JP2013166989A - Austenitic stainless steel for high temperature apparatus with welded tube structure - Google Patents
Austenitic stainless steel for high temperature apparatus with welded tube structure Download PDFInfo
- Publication number
- JP2013166989A JP2013166989A JP2012030415A JP2012030415A JP2013166989A JP 2013166989 A JP2013166989 A JP 2013166989A JP 2012030415 A JP2012030415 A JP 2012030415A JP 2012030415 A JP2012030415 A JP 2012030415A JP 2013166989 A JP2013166989 A JP 2013166989A
- Authority
- JP
- Japan
- Prior art keywords
- weldability
- welding
- stainless steel
- austenitic stainless
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000963 austenitic stainless steel Inorganic materials 0.000 title claims abstract description 17
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 8
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052796 boron Inorganic materials 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 6
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 6
- 229910052718 tin Inorganic materials 0.000 claims abstract description 6
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims 1
- 229910052761 rare earth metal Inorganic materials 0.000 abstract description 5
- 238000003466 welding Methods 0.000 description 48
- 238000005336 cracking Methods 0.000 description 25
- 230000035515 penetration Effects 0.000 description 25
- 239000011324 bead Substances 0.000 description 18
- 230000003647 oxidation Effects 0.000 description 16
- 238000007254 oxidation reaction Methods 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 10
- 239000000446 fuel Substances 0.000 description 8
- 238000007711 solidification Methods 0.000 description 8
- 230000008023 solidification Effects 0.000 description 8
- 229910001566 austenite Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- -1 fuel cells Chemical compound 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/52—Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Arc Welding In General (AREA)
Abstract
Description
本発明は高温で使用する溶接管構造高温機器用のオーステナイト系ステンレス鋼に関する。 The present invention relates to an austenitic stainless steel for welded pipe structure high temperature equipment used at high temperatures.
燃料電池をはじめとする水素ガスを生成するための燃料改質器は、都市ガスや、灯油、ガソリンなどの燃料から燃料改質触媒を用いて水素を生成する装置であるが、水素を生成するための触媒作動温度が約700℃以上と高温であるため、触媒を保持する構造材には優れた耐酸化性と高温強度が必要とされる。これらの高温での特性は構造物としての長期耐久性を確保するために必要であり、酸化損傷や高温での強度不足による部分的な破壊や変形が起こると水素ガス発生装置としての性能が低下して、発電を行う燃料電池本体の性能を劣化させシステムとしての性能が低下してしまう。そのため特に高温の部位には耐酸化性と高温強度に優れたオーステナイト系ステンレス鋼であるSUS310Sが多く使われている。 Fuel reformers for generating hydrogen gas, including fuel cells, are devices that generate hydrogen from fuels such as city gas, kerosene, and gasoline using a fuel reforming catalyst. Therefore, the structural material for holding the catalyst requires excellent oxidation resistance and high temperature strength. These characteristics at high temperatures are necessary to ensure the long-term durability of the structure. If partial damage or deformation occurs due to oxidation damage or insufficient strength at high temperatures, the performance as a hydrogen gas generator deteriorates. As a result, the performance of the fuel cell main body that generates power is deteriorated and the performance as a system is lowered. For this reason, SUS310S, which is an austenitic stainless steel excellent in oxidation resistance and high-temperature strength, is often used particularly at high-temperature sites.
燃料改質器はSUS310Sをはじめとするオーステナイト系ステンレス鋼の薄板を管状に溶接したものをそれぞれ何重にも重ねて一体型の筒型構造としたものが開発されている(特許文献1)。このように重ねた筒によって機能が分かれた非常に複雑な構造となっており、管形状への溶接だけではなく、筒同士を周溶接で接合してガスの通路としているため、高温特性だけではなく溶接性にも優れたオーステナイト系ステンレス鋼が求められる。ここで溶接性に優れるとは、主に溶接時に高温割れが発生しにくいことをいう。 A fuel reformer has been developed in which an austenitic stainless steel thin plate such as SUS310S is welded in a tubular shape to form an integral cylindrical structure by superimposing multiple layers (Patent Document 1). In this way, it has a very complicated structure with functions separated by stacked cylinders, and not only welding to the tube shape, but also joining the cylinders by circumferential welding to form a gas passage, so only with high temperature characteristics An austenitic stainless steel having excellent weldability is also required. Here, excellent weldability means that high temperature cracks are hardly generated during welding.
オーステナイト系ステンレス鋼の溶接で発生する高温割れは、凝固過程でP、S、Si、Nbなどの低融点化合物がオーステナイト粒界や柱状晶粒界に偏析するために生じる割れであり、凝固割れともいわれる。そのため、SUS304やSUS316では、溶接金属に数%のフェライト量を含有させることにより高温割れを防止している。フェライトが有効な理由はフェライトのほうがSやPの固溶度が高いこと、液体のぬれ性が悪くなり液膜がひろがりにくくなること、フェライト/オーステナイト界面が複雑な形状のまま凝固してオーステナイト粒界となるので割れが伝播しにくくなることなどが挙げられる。しかし、SUS310Sのように成分調整してもフェライトの混入が不可能である場合には、P、S、Siなどの低融点金属生成元素を低減することが有効である(非特許文献1)。 Hot cracks that occur during the welding of austenitic stainless steel are cracks that occur because low melting point compounds such as P, S, Si, and Nb segregate at the austenite grain boundaries and columnar grain boundaries during the solidification process. Is called. Therefore, in SUS304 and SUS316, hot cracking is prevented by containing a few percent of ferrite in the weld metal. The reason why ferrite is effective is that the solid solubility of S and P is higher in ferrite, the wettability of the liquid is worse and the liquid film is harder to spread, and the ferrite / austenite interface is solidified with a complex shape and austenite grains For example, cracks are difficult to propagate because they become boundaries. However, if it is impossible to mix ferrite even if the components are adjusted as in SUS310S, it is effective to reduce low-melting-point metal generating elements such as P, S, and Si (Non-patent Document 1).
