JP2013175583A - Curved surface substrate and method of manufacturing curved surface substrate - Google Patents

Curved surface substrate and method of manufacturing curved surface substrate Download PDF

Info

Publication number
JP2013175583A
JP2013175583A JP2012038891A JP2012038891A JP2013175583A JP 2013175583 A JP2013175583 A JP 2013175583A JP 2012038891 A JP2012038891 A JP 2012038891A JP 2012038891 A JP2012038891 A JP 2012038891A JP 2013175583 A JP2013175583 A JP 2013175583A
Authority
JP
Japan
Prior art keywords
layer
dielectric layer
curved
conductor pattern
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012038891A
Other languages
Japanese (ja)
Other versions
JP5669773B2 (en
Inventor
Sohei Samejima
壮平 鮫島
Hajime Takeya
元 竹谷
Michihito Matsumoto
迪斉 松本
Hidetoshi Chiba
英利 千葉
Hiroki Okazaki
弘毅 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012038891A priority Critical patent/JP5669773B2/en
Publication of JP2013175583A publication Critical patent/JP2013175583A/en
Application granted granted Critical
Publication of JP5669773B2 publication Critical patent/JP5669773B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide curved surface substrate and a method of manufacturing the same, capable of providing both improvement in conductor pattern layer precision and improvement in productivity, with good power feeding to the conductor pattern layer.SOLUTION: A curved surface substrate includes a curved surface dielectric layer (1) in which a recess (11) is formed on each of front and rear surfaces, with the recess on the front surface and the recess on the rear surface connected together by a through hole (2d), conductor pattern layers (2a and 2b) that are formed by filling the recess on the front surface and the recess on the rear surface provided at the dielectric layer with conductive paste (2), and an interlayer connection part (2c) which is formed by filling the through hole provided in the dielectric layer with the conductive paste, for connection between the conductor pattern layers provided on the front and rear surfaces. The conductor pattern layer and the interlayer connection part are simultaneously formed by filling the recess on the front surface, the recess on the rear surface, and the through hole with the conductive paste in a single step.

Description

本発明は、誘電体層と導体パターン層とを備え、表面形状が、例えば球体形状あるいは回転楕円体形状のような曲面形状を有する曲面形状基板および曲面形状基板の製造方法に関する。   The present invention relates to a curved substrate having a dielectric layer and a conductor pattern layer, and having a curved surface shape such as a spherical shape or a spheroid shape, and a method of manufacturing the curved substrate.

導体パターン層(導体層)と誘電体層とを備えた基板としては、プリント配線板が知られている。プリント配線板は、平面形状であり、その導体パターン層(銅配線)は、感光性レジストを用いた露光・現像法によって形成するのが一般的である。一方で、レドーム、アンテナ装置などへの用途では、表面形状が球体、あるいは回転楕円体のような曲面形状基板への要求があり、曲面形状基板を実現するための様々な方法が従来から知られている。   A printed wiring board is known as a substrate provided with a conductor pattern layer (conductor layer) and a dielectric layer. The printed wiring board has a planar shape, and the conductor pattern layer (copper wiring) is generally formed by an exposure / development method using a photosensitive resist. On the other hand, for applications to radomes, antenna devices, etc., there is a demand for curved substrates such as spheres or spheroids, and various methods for realizing curved substrates are conventionally known. ing.

例えば、曲面形状基板の従来の製造方法としては、以下のようなものが知られている(例えば、特許文献1参照)。
(方法1)平面基板と同様に全面に導体パターン層を形成した後、スポット的に露光する方法。
(方法2)導体パターン層を形成した平面基板を曲面化加工する方法。
(方法3)導体パターン層を形成した平面基板を分割し、タイル状に張り合わせて全体として曲面形状を形成する方法。
(方法4)全面に導体パターン層を形成した後、機械加工により導体パターン層を削る方法。
For example, the following is known as a conventional method for manufacturing a curved substrate (for example, see Patent Document 1).
(Method 1) A method in which a conductor pattern layer is formed on the entire surface in the same manner as in the case of a flat substrate and then exposed in a spot manner.
(Method 2) A method of curving a flat substrate on which a conductor pattern layer is formed.
(Method 3) A method in which a flat substrate on which a conductor pattern layer is formed is divided and laminated in a tile shape to form a curved surface as a whole.
(Method 4) A method in which a conductor pattern layer is formed on the entire surface, and then the conductor pattern layer is cut by machining.

特開平9-139619号公報JP-A-9-139619

しかしながら、上記の従来技術には、以下のような課題がある。
方法1の露光法は、高精度の導体パターン層を形成しようとした場合には、露光ヘッドをロボットアーム等で3次元的に制御する必要がある。したがって、大型の曲面に対応するためには、大規模な露光装置が必要となる。また、スポット的に何回も露光するため、生産性に劣る。
However, the above prior art has the following problems.
In the exposure method of Method 1, when it is intended to form a highly accurate conductor pattern layer, it is necessary to control the exposure head three-dimensionally with a robot arm or the like. Therefore, in order to cope with a large curved surface, a large-scale exposure apparatus is required. Moreover, since it exposes many times like a spot, it is inferior to productivity.

方法2の曲面化加工法は、平面を曲げるため、球面の曲率が大きくなるとシワやズレが生じ、高精度の曲面導体パターンが形成できない。   Since the curved surface processing method of Method 2 is a flat surface, if the curvature of the spherical surface is increased, wrinkles and displacement occur, and a highly accurate curved conductor pattern cannot be formed.

同様に、方法3の平面基板を張り合わせて擬似的に曲面を実現する方法も、厳密には曲面ではないため、張り合わせ部で隙間やズレが生じる。   Similarly, in the method 3 in which the curved substrates are pseudo-realized by bonding the flat substrates, the gaps and deviations are generated in the bonded portions because they are not strictly curved surfaces.

方法4の機械加工法は、既存の機械加工設備で製造でき、かつズレ等も生じないが、1つ1つ機械加工する必要があり、方法1の露光法と同様に生産性に劣る。   The machining method of Method 4 can be manufactured by existing machining equipment and does not cause a deviation, but needs to be machined one by one and is inferior in productivity as the exposure method of Method 1.

