必要な電圧まで昇圧した後、これを交流電力に変換して、配線13に出力する。配線13に出力された交流電力は、配線13に重畳される。
電池システム4、第2DC/ACコンバータ33及びリレー34は、第2出力線路35上に設けられ、この第2出力線路35は配線13と第2連系点36にて接続される。この第2連系点36は、配線13における第1連系点25よりも負荷15側に配置されている。
系統連系システム1は、太陽電池21が発電する昼間の時間帯に、太陽電池21が発電した電力と商用電力系統11の電力により負荷15の使用電力を供給する。ここで、太陽電池21の発電電力が負荷15の使用電力よりも小さい場合、太陽電池21の発電電力は全て負荷15で消費される。負荷15の使用電力に対する太陽電池21の発電電力の不足分は、商用電力系統11からの電力で補うことになるが、電池システム4に充電された電力が十分であれば、電力の不足分を電池システム4の放電電力で補うことができる。一方、太陽電池21の発電電力と蓄電池の放電電力4との和が負荷15の使用電力よりも大きい場合、余剰電力が発生するので、その余剰電力を商用電力系統11に逆潮流電力として供給する。
ところで、太陽電池の発電電力は、新たに創り出された電力であり、その余剰電力については、配電系統へ供給し、広く活用することが望まれている。
一方、蓄電池に蓄えられた電力は元々負荷に供給すべき電力を買電したものであるため、エネルギー管理システムの使用者にとっては、逆潮流させずに負荷において消費されることが望ましい。
このため、本構成では、系統連系システム1は、太陽電池21から商用電力系統11に逆潮流させることを可能としつつ、電池システム4から商用電力系統11への逆潮流を確実に防止するために、遮断機構(開閉機構)37を備えている。
遮断機構37は、上記したリレー34と、このリレー34の開閉動作を指示する制御部51と、配線13上を第2連系点36から第1連系点25へ流れる電流を検知する電流検知器52とを備えて構成される。
リレー34は、第2DC/ACコンバータ33と第2連系点36との間の第2出力線路35上に設けられた機械式のスイッチであり、このリレー34が開くことにより、第2DC/ACコンバータ33及び電池システム4が商用電力系統11から解列される。
電流検知器52は、配線13における第1連系点25と第2連系点36との間に設けられ、第2連系点36から第1連系点25への有効電力の流れ、すなわち、電池システム4からの逆潮流を検知するものであり、制御部51に接続されている。制御部51は、系統連系システム1全体を制御するコントローラであり、各機器と接続されている。
次に、電池システム4から商用電力系統11への逆潮流を防止する遮断機構37の動作を説明する。
図2は、系統連系システムの概要動作を示すフローチャートである。
まず、制御部51は、現在時刻が充電時間帯であるか否かを判別する(ステップS11)。
この場合において、充電時間帯は、いわゆる深夜電力時間帯に設定されており、例えば、深夜電力時間帯が23時から翌日の7時までだとした場合には、充電時間帯は24時から翌日5時までの5時間のように設定される。
ステップS11の判別において、現在時刻が充電時間帯である場合には(ステップS11;Yes)、電池システム4の充電制御(ステップS12)および電池システム4のバッテリバランス制御(ステップS13)がなされる。
電池システム4の充電制御と電池システム4のバッテリバランス制御とは、同時並行して行われる。
ここで、電池システム4の充電制御及び電池システム4のバッテリバランス制御の説明に先立ち、電池システム4の構成について説明する。
図3は、電池システム4の概要構成図である。
電池システム4は、大別すると、コントローラ4Aと、このコントローラ4Aの制御下で蓄電を行う複数の電池モジュール4B1〜4B4と、を備えている。
コントローラ4Aは、電池モジュール4B1〜4B4の温度や電圧を監視して、充電制御を行うとともに、電池モジュール4B1〜4B4間の蓄電電圧がほぼ等しくなるようにバッテリバランス制御を行う。
電池モジュール4B1〜4B4は、同一構成をしており、電池モジュール4B1を一例として説明すると、直列及び/又は並列に相互接続された複数の電池セル(単位蓄電池)を収容した電池ユニットBUと、この電池ユニットBUと並列に接続された放電用スイッチSW及び放電用抵抗Rを備えている。
この場合において、電池モジュール4B1〜4B4を構成する電池ユニットBUは、互いに直列に接続されており、充電器31と、第2DC/ACコンバータ33の間に介挿されている。
まず、充電制御について説明する。
ここで、電池ユニットBUを構成するセルをリチウムイオン電池で構成した場合について説明すると、電池ユニットBUは、充電器31の制御下で定電流−定電圧充電がなされる。
図7は、蓄電池の充電制御の説明図である。
すなわち、図7に示すように、電池ユニットBUの充電電圧LVが時刻t1に所定の切換電圧に至るまでは、充電電流LCを一定電流とし、時刻t1以降は、充電電圧LVが一定となるように充電電流LCを制御する。この場合において、電流及び電圧制御は、所定の周期fCC(図4参照)で行うこととなっている。
そして、時刻t2において、充電電流が、満充電状態に相当する電流値にまで低下すると、充電を完了することとなる。
次にバッテリバランス制御について説明する。
ところで、電池モジュール4B1〜4B4を構成する電池ユニットBUは互いに直列に接続されているため、上記充電制御を行った場合に、いずれか一つの電池ユニットBUの電圧が切換電圧に至り、定電流充電に移行して満充電状態ととなると、それ以上充電電流を流すことができないため、他の電池モジュールは、満充電状態に至らないこととなる。
そこで、このような場合には、満充電状態となった電池ユニットBUに対応する放電用スイッチSWをオン状態として、当該電池ユニットBUに蓄えた電力を放電用抵抗Rを介して放電する。この結果、電池モジュール4B1〜4B4は再び充電可能な状態となるので、このバッテリバランス制御を充電制御中に並行して行うことにより、電池モジュール4B1〜4B4を構成している電池ユニットBUの蓄電電圧は、互いに近づいて、再び充電可能な状態に至ることとなる。
この結果、充電が再開されることとなり、全体としてより満充電状態に近づくこととなる。
そして、このバッテリバランス制御を繰り返すことにより充電時間中に電池モジュールの蓄電電圧はより均一化され、蓄電電圧はより満充電状態の電圧となる。
図4は、電池(バッテリ)バランス制御タイミング及び充電電流電圧制御タイミングのタイミングチャートである。
この場合において、電池ユニットBUの充電を行う際に行う電流電圧制御は、所定の周期fCCで行うこととなっており、この周期fCCは、電池ユニットBUの蓄電容量をバランスさせる電池バランス監視周期fBBよりも短い周期となっている。
より具体的には、電流電圧制御周期fCCは、20msec周期程度であり、電池バランス監視周期fBBは、10min周期程度となっている。
したがって、電池バランス制御を行うことによる電池ユニットBUの充電における電流電圧制御に与える影響を抑制することができる。
より詳細には、電池バランス制御を行うための電池バランス監視周期fBBを電流電圧制御周期fCCよりも長く設定することにより、電池バランス制御によって変動する電池モジュールの電圧を加味して充電を行うことができるので、電池の実際の充電容量を充電可能容量に近づけることができ、実効的な充電容量大きくすることができる。したがって、配電系統における昼間の発電電力のピークを抑制するために、都合の良い時に蓄電池から負荷へ電力が供給できるようになるので、蓄電池から出力される電力をより有効に利用することができる。
以上の説明では、充電容量が他の電池モジュールより大きな電池モジュールを放電させてバッテリバランスを制御するように構成していたが、充電容量が他の電池モジュールより小さな電池モジュールを充電することにより電池バランスをとる構成を採った場合には、電池バランス監視周期fBBを長く設定することにより、電池バランス制御で充電を行った分の容量が充電制御で加味されることとなるので、過放電を防止することができる。
次に充電が完了すると、逆潮流監視タイミングであるか否かを判別する(ステップS14)。本実施形態では、逆潮流監視タイミングとは、系統連系システム1が運転中に所定時間(20msec)ごとに監視を実行するタイミング、及び、第2DC/ACコンバータ33が再起動した直後に監視を実行するタイミングを含むものとする。
ステップS14の判別において、逆潮流監視タイミングである場合には(ステップS14;Yes)、逆潮流監視処理を行う(ステップS15)。
図5は、逆潮流監視処理の処理フローチャートである。
まず制御部51は、電流検知器52によって、逆潮流(即ち、第2連系点36から第1連系点25への有効電力の流れ)が検出されるか否かを判別する(ステップS21)。
ステップS21の判別において、電流検知器52が逆潮流を検出しない場合(ステップS21;No)には、逆潮流監視処理を終了し、処理をステップS16に移行する。
ステップS21の判別において、電流検知器52が逆潮流を検出した場合(ステップS2;Yes)には、制御部51は、リレー34を開成する(ステップS22)。これにより、第2DC/ACコンバータ33及び電池システム4が商用電力系統11から解列されることにより、電池システム4から放電された放電電力が商用電力系統11に逆潮流することを確実に防止できる。また、第2DC/ACコンバータ33は、商用電力系統11から解列されたことを検出して停止する。
本実施形態では、電流検知器52は、配線13における商用電力系統11側に位置する第1連系点25と、負荷15側に位置する第2連系点36との間に設けられているため、電流検知器52によって第2連系点36から第1連系点25へ流れる有効電力が検出された場合には、この逆潮流が電池システム4の放電電力によるものとみなすことができる。また、太陽電池21から出力された電力が流れる第1出力線路24が第1連系点25に接続されているため、リレー34を開成したとしても、太陽電池21の発電電力を商用電力系統11に逆潮流させることが可能となる。さらに、リレー34は、第2DC/ACコンバータ33と第2連系点36との間の第2出力線路35に設けているため、このリレー34を開成しても配線13が遮断されることはなく、太陽電池21及び/または商用電力系統11から負荷15に電力の供給を維持できる。
続いて、制御部51は、リレー34を開成してから所定時間(例えば、5分)経過したか否かを判別する(ステップS23)。この所定時間は、負荷15での使用電力量の変動が安定すると見込まれる時間である。系統連系システム1の運転中に、電池システム4の放電電力が逆潮流する場合として、負荷15での使用電力量が急激に減少し、電池システム4及び太陽電池21からの供給電力量が余剰となった場合が想定される。
この場合、ステップS22において説明したように、リレー34を開成することにより、第2DC/ACコンバータ33及び電池システム4が商用電力系統11から解列される。この解列した状態が長時間保持されると、負荷15での使用電力量が増加して太陽電池21の発電量よりも大きくなると、商用電力系統11からの電力が負荷15に供給され続けることとなり、電力の使用効率が低下する。このため、早急にリレー34を閉じて、第2DC/ACコンバータ33及び電池システム4を商用電力系統11に連系させることが望ましい。しかしながら、短い時間で連系させた場合には、負荷15での使用電力量の変動が安定しておらず、電池システム4の放電電力が再び逆潮流すると考えられる。
このため、本構成では、ステップS23の判別において、負荷15での使用電力量の変動が安定すると見込まれる所定時間が経過していない場合には(ステップS23;No)、この所定時間が経過するまで待機する。
一方、ステップS23の判別において、所定時間が経過した場合(ステップS23;Yes)には、制御部51は、リレー34を閉成する(ステップS24)。
そして制御部51は、第2DC/ACコンバータ33の出力を、逆潮流が生じる直前の出力よりも減じて再起動させる(ステップS25)。ここで、制御部51は、第2DC/ACコンバータ33の出力を減じて(例えば、逆潮流が生じる直前の出力の70〜80%)再起動させるため、第2DC/ACコンバータ33及び電池システム4を商用電力系統11に再び連系させたとしても、電池システム4の放電電力が逆潮流する蓋然性を低くすることができる。
続いて、制御部51は、充放電時間管理タイミングであるか否かを判別する(ステップS16)。
この充放電時間管理タイミングとは、配電系統である商用電力系統11からの電力を夜間電力により蓄電した電気エネルギーを、昼間にこれを利用することにより商用電力系統11における昼間の発電電力のピークを抑制し、夜間電力の有効利用を図るために、電池システム4から蓄電した電力を放電するための制御を行うタイミングである。
この場合において、制御部51は、時間帯毎にどれくらい電池システム4から放電を行えば良いのかを、時間帯と当該時間帯における放電電力量との組み合わせを予め充放電タイムスケジュールとして記憶しており、制御部51は、このタイムスケジュールに沿って蓄電池の充放電を管理するようにされている。
具体的には、例えば、充放電時間管理を10分毎に行う場合には、午後2時〜午後2時10分までの放電電力量を○○kW、午後2時10分〜午後2時20分までの放電電力量を△△kW、…のようにスケジュールテーブルとして記憶している。また、逆に午前0時〜午前1時は充電時間帯として記憶している。
このスケジュールテーブルは、前日や、前年における実際の時間帯と放電電力量、エネルギー管理システムである系統連系システム1における負荷15の稼動状況などに基づいて、逐次更新されるようになっている。
なお、上記記憶例は一例であり、時間帯と充放電電力量との関係が分かればどのような記憶態様も採ることが可能である。
図6は、充放電時間管理タイミング及び逆潮流監視タイミングのタイミングチャートである。
この場合において、逆潮流監視は、所定の逆潮流監視周期fRC(第1周期)で行うこととなっており、この周期fRCは、充放電時間管理タイミング周期fCD(第2周期)よりも短い周期となっている。
より具体的には、逆潮流監視周期fRCは、20msec周期程度であり、充放電時間管理タイミング周期fCDは、10〜60min周期程度となっている。
したがって、電池システム4からの放電量の切替時に逆潮流の発生を確実に監視して、逆潮流を確実に遮断させることができる。
以上の説明のように、本発明を適用した実施形態に係る系統連系システム1は、太陽電池21と、電池システム4と、太陽電池が21出力する直流電力を交流電力に変換し、太陽電池21と商用電力系統(配電系統)11とを連系して商用電力系統11に接続される負荷15へ交流電力を供給するとともに、電池システム4が出力する直流電力を交流電力に変換し、電池システム4と商用電力系統11とを連系し、負荷15へ交流電力を供給する第2DC/ACコンバータ(インバータ回路)33と、を備え、電池システム4の充放電の時間管理より短い周期で蓄電池の逆潮流監視を行う制御部(制御手段)51を備えているので、電池システム4における放電量の切替時に負荷15により電力が消費しきれず、電池システム4から商用電力系統11へ逆潮流するのを確実に防止するための対応ができる。したがって、電池システム4が蓄電した電力を負荷へ供給することができるので、電池システム4(直流電源)から出力される電力をより有効に利用することができる。
さらに、逆潮流を検出した場合には、電池システム4から商用電力系統(配電系統)11へ向かって流れる逆潮流を遮断状態にするリレー(開閉機構)34を設けているので、制御部51は、逆潮流監視において、電池システム4からの逆潮流を検出した場合に、リレー34を作動させるので、確実に商用電力系統11へ電池システム4から逆潮流するのを防止できる。
さらにまた、制御部51は、リレー34を作動させた後、復帰させる場合、2DC/ACコンバータ33の出力をリレー34が作動する前よりも減じて動作させるので、第2DC/ACコンバータ33及び電池システム4を商用電力系統11に再び連系させたとしても、電池システム4の放電電力が逆潮流する蓋然性を低くすることができる。
さらに制御部51は、予め充放電のタイムスケジュールを記憶しており、タイムスケジュールに沿って電池システム4の充放電を管理しているので、不必要に電池システム4から商用電力系統へ逆潮流するのを抑制することができる。
また、電池システム4は、複数の電池ユニットBUが直列に接続された組電池として構成されており、制御部51は、電池ユニットBUの蓄電容量をバランスさせる電池バランス監視周期よりも短い周期で電池システム4の充電における電流電圧制御を行うので、実効的な蓄電容量を増加して電力を有効に利用することができる。
さらに、制御部51は、電池システム4の充電と並行して蓄電容量をバランスさせる処理を行うので、短い時間で実効的な蓄電容量を増加して電力をより有効に利用することができる。
以上、実施形態に基づいて本発明を説明したが、上記実施形態は具体的な適用例を示したもので、本発明はこれに限定されるものではない。例えば、上記実施形態で示した各周期fCC、fBB、fRC、fCDの具体的な値は一例であり、本発明の技術的範囲内で適宜設定することが可能である。
また、上記実施形態では電池システム4が放電する放電モードを昼間時間帯に行うものとして説明したが、例えば、負荷15が夜間に使用される給湯装置等である場合に、昼間に太陽電池21の電力により電池システム4を充電し、負荷15の稼働時間に合わせて夜間に放電モードを実行してもよい。
その他、負荷15の種類や、具体的な系統連系システム1の各部の仕様及び細部構成については任意に変更可能である。
例えば、以上の説明では、電池モジュールを複数のセルから構成していたが、単一のセルで構成することも可能である。
また、以上の説明では、直流電源として蓄電池の場合について説明したが、太陽電池、燃料電池などについても適用が可能である。
また、以上の説明では、第2連系点36から第1連系点25への有効電力の流れを検知して逆潮流を検知していたが、第2連系点36から第1連系点25への無効電力を検出することでも逆潮流を検出することができる。
1 系統連携システム(エネルギー管理システム)
4 電池システム(直流電源)
4B1〜4B4 電池モジュール
11 商用電力系統(配電系統)
15 負荷
21 太陽電池
23 第1DC/ACコンバータ
33 第2DC/ACコンバータ(インバータ回路)
34 リレー(電流遮断器)
37 遮断機構(開閉機構)
51 制御部
BU 電池ユニット
fRC 逆潮流監視周期(第1周期)
fCD 充放電時間管理タイミング周期(第2周期)
SW 放電用スイッチ
R 放電用抵抗

Claims (6)

  1. 直流電源と、
    前記直流電源からの電力を交流電力に変換し、配電系統から電力が供給される配線に重畳するインバータ回路と、
    前記インバータ回路から出力された交流電力が前記配電系統へ逆潮流するのを所定の第1周期で監視する逆潮流監視手段と、
    前記配線へ重畳する交流電力の量を所定の第2周期で変更可能に前記インバータ回路を制御する制御手段と、を備え、
    前記第1周期を前記第2周期より短くしたことを特徴とするエネルギー管理システム。
  2. 請求項1記載のエネルギー管理システムにおいて、
    前記直流電源から前記配電系統へ向かって流れる逆潮流電力を遮断状態にする開閉機構を設け、
    前記制御手段は、前記逆潮流監視において、前記直流電源からの逆潮流を検出した場合に、前記開閉機構を作動させることを特徴とするエネルギー管理システム。
  3. 請求項2記載のエネルギー管理システムにおいて、
    前記制御手段は、前記開閉機構を作動させた後、復帰させる場合、前記インバータ回路の出力を前記開閉機構が作動する前よりも減じて動作させることを特徴とするエネルギー管理システム。
  4. 請求項1ないし請求項3のいずれかに記載のエネルギー管理システムにおいて、
    前記制御手段は、予め前記直流電源からの電力供給のタイムスケジュールを記憶しており、
    前記タイムスケジュールに沿って前記直流電源からの電力供給を管理する、
    ことを特徴とするエネルギー管理システム。
  5. 複数の電池セルを収容した電池モジュールを直列に接続して構成した電池システムと、前記電池システムの出力を交流電力に変換し、前記蓄電システムと前記配電系統とを連系して、前記配電系統に接続される負荷へ交流電力を供給するインバータ回路と、
    前記配電系統の交流電力を整流して前記電池システムの充電を行う充電器と、
    前記複数の電池モジュールの蓄電容量をバランスさせる電池バランス手段と、
    前記充電器、前記電池バランス手段及び前記インバータ回路を制御する制御手段と、を備え、
    前記制御手段は、所定の第1周期毎に前記充電における電流電圧制御を行うように、前記充電器を制御し、所定の第2周期毎に前記複数の電池モジュールの電池容量を監視してバランスさせるように前記電池バランス手段を制御し、
    前記第1周期は前記第2周期より短く設定されていることを特徴とするエネルギー管理システム。
  6. 請求項5記載のエネルギー管理システムにおいて、
    前記制御手段は、前記電池システムの充電と並行して前記蓄電容量をバランスさせる処理を行うことを特徴とするエネルギー管理システム。
JP2010149455A 2010-06-30 2010-06-30 エネルギー管理システム Pending JP2013179722A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010149455A JP2013179722A (ja) 2010-06-30 2010-06-30 エネルギー管理システム
PCT/JP2011/064940 WO2012002449A1 (ja) 2010-06-30 2011-06-29 エネルギー管理システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010149455A JP2013179722A (ja) 2010-06-30 2010-06-30 エネルギー管理システム

Publications (1)

Publication Number Publication Date
JP2013179722A true JP2013179722A (ja) 2013-09-09

Family

ID=45402153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010149455A Pending JP2013179722A (ja) 2010-06-30 2010-06-30 エネルギー管理システム

Country Status (2)

Country Link
JP (1) JP2013179722A (ja)
WO (1) WO2012002449A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103560573A (zh) * 2013-11-18 2014-02-05 国家电网公司 一种风光储系统的双向变流器整流系统
JP2014071554A (ja) * 2012-09-28 2014-04-21 Mitsubishi Electric Corp 電力制御器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002233054A (ja) * 2001-02-05 2002-08-16 Japan Storage Battery Co Ltd 電力貯蔵装置および充電制御方法
JP4253598B2 (ja) * 2004-02-20 2009-04-15 株式会社明電舎 電力貯蔵機能を備えた太陽光発電システム
JP2006280159A (ja) * 2005-03-30 2006-10-12 Noritz Corp コージェネレーションシステム
JP4785797B2 (ja) * 2007-07-03 2011-10-05 三洋電機株式会社 車両用の電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071554A (ja) * 2012-09-28 2014-04-21 Mitsubishi Electric Corp 電力制御器
CN103560573A (zh) * 2013-11-18 2014-02-05 国家电网公司 一种风光储系统的双向变流器整流系统

Also Published As

Publication number Publication date
WO2012002449A1 (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
CN106816884B (zh) 能量存储系统
EP2490313B1 (en) Energy storage system and controlling method thereof
KR101193168B1 (ko) 전력 저장 시스템, 그 제어방법 및 이를 실행시키기 위한 프로그램을 저장한 기록매체
JP5327407B2 (ja) 蓄電池システム及びその制御方法
KR101097265B1 (ko) 전력 저장 시스템 및 그 제어방법
KR102400501B1 (ko) 무정전 전원 공급장치
JP5988078B2 (ja) 制御装置および配電システム
JP3469228B2 (ja) 蓄電装置の充放電制御装置及び充放電制御方法並びに電力貯蔵システム
JP5988079B2 (ja) 制御装置、変換装置、制御方法、および配電システム
EP2793345A1 (en) Electric power supply system
JP5612196B2 (ja) バッテリ電源供給装置及びその電力制御方法
JP2011182503A (ja) 蓄電システム
JP6160481B2 (ja) 電源装置、電源システムおよび電源制御方法
WO2011055186A1 (ja) 配電システム
JP2011250673A (ja) エネルギーコントローラおよび制御方法
TW201832442A (zh) 不斷電系統(ups)之轉換電路裝置
JP5861128B2 (ja) 蓄電池管理装置
JP5944269B2 (ja) 電力供給システム
JPWO2015059873A1 (ja) 電力管理装置
KR20130020626A (ko) 축전지 상태 및 부하 전력을 고려한 고전압 직류 전원 공급 장치 및 그 방법
JP6054670B2 (ja) 電力供給システム
JP2013179722A (ja) エネルギー管理システム
JP2013183611A (ja) 制御装置、変換装置、制御方法、および配電システム
US20190103756A1 (en) Power storage system, apparatus and method for controlling charge and discharge, and program
JP2014222982A (ja) 無停電電源装置