また、SUS310S同等の高温特性を有する高温機器用オーステナイト系ステンレス鋼として、耐酸化性改善のためにSi含有量を多くした材料が開発されている。しかし、Si含有量の増加は上述したように高温割れが発生しやすいため、凝固時に数%のフェライトが含有されるように成分調整が行われている(例えば、特許文献1〜4)。 In addition, as an austenitic stainless steel for high temperature equipment having high temperature characteristics equivalent to SUS310S, a material having an increased Si content has been developed to improve oxidation resistance. However, since the increase in the Si content is likely to cause hot cracking as described above, the components are adjusted so that several percent of ferrite is contained during solidification (for example, Patent Documents 1 to 4).
一方、溶接時の高温割れに対しては、材料面だけではなく施工性の点から溶接時の歪みを低減することも重要である(非特許文献2)。そのために、溶接入熱を低くすることで歪みを低減させたり、溶接施工時に素材を確実に拘束することで残留応力による歪みを抑制して高温割れを抑制することが可能となる。 On the other hand, for hot cracking during welding, it is also important to reduce distortion during welding from the viewpoint of workability as well as the material surface (Non-Patent Document 2). For this reason, it is possible to reduce distortion by reducing welding heat input, or to restrain the strain due to residual stress by restraining the material reliably during welding, thereby suppressing high-temperature cracking.
ところが、上述したように、燃料改質器のように非常に複雑な溶接構造物である場合は全ての溶接部位を拘束することが困難な場合が多く、複数回に分けて溶接することになり最終溶接部位に歪みが集中して凝固割れが発生するという問題がある。さらには、確実に溶融して接合させることが重要であるが、その複雑な構造ゆえに溶接条件のばらつきが生じやすく、溶接入熱が小さく溶け込み量が少ないと接合不良が発生する可能性がある。そこで確実に溶融接合させるために溶接入熱をあげて溶接すると溶け込み量が多くなり、溶け込み量が多いと上述したように残留応力による歪みが大きくなり高温割れが発生しやすくなるという課題がある。 However, as described above, in the case of a very complicated welded structure such as a fuel reformer, it is often difficult to constrain all the welded parts, and welding is performed in multiple times. There is a problem that solidification cracking occurs due to the concentration of strain at the final weld site. Furthermore, it is important to reliably melt and join, but due to its complicated structure, variations in welding conditions are likely to occur, and if welding heat input is small and the amount of penetration is small, joint failure may occur. Therefore, if the welding heat input is increased in order to ensure fusion bonding, the amount of penetration increases, and if the amount of penetration is large, there is a problem that distortion due to residual stress increases as described above and high temperature cracking is likely to occur.
本発明はこのような状況に鑑みてなされたもので、経済的に優れ、複雑な管状構造物をつくるための溶接性に優れたオーステナイト系ステンレス鋼を提供することにある。 This invention is made | formed in view of such a condition, It is providing the austenitic stainless steel excellent in weldability for producing the complicated tubular structure economically excellent.
本発明者らは上記目的を達成するために、各種成分を変化させたステンレス鋼を用いて溶接入熱を変えた高温割れの再現実験により溶接時の高温割れ性を検討した結果、高温割れ改善のためには材料成分の適正化によって溶け込み量の適正化を図ることが重要であるとの知見を得て、本発明に至った。 In order to achieve the above object, the present inventors examined hot cracking properties during welding by reproducibility of hot cracking with different welding heat input using stainless steel with various components changed. For this purpose, the inventors have obtained the knowledge that it is important to optimize the amount of penetration by optimizing the material components, and have reached the present invention.
すなわち本発明の溶接管構造用オーステナイト系ステンレス鋼は、質量%で、C:0.001〜0.1%、Si:0.01〜1.5%、Mn:0.01〜1.5%、P≦0.022%、S≦0.004%、Cr:20.0〜26.0%、Ni:15.0〜23.0%、N:0.001〜0.07%、Al≦0.05%、Ca≦0.005%、残部がFeおよび不可避不純物よりなり、さらにAl、Caが下記式を満たすことを特徴とする溶接性に優れた管状構造物用オーステナイト系ステンレス鋼である。
0.015≦0.29(%Al)+17.92(%Ca)≦0.093 式(1)
さらに質量%で、Cu:0.001〜0.30%、Mo:0.001〜0.30%、Sn:0.001〜0.05%、W:0.001〜0.10%、Co:0.001〜0.10%、Ti:0.001〜0.03%、Nb:0.001〜0.03%、V:0.01〜0.2%、Zr:0.001〜0.03%、B≦0.001%、Mg≦0.001%、REM≦0.01%の1種または2種以上を含んでも構わない。
That is, the austenitic stainless steel for welded pipe structure of the present invention is in mass%, C: 0.001 to 0.1%, Si: 0.01 to 1.5%, Mn: 0.01 to 1.5%. , P ≦ 0.022%, S ≦ 0.004%, Cr: 20.0 to 26.0%, Ni: 15.0 to 23.0%, N: 0.001 to 0.07%, Al ≦ 0.05%, Ca ≦ 0.005%, the balance is Fe and inevitable impurities, and Al and Ca satisfy the following formula. .
0.015 ≦ 0.29 (% Al) +17.92 (% Ca) ≦ 0.093 Formula (1)
Further, by mass%, Cu: 0.001 to 0.30%, Mo: 0.001 to 0.30%, Sn: 0.001 to 0.05%, W: 0.001 to 0.10%, Co : 0.001 to 0.10%, Ti: 0.001 to 0.03%, Nb: 0.001 to 0.03%, V: 0.01 to 0.2%, Zr: 0.001 to 0 0.03%, B ≦ 0.001%, Mg ≦ 0.001%, and REM ≦ 0.01% may be included.
本発明の溶接性に優れた管状構造物用オーステナイト系ステンレス鋼によれば、複雑な形状の部材であっても、溶接溶け込み量が適切な安定した溶接ができるので、溶接入熱増大による高温割れを低減することが可能となり、溶接性に優れた管状構造物用オーステナイト系ステンレス鋼を安価に提供することができる。 According to the austenitic stainless steel for tubular structures having excellent weldability according to the present invention, even if the member has a complicated shape, the welding penetration amount can be stably stabilized, so that high temperature cracking due to increased welding heat input. Therefore, austenitic stainless steel for tubular structures having excellent weldability can be provided at a low cost.
本発明の溶接構造管用オーステナイト系ステンレス鋼についてさらに説明する。%は質量%を意味する。 The austenitic stainless steel for welded structure pipe of the present invention will be further described. % Means mass%.
C:オーステナイト組織を安定化するのに有効な元素である。しかし、含有量が多くなるとSの偏析による高温割れを助長することから0.1%以下とした。下限は製造コストを考え0.001%とした。好ましくは、0.01〜0.08%、さらに好ましくは、0.01〜0.05%である。 C: An element effective for stabilizing the austenite structure. However, if the content is increased, hot cracking due to segregation of S is promoted, so the content was made 0.1% or less. The lower limit is set to 0.001% in consideration of manufacturing costs. Preferably, it is 0.01 to 0.08%, more preferably 0.01 to 0.05%.
Si:脱酸元素として用いられ、耐酸化性の観点から多いほうが望ましいが、過剰に添加すると溶接性を著しく劣化させるので1.5%以下にした。望ましくは1.0%以下とする。下限は製造コストを考え、0.01%とした。さらに好ましくは、0.3〜0.8%である。 Si: It is used as a deoxidizing element and is preferably larger from the viewpoint of oxidation resistance. However, if excessively added, weldability is remarkably deteriorated, so the content was made 1.5% or less. Desirably, it is 1.0% or less. The lower limit is set to 0.01% in consideration of manufacturing costs. More preferably, it is 0.3 to 0.8%.
Mn:オーステナイト組織を安定化するのに必要な元素であるとともに、溶接時にSを固定して高温割れ性の低下を抑制する元素である。しかし過剰の添加は耐酸化性を低下させるため1.5%以下とした。下限は製造コストを考え、0.01%とした。 Mn: An element necessary for stabilizing the austenite structure, and an element for fixing S during welding to suppress a decrease in hot cracking property. However, excessive addition reduces the oxidation resistance, so it was made 1.5% or less. The lower limit is set to 0.01% in consideration of manufacturing costs.
P:Pは凝固時に粒界に偏析して溶接性を低下させる元素であるので0.022%以下にした。望ましくは0.020%以下、さらに望ましいのは0.015%以下である。 P: P is 0.022% or less because it is an element that segregates at the grain boundaries during solidification and reduces weldability. Desirably, it is 0.020% or less, and more desirably is 0.015% or less.
S:Sも凝固時に粒界に偏析して溶接性を低下させる元素であるので0.004%以下にした。望ましくは0.001%以下である。 S: Since S is also an element that segregates at the grain boundary during solidification and lowers the weldability, the content is made 0.004% or less. Desirably, it is 0.001% or less.
Cr:Crはステンレス鋼の基本特性である耐食性、本発明で重要な高温環境での耐酸化性および強度を確保するために必要な元素であることから20.0%以上必要である。上限は、加工性を低下させたり、製品コストを高めたり、製造性を劣化させるため26.0%とした。好ましくは24.0〜25.5%である。 Cr: Cr is an element necessary for ensuring the corrosion resistance, which is a basic characteristic of stainless steel, and the oxidation resistance and strength in a high-temperature environment important in the present invention, so 20.0% or more is necessary. The upper limit was set to 26.0% in order to reduce the workability, increase the product cost, or deteriorate the manufacturability. Preferably it is 24.0-25.5%.
Ni:Niはオーステナイト組織を安定化して、高温での強度を確保するのに必要な元素であるため15.0%以上とした。しかし、含有量が多くなるとSの偏析による高温割れを助長すること、また加工性を低下させたり、製品コストを高めたり、製造性を劣化させるためから23.0%以下とした。好ましくは19.0〜21.0%である。 Ni: Ni is an element necessary for stabilizing the austenite structure and ensuring the strength at high temperature, so the content was made 15.0% or more. However, if the content is increased, it is promoted to high temperature cracking due to segregation of S, and the workability is lowered, the product cost is increased, and the productivity is deteriorated. Preferably it is 19.0-21.0%.