このように、方法1〜方法4による従来技術では、導体パターン精度の向上と生産性の向上を両立させることができないという課題があった。さらに、この曲面形状基板をアンテナ装置に適用する場合には、導体パターン層(給電パッチ層)への給電が難しいという課題があった。   As described above, the conventional techniques according to the methods 1 to 4 have a problem that it is impossible to achieve both improvement of the conductor pattern accuracy and improvement of productivity. Furthermore, when this curved substrate is applied to an antenna device, there is a problem that it is difficult to feed power to the conductor pattern layer (feed patch layer).

そこで、本発明は、上記のような課題を解決するためになされたもので、導体パターン層精度の向上と生産性の向上を両立させるとともに、導体パターン層への給電が良好にできる曲面形状基板および曲面形状基板の製造方法を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and is a curved substrate that can improve the accuracy of the conductor pattern layer and improve the productivity, and can also feed the conductor pattern layer satisfactorily. It is another object of the present invention to provide a method for manufacturing a curved substrate.

上記の課題を解決するため、本発明に係る曲面形状基板は、表裏面にそれぞれ凹部が形成され、かつ表面の凹部と裏面の凹部との間を貫通穴で接続した曲面形状の誘電体層と、誘電体層に設けられた表面の凹部および裏面の凹部のそれぞれに導電性ペーストを充填することによって形成される導体パターン層と、誘電体層に設けられた貫通穴に導電性ペーストを充填することによって形成され、表裏面に設けられた導体パターン層間を接続する層間接続部とを備え、導体パターン層と層間接続部は、表面の凹部、裏面の凹部、および貫通穴に導電性ペーストを1回の工程で充填することによって同時に形成されるものである。   In order to solve the above problems, the curved substrate according to the present invention has a curved dielectric layer in which concave portions are formed on the front and back surfaces, and a concave portion on the front surface and a concave portion on the back surface are connected by a through hole. The conductive pattern layer formed by filling each of the concave portion on the front surface and the concave portion on the back surface provided in the dielectric layer with the conductive paste is filled in the through hole provided in the dielectric layer. The conductive pattern layer and the interlayer connection portion are each formed of a conductive paste in the concave portion on the front surface, the concave portion on the back surface, and the through hole. It is formed at the same time by filling in a single process.

また、本発明に係る曲面形状基板の製造方法は、誘電体層および導体パターン層で構成される曲面形状基板の製造方法において、表面に凹部を有する誘電体層を形成する工程と、誘電体層を形成する工程により形成された2個の誘電体層について、各誘電体層の凹部が形成されていない表面同士を、接着層を介して貼り合わせる工程と、各誘電体層の積層方向において、各誘電体層表面の凹部同士が重なる部分に貫通穴を形成する工程と、各誘電体層の凹部および貫通穴に導電性ペーストを充填することで、凹部に導体パターン層を形成するとともに、貫通穴に導体パターン層間を接続する層間接続部を同時に形成する工程とを備えたものである。   In addition, the method of manufacturing a curved substrate according to the present invention includes a step of forming a dielectric layer having a concave portion on the surface, and a dielectric layer in the method of manufacturing a curved substrate including a dielectric layer and a conductor pattern layer. For the two dielectric layers formed in the step of forming the dielectric layers, the surface of each dielectric layer where the recesses are not formed are bonded together via an adhesive layer, and in the stacking direction of the dielectric layers, A step of forming a through hole in a portion where the concave portions on the surface of each dielectric layer overlap each other, and a conductive pattern layer is formed in the concave portion by filling the concave portion and the through hole of each dielectric layer with a conductive paste. And a step of simultaneously forming an interlayer connection portion for connecting the conductor pattern layers in the hole.

本発明によれば、曲面形状の誘電体層の表裏面に凹部を形成し、さらにこの凹部間を貫通する穴を形成し、これらの凹部および貫通穴に導電性ペーストを充填して導体パターン層および層間接続部を形成したので、時間を必要とする工程を機械加工による成形型の誘電体層の製造工程だけに限定することができ、さらに、誘電体層に導体パターン層と層間接続部とを同時に形成できるため、導体パターン層と層間接続部間に界面が存在しないことにより、導体パターン精度の向上と生産性の向上を両立させるとともに、導体パターン層への給電が良好にできる曲面形状基板および曲面形状基板の製造方法を得ることができる。   According to the present invention, the concave portions are formed on the front and back surfaces of the curved dielectric layer, and the holes penetrating between the concave portions are formed, and the conductive paste is filled in the concave portions and the through holes with the conductive paste. In addition, since the interlayer connection portion is formed, the time-consuming process can be limited to the manufacturing process of the dielectric layer of the mold by machining, and further, the conductor pattern layer, the interlayer connection portion, Since there is no interface between the conductor pattern layer and the interlayer connection portion, the curved pattern substrate can improve the accuracy of the conductor pattern and improve the productivity, and can feed the conductor pattern layer well. And the manufacturing method of a curved-surface-shaped board | substrate can be obtained.

本発明の実施の形態1による曲面形状基板を示す断面図である。It is sectional drawing which shows the curved-surface-shaped board | substrate by Embodiment 1 of this invention. 本発明の実施の形態1による曲面形状基板の製造プロセス(1)を示す断面図である。It is sectional drawing which shows the manufacturing process (1) of the curved-surface-shaped board | substrate by Embodiment 1 of this invention. 本発明の実施の形態1による曲面形状基板の製造プロセス(2)を示す断面図である。It is sectional drawing which shows the manufacturing process (2) of the curved-surface-shaped board | substrate by Embodiment 1 of this invention. 本発明の実施の形態1による曲面形状基板の製造プロセス(3)を示す断面図である。It is sectional drawing which shows the manufacturing process (3) of the curved-surface-shaped board | substrate by Embodiment 1 of this invention. 本発明の実施の形態1による曲面形状基板の製造プロセス(4)を示す断面図である。It is sectional drawing which shows the manufacturing process (4) of the curved-surface-shaped board | substrate by Embodiment 1 of this invention. 本発明の実施の形態1による曲面形状基板の製造プロセス(5)を示す断面図である。It is sectional drawing which shows the manufacturing process (5) of the curved-surface-shaped board | substrate by Embodiment 1 of this invention. 本発明の実施の形態1による曲面形状基板の製造プロセス(6)を示す断面図である。It is sectional drawing which shows the manufacturing process (6) of the curved-surface-shaped board | substrate by Embodiment 1 of this invention. 本発明の実施の形態1による曲面形状基板の製造プロセス(7)を示す断面図である。It is sectional drawing which shows the manufacturing process (7) of the curved-surface-shaped board | substrate by Embodiment 1 of this invention. 本発明の実施の形態1による曲面形状基板の製造プロセス(8)を示す断面図である。It is sectional drawing which shows the manufacturing process (8) of the curved-surface-shaped board | substrate by Embodiment 1 of this invention. 本発明の実施の形態2による曲面形状基板を示す断面図である。It is sectional drawing which shows the curved-surface-shaped board | substrate by Embodiment 2 of this invention. 本発明の実施の形態2による曲面形状基板を示す断面図である。It is sectional drawing which shows the curved-surface-shaped board | substrate by Embodiment 2 of this invention. 本発明の実施の形態2による曲面形状基板の製造プロセスを示す断面図である。It is sectional drawing which shows the manufacturing process of the curved-surface-shaped board | substrate by Embodiment 2 of this invention. 本発明の実施の形態3によるレドーム一体型アンテナを示す断面図である。It is sectional drawing which shows the radome integrated antenna by Embodiment 3 of this invention. 本発明の実施の形態3によるレドーム一体型アンテナの製造プロセス(1)を示す断面図である。It is sectional drawing which shows the manufacturing process (1) of the radome integrated antenna by Embodiment 3 of this invention. 本発明の実施の形態3によるレドーム一体型アンテナの製造プロセス(2)を示す断面図である。It is sectional drawing which shows the manufacturing process (2) of the radome integrated antenna by Embodiment 3 of this invention.

以下、本発明の曲面形状基板および曲面形状基板の製造方法の好適な実施の形態につき図面を用いて説明する。   Hereinafter, preferred embodiments of a curved substrate and a method of manufacturing a curved substrate of the present invention will be described with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1による曲面形状基板100を示す断面図である。図1に示す曲面形状基板100は、表面形状が、例えば球体あるいは回転楕円体のような曲面形状の表裏面に凹部が形成された誘電体層1と、この表裏面の凹部に充填される導電性ペーストからなる導体層2a、2bと、その導体層2a−2b間を導通するための導電性ペーストからなる層間接続部2cとを備える。簡便に説明するため、以下の説明においては、曲面の断面を、平面的な断面で擬似的に表現することとする。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing a curved substrate 100 according to Embodiment 1 of the present invention. A curved substrate 100 shown in FIG. 1 has a dielectric layer 1 in which concave portions are formed on the front and back surfaces of a curved surface such as a sphere or a spheroid, and a conductive material filled in the concave portions on the front and rear surfaces. Conductor layers 2a and 2b made of conductive paste, and an interlayer connection portion 2c made of conductive paste for conducting between the conductor layers 2a and 2b. For the sake of simplicity, in the following description, the cross section of the curved surface is expressed in a pseudo manner by a planar cross section.

図2a〜図2hは、それぞれ、本発明の実施の形態1による曲面形状基板の製造プロセス(1)〜(8)を示す断面図である。まず、図2aに示すように、曲面形状の成形型3を準備する。成形型3の材料としては、SUSやアルミなどの金属、あるいは石膏などが使用でき、好ましくは、重量の観点からアルミ製が最適である。   2a to 2h are cross-sectional views respectively showing manufacturing processes (1) to (8) of the curved substrate according to the first embodiment of the present invention. First, as shown in FIG. 2A, a curved mold 3 is prepared. As the material of the mold 3, a metal such as SUS or aluminum, gypsum, or the like can be used. Preferably, aluminum is optimal from the viewpoint of weight.

次に、図2bに示すように、曲面形状の成形型3に溝4を形成する。後述するが、溝4が形成されていない部分が、後々、誘電体層1に形成される凹部となり、導体パターン層(導体層)2が形成される部分となる。また、溝4の深さは、0.05mm以上0.3mm未満が好ましい。   Next, as shown in FIG. 2 b, the groove 4 is formed in the curved mold 3. As will be described later, a portion where the groove 4 is not formed becomes a concave portion formed in the dielectric layer 1 later, and becomes a portion where the conductor pattern layer (conductor layer) 2 is formed. The depth of the groove 4 is preferably 0.05 mm or more and less than 0.3 mm.

この理由は、溝4の深さが0.05mm未満の場合には、研磨時に、導体パターン層も研磨されてしまい、逆に、溝4の深さが0.3mm以上の場合には、曲面形状の曲率によっては、成形型3から製品を脱型したときに、溝4の誘電体層1が成形型3に残り、脱落してしまうためである。さらに、溝4を形成した後に、成形型3は、離型性のあるフッ素樹脂によりコーティングすることが好ましい。これは、成形型3から製品をより脱型し易くするためである。   The reason for this is that if the depth of the groove 4 is less than 0.05 mm, the conductor pattern layer is also polished at the time of polishing. Conversely, if the depth of the groove 4 is 0.3 mm or more, the curved surface is curved. This is because, depending on the curvature of the shape, when the product is removed from the mold 3, the dielectric layer 1 of the groove 4 remains on the mold 3 and falls off. Furthermore, after forming the groove | channel 4, it is preferable to coat the shaping | molding die 3 with the fluororesin which has mold release property. This is to make it easier to remove the product from the mold 3.

次に、図2cに示すように、溝4を形成した曲面形状の成形型3を用いて、誘電体層1を形成する。ここで、誘電体層1は、強度、剛性の観点から、繊維5と樹脂からなる繊維強化プラスチック(GFRP:Glass Fiber Reinforced Plastics)とするのが好ましい。また、繊維強化プラスチックに用いる繊維5は、絶縁性の繊維であれば、特に限定されるものではない。ただし、レドーム等に適用する場合には、電波透過性の観点から、比誘電率、誘電正接の小さな石英繊維が好ましい。   Next, as shown in FIG. 2c, the dielectric layer 1 is formed using a curved mold 3 in which the grooves 4 are formed. Here, the dielectric layer 1 is preferably made of fiber reinforced plastic (GFRP) made of fiber 5 and resin from the viewpoint of strength and rigidity. The fiber 5 used for the fiber reinforced plastic is not particularly limited as long as it is an insulating fiber. However, when applied to a radome or the like, quartz fibers having a small relative dielectric constant and dielectric loss tangent are preferable from the viewpoint of radio wave transmission.

また、繊維5は、平織りクロスが好ましく、さらに好ましくは、曲面へ賦型したときに(すなわち、成形型3で曲面状にしたときに)、伸びてもシワにならない程度に、薄く、かつ隙間のある繊維クロスが好ましい。繊維強化プラスチックに用いる樹脂も、特に限定されるものではない。ただし、電波透過性と耐熱性を兼ね備え、硬化前の樹脂が常温で低粘度の液体であるビスE型のシアネートエステル樹脂が好ましい。   Further, the fiber 5 is preferably a plain weave cloth, and more preferably, when the fiber 5 is formed into a curved surface (that is, when it is formed into a curved surface with the molding die 3), the fiber 5 is thin and does not wrinkle even when stretched. A certain fiber cloth is preferable. The resin used for the fiber reinforced plastic is not particularly limited. However, a bis-E type cyanate ester resin, which has both radio wave permeability and heat resistance and is a low-viscosity liquid at room temperature, is preferable.

この図2cにおいて、まず、溝4を形成した曲面形状の成形型3の上に、石英繊維5を配置し、その上に、ピールプライ6、フローメディア7を重ね、全体をバギングフィルム8で覆い、その後、チューブ10とともにシーラント9でシールする。次に、チューブ10を介して、真空ポンプ(図示せず)でバギングフィルム8内を減圧する。次に、シーラント9でシールされたチューブ10を介して、樹脂タンク(図示せず)から低粘度の未硬化の液状樹脂を供給する。   In FIG. 2c, first, a quartz fiber 5 is placed on a curved mold 3 in which a groove 4 is formed, a peel ply 6 and a flow medium 7 are stacked thereon, and the whole is covered with a bagging film 8. Thereafter, the tube 10 is sealed with a sealant 9. Next, the inside of the bagging film 8 is depressurized through the tube 10 by a vacuum pump (not shown). Next, an uncured liquid resin having a low viscosity is supplied from a resin tank (not shown) through a tube 10 sealed with a sealant 9.

このとき、樹脂は、繊維5よりも目の粗いフローメディア7を優先的に通り、面内に拡散し、送られて、面外にしみ込み、繊維5に含浸する。繊維5の全体に樹脂が含浸した後、樹脂供給口および真空排気口をバルブ等で閉じて、バギングフィルム8内を減圧したまま、オーブンに入れて硬化する。樹脂として、ビスE型のシアネートエステル樹脂を用いた場合には、180°Cで2時間保持する。   At this time, the resin preferentially passes through the flow media 7 having a coarser mesh than the fibers 5, diffuses in the plane, is sent, soaks out of the plane, and impregnates the fibers 5. After the entire fiber 5 is impregnated with the resin, the resin supply port and the vacuum exhaust port are closed with a valve or the like, and the bagging film 8 is put in an oven while being depressurized and cured. When a bis-E type cyanate ester resin is used as the resin, the resin is held at 180 ° C. for 2 hours.

次に、成形型3から脱型し、図2dに示すような、片面に凹部11を有する繊維強化プラスチック1aを得る。なお、繊維強化プラスチック上の、ピールプライ6、フローメディア7、およびバギングフィルム8は、繊維強化プラスチックとピールプライ6の界面で引き剥がすことができる。   Next, it removes from the shaping | molding die 3, and the fiber reinforced plastic 1a which has the recessed part 11 as shown in FIG. The peel ply 6, the flow media 7, and the bagging film 8 on the fiber reinforced plastic can be peeled off at the interface between the fiber reinforced plastic and the peel ply 6.

このような、真空引きにより樹脂を含浸して繊維強化プラスチックを製造する方法である、いわゆるVaRTM成形法(Vacuum assisted Resin Transfer Molding成形法:真空含浸成形法)で誘電体層1aを成形することにより、溝4中に樹脂が充填されるという利点がある。   By molding the dielectric layer 1a by the so-called VaRTM molding method (vacuum assisted resin transfer molding method: vacuum impregnation molding method), which is a method of manufacturing a fiber reinforced plastic by impregnating a resin by vacuum drawing. There is an advantage that the groove 4 is filled with resin.

また、成形型3を分割して繊維強化プラスチックを成形することで、曲面形状の曲率が大きい場合でも、繊維強化プラスチックを脱型するために分割する必要がなく、しかも大型の繊維強化プラスチックを一体成形できる。   Also, by dividing the mold 3 and molding the fiber reinforced plastic, even if the curvature of the curved surface is large, it is not necessary to divide the fiber reinforced plastic to remove the mold, and the large fiber reinforced plastic is integrated. Can be molded.

次に、図2eに示すように、片面に凹部11を有する繊維強化プラスチック1aを2つ用意し、凹部の形成されていない面同士を、接着層12を用いて貼り合わせ、表裏面に凹部11を有する誘電体層1bをオートクレーブ成形もしくは、プレス成形により形成する。   Next, as shown in FIG. 2e, two fiber reinforced plastics 1a having a recess 11 on one side are prepared, and the surfaces where no recess is formed are bonded together using an adhesive layer 12, and the recess 11 is formed on the front and back surfaces. Is formed by autoclave molding or press molding.

なお、接着層12は、絶縁性であれば、特に限定されるものではない。ただし、レドーム等に適用する場合には、電波透過性の観点から、比誘電率、誘電正接が同じ繊維強化プラスチックの半硬化のもの(プリプレグ)か、電波透過性に影響を与えないほど厚みの薄い接着フィルムが好ましい。   The adhesive layer 12 is not particularly limited as long as it is insulating. However, when applied to a radome, etc., from the viewpoint of radio wave transmission, it is a semi-cured fiber reinforced plastic (prepreg) with the same relative dielectric constant and dielectric loss tangent, or so thick that it does not affect radio wave transmission. A thin adhesive film is preferred.

次に、図2fに示すように、表裏面に凹部を有する誘電体層1bに形成された表裏面の凹部11が、積層方向において重なる部分に貫通穴2dを形成する。貫通穴2dは、例えばドリルで形成することができる。   Next, as shown in FIG. 2f, a through hole 2d is formed in a portion where the recesses 11 on the front and back surfaces formed in the dielectric layer 1b having recesses on the front and back surfaces overlap in the stacking direction. The through hole 2d can be formed by a drill, for example.

次に、図2gに示すように、スキージを用いて、表裏面に凹部を有する誘電体層1bの凹部11、貫通穴2dに導電性ペースト2を充填する。ここで、導電性ペースト2としては、無加圧で導電性が発現する低温乾燥型銀ペーストが好ましい。また、導電性ペースト2は、塗工後、120°Cで10分間、オーブンで乾燥する。   Next, as shown in FIG. 2g, the conductive paste 2 is filled into the recesses 11 and the through holes 2d of the dielectric layer 1b having recesses on the front and back surfaces using a squeegee. Here, the conductive paste 2 is preferably a low-temperature dry type silver paste that develops conductivity without pressure. The conductive paste 2 is dried in an oven at 120 ° C. for 10 minutes after coating.

次に、図2hに示すように、サンドペーパー、もしくは誘電体層1と同じ曲率を有する冶具で、凸部の導電性ペースト2を研磨により除去し、導体パターン層2a、2bおよび層間接続部2cを形成する。凸部以外の導電性ペーストを削るとき、繊維強化プラスチック1が露出することがないようにする必要がある。   Next, as shown in FIG. 2h, the conductive paste 2 is removed by polishing with sandpaper or a jig having the same curvature as that of the dielectric layer 1, and the conductive pattern layers 2a and 2b and the interlayer connection portion 2c are removed. Form. When cutting away the conductive paste other than the convex portions, it is necessary to prevent the fiber reinforced plastic 1 from being exposed.

以上のように、実施の形態1によれば、凹部を形成した曲面形状の成形型を用いて、凹部のある誘電体層を形成し、誘電体層に形成された凹部に導体を形成することで、曲面形状基板を製造している。ここで、時間を掛けて機械加工するのは、成形型だけでよい。したがって、このような製造方法によれば、導体パターン層を有する曲面形状基板を、複数、生産性よく製造することができる。   As described above, according to the first embodiment, the dielectric layer having the concave portion is formed using the curved mold having the concave portion, and the conductor is formed in the concave portion formed in the dielectric layer. Thus, a curved substrate is manufactured. Here, it is only necessary to perform the machining over time by using only the mold. Therefore, according to such a manufacturing method, it is possible to manufacture a plurality of curved substrate having a conductor pattern layer with high productivity.

さらに、導体パターン層の精度は、成形型に形成した凹部の精度に依存し、成形型の凹部は、機械加工により形成される。このため、高精度の導体パターン層が形成できる。   Furthermore, the accuracy of the conductor pattern layer depends on the accuracy of the recess formed in the mold, and the recess of the mold is formed by machining. For this reason, a highly accurate conductor pattern layer can be formed.

さらに、片面に凹部を有する繊維強化プラスチックを、凹部の形成されていない面で接着層を用いて貼り合わせ、表裏面に凹部を有する誘電体層を形成し、誘電体層に形成された凹部に貫通穴を形成し、誘電体層に形成された凹部および貫通穴に同時に導電性ペーストを充填・研磨している。これにより、導体パターン部と層間接続部に界面が存在しないため、信頼性の高い層間接続を備える曲面形状基板およびその製造方法を得ることができる。   Further, fiber reinforced plastic having a recess on one side is bonded using an adhesive layer on the surface where no recess is formed, a dielectric layer having a recess is formed on the front and back surfaces, and the recess formed in the dielectric layer is formed. A through hole is formed, and the conductive paste is filled and polished simultaneously in the recess and the through hole formed in the dielectric layer. Thereby, since there is no interface between the conductor pattern portion and the interlayer connection portion, it is possible to obtain a curved substrate having a highly reliable interlayer connection and a manufacturing method thereof.

さらに、凹部のある誘電体層をVaRTM法により形成していることにより、凸部に樹脂をボイドなく充填することができ、かつ成形型を分割することで、比較的大きな曲面形状基板を一体成形できる。   Furthermore, by forming a dielectric layer with recesses by the VaRTM method, resin can be filled in the protrusions without voids, and a relatively large curved substrate is integrally formed by dividing the mold. it can.

実施の形態2.
本実施の形態2では、貫通穴2dおよび層間接続部2cの形状が、先の実施の形態1とは異なる場合について説明する。
Embodiment 2. FIG.
In the second embodiment, a case will be described in which the shapes of the through hole 2d and the interlayer connection portion 2c are different from those of the first embodiment.

図3aおよび図3bは、本発明の実施の形態2による曲面形状基板200を示す断面図である。本実施の形態2における曲面形状基板200は、基本的には先の実施の形態1における曲面形状基板100と同様の構成を備えている。ただし、本実施の形態2における曲面形状基板200は、導体層2a、2bを導通するための層間接続部2cの形状が、先の実施の形態1のように円柱ではなく、図3aに示すように、テーパーのある形状である点において異なる。より好ましくは、図3bに示すように、表裏面双方から対称的なテーパーを備えた形状である点において異なる。   3a and 3b are sectional views showing a curved substrate 200 according to the second embodiment of the present invention. The curved substrate 200 in the second embodiment basically has the same configuration as the curved substrate 100 in the first embodiment. However, in the curved substrate 200 according to the second embodiment, the shape of the interlayer connection portion 2c for conducting the conductor layers 2a and 2b is not a cylinder as in the first embodiment, but as shown in FIG. 3a. However, it is different in that it has a tapered shape. More preferably, as shown in FIG. 3b, it is different in that the shape has a symmetrical taper from both the front and back surfaces.

図4は、本発明の実施の形態2による曲面形状基板200の製造プロセスを示す断面図である。本実施の形態2における曲面形状基板200の製造プロセスは、基本的には先の実施の形態1における曲面形状基板100と同様の工程を備えている。ただし、表裏面に凹部を有する誘電体層1bに形成された表裏の凹部11が重なる部分に貫通穴2dを形成する工程において、テーパーを付ける点が異なる。より好ましくは、表裏面からテーパーを付けるように貫通穴2dを形成する。テーパーを付けた貫通穴2dは、例えばドリルで形成することができる。   FIG. 4 is a sectional view showing a manufacturing process of the curved substrate 200 according to the second embodiment of the present invention. The manufacturing process of the curved substrate 200 according to the second embodiment basically includes the same steps as the curved substrate 100 according to the first embodiment. However, the difference is that a taper is applied in the step of forming the through hole 2d in a portion where the front and back recesses 11 formed in the dielectric layer 1b having recesses on the front and back surfaces overlap. More preferably, the through hole 2d is formed so as to be tapered from the front and back surfaces. The tapered through hole 2d can be formed by, for example, a drill.

以上のように、実施の形態2によれば、導体層を導通するための層間接続部の形状が円柱ではなく、テーパーのある形状で構成されている。この結果、導体層と層間接続部の界面の面積が大きく、より導通信頼性の高い層間接続を得ることができる。   As described above, according to the second embodiment, the shape of the interlayer connection portion for conducting the conductor layer is not a column but a tapered shape. As a result, the area of the interface between the conductor layer and the interlayer connection portion is large, and an interlayer connection with higher conduction reliability can be obtained.

実施の形態3.
本実施の形態3では、本発明の曲面形状基板を適用したレドーム一体型アンテナについて説明する。
Embodiment 3 FIG.
In the third embodiment, a radome integrated antenna to which the curved substrate of the present invention is applied will be described.

図5は、本発明の実施の形態3によるレドーム一体型アンテナ300を示す断面図である。本実施の形態3におけるレドーム一体型アンテナ300は、導体層2e(周波数選択面(FSS:Frequency Selective Surface))を備えたレドーム層301と、基本的には先の実施の形態1における曲面形状基板100と同様の構造を含み導体層2a(給電パッチ)−導体層2b(分配回路)間に導体層2f(グランド層)を備えたアンテナ層302とを設け、レドーム層301とアンテナ層302との間に発泡材13を備えて構成されている。   FIG. 5 is a cross-sectional view showing a radome integrated antenna 300 according to Embodiment 3 of the present invention. The radome integrated antenna 300 according to the third embodiment includes a radome layer 301 provided with a conductor layer 2e (frequency selective surface (FSS)), and basically a curved substrate according to the first embodiment. The antenna layer 302 including the conductor layer 2f (ground layer) is provided between the conductor layer 2a (feeding patch) and the conductor layer 2b (distribution circuit), and the radome layer 301 and the antenna layer 302 are separated from each other. A foam material 13 is provided between them.

なお、導体層2a(給電パッチ)は、電波を送信する機能を、FSSは、特定の周波数だけを透過し送受信する機能を有する。   The conductor layer 2a (power supply patch) has a function of transmitting radio waves, and the FSS has a function of transmitting and receiving only a specific frequency.

図6aおよび図6bは、図5に示した本発明の実施の形態3によるレドーム一体型アンテナ300の製造プロセス(1)および(2)をそれぞれ示す断面図である。本実施の形態3におけるレドーム一体型アンテナ300の製造プロセスは、基本的には先の実施の形態1における曲面形状基板100と同様の工程を含んでいる。   6a and 6b are sectional views respectively showing manufacturing processes (1) and (2) of the radome integrated antenna 300 according to the third embodiment of the present invention shown in FIG. The manufacturing process of the radome integrated antenna 300 in the third embodiment basically includes the same steps as those of the curved substrate 100 in the first embodiment.

ただし、図6aに示すように、片面に凹部11を有する繊維強化プラスチック(GFRP)1aを2つ用意し、凹部が形成されていない表面同士を接着層12を介して貼り合わせて表裏面にそれぞれ凹部を有する誘電体層1bを形成する前に、あらかじめ凹部11に導電性ペースト2を充填した導体層2f(グランド層:図6b参照)を備えた誘電体層を、間に挟んで積層する工程を含んでいる点が異なっている。   However, as shown in FIG. 6a, two fiber reinforced plastics (GFRP) 1a each having a recess 11 on one side are prepared, and the surfaces where no recess is formed are bonded to each other on the front and back surfaces through an adhesive layer 12. A step of laminating a dielectric layer provided with a conductor layer 2f (ground layer: see FIG. 6b) in which the concave portion 11 is previously filled with the conductive paste 2 before the dielectric layer 1b having the concave portion is formed. Is different.

さらに、図6bに示すように、片面に設けた凹部に導電性ペーストを充填することにより形成された導体層2eを備えたレドーム層301と、図6aに示すようにして形成したアンテナ層302との間に、発泡材13を配置するとともに、接着層12で積層し、サンドイッチ構造とする工程を含む点も異なっている。   Furthermore, as shown in FIG. 6b, a radome layer 301 provided with a conductor layer 2e formed by filling a recess provided on one side with a conductive paste, and an antenna layer 302 formed as shown in FIG. 6a, In addition, there is a difference in that a foam material 13 is disposed between the layers and a step of laminating with an adhesive layer 12 to form a sandwich structure.

以上のように、本実施の形態3によれば、導体層の間に導体層を設けて多層化することができ、レドーム層とアンテナ層とを一体化することができる。一般的にレドーム層は、風圧に耐える剛性を確保するため、サンドイッチ構造が採用されるが、裏面のスキン層がアンテナ層を兼ねることができ、軽量化することができる。   As described above, according to the third embodiment, the conductor layer can be provided between the conductor layers to be multilayered, and the radome layer and the antenna layer can be integrated. In general, the radome layer employs a sandwich structure in order to ensure rigidity to withstand wind pressure. However, the skin layer on the back surface can also serve as the antenna layer and can be reduced in weight.

1 誘電体層(繊維強化プラスチック)、1a 片面に凹部を有する誘電体層、1b 両面に凹部を有する誘電体層、2 導電性ペースト、2a 導体層(給電パッチ)、2b 導体層(分配回路)、2c 層間接続部、2d 貫通穴、2e 導体層(周波数選択面)、2f 導体層(グランド)、3 曲面形状の成形型、4 溝、5 繊維、6 ピールプライ、7 フローメディア、8 バギングフィルム、9 シーラント、10 チューブ、11 凹部、12 接着層、13 発泡材、100、200 曲面形状基板、300 レドーム一体型アンテナ、301 レドーム層、302 アンテナ層。   DESCRIPTION OF SYMBOLS 1 Dielectric layer (fiber reinforced plastic), 1a Dielectric layer which has a recessed part on one side, 1b Dielectric layer which has a recessed part on both surfaces, 2 Conductive paste, 2a Conductive layer (feeding patch), 2b Conductive layer (distribution circuit) 2c Interlayer connection part, 2d through hole, 2e Conductor layer (frequency selection surface), 2f Conductor layer (ground), 3 Curved mold, 4 Groove, 5 Fiber, 6 Peel ply, 7 Flow media, 8 Bagging film, 9 Sealant, 10 Tube, 11 Recess, 12 Adhesive layer, 13 Foam, 100, 200 Curved substrate, 300 Radome integrated antenna, 301 Radome layer, 302 Antenna layer.

Claims (6)

表裏面にそれぞれ凹部が形成され、かつ表面の凹部と裏面の凹部との間を貫通穴で接続した曲面形状の誘電体層と、
前記誘電体層に設けられた前記表面の凹部および前記裏面の凹部のそれぞれに導電性ペーストを充填することによって形成される導体パターン層と、
前記誘電体層に設けられた前記貫通穴に導電性ペーストを充填することによって形成され、前記表裏面に設けられた前記導体パターン層間を接続する層間接続部と
を備え、
前記導体パターン層と前記層間接続部は、前記表面の凹部、前記裏面の凹部、および前記貫通穴に導電性ペーストを1回の工程で充填することによって同時に形成される
ことを特徴とする曲面形状基板。
Recesses are formed on the front and back surfaces, respectively, and a dielectric layer having a curved shape in which a through hole is connected between the recesses on the front surface and the recesses on the back surface,
A conductor pattern layer formed by filling a conductive paste into each of the concave portion on the front surface and the concave portion on the back surface provided in the dielectric layer;
An interlayer connection portion formed by filling the through hole provided in the dielectric layer with a conductive paste, and connecting the conductor pattern layers provided on the front and back surfaces; and
The curved surface shape, wherein the conductive pattern layer and the interlayer connection portion are simultaneously formed by filling the concave portion on the front surface, the concave portion on the back surface, and the through hole with a conductive paste in one step. substrate.
請求項1に記載の曲面形状基板において、
前記貫通穴は、テーパー形状を有する
ことを特徴とする曲面形状基板。
The curved substrate according to claim 1,
The through hole has a tapered shape.
請求項1または2に記載された曲面形状基板の構成を含む第1のスキン層と、
裏面に凹部が形成された曲面形状の誘電体層の構成を含む第2のスキン層と、
前記第1のスキン層と前記第2のスキン層の間に挟まれた発泡材と
を備え、両スキン層によるサンドイッチ構造を有する曲面形状基板。
A first skin layer comprising the curved substrate according to claim 1 or 2;
A second skin layer including a curved dielectric layer having a recess formed on the back surface;
A curved substrate including a foam material sandwiched between the first skin layer and the second skin layer and having a sandwich structure with both skin layers.
請求項3に記載の曲面形状基板において、
前記第1のスキン層は、給電パッチ・分配回路を構成するアンテナ層であり、
前記第2のスキン層は、周波数選択性を付与するレドーム層であり、
両スキン層で発泡材を挟むサンドイッチ構造を有することでレドーム一体型アンテナに適用される曲面形状基板。
The curved substrate according to claim 3,
The first skin layer is an antenna layer constituting a feeding patch / distribution circuit,
The second skin layer is a radome layer that imparts frequency selectivity;
A curved substrate applied to a radome integrated antenna by having a sandwich structure in which a foam material is sandwiched between both skin layers.
誘電体層および導体パターン層で構成される曲面形状基板の製造方法において、
表面に凹部を有する誘電体層を形成する工程と、
前記誘電体層を形成する工程により形成された2個の誘電体層について、各誘電体層の凹部が形成されていない表面同士を、接着層を介して貼り合わせる工程と、
前記各誘電体層の積層方向において、各誘電体層表面の凹部同士が重なる部分に貫通穴を形成する工程と、
各誘電体層の前記凹部および前記貫通穴に導電性ペーストを充填することで、前記凹部に導体パターン層を形成するとともに、前記貫通穴に前記導体パターン層間を接続する層間接続部を同時に形成する工程と
を備えたことを特徴とする曲面形状基板の製造方法。
In the method of manufacturing a curved substrate composed of a dielectric layer and a conductor pattern layer,
Forming a dielectric layer having a recess on the surface;
For the two dielectric layers formed by the step of forming the dielectric layer, bonding the surfaces of each dielectric layer where the recesses are not formed, with an adhesive layer interposed therebetween,
Forming a through hole in a portion where the recesses on the surface of each dielectric layer overlap in the stacking direction of each dielectric layer; and
By filling the recesses and the through holes of each dielectric layer with a conductive paste, a conductor pattern layer is formed in the recesses, and an interlayer connection for connecting the conductor pattern layers is simultaneously formed in the through holes. A process for producing a curved substrate, comprising: a step.
請求項5に記載の曲面形状基板の製造方法において、
前記誘電体層を形成する工程は、VaRTM法(真空含浸成形法)が採用され、繊維強化プラスチックによる誘電体層が形成される
ことを特徴とする曲面形状基板の製造方法。
In the manufacturing method of the curved-surface-shaped board | substrate of Claim 5,
The process for forming the dielectric layer employs a VaRTM method (vacuum impregnation molding method) to form a dielectric layer made of fiber-reinforced plastic.
JP2012038891A 2012-02-24 2012-02-24 Curved substrate and method of manufacturing curved substrate Expired - Fee Related JP5669773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038891A JP5669773B2 (en) 2012-02-24 2012-02-24 Curved substrate and method of manufacturing curved substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038891A JP5669773B2 (en) 2012-02-24 2012-02-24 Curved substrate and method of manufacturing curved substrate

Publications (2)

Publication Number Publication Date
JP2013175583A true JP2013175583A (en) 2013-09-05
JP5669773B2 JP5669773B2 (en) 2015-02-18

Family

ID=49268245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038891A Expired - Fee Related JP5669773B2 (en) 2012-02-24 2012-02-24 Curved substrate and method of manufacturing curved substrate

Country Status (1)

Country Link
JP (1) JP5669773B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510196A (en) * 2014-05-26 2017-04-06 ハンソル・テクニクス・インコーポレーテッド 3D antenna device
CN106611644A (en) * 2015-10-27 2017-05-03 新光电气工业株式会社 Inductor device and method of manufacturing the same
JP2018125704A (en) * 2017-02-01 2018-08-09 株式会社村田製作所 Antenna device and method of manufacturing antenna device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196743A (en) * 1999-10-28 2001-07-19 Ajinomoto Co Inc Method for manufacturing multilayer printed wiring substrate using adhesive film
JP2001244609A (en) * 2000-02-25 2001-09-07 Sony Corp Method of manufacturing wiring board and wiring board obtained with the same method
JP2004243688A (en) * 2003-02-14 2004-09-02 Noritake Co Ltd Method for producing resin substrate and method for producing substrate with film
JP2008277885A (en) * 2007-04-25 2008-11-13 Mitsubishi Electric Corp Stacked radome
JP2009028900A (en) * 2007-07-24 2009-02-12 Mitsubishi Electric Corp Radio wave transmission material and radome using the same
JP2010010500A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Copper circuit component and its production method
JP2010028458A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Multilayer radome

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196743A (en) * 1999-10-28 2001-07-19 Ajinomoto Co Inc Method for manufacturing multilayer printed wiring substrate using adhesive film
JP2001244609A (en) * 2000-02-25 2001-09-07 Sony Corp Method of manufacturing wiring board and wiring board obtained with the same method
JP2004243688A (en) * 2003-02-14 2004-09-02 Noritake Co Ltd Method for producing resin substrate and method for producing substrate with film
JP2008277885A (en) * 2007-04-25 2008-11-13 Mitsubishi Electric Corp Stacked radome
JP2009028900A (en) * 2007-07-24 2009-02-12 Mitsubishi Electric Corp Radio wave transmission material and radome using the same
JP2010010500A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Copper circuit component and its production method
JP2010028458A (en) * 2008-07-18 2010-02-04 Mitsubishi Electric Corp Multilayer radome

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017510196A (en) * 2014-05-26 2017-04-06 ハンソル・テクニクス・インコーポレーテッド 3D antenna device
US10027021B2 (en) 2014-05-26 2018-07-17 Hansol Technics Inc. Three-dimensional antenna apparatus
CN106611644A (en) * 2015-10-27 2017-05-03 新光电气工业株式会社 Inductor device and method of manufacturing the same
CN106611644B (en) * 2015-10-27 2020-03-06 新光电气工业株式会社 Inductance device and manufacturing method thereof
JP2018125704A (en) * 2017-02-01 2018-08-09 株式会社村田製作所 Antenna device and method of manufacturing antenna device

Also Published As

Publication number Publication date
JP5669773B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
US9107314B2 (en) Method of manufacturing a wiring board having via structures
TW201547102A (en) System and method for transmitting data or power across a structural component
JP5669773B2 (en) Curved substrate and method of manufacturing curved substrate
JP5506716B2 (en) Curved substrate and method of manufacturing curved substrate
TWI787448B (en) Method for shielding system-in-package assemblies from electromagnetic interference
TW201531189A (en) Conductor paste filling method, and production method for multilayer printed circuit board
CN105161803A (en) Graphene film frequency selective surface
CN105905867A (en) Preparation method of three-dimensional surface cis-formal or conformal pattern
US20130220691A1 (en) Multilayer wiring substrate and method of manufacturing the same
CN104717840B (en) Circuit board manufacturing method and circuit board
KR20060037238A (en) Method of manufacturing circuit board
TWI569696B (en) Method of manufacturing circuit board and chip package and circuit board manufactured by using the method
CN106211568A (en) A kind of extra thin copper foil material
CN103369872A (en) Method for laminating multilayer printed circuit board
CN105216400A (en) High-thermal conductive metal base plate resin filler method, vacuum pressing-combining structure and metal substrate
JP4785473B2 (en) Multilayer printed wiring board, manufacturing method of multilayer printed wiring board, and electronic device
US9257310B2 (en) Method of manufacturing circuit board and chip package and circuit board manufactured by using the method
JP2005191549A (en) Module with built-in components manufacturing method and module with built-in components
WO2017046762A1 (en) Sacrificial structure comprising low-flow material for manufacturing component carriers
CN110561775A (en) Preparation method of metamaterial sample piece
JP2000307246A (en) Manufacture of circuit forming substrate and material thereof
CN103287017B (en) A kind of metamaterial sheet and processing method, the Meta Materials of preparation
JP2005005684A (en) Multilayer board and manufacturing method therefor
JP2006198790A (en) Manufacturing method of frequency selecting plate-laminated fiber-reinforced plastic panel
JP3823940B2 (en) Method for manufacturing circuit-formed substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141216

R150 Certificate of patent or registration of utility model

Ref document number: 5669773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees