JP2013165102A - Pellicle for euv - Google Patents

Pellicle for euv Download PDF

Info

Publication number
JP2013165102A
JP2013165102A JP2012026103A JP2012026103A JP2013165102A JP 2013165102 A JP2013165102 A JP 2013165102A JP 2012026103 A JP2012026103 A JP 2012026103A JP 2012026103 A JP2012026103 A JP 2012026103A JP 2013165102 A JP2013165102 A JP 2013165102A
Authority
JP
Japan
Prior art keywords
honeycomb
euv
pellicle
sides
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012026103A
Other languages
Japanese (ja)
Other versions
JP5748347B2 (en
Inventor
Motoyuki Yamada
素行 山田
Shoji Akiyama
昌次 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012026103A priority Critical patent/JP5748347B2/en
Publication of JP2013165102A publication Critical patent/JP2013165102A/en
Application granted granted Critical
Publication of JP5748347B2 publication Critical patent/JP5748347B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an EUV pellicle capable of suppressing reduction of incident EUV light as much as possible, and having a structure maintaining intensity without reducing an aperture ratio as much as possible.SOLUTION: The pellicle for EUV has a honeycomb-shaped structure that reinforces an EUV transmission film. At crossing points where two sides of a hexagon constituting a honeycomb meet, each of two sides is formed to meet in a curve.

Description

本発明は、EUV(Extreme Ultra Violet)用ペリクルに関し、特に、入射したEUV光の減少を極力抑えることができると共に、高い強度を有するEUV用ペリクルに関する。   The present invention relates to a pellicle for EUV (Extreme Ultra Violet), and more particularly, to a pellicle for EUV that can suppress a decrease in incident EUV light as much as possible and has high intensity.

半導体デバイスの高集積化、微細化が進み、今では45nm程度のパターニングも実用化されつつある。このパターニングに対しては、従来のエキシマ光を用いる技術の改良技術、即ちArFを用いる液浸法や二重露光などの技術を応用して対応することが可能である。しかしながら次世代の更に微細化した32nm以下のパターニングには、最早エキシマ光を用いた露光技術では対応することが難しく、エキシマ光に比べて極めて短波長である、13.5nmを主波長とするEUV光を使用するEUV露光技術が本命視されている。   With the progress of high integration and miniaturization of semiconductor devices, patterning of about 45 nm is now in practical use. This patterning can be dealt with by applying a technique for improving the conventional technique using excimer light, that is, a technique such as an immersion method using ArF or double exposure. However, next-generation patterning of 32 nm or less, which is the next generation, is no longer compatible with the exposure technology using excimer light, and EUV light with a dominant wavelength of 13.5 nm, which is extremely shorter than excimer light. The EUV exposure technology that uses this is regarded as the favorite.

このEUV露光技術の実用化については、既にかなりの進展が見られているものの、光源、レジスト、ペリクルなどについては、解決されるべき多くの技術的課題が残されている。例えば、製造歩留まりの低下を左右する、フォトマスク上への異物の付着を防止する防塵用のペリクルについては、未だ種々の解決すべき問題が有り、EUV用ペリクル実現の上で大きな障害となっている。   Although considerable progress has already been made in the practical application of this EUV exposure technology, many technical problems to be solved remain regarding light sources, resists, pellicles and the like. For example, there are still various problems to be solved with respect to dust-proof pellicles that prevent the adhesion of foreign substances on photomasks, which affect the decline in manufacturing yield, and this is a major obstacle to the realization of EUV pellicles. Yes.

特に問題となっているのは、EUV光の透過率が高いだけでなく、酸化等による経時変化がない、化学的に安定なペリクルに好適な透過膜の材料開発に、未だ目処が立っていない事である。
従来、ペリクル膜の材料については種々の問題があり、特に有機材料はEUV光を透過せず、分解したり劣化したりするという問題がある。EUV光の波長帯に対して完全な透明性を有する材料は存在しないが、比較的透明な材料としてシリコン製の薄膜が開示されている(特許文献1、非特許文献1)。
これらのシリコン製の薄膜は、EUV光の減衰を少なくする観点から、限りなく薄いことが好ましい。
What is particularly problematic is that there is no prospect of developing a material for a permeable membrane suitable for chemically stable pellicles that not only has a high EUV light transmittance but also does not change over time due to oxidation or the like. It is a thing.
Conventionally, there are various problems with the material of the pellicle film. In particular, the organic material does not transmit EUV light, and has a problem that it decomposes or deteriorates. Although there is no material having complete transparency with respect to the EUV light wavelength band, a thin film made of silicon is disclosed as a relatively transparent material (Patent Document 1, Non-Patent Document 1).
These silicon thin films are preferably as thin as possible from the viewpoint of reducing the attenuation of EUV light.

しかしながら、これらのシリコン膜は、厚さが20nmのシリコンと15nmのルビジウムにより構成される等、ナノメーターオーダーの極薄膜であるから、強度的に非常に脆く、単独でEUV用ペリクルとして使用する事は不可能である。   However, these silicon films are extremely thin on the order of nanometers such as 20nm thick silicon and 15nm rubidium, so they are very fragile in strength and can be used alone as EUV pellicles. Is impossible.

このため、上記のEUV用ペリクルにおいては、EUV光を通過させる開口部を有すると共に、極薄膜の補強をするための構造物として、ハニカム形状の構造物をEUV用ペリクル膜と一体化させている。
例えば、SOI(Silicon On Insulator)を用いるEUV用ペリクルが提案されている。該ペリクルは、ペリクル膜を補強するためのメッシュ構造を有してしているが(特許文献2)、メッシュ構造として強度的に優れているものはハニカム構造である。
For this reason, the above-mentioned EUV pellicle has an opening for allowing EUV light to pass through, and a honeycomb-shaped structure is integrated with the EUV pellicle film as a structure for reinforcing an ultrathin film. .
For example, an EUV pellicle using SOI (Silicon On Insulator) has been proposed. The pellicle has a mesh structure for reinforcing the pellicle membrane (Patent Document 2), but a honeycomb structure that is excellent in strength is a honeycomb structure.

ハニカムの強度はハニカムのピッチ、ハニカム辺の幅、辺の高さによって決定され、ピッチが狭いほど、辺幅が大きいほど、辺が高いほど強度が向上する。
しかしながら、ペリクルを通過するEUV光の減衰を最小限に抑えるためにはハニカムの開口率を高くしなければならないが、上述のようにして強度を向上させると、開口率が低下する。
The strength of the honeycomb is determined by the pitch of the honeycomb, the width of the honeycomb side, and the height of the side. The narrower the pitch, the larger the side width, and the higher the side, the strength is improved.
However, in order to minimize the attenuation of EUV light passing through the pellicle, the honeycomb aperture ratio must be increased. However, when the strength is improved as described above, the aperture ratio decreases.

ステッパー内の光源から発光されるEUV光は、ステッパーの光学系を辿ってウェハー上に結像し、所望のパターンを描くが、光路上のEUV用ペリクルによる光の減少が大きいと、光源の発光強度やミラーの反射率、あるいはウェハーに塗布されたレジストの感度を増加させる等の補完的な技術が必要になり、EUV光学系の構成要素の全てに悪影響を及ぼすので、光の減少は極力避けなければならない。   EUV light emitted from the light source in the stepper follows the optical system of the stepper and forms an image on the wafer to draw a desired pattern. If the light decrease by the EUV pellicle on the optical path is large, the light source emits light. Complementary techniques such as increasing the intensity, mirror reflectivity, or the sensitivity of the resist applied to the wafer are required, adversely affecting all components of the EUV optical system, so avoid reducing light as much as possible. There must be.

ここで、ペリクルに入射したEUV光を減少させるのは、EUV用ペリクル膜による減衰とハニカムの開口率である。該ハニカムの開口率は、ハニカムを構成するハニカムの辺の幅、ハニカムのピッチ、ハニカムの高さによって決定される(図1、図2)。
また、ハニカムの高さも開口率に影響を与えるのは、EUVステッパー内では、光がペリクル面の垂直方向に対して4°〜6°の角度で傾斜してペリクルへ入射するため、ハニカムの高さによって影ができるからである。
このような配慮をした後に、開口率を極力低下させないでペリクルの強度を維持することができる構造が求められる。
Here, the EUV light incident on the pellicle is reduced by the attenuation by the pellicle film for EUV and the aperture ratio of the honeycomb. The aperture ratio of the honeycomb is determined by the width of the sides of the honeycomb constituting the honeycomb, the pitch of the honeycomb, and the height of the honeycomb (FIGS. 1 and 2).
In addition, the height of the honeycomb also affects the aperture ratio because light enters the pellicle at an angle of 4 ° to 6 ° with respect to the vertical direction of the pellicle surface in the EUV stepper. This is because shadows can be created.
After such considerations, a structure capable of maintaining the strength of the pellicle without reducing the aperture ratio as much as possible is required.

Livinson et al., United States Patent US6,623,893 B1, “PELLICLE FOR USE IN EUV LITHOGRAPHITY AND METHOD OF MAKING SUCH A PELLICLE”。Livinson et al., United States Patent US 6,623,893 B1, “PELLICLE FOR USE IN EUV LITHOGRAPHITY AND METHOD OF MAKING SUCH A PELLICLE”. 特開2010−256434号公報JP 2010-256434 A

Shroff et al. “EUV pellicle Development for Mask Defect Control,” Emerging Lithographic Technologies X, Proc of SPIE Vol.6151 615104-1(2006)Shroff et al. “EUV pellicle Development for Mask Defect Control,” Emerging Lithographic Technologies X, Proc of SPIE Vol.6151 615104-1 (2006)

従って、本発明の目的は、ペリクルに入射したEUV光の減少を極力抑えるために、開口率を極力低下させずに、ペリクルの強度を維持することができる構造を持たせたEUV用ペリクルを提供することにある。   Therefore, an object of the present invention is to provide a pellicle for EUV having a structure capable of maintaining the strength of the pellicle without reducing the aperture ratio as much as possible in order to suppress the decrease in EUV light incident on the pellicle as much as possible. There is to do.

本発明者等は、ペリクルの開口率を大きくすると共に、強度も向上させるという、相反する問題を解決すべく鋭意検討した結果、ハニカム構造における応力の集中を防止する方法として、隣接するハニカム辺が交わる、ハニカムを形成する6角形の頂点部の形状を特定の形状とすることによって、従来形状のハニカムに対する外部限界応力と同等の応力を印加しても、破断を防止することができることを見出し、本発明に至った。   The inventors of the present invention have intensively studied to solve the conflicting problem of increasing the aperture ratio of the pellicle and improving the strength, and as a method for preventing stress concentration in the honeycomb structure, the adjacent honeycomb sides are It is found that by making the shape of the apex portion of the hexagon that intersects the honeycomb a specific shape, it is possible to prevent breakage even when a stress equivalent to the external limit stress is applied to the honeycomb of the conventional shape, The present invention has been reached.

即ち本発明は、EUV透過膜を補強するハニカム形状の構造物を有するEUV用ペリクルであって、ハニカムを構成する6角形の2辺が交わる点において、各2辺が、曲線をなして交わるように形成されてなることを特徴とするEUV用ペリクルである。
本発明においては、前記2辺がなす曲線は凹状曲線であることが好ましい。また、前記2辺がなす曲線が円弧形状である場合、該円弧の半径は、前記ハニカムを形成する6角形の辺長の1〜1/5倍であることが好ましく、前記2辺がなす曲線が楕円形状である場合は、該楕円の長軸と短軸の平均値の1/2が、前記ハニカムを形成する6角形の辺長の1〜1/5倍であることが好ましい。
That is, the present invention is an EUV pellicle having a honeycomb-shaped structure that reinforces an EUV permeable membrane, and at the point where two sides of the hexagon forming the honeycomb intersect, each two sides intersect with each other in a curved line. A pellicle for EUV, which is characterized in that it is formed.
In the present invention, the curve formed by the two sides is preferably a concave curve. When the curve formed by the two sides is an arc shape, the radius of the arc is preferably 1 to 1/5 times the side length of the hexagon forming the honeycomb, and the curve formed by the two sides Is an elliptical shape, it is preferable that 1/2 of the average value of the major axis and the minor axis of the ellipse is 1 to 1/5 times the side length of the hexagon forming the honeycomb.

本発明により、EUV用ペリクルの開口率を殆ど低下させずに、ペリクルの強度を維持することができ、入射したEUV光の減少を極力抑えることができる。   According to the present invention, the intensity of the pellicle can be maintained without substantially reducing the aperture ratio of the EUV pellicle, and the decrease in incident EUV light can be suppressed as much as possible.

ハニカムの基本構造を表わす図である。It is a figure showing the basic structure of a honeycomb. ハニカムの1単位を表わす図である。It is a figure showing 1 unit of a honeycomb. 本発明のハニカムの一例と、従来のハニカムとを比較する図である。It is a figure which compares an example of the honeycomb of this invention, and the conventional honeycomb. 本発明のハニカムの他の一例と、従来のハニカムとを比較する図である。It is a figure which compares another example of the honeycomb of this invention, and the conventional honeycomb. 本発明のハニカムの他の一例と、従来のハニカムとを比較する図である。It is a figure which compares another example of the honeycomb of this invention, and the conventional honeycomb.

本発明のEUV用ペリクルが有する、EUV透過膜の補強をする構造物は、ハニカム形状の構造物からなり、ハニカムを形成する6角形のハニカム辺が交わる点において、各2辺が、曲線をなして交わるように形成されてなる。   The structure for reinforcing the EUV permeable membrane of the EUV pellicle of the present invention consists of a honeycomb-shaped structure, and each of the two sides forms a curve at the point where the hexagonal honeycomb sides forming the honeycomb intersect. It is formed to intersect.

EUVスキャナー中のEUV用ペリクルは、リソグラフィーパターンが描かれたEUVマスクと一体となったEUVレチクルを構成する。EUV光の露光時は、EUV光源からのEUV光をまずEUVレチクルの片端に照射し、この光照射部がマスク上の片端から対向端へ移動するように露光を繰り返す。   The EUV pellicle in the EUV scanner constitutes an EUV reticle integrated with an EUV mask on which a lithography pattern is drawn. During EUV light exposure, EUV light from an EUV light source is first irradiated to one end of the EUV reticle, and exposure is repeated so that this light irradiation part moves from one end on the mask to the opposite end.

実際には、EUV光がEUVレチクルの照射位置に従って移動するのではなく、EUVレチクルの方が移動する。この一回のレチクルの移動でEUV光がウェハーに一回照射されることになり、必要な露光の回数だけ移動を繰り返す。
EUV光の照射後、レチクルは初めの位置に戻り、次の露光が開始されるので、レチクルは往復運動を繰り返す。
In practice, the EUV reticle moves rather than the EUV light moving according to the irradiation position of the EUV reticle. With this single movement of the reticle, the EUV light is irradiated once on the wafer, and the movement is repeated as many times as necessary.
After the EUV light irradiation, the reticle returns to the initial position and the next exposure is started, so the reticle repeats reciprocating motion.

現場生産機として稼働するスキャナーでは、生産性が強く求められるので、単位時間当たりの露光の回数を多くすること、即ち上述したレチクルの往復運動を俊敏に行なうことが求められる。
このように、レチクルの往復運動の時間が短縮されると、レチクルにかかる加速度は6G〜10Gに達するので、このように大きな加速度に耐え得るように、EUV用ペリクルを設計する必要がある。
A scanner operating as an on-site production machine is strongly required to be productive. Therefore, it is required to increase the number of exposures per unit time, that is, to quickly perform the above-described reciprocating motion of the reticle.
As described above, when the time for reciprocating movement of the reticle is shortened, the acceleration applied to the reticle reaches 6G to 10G. Therefore, it is necessary to design an EUV pellicle so as to withstand such a large acceleration.

このように、EUV用ペリクルを加速させることによって発生する力は、ハニカムに内部応力を発生させる。このハニカムにかかる応力分布は、コンピューターによる力学シミュレーションを実施することによって、類推することができる。
このハニカムの応力分布を力学シミュレーションによって計算すると、隣接するハニカム辺が交わる点において最大の応力が加わることが確認された。
従って、ハニカムが破壊するのは、最大応力がかかる部位の応力が、その材料の破壊強度以上になるときであるから、応力集中部の応力を緩和することによって、ハニカムの破断を防止することができる。
Thus, the force generated by accelerating the EUV pellicle causes an internal stress in the honeycomb. The stress distribution applied to the honeycomb can be estimated by performing a dynamic simulation by a computer.
When the stress distribution of the honeycomb was calculated by dynamic simulation, it was confirmed that the maximum stress was applied at the point where adjacent honeycomb sides intersect.
Therefore, the honeycomb breaks when the stress where the maximum stress is applied is equal to or higher than the fracture strength of the material, so that the honeycomb can be prevented from breaking by relaxing the stress at the stress concentration portion. it can.

これを図3を用いて説明する。通常のハニカムでは、この交点は「ハニカム辺の交点A」の様に三つの辺をなす直線が交差し、各辺の間で、それぞれ120°の内角を形成するが、この内角部分に特に応力が集中する。
特に本発明のような、μm単位のピッチ、辺幅、辺長のハニカムでは、mmやcm単位のハニカムと比較すると、応力が集中する傾向が強い。
このため、μm単位の構成要素でも応力を分散することができるハニカム構造体が必要とされる。
そこで本発明においては、ハニカムを形成する6角形において、隣接する辺を曲線で連結し、ハニカムを形成する6角形の内角形成部を、凹状曲線とする。これによって、ハニカムに係る応力の集中が緩和され、ハニカムの強度が向上する。
This will be described with reference to FIG. In a normal honeycomb, this intersection is formed by the intersection of three straight lines as shown in “Honeycomb side intersection A”, and an internal angle of 120 ° is formed between each side. Concentrate.
In particular, a honeycomb having a pitch, side width, and side length in units of μm as in the present invention has a strong tendency to concentrate stress compared to a honeycomb in units of mm or cm.
For this reason, there is a need for a honeycomb structure that can disperse stress even with a component of μm.
Therefore, in the present invention, in the hexagon forming the honeycomb, adjacent sides are connected by a curve, and the hexagonal inner angle forming portion forming the honeycomb is a concave curve. As a result, stress concentration on the honeycomb is relaxed, and the strength of the honeycomb is improved.

図3に示されるように、ハニカムを形成する6角形の頂点部曲線が円弧形状である場合、円弧の半径8は、ハニカムの辺長9の1〜1/5倍とする必要がある。半径8がハニカムの辺長9
よりも大きい場合は、応力緩和が促進されるものの、ハニカムの開口率が低下して光の透過率が低下する。また、半径8がハニカムの辺長9の1/5倍より小さいと、交点に応力が集中しやすく、ハニカムの強度の向上に寄与しなくなるので、EUV用ペリクルの補強材としては不十分なものとなる。
本発明においては、更に有効に応力を緩和する観点から、内接する円弧の半径をハニカム辺長の1〜1/2倍とすることが好ましい。
As shown in FIG. 3, when the hexagonal apex curve forming the honeycomb has an arc shape, the radius 8 of the arc needs to be 1 to 1/5 times the side length 9 of the honeycomb. Radius 8 is honeycomb side length 9
If it is larger than the above, stress relaxation is promoted, but the aperture ratio of the honeycomb is lowered and the light transmittance is lowered. Also, if the radius 8 is smaller than 1/5 times the side length 9 of the honeycomb, the stress tends to concentrate at the intersection and does not contribute to the improvement of the strength of the honeycomb, so that it is insufficient as a reinforcing material for EUV pellicle It becomes.
In the present invention, from the viewpoint of more effectively relieving stress, it is preferable that the radius of the inscribed arc is 1 to 1/2 times the honeycomb side length.

また、図4においては、ハニカム辺の交点Aでは明瞭な角が形成されているのに対し、ハニカム辺の交点Bでは、曲線によって辺と辺が連結され、凹凸部が形成されているので、交点Bの方が交点Aよりも外力に対する応力の集中が少ない。
しかしながら、交点Bは凹凸状の形状であるために、凹部と凸部との関係で応力が部分的に集中する場合がある。このため、ハニカム辺の交点を凹形状とすることが好ましい。
Further, in FIG. 4, a clear corner is formed at the intersection A of the honeycomb sides, whereas at the intersection B of the honeycomb sides, the sides are connected by a curve, and an uneven portion is formed. The intersection point B is less concentrated with respect to the external force than the intersection point A.
However, since the intersection point B has a concavo-convex shape, the stress may partially concentrate due to the relationship between the concave portion and the convex portion. For this reason, it is preferable to make the intersection of the honeycomb sides concave.

また、図5に示されるように、ハニカムを形成する6角形の頂点部の曲線が楕円形状である場合、その楕円11の長軸12と短軸13の平均値の1/2が、ハニカム辺長の1〜1/5倍とする必要がある。長軸と短軸の平均値の1/2がハニカム辺長よりも大きい場合は、応力緩和が促進されるものの、ハニカムの開口率が低下するのでハニカムの開口率が低下して光の透過率が低下する。
また、長軸と短軸の平均値の1/2がハニカム辺長の1/5倍より小さい場合、交点に応力が集中しやすく、ハニカムの強度の向上に寄与しなくなるので、EUV用ペリクルの補強材としては不十分なものとなる。
本発明においては、更に有効に応力を緩和する観点から、長軸と短軸の平均値の1/2を、ハニカム辺長の1〜1/2倍とすることが好ましい。
Also, as shown in FIG. 5, when the hexagonal apex curve forming the honeycomb is elliptical, 1/2 of the average value of the major axis 12 and minor axis 13 of the ellipse 11 is It must be 1 to 1/5 times the length. When 1/2 of the average value of the long axis and the short axis is larger than the honeycomb side length, stress relaxation is promoted, but the honeycomb aperture ratio decreases, so the honeycomb aperture ratio decreases and the light transmittance Decreases.
In addition, when 1/2 of the average value of the major axis and minor axis is smaller than 1/5 times the honeycomb side length, stress tends to concentrate at the intersection and it will not contribute to the improvement of the honeycomb strength. The reinforcing material is insufficient.
In the present invention, from the viewpoint of more effectively relieving stress, it is preferable to set 1/2 of the average value of the major axis and the minor axis to 1 to 1/2 times the honeycomb side length.

以下、実施例により本発明を更に詳細に説明するが、本発明はこれらによって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these.

直径200mm、厚さ725μmのシリコン基板のハンドル基板上に、実質的にCOP(Crystal Originated Particle)等の結晶欠陥が少ないシリコン単結晶(Nearly Perfect Crystal:NPC)からなる厚さ100nmの薄膜が、厚さ150nmの熱酸化膜(SiO2)を介して貼り付けられているSOI(Silicon On Insulator)基板を用いて、以下の通り、ペリクル膜を製造した。
上記SOI基板のハンドル基板を50μmまで薄化した後、ハンドル基板側にハニカム構造をリソグラフィーでパターニングし、DRIE(Deep Reactive Ion Etching)により、
ハニカム単位の6角形の各々の内角において曲線を有するハニカム構造を作り込んだ。
該ハニカム構造において、ピッチは200μm、ハニカム線幅は25μm、ハニカム辺長は115μm、及び曲線部は半径115μmの円弧とした。
次いで、HF処理してBOX(Buried Oxide)膜を除去し、EUV用ペリクル膜とした。
A thin film with a thickness of 100 nm consisting of a silicon single crystal (Nearly Perfect Crystal: NPC) with few crystal defects such as COP (Crystal Originated Particles) on the handle substrate of a silicon substrate with a diameter of 200 mm and a thickness of 725 μm. A pellicle film was manufactured as follows using an SOI (Silicon On Insulator) substrate attached via a 150 nm thick thermal oxide film (SiO 2 ).
After thinning the handle substrate of the SOI substrate to 50 μm, the honeycomb structure is patterned by lithography on the handle substrate side, and by DRIE (Deep Reactive Ion Etching),
A honeycomb structure having a curve at each inner angle of each hexagon of the honeycomb unit was formed.
In the honeycomb structure, the pitch was 200 μm, the honeycomb line width was 25 μm, the honeycomb side length was 115 μm, and the curved portion was an arc having a radius of 115 μm.
Next, the BOX (Buried Oxide) film was removed by HF treatment to obtain a pellicle film for EUV.

長さ150mm、幅125mm、厚さ1.5mmのアルミ合金製フレームと、同じサイズに裁断したEUV用ペリクル膜とを、水ガラスを用いて接着し、EUV用ペリクルとした。
次に、振動試験用の透明なアクリルボックスに、EUV用ペリクルのフレームを、ハニカムの1辺と振動方向とのなす角度が30°となるようにセットし、両面テープで固定した。
An EUV pellicle was prepared by bonding an aluminum alloy frame having a length of 150 mm, a width of 125 mm, and a thickness of 1.5 mm to an EUV pellicle film cut to the same size using water glass.
Next, the EUV pellicle frame was set in a transparent acrylic box for vibration tests so that the angle between one side of the honeycomb and the vibration direction was 30 °, and fixed with double-sided tape.

次に、アクリルボックスを振動試験機の振動台にセットし、アクリルボックス内をロータリー真空ポンプで真空排気しながら、振動台に正弦波振動をかけた。
正弦波振動の加速度を増加させながら振動を継続させたところ、50Gの加速度で振動させてもEUV用ペリクル膜は破損しなかった。
Next, the acrylic box was set on a vibration table of a vibration testing machine, and a sine wave vibration was applied to the vibration table while the acrylic box was evacuated with a rotary vacuum pump.
When the vibration was continued while increasing the acceleration of the sinusoidal vibration, the pellicle film for EUV was not damaged even when it was vibrated at an acceleration of 50G.

実施例1と同様な方法で、ハニカムの内角に内接する円弧の半径が、25μm、60μm、80μmとなるEUV用ペリクル膜をそれぞれ製造し、実施例1と同様に振動試験を実施した。
結果を表1に示す。
In the same manner as in Example 1, EUV pellicle membranes having radiuses of 25 μm, 60 μm, and 80 μm inscribed in the inner corners of the honeycomb were manufactured, and vibration tests were performed in the same manner as in Example 1.
The results are shown in Table 1.

[比較例1]
実施例1と同様の方法で、ハニカムの内角に内接する円弧の半径が20μmとなるペリクル膜、及び円弧を設けなかったペリクル膜をそれぞれ作製し、実施例1と同様に振動試験を実施した。
結果を表2に示す。
[Comparative Example 1]
In the same manner as in Example 1, a pellicle film in which the radius of the arc inscribed in the inner corner of the honeycomb was 20 μm and a pellicle film in which no arc was provided were prepared, and a vibration test was performed in the same manner as in Example 1.
The results are shown in Table 2.

表1及び表2に示された結果から、本発明のペリクルは、強力な加速を加えても、破損し難く、高い強度を有することが確認された。   From the results shown in Tables 1 and 2, it was confirmed that the pellicle of the present invention was not easily damaged even when strong acceleration was applied and had high strength.

本発明のEUV用ペリクルは、EUV露光に用いられる極めて薄いペリクル膜を用いても破損し難く、半導体デバイス等のパターニングに有効であるため、本発明は産業上極めて有用である。   The EUV pellicle of the present invention is not easily damaged even when an extremely thin pellicle film used for EUV exposure is used, and is effective for patterning semiconductor devices and the like, so that the present invention is extremely useful industrially.

1 ハニカム
2 ハニカムのピッチ
3 ハニカムの辺幅
4 ハニカムの単位
5 ハニカムの辺部
6 ハニカムの角部
7 ハニカムの高さ
8 内接円の半径
9 ハニカムの辺の長さ
10 ハニカムの内角の凹凸部
11 内接楕円
12 楕円の長軸
13 楕円の短軸
DESCRIPTION OF SYMBOLS 1 Honeycomb 2 Honeycomb pitch 3 Honeycomb side width 4 Honeycomb unit 5 Honeycomb side 6 Honeycomb corner 7 Honeycomb height 8 Inscribed circle radius 9 Honeycomb side length 10 Irregularity of honeycomb inner angle 11 Inscribed ellipse 12 Ellipse major axis 13 Ellipse minor axis

Claims (4)

EUV透過膜を補強するハニカム形状の構造物を有するEUV用ペリクルであって、前記ハニカムを構成する6角形の2辺が交わる点において、各2辺が、曲線をなして交わるように形成されてなることを特徴とするEUV用ペリクル。   An EUV pellicle having a honeycomb-shaped structure that reinforces an EUV permeable membrane, wherein the two sides of the hexagon forming the honeycomb intersect with each other to form a curve. A pellicle for EUV, characterized by 前記2辺がなす曲線が凹状曲線である、請求項1に記載されたEUV用ペリクル。   The pellicle for EUV according to claim 1, wherein the curve formed by the two sides is a concave curve. 前記2辺がなす曲線が円弧形状であり、該円弧の半径が、前記ハニカムを形成する6角形の辺長の1〜1/5倍である、請求項1又は2に記載されたEUV用ペリクル。   The pellicle for EUV according to claim 1 or 2, wherein the curve formed by the two sides is an arc shape, and the radius of the arc is 1 to 1/5 times the side length of the hexagon forming the honeycomb. . 前記2辺がなす曲線が楕円形状であり、該楕円の長軸と短軸の平均値の1/2が、前記ハニカムを形成する6角形の辺長の1〜1/5倍である、請求項1又は2に記載されたEUV用ペリクル。   The curve formed by the two sides is elliptical, and 1/2 of the average value of the major axis and minor axis of the ellipse is 1 to 1/5 times the hexagonal side length forming the honeycomb. Item 1 or 2 EUV pellicle.
JP2012026103A 2012-02-09 2012-02-09 EUV pellicle Active JP5748347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026103A JP5748347B2 (en) 2012-02-09 2012-02-09 EUV pellicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026103A JP5748347B2 (en) 2012-02-09 2012-02-09 EUV pellicle

Publications (2)

Publication Number Publication Date
JP2013165102A true JP2013165102A (en) 2013-08-22
JP5748347B2 JP5748347B2 (en) 2015-07-15

Family

ID=49176303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026103A Active JP5748347B2 (en) 2012-02-09 2012-02-09 EUV pellicle

Country Status (1)

Country Link
JP (1) JP5748347B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680937B1 (en) 2014-04-17 2016-11-30 한양대학교 산학협력단 Pellicle for EUV Lithography and method of fabricating the same
JP2017504080A (en) * 2014-01-27 2017-02-02 ラクセル コーポレーション Monolithic mesh supported EUV film
US9575421B2 (en) 2014-09-04 2017-02-21 Samsung Electronics Co., Ltd. Apparatus for protecting extreme ultra violet mask and extreme ultra violet exposure apparatus including the same
US9958770B2 (en) 2014-04-17 2018-05-01 Industry-University Cooperation Foundation Hanyang University Pellicle for EUV lithography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623893B1 (en) * 2001-01-26 2003-09-23 Advanced Micro Devices, Inc. Pellicle for use in EUV lithography and a method of making such a pellicle
US20080158535A1 (en) * 2006-12-29 2008-07-03 Michael Goldstein Pellicle, methods of fabrication & methods of use for extreme ultraviolet lithography
JP2010234515A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Method for manufacturing metal cap for molding honeycomb structure
JP2010256434A (en) * 2009-04-22 2010-11-11 Shin-Etsu Chemical Co Ltd Pellicle for lithography and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623893B1 (en) * 2001-01-26 2003-09-23 Advanced Micro Devices, Inc. Pellicle for use in EUV lithography and a method of making such a pellicle
US20080158535A1 (en) * 2006-12-29 2008-07-03 Michael Goldstein Pellicle, methods of fabrication & methods of use for extreme ultraviolet lithography
JP2010234515A (en) * 2009-03-31 2010-10-21 Ngk Insulators Ltd Method for manufacturing metal cap for molding honeycomb structure
JP2010256434A (en) * 2009-04-22 2010-11-11 Shin-Etsu Chemical Co Ltd Pellicle for lithography and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504080A (en) * 2014-01-27 2017-02-02 ラクセル コーポレーション Monolithic mesh supported EUV film
KR101680937B1 (en) 2014-04-17 2016-11-30 한양대학교 산학협력단 Pellicle for EUV Lithography and method of fabricating the same
US9958770B2 (en) 2014-04-17 2018-05-01 Industry-University Cooperation Foundation Hanyang University Pellicle for EUV lithography
US9575421B2 (en) 2014-09-04 2017-02-21 Samsung Electronics Co., Ltd. Apparatus for protecting extreme ultra violet mask and extreme ultra violet exposure apparatus including the same

Also Published As

Publication number Publication date
JP5748347B2 (en) 2015-07-15

Similar Documents

Publication Publication Date Title
JP5711703B2 (en) EUV pellicle
JP5552095B2 (en) EUV reticle
JP5748347B2 (en) EUV pellicle
KR101679687B1 (en) Reflective extreme ultraviolet mask and method of manufacturing the same
JP2008027992A (en) Manufacturing method of substrate for euvl mask, and of euvl mask using the substrate
JP2014211474A (en) Pellicle and pellicle production method
JP6261004B2 (en) EUV pellicle, EUV assembly using the same, and method of assembling the same
JP2017032856A (en) Euv mask and manufacturing method of the same
TW201728992A (en) Pellicle apparatus for semiconductor lithography process
TWI550361B (en) Lithography process and extreme ultraviolet lithography process
JP2009146959A (en) Exposure apparatus, and cleaning device
JP2016114820A (en) Pellicle for reflection type mask and manufacturing method of pellicle for reflection type mask
JP5948778B2 (en) Reflective mask blank
JP5532834B2 (en) Reflective projection exposure mask blank and reflective projection exposure mask
JP2009054784A (en) Auxiliary plate, and exposure device having it
JP2004294786A (en) Pellicle
JP5803517B2 (en) Reflective mask, mask blank, and manufacturing method thereof
JP5754592B2 (en) Reflective mask manufacturing method and reflective mask
JP2013243354A (en) Semiconductor circuit exposure method and exposure device
JP2008040469A (en) Pellicles for lithography
JP2016066715A (en) Phase defect correction method of reflective mask and mask with pellicle
JP2012199383A (en) Exposure device, semiconductor device manufacturing method, and pattern formation method
JP2012209404A (en) Reflective mask
KR20130061117A (en) Method for manufacturing transfer mask, and method for manufacturing semiconductor device
KR20130006748A (en) Extreme ultra violet exposure mask and stepper including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150511

R150 Certificate of patent or registration of utility model

Ref document number: 5748347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150