N:オーステナイト組織を安定化するのに有効な元素である。しかし、含有量が多くなると加工性を低下させたり、熱間での製造性を劣化させるので0.07%以下とした。下限は製造コストを考え、0.001%とした。 N: An element effective for stabilizing the austenite structure. However, if the content is increased, the workability is lowered or the hot manufacturability is deteriorated. The lower limit is set to 0.001% in consideration of manufacturing cost.
Al:脱酸元素であるとともに、溶接時の溶け込み量の適正化に有効な元素である。しかし添加量が多すぎると逆に溶け込み性が低下して溶接性を低下させるために0.05%以下とした。好ましくは、0.005〜0.03%である。下記(1)式を満たしていればAlを含有しなくてもよい。 Al: A deoxidizing element and an element effective for optimizing the amount of penetration during welding. However, if the addition amount is too large, the penetration property is lowered and the weldability is lowered. Preferably, it is 0.005 to 0.03%. If the following formula (1) is satisfied, Al may not be contained.
Ca:溶接性を低下させるSを低減するだけではなく、溶接時の溶け込み量の適正化に必要な元素である。しかし添加量が多すぎると逆に溶け込み性が低下して溶接性を低下させるために0.005%以下とした。好ましくは、0.001〜0.004%である。 Ca: It is an element necessary not only for reducing S that lowers weldability but also for optimizing the amount of penetration during welding. However, if the addition amount is too large, the penetration property is lowered and the weldability is lowered. Preferably, it is 0.001 to 0.004%.
溶接性指標:高温割れ抑制のための溶け込み量を適正化する溶接性指標として、溶接後の表裏ビード幅比で溶け込み性を評価して、AlおよびCaの含有量の影響を関係式(1)で構成した。
0.015≦0.29(%Al)+17.92(%Ca)≦0.093 式(1)
式(1)は、溶接入熱を変えた試験を行い、高入熱時における溶接後の表裏面のビード幅比(裏面のビード幅/表面ビード幅)と高温割れ性の関係と、低入熱時における溶け込み性を調査した結果、見出したものである。まず、高入熱時において、表裏面のビード幅比が0.8を越えると高温割れが発生しやすくなることを見出した。そして表裏面のビード幅比には、鋼中のAlおよびCa含有量の特定の関係が影響することを明らかにした。解析した結果、上記式(1)で表される「溶接性指標」に好適範囲があり、この好適範囲内にあれば表裏面のビード幅比が0.8以下であって溶接性が良好に保たれることを見出して導出したものである。Alは通常脱酸元素として、CaはS低減のために添加されているが、ともに溶接時の溶け込み量適正化のためにも必要な元素であることを知見した。溶接性指標が0.015未満だと溶け込み量が大きくなり高温割れが発生しやすくなる。これに対し、式(1)の溶接性指標が0.015以上であれば、高入熱時においても溶け込み量が小さくなって表裏面のビード幅比が0.8以下となり、その結果として高温割れの発生を低減することができる。溶接性指標は好ましくは0.03以上である。一方、溶接性指標が0.093を超えると、低入熱時における溶け込み性が低下して溶接性が低下する。
Weldability index: As a weldability index for optimizing the amount of penetration for suppressing high-temperature cracking, the penetration is evaluated by the front / back bead width ratio after welding, and the influence of the contents of Al and Ca is expressed by the relational expression (1) Consists of.
0.015 ≦ 0.29 (% Al) +17.92 (% Ca) ≦ 0.093 Formula (1)
Equation (1) shows the relationship between the bead width ratio of the front and back surfaces (bead width of the back surface / surface bead width) and the high temperature cracking property after welding under high heat input and low heat input. It was discovered as a result of investigating the solubility during heating. First, it has been found that high temperature cracking tends to occur when the bead width ratio of the front and back surfaces exceeds 0.8 during high heat input. And it clarified that the specific relationship of Al and Ca content in steel influences the bead width ratio of front and back. As a result of the analysis, there is a suitable range for the “weldability index” represented by the above formula (1), and within this preferred range, the bead width ratio of the front and back surfaces is 0.8 or less and the weldability is good. It is derived by finding out that it is maintained. Although Al is usually added as a deoxidizing element and Ca is added to reduce S, it has been found that both are necessary elements for optimizing the amount of penetration during welding. If the weldability index is less than 0.015, the amount of penetration increases and hot cracking is likely to occur. On the other hand, if the weldability index of the formula (1) is 0.015 or more, the amount of penetration becomes small even at high heat input, and the bead width ratio of the front and back surfaces becomes 0.8 or less. The occurrence of cracks can be reduced. The weldability index is preferably 0.03 or more. On the other hand, if the weldability index exceeds 0.093, the penetration property at the time of low heat input is lowered and the weldability is lowered.
前述のとおり、燃料改質器のように非常に複雑な溶接構造物である場合は、その複雑な構造ゆえに溶接条件のばらつきが生じやすく、溶接入熱が小さく溶け込み量が少なすぎると接合不良が発生する可能性がある。そこで確実に溶融接合させるために溶接入熱をあげて溶接すると溶け込み量が多くなり過ぎやすい。本発明のオーステナイト系ステンレス鋼は、溶接入熱が大きくなった場合でも高温割れが発生しにくく、逆に溶接入熱が小さくなった場合でも溶け込み性が低下しないという特徴を有している。 As described above, in the case of a very complicated welded structure such as a fuel reformer, variation in welding conditions is likely to occur due to the complicated structure, and if the welding heat input is small and the amount of penetration is too small, joint failure may occur. May occur. Therefore, if the welding heat input is increased in order to ensure fusion bonding, the amount of penetration tends to be excessive. The austenitic stainless steel of the present invention is characterized in that hot cracking is unlikely to occur even when the welding heat input increases, and conversely, the weldability does not decrease even when the welding heat input decreases.
以下には、さらに積極的に添加する元素あるいは不純物として混入する可能性のある元素について述べる。 In the following, elements to be added more actively or elements that may be mixed as impurities will be described.
Cu、Mo、Sn、W、Co:Cu、Mo、Sn、W、Coは原料のスクラップより混入する可能性があり、耐食性向上に有効な元素であるが、過剰に添加してもコストアップや製造性の低下となるので、Cu≦0.30%、Mo≦0.30%、Sn≦0.05%、W≦0.10%、Co≦0.10%とする。下限は不可避なレベルとして0.001%とした。 Cu, Mo, Sn, W, Co: Cu, Mo, Sn, W, Co may be mixed from the raw material scrap, and is an element effective for improving the corrosion resistance. Since manufacturability is lowered, Cu ≦ 0.30%, Mo ≦ 0.30%, Sn ≦ 0.05%, W ≦ 0.10%, and Co ≦ 0.10%. The lower limit is set to 0.001% as an inevitable level.
Ti、Nb、V、Zr:Ti、Nb、V、ZrはC、Nと結合して析出物を形成し鋼中の固溶C、Nを低減することから耐粒界腐食性向上に有効であるが、過剰の添加は炭化物の生成による液相フィルムが高温割れを助長して溶接性を低下させるので、Ti≦0.03%、Nb≦0.03%、V≦0.2%、Zr≦0.03%とする。下限は不可避なレベルとして0.001%とした。 Ti, Nb, V, Zr: Ti, Nb, V, Zr binds to C and N to form precipitates and reduce solid solution C and N in the steel, which is effective in improving intergranular corrosion resistance. However, excessive addition promotes hot cracking of the liquid phase film due to the formation of carbides and lowers weldability. Therefore, Ti ≦ 0.03%, Nb ≦ 0.03%, V ≦ 0.2%, Zr ≦ 0.03%. The lower limit is set to 0.001% as an inevitable level.
B、Mg:B、Mgは熱間での加工性改善に有効な元素であるが、過剰の添加は溶接性を低下させるのでB≦0.001%、Mg≦0.001%とする。 B, Mg: B and Mg are effective elements for improving hot workability. However, excessive addition reduces weldability, so B ≦ 0.001% and Mg ≦ 0.001%.
REM:La、Ce、Yなどがあり熱間での加工性向上に有効な元素であるが、過剰の添加は溶接性を低下させるのでREM≦0.01%とする。 REM: La, Ce, Y, etc. are effective elements for improving hot workability, but excessive addition reduces weldability, so REM ≦ 0.01%.
以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, it is not limited to an Example.
表1、表2に示す成分のオーステナイト系ステンレス鋼を真空溶解炉で溶製して50kgの鋼塊に鋳込んだ後にブロック状に削りだし、熱間圧延、焼鈍酸洗、冷間圧延、焼鈍酸洗を行い、板厚0.8mmの鋼板を作製して評価を行った。OとNは不純物として含有するものである。また数値が空欄の場合は添加していないことを示す。本発明範囲から外れる数値にアンダーラインを付している。 Austenitic stainless steels with the components shown in Tables 1 and 2 are melted in a vacuum melting furnace and cast into a 50 kg steel ingot, then cut into blocks, hot rolled, annealed pickled, cold rolled, annealed It pickled and produced and evaluated the steel plate with a plate thickness of 0.8 mm. O and N are contained as impurities. Moreover, when a numerical value is blank, it has shown that it has not added. Numerical values that fall outside the scope of the present invention are underlined.
この鋼板から切り出した50mm角の試験材にφ35mmのTIG溶接をリング状に行い、さらにリングと交差するように試験材の対角から対角へ直線状のTIG溶接によるなめ付けを行った。TIG溶接は、溶接速度:50cm/分、アルゴンガスシールにて行い、リング状のTIG溶接は溶接入熱720J/cm、その後の直線状のTIGなめ付け溶接は溶接入熱600J/cmで行った。比較的溶接入熱量が大きく、溶け込み量が多くなり過ぎて高温割れが発生しやすい条件として、溶接時の高温割れの発生状況を評価した。 A 35 mm square test material cut out from this steel plate was subjected to TIG welding of φ35 mm in a ring shape, and further subjected to tanning by linear TIG welding from the diagonal to the diagonal so as to cross the ring. TIG welding was performed at a welding speed of 50 cm / min with an argon gas seal, ring-shaped TIG welding was performed with a heat input of 720 J / cm, and subsequent linear TIG tanning was performed with a heat input of 600 J / cm. . As a condition where the welding heat input is relatively large and the penetration amount is too large to cause hot cracking, the occurrence of hot cracking during welding was evaluated.
溶接割れ性評価(溶接時の高温割れ発生状況の評価)は、直線状のTIGなめ付け後の最終凝固部での割れ発生有無を10倍のルーペで表裏面ともに観察し、表裏のどちらかで割れが観察されたものを0.5点、表裏ともに割れが認められたものを1点とした。試験は5枚行い、割れ発生点数から割れ発生率を求めて、割れ発生率が30%越えたものは溶接性不芳で不合格とした。併せて表裏面のビード幅を定規で測定した裏面ビード幅/表面ビード幅の評価結果も記載した。 Weld crackability evaluation (evaluation of the occurrence of hot cracking during welding) is performed by observing the occurrence of cracks in the final solidified part after linear TIG tanning on both the front and back surfaces with a 10X magnifier. 0.5 points were observed for cracks, and 1 point for cracks on both sides. Five tests were performed, the crack occurrence rate was determined from the number of crack occurrence points, and those with a crack occurrence rate exceeding 30% were rejected due to poor weldability. In addition, the evaluation results of the backside bead width / surface bead width obtained by measuring the bead width on the front and back sides with a ruler are also described.
また、溶接施工性評価(溶け込み性)として溶接入熱が低く溶け込み量が少なくなり過ぎやすい場合の溶け込み性を評価するため、直線状のTIGなめ付け溶接を溶接入熱480J/cmで行い、表裏面のビード幅を定規で測定して、裏面ビード幅/表面ビード幅<0.5のものを溶け込み性不芳で不合格とした。 In addition, in order to evaluate the weldability when the welding heat input is low and the amount of penetration tends to be too small as a weldability evaluation (penetration), linear TIG tanning welding is performed at a welding heat input of 480 J / cm. The back side bead width was measured with a ruler, and the back side bead width / front side bead width <0.5 was rejected due to poor penetration.
(耐酸化試験)
20mm×30mmの試験片を用いて、大気中、1000℃で200時間の連続酸化試験を行い、酸化増量により耐酸化性を評価した。酸化増量が5g/m2を越えるものを不合格とした。
(Oxidation resistance test)
Using a test piece of 20 mm × 30 mm, a continuous oxidation test was conducted in the atmosphere at 1000 ° C. for 200 hours, and oxidation resistance was evaluated by an increase in oxidation. A product with an oxidation increase exceeding 5 g / m 2 was rejected.
表1に示すとおり、溶接割れ性評価では本発明範囲の組成である本発明例1〜26は、各成分含有量及び式(1)に示される溶接性指数が好適範囲に入っており、溶接割れ性評価における表裏ビード幅比が0.8以下であって溶け込み量が多くなり過ぎず、結果として割れ発生率が30%以下で溶接割れ性に優れることが確認された。一方表2に示すように、それぞれ、P、S、C、Si量が本発明範囲を外れる比較例1〜4、式(1)に示される溶接性指標が本発明範囲の下限を外れる比較例9、10、17、それぞれ、Ti、Nb、V、Zr、B、Mg、REM量が本発明範囲より外れる比較例11〜17は割れ発生率が30%を越えており溶接性に劣ることがわかった。特に、溶接性指標が本発明の下限を外れる比較例9、10、19においては表裏面のビード幅が0.8を越えていた。 As shown in Table 1, Examples 1 to 26 of the present invention, which are compositions within the scope of the present invention in the weld cracking evaluation, each component content and the weldability index represented by the formula (1) are within the preferred range, It was confirmed that the front / back bead width ratio in the crackability evaluation was 0.8 or less and the amount of penetration was not excessive, and as a result, the crack occurrence rate was 30% or less and the weld crackability was excellent. On the other hand, as shown in Table 2, Comparative Examples 1 to 4 in which the amounts of P, S, C, and Si deviate from the scope of the present invention, and Comparative Examples in which the weldability index shown in Formula (1) deviates from the lower limit of the scope of the present invention. 9, 10 and 17, Comparative Examples 11 to 17 in which the amounts of Ti, Nb, V, Zr, B, Mg, and REM deviate from the scope of the present invention have crack generation rates exceeding 30%, and may have poor weldability. all right. In particular, in Comparative Examples 9, 10, and 19, where the weldability index deviated from the lower limit of the present invention, the bead width on the front and back surfaces exceeded 0.8.
また、溶接施工性評価として溶接電流のばらつきによる溶け込み性不良の確認のために溶接入熱を低下させた評価を行った結果では、本発明範囲の組成である実施例1〜26は溶接施工性評価における表裏ビード幅比が0.5以上で溶け込み性に問題がないことが確認された。一方、Al、Ca量がそれぞれ本発明範囲より外れる比較例7、8、溶接性指標が本発明の上限を外れる比較例7、18は、溶接施工性評価で溶接入熱を下げた場合に表裏のビード幅比が小さく溶け込み性に劣り、溶接施工性が低下することがわかった。 In addition, as a result of performing an evaluation in which the welding heat input was lowered for confirmation of poor penetration due to variations in welding current as an evaluation of welding workability, Examples 1 to 26, which are compositions within the scope of the present invention, are welding workability. It was confirmed that the front / back bead width ratio in the evaluation was 0.5 or more and there was no problem in the solubility. On the other hand, Comparative Examples 7 and 8 in which the amounts of Al and Ca deviate from the scope of the present invention, and Comparative Examples 7 and 18 in which the weldability index deviates from the upper limit of the present invention are the front and back when the welding heat input is lowered in the weldability evaluation. It was found that the bead width ratio was small and the penetration was poor, and the weldability was lowered.
本発明の特徴であるAl、Ca、溶接性指標について示したのが図1である。本発明ではAl、Caを適量添加することで溶接入熱過剰時の凝固割れを抑制する領域が図の式(1)下限線より上の領域である。しかし、逆にAl、Caの過剰添加は溶け込み性を低下させることを示す領域が式(1)上限線、Al上限線、Ca上限線より下の領域である。本発明の実施範囲の成分のものは入熱過多時の凝固割れが起こらず溶接割れ性が良好であり、また入熱少時の溶け込み不足が起こらず溶接施工性が良好であるが、本発明範囲外のものは凝固割れや溶け込み不足が認められた。 FIG. 1 shows Al, Ca, and weldability indexes that are the characteristics of the present invention. In this invention, the area | region which suppresses the solidification crack at the time of welding heat input excess by adding appropriate quantity of Al and Ca is an area | region above Formula (1) lower limit line of a figure. However, conversely, the regions indicating that excessive addition of Al and Ca decreases the solubility is the region below the upper limit line, the Al upper limit line, and the Ca upper limit line of Formula (1). The components within the scope of the present invention have good weld cracking without solidification cracking when the heat input is excessive, and good weldability without causing insufficient melting when the heat input is low. Out of the range, solidification cracking and insufficient penetration were observed.
さらに、高温での使用を想定した耐酸化試験においては、本発明範囲の組成である実施例1〜26は酸化増量が5g/m2以下であったが、Mn量が本発明範囲より高い比較例5、Cr量が低い比較例6では酸化増量が5g/m2よりも多く、高温用途向けとしては耐酸化性に劣ることがわかった。 Furthermore, in the oxidation resistance test assuming use at high temperatures, Examples 1-26, which are compositions within the scope of the present invention, had an oxidation increase of 5 g / m 2 or less, but the Mn content was higher than the scope of the present invention In Example 5 and Comparative Example 6 in which the Cr content was low, the increase in oxidation was more than 5 g / m 2 , and it was found that the oxidation resistance was inferior for high temperature applications.
以上述べたように、本発明の溶接性に優れた管状構造物用オーステナイト系ステンレス鋼を提供することで、複雑な形状の管状構造物を製造する際の溶接施工性の大幅な向上が可能となり、産業的価値は大きい。 As described above, by providing the austenitic stainless steel for tubular structures with excellent weldability according to the present invention, it is possible to significantly improve the weldability when manufacturing a tubular structure having a complicated shape. Industrial value is great.
Claims (2)
0.015≦0.29(%Al)+17.92(%Ca)≦0.093 式(1) In mass%, C: 0.001 to 0.1%, Si: 0.01 to 1.5%, Mn: 0.01 to 1.5%, P ≦ 0.022%, S ≦ 0.004% Cr: 20.0-26.0%, Ni: 15.0-23.0%, N: 0.001-0.07%, Al ≦ 0.05%, Ca ≦ 0.005%, the balance being An austenitic stainless steel for tubular structures excellent in weldability, characterized by comprising Fe and inevitable impurities, and further Al and Ca satisfying the following formula.
0.015 ≦ 0.29 (% Al) +17.92 (% Ca) ≦ 0.093 Formula (1)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012030415A JP5780598B2 (en) | 2012-02-15 | 2012-02-15 | Austenitic stainless steel for high temperature equipment of welded pipe structure |
EP13749790.5A EP2816133B1 (en) | 2012-02-15 | 2013-02-15 | Austenitic stainless steel for apparatus for high-temperature use having welded tubular structure |
PCT/JP2013/053764 WO2013122234A1 (en) | 2012-02-15 | 2013-02-15 | Austenitic stainless steel for apparatus for high-temperature use having welded pipe structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012030415A JP5780598B2 (en) | 2012-02-15 | 2012-02-15 | Austenitic stainless steel for high temperature equipment of welded pipe structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013166989A true JP2013166989A (en) | 2013-08-29 |
JP5780598B2 JP5780598B2 (en) | 2015-09-16 |
Family
ID=48984343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012030415A Active JP5780598B2 (en) | 2012-02-15 | 2012-02-15 | Austenitic stainless steel for high temperature equipment of welded pipe structure |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2816133B1 (en) |
JP (1) | JP5780598B2 (en) |
WO (1) | WO2013122234A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6206624B1 (en) * | 2016-03-29 | 2017-10-04 | Jfeスチール株式会社 | Ferritic stainless steel sheet |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018066573A1 (en) * | 2016-10-03 | 2018-04-12 | 新日鐵住金株式会社 | Austenitic heat-resistant alloy and welding joint using same |
EP3693487A4 (en) * | 2017-10-03 | 2021-01-27 | Nippon Steel & Sumitomo Metal Corporation | Austenitic stainless steel |
DE102019123174A1 (en) * | 2019-08-29 | 2021-03-04 | Mannesmann Stainless Tubes GmbH | Austenitic steel alloy with improved corrosion resistance when exposed to high temperatures |
CN111004976B (en) * | 2019-12-30 | 2020-11-13 | 钢铁研究总院 | Nickel-saving type air valve alloy and preparation method thereof |
CN115896647A (en) * | 2022-11-16 | 2023-04-04 | 江苏新华合金有限公司 | Manufacturing process method of heat-resistant steel seamless pipe blank material for atmosphere protection annealing furnace |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06306548A (en) * | 1993-04-26 | 1994-11-01 | Nippon Steel Corp | Nitric acid resisting austenitic stainless steel excellent in hot workability |
JPH073404A (en) * | 1993-06-22 | 1995-01-06 | Nkk Corp | Austenitic stainless steel excellent in cleanliness and weldability |
JPH11293412A (en) * | 1998-04-08 | 1999-10-26 | Pacific Metals Co Ltd | Austenitic stainless steel excellent in hot workability |
JP2004043903A (en) * | 2002-07-12 | 2004-02-12 | Nisshin Steel Co Ltd | Austenitic stainless steel superior in red scale resistance |
WO2006109727A1 (en) * | 2005-04-11 | 2006-10-19 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4172716A (en) * | 1973-05-04 | 1979-10-30 | Nippon Steel Corporation | Stainless steel having excellent pitting corrosion resistance and hot workabilities |
JPS5929104B2 (en) * | 1980-05-20 | 1984-07-18 | 愛知製鋼株式会社 | Austenitic heat-resistant steel with excellent hot workability and oxidation resistance |
JPH0762171B2 (en) * | 1989-07-28 | 1995-07-05 | 新日本製鐵株式会社 | Method for producing austenitic stainless steel excellent in wire drawability and cold rollability |
JP2533968B2 (en) * | 1990-10-05 | 1996-09-11 | 新日本製鐵株式会社 | Austenitic stainless wire with excellent MIG welding workability |
JP3358678B2 (en) * | 1994-03-23 | 2002-12-24 | 新日本製鐵株式会社 | Austenitic stainless steel for building materials |
JP3381457B2 (en) | 1995-05-23 | 2003-02-24 | 住友金属工業株式会社 | Austenitic stainless steel for high temperature with excellent weldability |
JP3239763B2 (en) * | 1996-07-08 | 2001-12-17 | 住友金属工業株式会社 | Austenitic stainless steel with excellent resistance to sulfuric acid corrosion |
JP2001107196A (en) * | 1999-10-07 | 2001-04-17 | Sumitomo Metal Ind Ltd | Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material |
JP3886786B2 (en) | 2001-11-22 | 2007-02-28 | 日新製鋼株式会社 | Austenitic stainless steel for petroleum fuel reformer |
JP3886787B2 (en) | 2001-11-22 | 2007-02-28 | 日新製鋼株式会社 | Austenitic stainless steel for alcohol fuel reformer |
JP2003286005A (en) | 2002-03-28 | 2003-10-07 | Nisshin Steel Co Ltd | Fuel reformer |
JP2005023353A (en) * | 2003-06-30 | 2005-01-27 | Sumitomo Metal Ind Ltd | Austenitic stainless steel for high temperature water environment |
KR20090066000A (en) * | 2007-12-18 | 2009-06-23 | 주식회사 포스코 | Austenitic stainless steel for the high vacuum or high purity gas tube application |
-
2012
- 2012-02-15 JP JP2012030415A patent/JP5780598B2/en active Active
-
2013
- 2013-02-15 WO PCT/JP2013/053764 patent/WO2013122234A1/en active Application Filing
- 2013-02-15 EP EP13749790.5A patent/EP2816133B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06306548A (en) * | 1993-04-26 | 1994-11-01 | Nippon Steel Corp | Nitric acid resisting austenitic stainless steel excellent in hot workability |
JPH073404A (en) * | 1993-06-22 | 1995-01-06 | Nkk Corp | Austenitic stainless steel excellent in cleanliness and weldability |
JPH11293412A (en) * | 1998-04-08 | 1999-10-26 | Pacific Metals Co Ltd | Austenitic stainless steel excellent in hot workability |
JP2004043903A (en) * | 2002-07-12 | 2004-02-12 | Nisshin Steel Co Ltd | Austenitic stainless steel superior in red scale resistance |
WO2006109727A1 (en) * | 2005-04-11 | 2006-10-19 | Sumitomo Metal Industries, Ltd. | Austenitic stainless steel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6206624B1 (en) * | 2016-03-29 | 2017-10-04 | Jfeスチール株式会社 | Ferritic stainless steel sheet |
WO2017169377A1 (en) * | 2016-03-29 | 2017-10-05 | Jfeスチール株式会社 | Ferritic stainless steel sheet |
Also Published As
Publication number | Publication date |
---|---|
EP2816133B1 (en) | 2020-08-19 |
WO2013122234A1 (en) | 2013-08-22 |
EP2816133A1 (en) | 2014-12-24 |
JP5780598B2 (en) | 2015-09-16 |
EP2816133A4 (en) | 2016-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK3112081T3 (en) | Welding Assembly | |
KR101632520B1 (en) | Seamless austenite heat-resistant alloy tube | |
JP5780598B2 (en) | Austenitic stainless steel for high temperature equipment of welded pipe structure | |
JP7173348B2 (en) | Austenitic stainless steel materials and welded joints | |
JP7277752B2 (en) | Austenitic stainless steel material | |
CA2988556C (en) | Austenitic heat-resistant alloy and welded structure | |
AU2015224087B2 (en) | Welded joint and method for producing welded joint | |
CA3019556A1 (en) | Welding structure member | |
KR20200065067A (en) | Austenitic heat-resistant steel welded metal, welding joint, austenitic heat-resistant steel welding material, and method of manufacturing welded joint | |
JP5088457B1 (en) | Welding materials and welded joints | |
JP5111910B2 (en) | Ferritic stainless steel with low surface defects and excellent weldability and crevice corrosion resistance | |
CN118308663A (en) | Austenitic stainless steel weld metal and welded structure | |
JP6417146B2 (en) | Ferritic stainless steel welded structure and heat resistant member for solid oxide fuel cell | |
JP2019063868A (en) | Weld material for austenite stainless steel | |
JPWO2016158870A1 (en) | Stainless steel for stainless steel welded joints and fuel reformers | |
CA3019554C (en) | Welding structure member | |
JP2016166401A (en) | Austenitic stainless steel | |
JP2020186423A (en) | Austenite stainless steel | |
JP6402581B2 (en) | Welded joint and method for producing welded joint | |
JP6638551B2 (en) | Austenitic heat-resistant steel weld metal and welded joint having the same | |
JP6515287B2 (en) | Method of manufacturing welded joint |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141006 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20150410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150616 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150709 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5780598 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |