JP2013165099A - Semiconductor device, semiconductor device manufacturing method, circuit device, circuit device manufacturing method and electronic apparatus - Google Patents

Semiconductor device, semiconductor device manufacturing method, circuit device, circuit device manufacturing method and electronic apparatus Download PDF

Info

Publication number
JP2013165099A
JP2013165099A JP2012026083A JP2012026083A JP2013165099A JP 2013165099 A JP2013165099 A JP 2013165099A JP 2012026083 A JP2012026083 A JP 2012026083A JP 2012026083 A JP2012026083 A JP 2012026083A JP 2013165099 A JP2013165099 A JP 2013165099A
Authority
JP
Japan
Prior art keywords
main surface
layer
electrode
hole
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012026083A
Other languages
Japanese (ja)
Other versions
JP5948924B2 (en
Inventor
Takeshi Yoda
剛 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012026083A priority Critical patent/JP5948924B2/en
Publication of JP2013165099A publication Critical patent/JP2013165099A/en
Application granted granted Critical
Publication of JP5948924B2 publication Critical patent/JP5948924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device which has high reliability while including densely-arranged through electrodes.SOLUTION: A semiconductor device 10 comprises: a semiconductor substrate 11 including a first principal surface 11a on which an element circuit layer 30 is provided and a second principal surface 11b on the opposite side to the first principal surface 11a; a through hole 20 penetrating from the first principal surface 11a to the second principal surface 11b; a through electrode 50 which is formed inside the through hole 20 and connected to an element wiring layer 32 of the element circuit layer 30, and which continues into a rewiring layer 51 formed on the second principal surface 11b; and an air gap G provided between an inner peripheral surface of the through hole 20 and between the rewiring layer 51 and the second principal surface 11b. The sizes of each part of the air gap G are in a relation represented as (the size of the air gap between the rewiring layer 51 and the second principal surface 11b)>(the size of the air gap between the through electrode 50 and an inner peripheral wall of the through hole 20 on the second principal surface 11b side)>(the size of the air gap between the through electrode 50 and the inner peripheral wall of the through hole 20 on the first principal surface 11a side).

Description

本発明は、半導体装置、この半導体装置の製造方法、半導体装置を有する回路装置、回路装置の製造方法、電子機器に関する。   The present invention relates to a semiconductor device, a method for manufacturing the semiconductor device, a circuit device having the semiconductor device, a method for manufacturing the circuit device, and an electronic apparatus.

近年、携帯型電子機器が普及してきており、これら携帯型電子機器では、機能の高度化に伴い複数の半導体装置を実装した高機能回路装置が用いられることが多くなっている。さらに、携帯型電子機器は小型化・軽量化も要求されている。そこで、半導体基板にTSV(Throu Si Via)と呼ばれる複数の貫通電極を形成し、貫通電極間距離を小さくして高密度化をはかりながら、半導体装置の小型化を実現する製造方法が提案されている。   In recent years, portable electronic devices have become widespread, and in these portable electronic devices, highly functional circuit devices on which a plurality of semiconductor devices are mounted are often used with the advancement of functions. In addition, portable electronic devices are also required to be smaller and lighter. Therefore, a manufacturing method has been proposed in which a plurality of through-electrodes called TSV (Throu Si Via) are formed on a semiconductor substrate, and the distance between the through-electrodes is reduced to increase the density, while miniaturizing the semiconductor device. Yes.

このような回路装置において、半導体装置と配線基板とを接続する貫通電極が半導体基板に形成し、貫通電極と半導体基板との間には、半導体基板の貫通電極の周囲に凹部を形成することによって空隙を設けている構造が提案されている(例えば、特許文献1、特許文献2参照)。   In such a circuit device, a through electrode for connecting the semiconductor device and the wiring substrate is formed on the semiconductor substrate, and a recess is formed around the through electrode of the semiconductor substrate between the through electrode and the semiconductor substrate. The structure which provided the space | gap is proposed (for example, refer patent document 1 and patent document 2).

特開2010−267805号公報JP 2010-267805 A 特開2010−267830号公報JP 2010-267830 A

このような特許文献1や特許文献2では、半導体装置や配線基板が接続された回路装置を温度サイクルのような温度変化がかかる環境で使用するとき、貫通電極と半導体装置の配線層との接続部や、貫通電極と配線基板との接続部や、貫通電極の周囲に設けられる絶縁層が、互いの熱膨張率の違いによって発生する応力によってクラックが発生しやすく信頼性の低下が考えられる。   In Patent Document 1 and Patent Document 2 described above, when a circuit device to which a semiconductor device or a wiring board is connected is used in an environment in which a temperature change such as a temperature cycle is applied, the connection between the through electrode and the wiring layer of the semiconductor device. The insulating layer provided around the through-electrode, the connecting portion between the through-electrode and the wiring substrate, and the through-electrode is likely to crack due to the stress generated due to the difference in the coefficient of thermal expansion between them, and the reliability may be lowered.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本適用例に係る半導体装置は、素子回路層が設けられている第1主面と、前記第1主面とは反対側の第2主面とを有する半導体基板を備えた半導体装置であって、前記第1主面と前記第2主面とを貫通する貫通孔と、前記貫通孔の内部に形成され、且つ前記素子回路層の素子配線層に接続されると共に、前記第2主面の表面に形成される再配線層に連続する貫通電極と、前記貫通孔の内周面と前記貫通電極との間、及び前記再配線層と前記第2主面との間に設けられる空隙と、を有し、前記空隙の大きさが、前記再配線層と前記第2主面との間の空隙の大きさ>前記第2主面側の貫通電極と前記貫通孔の内周壁との間の空隙の大きさ>前記第1主面側の前記貫通電極と前記貫通孔の内周壁との間の空隙の大きさ、の関係にあること、を特徴とする。   Application Example 1 A semiconductor device according to this application example includes a semiconductor substrate having a first main surface on which an element circuit layer is provided and a second main surface opposite to the first main surface. In the semiconductor device, the through hole penetrating the first main surface and the second main surface, the inside of the through hole, and connected to the element wiring layer of the element circuit layer, A through electrode continuous with the rewiring layer formed on the surface of the second main surface, between the inner peripheral surface of the through hole and the through electrode, and between the rewiring layer and the second main surface A gap between the rewiring layer and the second main surface> a size of the through electrode on the second main surface side and the through hole. The size of the gap between the peripheral wall> the size of the gap between the through electrode on the first main surface side and the inner peripheral wall of the through hole. , Characterized by.

本適用例によれば、貫通電極と半導体基板との間に空隙によって、互いに接続される貫通電極、素子配線層、半導体基板それぞれの熱膨張率の差に伴い発生する応力を緩和することで、貫通電極と素子回路層との接続部のクラックの発生を抑制することができ、信頼性を向上させることができる。   According to this application example, by relaxing the stress generated due to the difference between the thermal expansion coefficients of the through electrode, the element wiring layer, and the semiconductor substrate connected to each other by the gap between the through electrode and the semiconductor substrate, The occurrence of cracks at the connection portion between the through electrode and the element circuit layer can be suppressed, and the reliability can be improved.

半導体基板が導電体の場合、貫通電極と半導体基板との間は絶縁性を確保しなければならない。貫通電極は、素子回路層との接続部を元部として再配線層側の先端部が傾きやすい。そこで、空隙の大きさを、再配線層と第2主面との間の空隙の大きさ>第2主面側の貫通電極と貫通孔の内周壁との間の空隙の大きさ>第1主面側の前記貫通電極と貫通孔の内周壁との間の空隙の大きさ、の関係にする。このことによって、貫通電極の先端部の空隙が他より大きくなり、貫通電極が傾いても絶縁性を確保することができる。   When the semiconductor substrate is a conductor, it is necessary to ensure insulation between the through electrode and the semiconductor substrate. In the through electrode, the tip of the rewiring layer side tends to be inclined with the connection portion with the element circuit layer as a base portion. Therefore, the size of the gap is defined as the size of the gap between the redistribution layer and the second main surface> the size of the gap between the through electrode on the second main surface side and the inner peripheral wall of the through hole> first. The size of the gap between the through electrode on the main surface side and the inner peripheral wall of the through hole is set. As a result, the gap at the tip of the penetrating electrode becomes larger than the others, and insulation can be ensured even if the penetrating electrode is inclined.

例えば、半導体装置に、他の半導体装置や回路素子を含む回路基板等の電子デバイス等を接続する場合には、第2主面と再配線層との間にも空隙を設けることによって、再配線層を含んで貫通電極と電子デバイスの接続部の熱膨張率の差及び接続圧力に起因し発生する応力を緩和させることができる。   For example, when an electronic device such as a circuit board including another semiconductor device or circuit element is connected to the semiconductor device, rewiring is performed by providing a gap between the second main surface and the rewiring layer. The stress generated due to the difference in the coefficient of thermal expansion between the through electrode and the connection portion of the electronic device including the layer and the connection pressure can be relaxed.

[適用例2]上記適用例に係る半導体装置において、前記貫通電極が、前記素子配線層側から前記再配線層側に向かって徐々に細くなるテーパー形状であること、が好ましい。   Application Example 2 In the semiconductor device according to the application example described above, it is preferable that the through electrode has a tapered shape that gradually decreases from the element wiring layer side toward the rewiring layer side.

このように、貫通電極をテーパー形状にすることで、貫通電極自身、及び貫通電極と素子回路層との接続部に発生する応力の緩和をはかることができる。   Thus, by making the through electrode into a tapered shape, the stress generated in the through electrode itself and the connecting portion between the through electrode and the element circuit layer can be reduced.

[適用例3]上記適用例に係る半導体装置において、前記貫通孔の内周面と前記貫通電極との間の空隙を埋める絶縁層が、さらに形成されていること、が好ましい。   Application Example 3 In the semiconductor device according to the application example described above, it is preferable that an insulating layer that fills the gap between the inner peripheral surface of the through hole and the through electrode is further formed.

このような構成では、貫通孔内周面と貫通電極との間に絶縁層が形成されており、第2主面側では、第2主面と再配線層との間には空隙が設けられている。このようにすれば、貫通電極と半導体基板の絶縁性を確保しつつ、貫通電極の先端側の応力緩和を図ることができる。   In such a configuration, an insulating layer is formed between the inner peripheral surface of the through hole and the through electrode, and on the second main surface side, a gap is provided between the second main surface and the rewiring layer. ing. If it does in this way, stress relaxation of the tip side of a penetration electrode can be aimed at, ensuring insulation of a penetration electrode and a semiconductor substrate.

[適用例4]上記適用例に係る半導体装置において、前記絶縁層が、前記素子配線層から前記半導体基板の厚さの一部までの間に形成されていること、が好ましい。   Application Example 4 In the semiconductor device according to the application example described above, it is preferable that the insulating layer is formed between the element wiring layer and a part of the thickness of the semiconductor substrate.

このような構成では、貫通孔内周面と貫通電極の元部側との間に絶縁層が形成されており、第2主面側の貫通電極の先端部と貫通孔との間、及び第2主面と再配線層との間には空隙が設けられている。このようにすれば、貫通電極の元部と半導体基板との絶縁性を確保しつつ、貫通電極の先端部と貫通孔の内周面の空隙が中間部よりも大きいことから、貫通電極の先端側の絶縁性の確保と応力緩和をはかることができる。   In such a configuration, the insulating layer is formed between the inner peripheral surface of the through hole and the base portion side of the through electrode, and between the tip portion of the through electrode on the second main surface side and the through hole, and the first A gap is provided between the two principal surfaces and the rewiring layer. In this way, since the gap between the front end portion of the through electrode and the inner peripheral surface of the through hole is larger than the intermediate portion while ensuring insulation between the base portion of the through electrode and the semiconductor substrate, the front end of the through electrode It is possible to secure the insulation on the side and relieve stress.

[適用例5]本適用例に係る半導体装置の製造方法は、素子回路層が設けられている第1主面と、前記第1主面とは反対側の第2主面とを有する半導体基板に貫通孔を開口する工程と、前記貫通孔の内周面、及び前記第2主面に絶縁層を形成する工程と、前記素子回路層の前記第1主面側の素子配線層を、前記貫通孔内で露出させる工程と、前記貫通孔の内周面に形成される前記絶縁層の内部を充填する貫通電極と、前記貫通電極と連続し、前記第2主面に形成される前記絶縁層の表面に延在される再配線層と、を形成する工程と、前記再配線層を所定の形状にパターニングする工程と、前記絶縁層を除去する工程と、を含むことを特徴とする。   Application Example 5 A semiconductor device manufacturing method according to this application example includes a semiconductor substrate having a first main surface on which an element circuit layer is provided and a second main surface opposite to the first main surface. A step of opening a through-hole, a step of forming an insulating layer on the inner peripheral surface of the through-hole and the second main surface, and an element wiring layer on the first main surface side of the element circuit layer, A step of exposing in the through-hole, a through-electrode filling the inside of the insulating layer formed on the inner peripheral surface of the through-hole, and the insulation formed on the second main surface continuous with the through-electrode. Forming a rewiring layer extending on the surface of the layer; patterning the rewiring layer into a predetermined shape; and removing the insulating layer.

本適用例によれば、貫通孔の内周面と、第2主面に絶縁層を形成し、貫通電極を形成した後、絶縁層を除去することで、貫通孔の内周面と貫通電極の間、及び第2主面と再配線層との間に空隙を形成する。このような製造方法は、前述した従来技術のように、貫通電極の周囲の半導体基板に凹部(空隙)をエッチングによって形成する方法に比べ、絶縁層を除去すれば空隙を形成することが可能で、半導体基板にエッチングによって凹部を形成することに伴う貫通電極や半導体基板にダメージを与えることがなく、半導体装置の信頼性を高めることができる。   According to this application example, after forming the insulating layer on the inner peripheral surface of the through hole and the second main surface and forming the through electrode, the inner peripheral surface of the through hole and the through electrode are removed by removing the insulating layer. And a gap is formed between the second main surface and the rewiring layer. Such a manufacturing method can form a void if the insulating layer is removed as compared with a method of forming a recess (gap) in the semiconductor substrate around the through electrode by etching as in the prior art described above. The through electrodes and the semiconductor substrate accompanying the formation of the recesses by etching in the semiconductor substrate are not damaged, and the reliability of the semiconductor device can be improved.

また、貫通電極と半導体基板との間に空隙によって、工程中の温度サイクルにおいて、貫通電極、素子配線層、半導体基板の熱膨張率の差に伴い発生する応力を緩和することで、貫通電極と素子回路層との接続部のクラックの発生を抑制することができ、信頼性をより一層向上させることができる。   In addition, the gap between the through electrode and the semiconductor substrate reduces the stress generated due to the difference in thermal expansion coefficient between the through electrode, the element wiring layer, and the semiconductor substrate in the temperature cycle during the process. The occurrence of cracks at the connection portion with the element circuit layer can be suppressed, and the reliability can be further improved.

また、上述したように貫通電極と半導体基板の絶縁性を確保できることから、貫通電極間の距離(ピッチ)を小さくでき、貫通電極の高密度化と、半導体装置の小型化が実現できる。   In addition, since the insulation between the through electrode and the semiconductor substrate can be ensured as described above, the distance (pitch) between the through electrodes can be reduced, and the density of the through electrodes can be increased and the semiconductor device can be downsized.

[適用例6]上記適用例に係る半導体装置の製造方法において、前記絶縁層の厚みが、前記再配線層と前記第2主面との間の厚み>前記第2主面側の貫通電極と前記貫通孔の内周面との間の厚み>前記第1主面側の前記貫通電極と前記貫通孔の内周面との間の厚み、の関係にあること、が好ましい。   Application Example 6 In the semiconductor device manufacturing method according to the application example described above, the thickness of the insulating layer is greater than the thickness between the redistribution layer and the second main surface> the through electrode on the second main surface side. The thickness between the inner peripheral surface of the through hole and the thickness between the through electrode on the first main surface side and the inner peripheral surface of the through hole is preferable.

詳しくは、実施の形態で説明するが、絶縁層を第2主面側からCVD法(化学的気相成長法)によって形成する場合、絶縁層は、貫通孔の奥側(素子回路層に近い部分)の厚みが貫通孔の入口付近(第2主面側)の厚みよりも薄くなる傾向がある。従って、絶縁層を除去することで形成される空隙は、再配線層と第2主面との間の空隙の大きさ>第2主面側の貫通電極と貫通孔の内周壁との間の空隙の大きさ>第1主面側の前記貫通電極と貫通孔の内周壁との間の空隙の大きさ、の関係にすることができる。   Although details will be described in the embodiment, when the insulating layer is formed from the second main surface side by the CVD method (chemical vapor deposition method), the insulating layer is located behind the through hole (close to the element circuit layer). The thickness of the portion) tends to be smaller than the thickness in the vicinity of the entrance to the through hole (second main surface side). Therefore, the gap formed by removing the insulating layer is such that the size of the gap between the rewiring layer and the second main surface> the distance between the through electrode on the second main surface side and the inner peripheral wall of the through hole. The relationship between the size of the gap> the size of the gap between the through electrode on the first main surface side and the inner peripheral wall of the through hole can be established.

[適用例7]上記適用例に係る半導体装置の製造方法では、前記絶縁層を除去する工程において、前記絶縁層の除去範囲が、前記再配線層と前記第2主面との間と、前記第2主面から前記半導体基板の厚さの一部までの範囲であること、が好ましい。
絶縁層の除去方法としては、例えば、ドライエッチング、ウェットエッチングなどを用いることができる。
Application Example 7 In the semiconductor device manufacturing method according to the application example described above, in the step of removing the insulating layer, the removal range of the insulating layer is between the rewiring layer and the second main surface, A range from the second main surface to a part of the thickness of the semiconductor substrate is preferable.
As a method for removing the insulating layer, for example, dry etching, wet etching, or the like can be used.

絶縁層の除去方法として上述したエッチング法を用いる場合、絶縁層の除去範囲はエッチング処理時間によって制御可能である。従って、エッチング処理時間を制御することで、貫通孔内の絶縁層の除去範囲を任意に制御できる。このようにして絶縁層を除去することによって、貫通孔内周面と貫通電極の元部側の間に絶縁層が形成され、第2主面側の貫通電極の先端部と貫通孔内周面との間、及び第2主面と再配線層との間には空隙が設けられている構成を実現できる。
このようにすれば、貫通電極の元部と貫通孔間の絶縁性を確保しつつ、貫通電極の先端部と貫通孔の内周面の空隙が中間部よりも大きいことから、貫通電極の先端側の絶縁性の確保と応力緩和をはかることができる。
When the above-described etching method is used as a method for removing the insulating layer, the removal range of the insulating layer can be controlled by the etching processing time. Therefore, the removal range of the insulating layer in the through hole can be arbitrarily controlled by controlling the etching processing time. By removing the insulating layer in this manner, an insulating layer is formed between the inner peripheral surface of the through hole and the base portion side of the through electrode, and the distal end portion of the through electrode on the second main surface side and the inner peripheral surface of the through hole And a space provided between the second main surface and the redistribution layer.
In this way, since the gap between the front end portion of the through electrode and the inner peripheral surface of the through hole is larger than the intermediate portion while ensuring insulation between the base portion of the through electrode and the through hole, the front end of the through electrode It is possible to secure the insulation on the side and relieve stress.

[適用例8]上記適用例に係る半導体装置の製造方法では、前記絶縁層を除去する工程において、前記絶縁層の除去範囲が、前記再配線層と前記第2主面との間であること、が好ましい。   Application Example 8 In the method of manufacturing a semiconductor device according to the application example, in the step of removing the insulating layer, the removal range of the insulating layer is between the rewiring layer and the second main surface. Are preferred.

上述したように、絶縁層の除去範囲はエッチング処理時間によって制御可能である。従って、エッチング処理時間を制御することで、貫通孔内の絶縁層の除去範囲を任意に制御できる。このことによって、貫通孔内周面と貫通電極の間に絶縁層が形成されており、第2主面と再配線層との間には空隙が設けられている構成を実現できる。
このようにすれば、貫通電極と貫通孔との絶縁性を確保しつつ、貫通電極の先端側の応力緩和を図ることができる。
As described above, the removal range of the insulating layer can be controlled by the etching processing time. Therefore, the removal range of the insulating layer in the through hole can be arbitrarily controlled by controlling the etching processing time. As a result, it is possible to realize a configuration in which an insulating layer is formed between the inner peripheral surface of the through hole and the through electrode, and a gap is provided between the second main surface and the rewiring layer.
If it does in this way, stress relaxation of the tip side of a penetration electrode can be aimed at, ensuring insulation between a penetration electrode and a penetration hole.

[適用例9]上記適用例に係る半導体装置の製造方法において、前記絶縁層がSiO2であること、が好ましい。 Application Example 9 In the method for manufacturing a semiconductor device according to the application example, it is preferable that the insulating layer is SiO 2 .

絶縁層がSiO2の場合、ドライエッチングには、例えばC26、CF4、CHF3等のプロセスガスを用いる。これらのプロセスガスは、半導体基板として用いられるSiや貫通電極として用いられるCuなどにダメージを与えることなく絶縁層を除去することが可能である。 When the insulating layer is SiO 2 , for example, a process gas such as C 2 F 6 , CF 4 , or CHF 3 is used for dry etching. These process gases can remove the insulating layer without damaging Si used as a semiconductor substrate, Cu used as a through electrode, or the like.

[適用例10]本適用例に係る回路装置は、素子回路層が設けられている第1主面と、前記第1主面とは反対側の第2主面とを有する半導体基板と、前記第1主面と前記第2主面との間を貫通する貫通孔と、前記貫通孔の内部に形成され、且つ前記素子回路層の素子配線層に接続されると共に、前記第2主面の表面に形成される再配線層に連続する貫通電極と、前記貫通孔の内周面と前記貫通電極との間、及び前記再配線層と前記第2主面との間に設けられる空隙と、を有し、前記空隙の大きさが、前記再配線層と前記第2主面との間の空隙の大きさ>前記第2主面側の貫通電極と前記貫通孔の内周壁との間の空隙の大きさ>前記第1主面側の前記貫通電極と前記貫通孔の内周壁との間の空隙の大きさ、の関係にある半導体装置と、前記第2主面に対向する表面に配線層が露出された電子デバイスと、前記再配線層と前記電子デバイスの配線層とを接続する接続端子と、を備えていることを特徴とする。   Application Example 10 A circuit device according to this application example includes a semiconductor substrate having a first main surface on which an element circuit layer is provided, and a second main surface opposite to the first main surface, A through hole penetrating between the first main surface and the second main surface; and formed in the through hole and connected to the element wiring layer of the element circuit layer; and A through electrode continuous with the rewiring layer formed on the surface, a gap provided between the inner peripheral surface of the through hole and the through electrode, and between the rewiring layer and the second main surface, And the size of the gap is larger than the size of the gap between the rewiring layer and the second main surface> between the through electrode on the second main surface side and the inner peripheral wall of the through hole. The size of the gap> The semiconductor device in the relationship of the size of the gap between the through electrode on the first main surface side and the inner peripheral wall of the through hole, and the second Characterized in that it comprises an electronic device wiring layer on the surface opposite to the surface is exposed, the re-wiring layer and the connection terminals for connecting the wiring layer of the electronic device, the.

本適用例によれば、半導体装置に設けられる貫通電極と、半導体基板に開口される貫通孔の内周面との間に空隙が形成されている。空隙を設けることによって、半導体装置は、貫通電極、素子配線層、半導体基板の互いの接続部の熱膨張率の差に伴い発生する応力を緩和することができ、貫通電極と素子回路層との接続部のクラックの発生を抑制することができることから、信頼性を向上させることができる。   According to this application example, the gap is formed between the through electrode provided in the semiconductor device and the inner peripheral surface of the through hole opened in the semiconductor substrate. By providing the gap, the semiconductor device can relieve the stress generated due to the difference in the thermal expansion coefficient between the connection portions of the through electrode, the element wiring layer, and the semiconductor substrate. Since the occurrence of cracks in the connecting portion can be suppressed, the reliability can be improved.

また、貫通電極(再配線層を含む)と半導体基板との間は絶縁性を確保しなければならない。貫通電極は、素子回路層との接続部を元部として再配線層側の先端部が傾きやすい。そこで、空隙の大きさを、再配線層と第2主面との間の空隙の大きさ>第2主面側の貫通電極と貫通孔の内周壁との間の空隙の大きさ>第1主面側の前記貫通電極と貫通孔の内周壁との間の空隙の大きさ、の関係にする。このことによって、半導体装置は、貫通電極の先端部の空隙が他より大きくなり、貫通電極が傾いても絶縁性を確保することができる。   In addition, insulation must be ensured between the through electrode (including the rewiring layer) and the semiconductor substrate. In the through electrode, the tip of the rewiring layer side tends to be inclined with the connection portion with the element circuit layer as a base portion. Therefore, the size of the gap is defined as the size of the gap between the redistribution layer and the second main surface> the size of the gap between the through electrode on the second main surface side and the inner peripheral wall of the through hole> first. The size of the gap between the through electrode on the main surface side and the inner peripheral wall of the through hole is set. As a result, the semiconductor device can ensure insulation even when the gap at the tip of the through electrode is larger than the others and the through electrode is inclined.

このように構成される半導体装置と、他の半導体装置や回路素子を含む回路基板等の電子デバイスを接続して構成される回路装置では、半導体装置の第2主面と再配線層との間にも空隙を設けることによって、絶縁性を高めると共に、貫通電極(再配線層を含む)と電子デバイスの熱膨張率の差、及び接続圧力により発生する応力を緩和させることができる。よって、回路装置の信頼性を高めることができる。   In the circuit device configured by connecting the semiconductor device configured as described above and an electronic device such as a circuit board including another semiconductor device or a circuit element, between the second main surface of the semiconductor device and the redistribution layer In addition, by providing the voids, it is possible to enhance the insulation and to relieve the stress generated by the difference in thermal expansion coefficient between the through electrode (including the rewiring layer) and the electronic device and the connection pressure. Therefore, the reliability of the circuit device can be increased.

また、前述した半導体装置は、貫通電極と半導体基板の絶縁性を確保できることから、貫通電極間の距離を小さくでき、よって回路装置の高密度化と、小型化が実現できる。   In addition, since the above-described semiconductor device can secure the insulation between the through electrode and the semiconductor substrate, the distance between the through electrodes can be reduced, so that the circuit device can be increased in density and reduced in size.

[適用例11]本適用例に係る回路装置の製造方法は、上記適用例のいずれかに記載の半導体装置の再配線層と、前記再配線層に対向する電子デバイスの配線層と、を接続端子によって接続する工程を含むこと、を特徴とする。   Application Example 11 A method of manufacturing a circuit device according to this application example connects the rewiring layer of the semiconductor device according to any one of the above application examples and the wiring layer of an electronic device facing the rewiring layer. And a step of connecting by terminals.

本適用例によれば、前述した半導体装置が貫通電極と半導体基板との間に空隙を有しており、電子デバイスとの接続の際に貫通電極の傾きがあっても絶縁性を確保することができる。また、貫通電極(再配線層を含む)と電子デバイスの熱膨張率の差、及び接続圧力によって発生する応力を緩和することができる。よって、回路装置の信頼性を高めることができる。   According to this application example, the above-described semiconductor device has a gap between the through electrode and the semiconductor substrate, and ensures insulation even when the through electrode is inclined when connected to the electronic device. Can do. Moreover, the stress which generate | occur | produces by the difference of the thermal expansion coefficient of a penetration electrode (a rewiring layer is included) and an electronic device, and a connection pressure can be relieved. Therefore, the reliability of the circuit device can be increased.

[適用例12]本適用例に係る回路装置の製造方法は、素子回路層が設けられている第1主面と、前記第1主面とは反対側の第2主面とを有する半導体基板に、前記第1主面と前記第2主面との間に貫通孔を開口する工程と、前記貫通孔の内周面、及び前記第2主面に絶縁層を形成する工程と、前記回路素子層の素子配線層を、前記貫通孔内で露出させる工程と、前記貫通孔の内周面に形成される絶縁層の内部を充填する貫通電極と、前記貫通電極と連続し、前記第2主面に形成される絶縁層の表面に延在される再配線層と、を形成する工程と、前記再配線層を所定の形状にパターニングする工程と、を用いて半導体装置を製造し、前記再配線層と、前記再配線層に対向する電子デバイスの配線層と、を接続端子によって接続する工程と、前記半導体装置と前記電子デバイスとを接続した後、前記絶縁層を除去する工程と、を含むことを特徴とする。   Application Example 12 A method for manufacturing a circuit device according to this application example includes a semiconductor substrate having a first main surface on which an element circuit layer is provided and a second main surface opposite to the first main surface. A step of opening a through hole between the first main surface and the second main surface, a step of forming an insulating layer on the inner peripheral surface of the through hole and the second main surface, and the circuit The element wiring layer of the element layer is exposed in the through hole, the through electrode filling the inside of the insulating layer formed on the inner peripheral surface of the through hole, the second electrode is continuous with the second electrode, A step of forming a rewiring layer extending on the surface of the insulating layer formed on the main surface, and a step of patterning the rewiring layer into a predetermined shape. A step of connecting the rewiring layer and the wiring layer of the electronic device facing the rewiring layer by a connection terminal; After connecting the semiconductor device and said electronic device, characterized in that it comprises a step of removing the insulating layer.

本適用例による回路装置の製造方法は、半導体装置と電子デバイスとを接続した後、半導体装置に形成されている絶縁層を除去するものである。よって、半導体装置と電子デバイスとを接続する際には、貫通電極と半導体基板との間は絶縁層で充填されている。よって、半導体装置と電子デバイスとの接続工程において貫通電極の傾きや接合圧力による絶縁層の破壊を防止できる。そして、半導体装置と電子デバイスの接続後、絶縁層を除去することによって、回路装置としての絶縁性の確保によって回路装置の信頼性を高めることができる。   In the circuit device manufacturing method according to this application example, after the semiconductor device and the electronic device are connected, the insulating layer formed on the semiconductor device is removed. Therefore, when connecting the semiconductor device and the electronic device, the space between the through electrode and the semiconductor substrate is filled with an insulating layer. Therefore, it is possible to prevent the insulating layer from being broken due to the inclination of the through electrode or the bonding pressure in the connection process between the semiconductor device and the electronic device. Then, by removing the insulating layer after the connection between the semiconductor device and the electronic device, the reliability of the circuit device can be improved by ensuring the insulation as the circuit device.

[適用例13]上記適用例に係る回路装置の製造方法は、前記絶縁層を形成する工程において、前記絶縁層の厚みが、前記再配線層と前記第2主面との間の厚み>前記第2主面側の貫通電極と前記貫通孔との間の厚み>前記第1主面側の前記貫通電極との間の厚み、の関係にあること、が好ましい。   Application Example 13 In the method of manufacturing a circuit device according to the application example, in the step of forming the insulating layer, the thickness of the insulating layer is a thickness between the rewiring layer and the second main surface> the above It is preferable that the relationship between the thickness between the through electrode on the second main surface side and the through hole is greater than the thickness between the through electrode on the first main surface side.

絶縁層の厚みを上述した関係にすることで、絶縁層を除去した後に形成される空隙の大きさは、再配線層と第2主面との間の空隙の大きさ>第2主面側の貫通電極と貫通孔の内周壁との間の空隙の大きさ>第1主面側の前記貫通電極と貫通孔の内周壁との間の空隙の大きさ、の関係となる。このことによって、貫通電極の先端部の空隙が他より大きくなり、貫通電極が傾いても絶縁性を確保することができる。   By making the thickness of the insulating layer as described above, the size of the gap formed after removing the insulating layer is such that the size of the gap between the rewiring layer and the second main surface> the second main surface side. The size of the gap between the through electrode and the inner peripheral wall of the through hole is larger than the size of the gap between the through electrode on the first main surface side and the inner peripheral wall of the through hole. As a result, the gap at the tip of the penetrating electrode becomes larger than the others, and insulation can be ensured even if the penetrating electrode is inclined.

また、半導体装置と電子デバイスとを接続する際、第2主面と再配線層との間にも空隙を設けることによって、再配線層を含んで貫通電極と電子デバイスの接続部の熱膨張率の差及び接続圧力によって発生する応力を緩和させることができる。   Further, when connecting the semiconductor device and the electronic device, by providing a gap between the second main surface and the rewiring layer, the coefficient of thermal expansion of the connection portion between the through electrode and the electronic device including the rewiring layer is provided. The stress generated by the difference and the connection pressure can be relaxed.

また、絶縁層の厚みを上述した関係にすることで、貫通電極は、素子配線層側(第1主面側)から再配線層側(第2主面側)に向かって徐々に細くなるテーパー形状となる。このように、貫通電極をテーパー形状にすることで、貫通電極自身、及び貫通電極と素子回路層との接続部に発生する応力の緩和をはかることができる。   Further, by setting the thickness of the insulating layer to the relationship described above, the through electrode is tapered gradually from the element wiring layer side (first main surface side) toward the rewiring layer side (second main surface side). It becomes a shape. Thus, by making the through electrode into a tapered shape, the stress generated in the through electrode itself and the connecting portion between the through electrode and the element circuit layer can be reduced.

[適用例14]上記適用例に係る回路装置の製造方法は、前記絶縁層を除去する工程において、前記絶縁層の除去範囲が、前記再配線層と前記第2主面との間と、前記第2主面から前記半導体基板の厚さの一部までの範囲であること、が好ましい。   Application Example 14 In the circuit device manufacturing method according to the application example, in the step of removing the insulating layer, the removal range of the insulating layer is between the rewiring layer and the second main surface, A range from the second main surface to a part of the thickness of the semiconductor substrate is preferable.

絶縁層の除去方法としてエッチング法を用いる場合、絶縁層の除去範囲はエッチング処理時間によって制御可能である。従って、エッチング処理時間を制御することで、貫通孔内の絶縁層の除去範囲を任意に制御できる。このようにして絶縁層を除去することによって、貫通孔内周面と貫通電極の元部側の間に絶縁層が形成され、第2主面側の貫通電極の先端部と貫通孔との間、及び第2主面と再配線層との間には空隙が設けられている構成を実現できる。
従って、貫通電極の元部と貫通孔間の絶縁性を確保しつつ、貫通電極の先端部と貫通孔の内周面の空隙が中間部よりも大きいことから、貫通電極の先端側の絶縁性の確保と応力緩和を図ることができる。
In the case where an etching method is used as a method for removing the insulating layer, the removal range of the insulating layer can be controlled by the etching processing time. Therefore, the removal range of the insulating layer in the through hole can be arbitrarily controlled by controlling the etching processing time. By removing the insulating layer in this way, an insulating layer is formed between the inner peripheral surface of the through hole and the base portion side of the through electrode, and between the tip portion of the through electrode on the second main surface side and the through hole. And the structure by which the space | gap is provided between the 2nd main surface and the rewiring layer is realizable.
Accordingly, since the gap between the front end portion of the through electrode and the inner peripheral surface of the through hole is larger than the intermediate portion while ensuring the insulation between the base portion of the through electrode and the through hole, the insulating property on the front end side of the through electrode is increased. And stress relaxation can be achieved.

[適用例15]上記適用例に係る回路装置の製造方法は、前記絶縁層を除去する工程において、前記絶縁層の除去範囲が、前記再配線層と前記第2主面との間であること、が好ましい。   Application Example 15 In the method of manufacturing a circuit device according to the application example, in the step of removing the insulating layer, the removal range of the insulating layer is between the rewiring layer and the second main surface. Are preferred.

上述したように、絶縁層の除去範囲はエッチング処理時間によって制御可能である。従って、エッチング処理時間を制御することで、貫通孔内の絶縁層の除去範囲を任意に制御できる。このようにして絶縁層を除去することによって、貫通孔内周面と貫通電極の間に絶縁層が形成され、第2主面と再配線層との間には空隙が設けられている構成を実現できる。
従って、貫通電極と貫通孔間の絶縁性を確保しつつ、貫通電極の先端部の応力緩和を図ることができる。
As described above, the removal range of the insulating layer can be controlled by the etching processing time. Therefore, the removal range of the insulating layer in the through hole can be arbitrarily controlled by controlling the etching processing time. By removing the insulating layer in this way, an insulating layer is formed between the inner peripheral surface of the through hole and the through electrode, and a gap is provided between the second main surface and the rewiring layer. realizable.
Therefore, stress relaxation at the tip of the through electrode can be achieved while ensuring insulation between the through electrode and the through hole.

[適用例16]本適用例に係る電子機器は、上記適用例のいずれか一項に記載の半導体装置、または回路装置を備えていること、を特徴とする。   Application Example 16 An electronic apparatus according to this application example includes the semiconductor device or the circuit device according to any one of the application examples described above.

本適用例に係る電子機器は、上述した半導体装置または回路装置を用いることにより、高密度化と小型化・軽量化を実現しつつ信頼性を高めることができる。   The electronic apparatus according to this application example can increase the reliability while realizing high density, small size, and light weight by using the above-described semiconductor device or circuit device.

実施形態1の第1実施例に係る半導体装置を示し、(a)は主要部の一部を示す断面図、(b)は空隙の詳細を示す断面図。1A and 1B show a semiconductor device according to a first example of Embodiment 1, wherein FIG. 3A is a cross-sectional view showing a part of a main part, and FIG. 実施形態1の第2実施例に係る半導体装置の一部を示す断面図。FIG. 4 is a cross-sectional view showing a part of a semiconductor device according to a second example of the first embodiment. 実施形態1の第3実施例に係る半導体装置の一部を示す断面図。FIG. 4 is a cross-sectional view showing a part of a semiconductor device according to a third example of the first embodiment. 実施形態1に係る半導体装置の製造方法における主要工程を示す部分断面図。FIG. 4 is a partial cross-sectional view showing main processes in the method for manufacturing a semiconductor device according to the first embodiment. 実施形態1に係る半導体装置の製造方法における主要工程を示す部分断面図。FIG. 4 is a partial cross-sectional view showing main processes in the method for manufacturing a semiconductor device according to the first embodiment. 実施形態1に係る半導体装置の製造方法における主要工程を示す部分断面図。FIG. 4 is a partial cross-sectional view showing main processes in the method for manufacturing a semiconductor device according to the first embodiment. 実施形態1に係る回路装置を示す部分断面図。FIG. 3 is a partial cross-sectional view illustrating the circuit device according to the first embodiment. 実施形態2に係る回路装置の製造方法の一部を示す断面図。FIG. 9 is a cross-sectional view showing a part of the method for manufacturing the circuit device according to the second embodiment. 電子機器の一具体例に係るテラヘルツカメラの外観を概略的に示す斜視図。The perspective view which shows roughly the external appearance of the terahertz camera which concerns on one specific example of an electronic device. テラヘルツカメラの構成を概略的に示すブロック図。The block diagram which shows the structure of a terahertz camera roughly.

以下、本発明の実施形態を図面を参照して説明する。
なお、以下の説明で参照する図は、各部材を認識可能な大きさとするため、各部材ないし部分の縦横の縮尺は実際のものとは異なる模式図である。
(実施形態1)
(半導体装置・第1実施例)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The drawings referred to in the following description are schematic views in which the vertical and horizontal scales of each member or part are different from actual ones in order to make each member a recognizable size.
(Embodiment 1)
(Semiconductor device / first embodiment)

図1は、実施形態1の第1実施例に係る半導体装置を示し、(a)は主要部の一部を示す断面図、(b)は空隙の詳細を示す断面図である。なお、貫通電極50は半導体基板11に多数形成されているが、そのうちの一つを例示して説明する。(a)に示すように、半導体装置10は、素子回路層30が設けられている第1主面11aと、第1主面11aとは反対側の第2主面11bと、を有する半導体基板11と、第1主面11aと第2主面11bとの間を貫通する貫通孔20と、貫通孔20の内部において一方の端部が素子回路層30の素子配線層32に接続されると共に、第2主面11bを貫通するよう形成されている貫通電極50と、貫通電極50の第2主面11b側の端部に形成される再配線層51と、を有している。
なお、本実施形態では、半導体基板11はSi基板を用いた場合を例示している。
1A and 1B show a semiconductor device according to a first example of Embodiment 1, wherein FIG. 1A is a cross-sectional view showing a part of a main part, and FIG. 1B is a cross-sectional view showing details of a gap. A large number of through electrodes 50 are formed on the semiconductor substrate 11, and one of them will be described as an example. As shown to (a), the semiconductor device 10 has the 1st main surface 11a in which the element circuit layer 30 is provided, and the 2nd main surface 11b on the opposite side to the 1st main surface 11a. 11, a through hole 20 passing between the first main surface 11 a and the second main surface 11 b, and one end portion inside the through hole 20 is connected to the element wiring layer 32 of the element circuit layer 30. The through electrode 50 is formed so as to penetrate the second main surface 11b, and the rewiring layer 51 is formed at the end of the through electrode 50 on the second main surface 11b side.
In the present embodiment, the semiconductor substrate 11 is exemplified as a Si substrate.

素子回路層30は、集積回路(IC)やセンサー回路などであって、複数の回路素子、配線層、及び絶縁層が積層形成されている。図1では、絶縁層31、素子配線層32、絶縁層33、第2素子配線層34、絶縁層35の順に積層形成されている構成を例示している。絶縁層31は、半導体基板11の第1主面11aと素子配線層32との間にあり、第1主面11aに密着している。素子配線層32と第2素子配線層34とは貫通電極36(ビアと呼称されることがある)によって接続されている。なお、貫通電極50は、半導体装置においてはビアと呼ばれることがある。   The element circuit layer 30 is an integrated circuit (IC), a sensor circuit, or the like, and a plurality of circuit elements, wiring layers, and insulating layers are laminated. 1 illustrates a configuration in which an insulating layer 31, an element wiring layer 32, an insulating layer 33, a second element wiring layer 34, and an insulating layer 35 are stacked in this order. The insulating layer 31 is between the first main surface 11a of the semiconductor substrate 11 and the element wiring layer 32, and is in close contact with the first main surface 11a. The element wiring layer 32 and the second element wiring layer 34 are connected by a through electrode 36 (sometimes referred to as a via). The through electrode 50 is sometimes called a via in the semiconductor device.

貫通電極50は、図示するように、素子配線層32側から再配線層51側に向かって徐々に細くなるテーパー形状を有する柱形状をしている。なお、図1(a)に示す貫通電極50は誇張して表されている。貫通電極50の外周面及び再配線層51の第2主面11b側の面には、バリア層41とシード層42とが積層形成されている。貫通電極50は、これらバリア層41とシード層42を介して素子配線層32に接続されている。なお、貫通電極50にはCu等の金属材料が用いられる。   As shown in the figure, the through electrode 50 has a columnar shape having a tapered shape that gradually decreases from the element wiring layer 32 side toward the rewiring layer 51 side. The through electrode 50 shown in FIG. 1A is exaggerated. A barrier layer 41 and a seed layer 42 are laminated on the outer peripheral surface of the through electrode 50 and the surface of the rewiring layer 51 on the second main surface 11b side. The through electrode 50 is connected to the element wiring layer 32 through the barrier layer 41 and the seed layer 42. The through electrode 50 is made of a metal material such as Cu.

図1(a)に示すように、貫通電極50と貫通孔20の内周面との間、再配線層51と第2主面との間には、バリア層41とシード層42を介して空隙Gが形成されている。次に、空隙Gについて図1(b)を参照して詳しく説明する。空隙Gの大きさを、再配線層51と第2主面11bとの間の空隙の大きさをG1、第2主面11b側の貫通電極50と貫通孔20の内周壁との間の空隙の大きさをG2、半導体基板11の中間厚さ位置の貫通電極50と貫通孔20の内周壁との間の空隙の大きさをG3、第1主面11a側の貫通電極50と貫通孔20の内周壁との間の空隙の大きさをG4、としたとき、G1>G2>G3>G4、の関係となる。なお、以降、各空隙の大きさには、バリア層41とシード層42の厚み分が差し引きされるが、バリア層41とシード層42の厚みは各空隙の大きさに対して非常に薄いのでこれらの厚みを省略して説明する。
続いて、第2実施例について説明する。
As shown in FIG. 1A, a barrier layer 41 and a seed layer 42 are interposed between the through electrode 50 and the inner peripheral surface of the through hole 20 and between the rewiring layer 51 and the second main surface. A gap G is formed. Next, the gap G will be described in detail with reference to FIG. The size of the gap G is G1, the size of the gap between the rewiring layer 51 and the second main surface 11b, and the gap between the through electrode 50 on the second main surface 11b side and the inner peripheral wall of the through hole 20. Is G2, the size of the gap between the through electrode 50 at the intermediate thickness position of the semiconductor substrate 11 and the inner peripheral wall of the through hole 20 is G3, and the through electrode 50 and the through hole 20 on the first main surface 11a side. When the size of the gap between the inner wall and the inner wall is G4, the relationship is G1>G2>G3> G4. In the following, the size of each gap is subtracted by the thickness of the barrier layer 41 and the seed layer 42. However, the thickness of the barrier layer 41 and the seed layer 42 is very thin relative to the size of each gap. These thicknesses are omitted for explanation.
Subsequently, a second embodiment will be described.

以上説明した第1実施例によれば、製造工程中などに温度サイクルがかかる環境下において、貫通電極50、素子配線層32、半導体基板11の熱膨張率の差に伴い発生する応力を貫通電極50と半導体基板11との間に設けられる空隙Gによって、緩和することができ、貫通電極50と素子配線層32との接続部にクラックが発生することが抑制することができ、信頼性を向上させることができる。   According to the first embodiment described above, in an environment where a temperature cycle is applied during the manufacturing process or the like, the stress generated due to the difference in thermal expansion coefficient between the through electrode 50, the element wiring layer 32, and the semiconductor substrate 11 is reduced. 50 can be mitigated by the gap G provided between the semiconductor substrate 11 and the semiconductor substrate 11, and cracks can be prevented from occurring at the connection portion between the through electrode 50 and the element wiring layer 32, thereby improving reliability. Can be made.

また、貫通電極50は、素子配線層32との接続部に対して再配線層51側の先端部が傾きやすい。そこで、空隙Gの大きさを、G1>G2>G3>G4の関係にすることによって、貫通電極50の先端部の空隙が他より大きくなり、貫通電極50が傾いても絶縁性を確保することができる。   In addition, the penetrating electrode 50 has a tip end portion on the rewiring layer 51 side that is easily inclined with respect to the connection portion with the element wiring layer 32. Therefore, by setting the size of the gap G to a relationship of G1> G2> G3> G4, the gap at the tip of the through electrode 50 becomes larger than the others, and insulation is ensured even if the through electrode 50 is inclined. Can do.

例えば、半導体装置10と、他の半導体装置や回路素子を含む回路基板等の電子デバイス等を貫通電極50によって接続する場合には、第2主面11bと再配線層51との間にも空隙を設けることによって、再配線層51を含んで貫通電極50と電子デバイス等の接続部の熱膨張率の差及び接続に伴う応力を緩和させることができる。   For example, when the semiconductor device 10 and an electronic device such as a circuit board including another semiconductor device or circuit element are connected by the through electrode 50, a gap is also formed between the second main surface 11 b and the rewiring layer 51. By providing, it is possible to relieve the difference in the coefficient of thermal expansion between the through electrode 50 and the connection portion of the electronic device including the rewiring layer 51 and the stress associated with the connection.

また、貫通電極50は、素子配線層32側から再配線層51側に向かって徐々に細くなるテーパーを有する柱状を有している。このように、貫通電極50をテーパー形状にすることで、貫通電極50自身、及び貫通電極50と素子回路層30との接続部に発生する応力の緩和をはかることができる。
(半導体装置・第2実施例)
The through electrode 50 has a columnar shape with a taper that gradually decreases from the element wiring layer 32 side toward the rewiring layer 51 side. In this way, by forming the through electrode 50 in a tapered shape, it is possible to relieve stress generated in the through electrode 50 itself and the connection portion between the through electrode 50 and the element circuit layer 30.
(Semiconductor device / second embodiment)

図2は、実施形態1の第2実施例に係る半導体装置10の一部を示す断面図である。なお、前述した第1実施例(図1、参照)との共通部分は説明を省略し、同じ部位には同じ符号を付して説明する。図2において、半導体装置10は、素子回路層30が設けられた半導体基板11と、貫通孔20の内部において一方の端部が素子回路層30の素子配線層32に接続されると共に、第2主面11bを貫通する貫通電極50と、貫通電極50の第2主面11b側の端部に形成される再配線層51と、を有している。素子回路層30、半導体基板11、貫通孔20、及び貫通電極の構成は、前述した第1実施例と同じ構成である。第2実施例では、貫通孔20の内周面と貫通電極50との間の空隙を埋める絶縁層40が形成されている。なお、絶縁層40には、SiO2やSiN等が用いられる。 FIG. 2 is a cross-sectional view illustrating a part of the semiconductor device 10 according to the second example of the first embodiment. In addition, description is abbreviate | omitted about the common part with 1st Example (refer FIG. 1) mentioned above, and attaches | subjects and demonstrates the same code | symbol to the same location. In FIG. 2, the semiconductor device 10 includes a semiconductor substrate 11 provided with an element circuit layer 30, one end connected to the element wiring layer 32 of the element circuit layer 30 inside the through hole 20, and a second It has a through electrode 50 penetrating the main surface 11b and a rewiring layer 51 formed at the end of the through electrode 50 on the second main surface 11b side. The configuration of the element circuit layer 30, the semiconductor substrate 11, the through hole 20, and the through electrode is the same as that of the first embodiment described above. In the second embodiment, the insulating layer 40 that fills the gap between the inner peripheral surface of the through hole 20 and the through electrode 50 is formed. The insulating layer 40 is made of SiO 2 or SiN.

絶縁層40は、貫通孔20内において半導体基板11の総厚み範囲に形成されている。従って、貫通孔20内には絶縁層40が形成され、再配線層51と第2主面11bの間には空隙Gが形成されている。   The insulating layer 40 is formed in the total thickness range of the semiconductor substrate 11 in the through hole 20. Therefore, the insulating layer 40 is formed in the through hole 20, and a gap G is formed between the rewiring layer 51 and the second main surface 11 b.

このような第2実施例によれば、貫通電極50と半導体基板11との間の絶縁性を確保しつつ、貫通電極50の先端側の応力緩和をはかることができる。
(半導体装置・第3実施例)
According to the second embodiment as described above, it is possible to relieve stress on the front end side of the through electrode 50 while ensuring insulation between the through electrode 50 and the semiconductor substrate 11.
(Semiconductor device / third embodiment)

次に、第3実施例について説明する。
図3は、実施形態1の第3実施例に係る半導体装置10の一部を示す断面図である。なお、前述した第1実施例(図1、参照)との共通部分は説明を省略し、同じ部位には同じ符号を付して説明する。図3において、半導体装置10は、素子回路層30が設けられた半導体基板11と、貫通孔20の内部において一方の端部が素子回路層30の素子配線層32に接続されると共に、第2主面11bを貫通する貫通電極50と、貫通電極50の第2主面11b側の端部に形成される再配線層51と、を有している。素子回路層30、半導体基板11、貫通孔20、及び貫通電極の構成は、前述した第1実施例と同じ構成である。第3実施例では、貫通孔20の内周面と貫通電極50との間の空隙の一部を埋める絶縁層40が形成されている。
Next, a third embodiment will be described.
FIG. 3 is a cross-sectional view illustrating a part of the semiconductor device 10 according to the third example of the first embodiment. In addition, description is abbreviate | omitted about the common part with 1st Example (refer FIG. 1) mentioned above, and attaches | subjects and demonstrates the same code | symbol to the same location. In FIG. 3, the semiconductor device 10 includes a semiconductor substrate 11 provided with an element circuit layer 30, one end connected to the element wiring layer 32 of the element circuit layer 30 inside the through hole 20, and a second It has a through electrode 50 penetrating the main surface 11b and a rewiring layer 51 formed at the end of the through electrode 50 on the second main surface 11b side. The configuration of the element circuit layer 30, the semiconductor substrate 11, the through hole 20, and the through electrode is the same as that of the first embodiment described above. In the third embodiment, the insulating layer 40 that fills a part of the gap between the inner peripheral surface of the through hole 20 and the through electrode 50 is formed.

絶縁層40は、図3に示すように、素子配線層32の位置から半導体基板11の厚みの一部までの間に形成されている(図3では、半導体基板11の厚みの中間位置の例を示している)。
つまり、貫通孔20の内周面と貫通電極50の元部側との間には絶縁層40が形成されており、第2主面11b側の貫通電極50の先端部と半導体基板11との間、及び第2主面11bと再配線層51との間には空隙Gが設けられている。
As shown in FIG. 3, the insulating layer 40 is formed between the position of the element wiring layer 32 and a part of the thickness of the semiconductor substrate 11 (in FIG. 3, an example of an intermediate position of the thickness of the semiconductor substrate 11). Is shown).
That is, the insulating layer 40 is formed between the inner peripheral surface of the through hole 20 and the base portion side of the through electrode 50, and the tip of the through electrode 50 on the second main surface 11 b side and the semiconductor substrate 11 are formed. A gap G is provided between the second main surface 11 b and the rewiring layer 51.

このようにすれば、貫通電極50の元部と貫通孔20の内周面との絶縁性を確保しつつ、貫通電極50の先端部と貫通孔20の内周面の空隙G(図1のG2に相当する)が中間部の空隙G(図1のG3に相当する)よりも大きいことから、貫通電極50の先端側の絶縁性の確保と応力緩和を図ることができる。
(半導体装置の製造方法)
In this way, while ensuring the insulation between the base portion of the through electrode 50 and the inner peripheral surface of the through hole 20, the gap G (see FIG. 1) between the tip portion of the through electrode 50 and the inner peripheral surface of the through hole 20. Since the gap G (corresponding to G2) is larger than the gap G (corresponding to G3 in FIG. 1) in the intermediate portion, it is possible to ensure insulation and stress relaxation on the tip side of the through electrode 50.
(Method for manufacturing semiconductor device)

続いて、前述した半導体装置の製造方法について説明する。なお、前述した第1実施例〜第3実施例の製造方法は、同じ工程で説明できるので、第1実施例の場合を例示して説明する。また、貫通電極50は半導体基板11に多数形成されており、これらはウエハー基板の状態でバッチ処理によって一括形成されるので、そのうちの一つを例示して説明する。
図4、図5、図6は、半導体装置10の製造方法における主要工程を示す部分断面図である。図4(a)に示すように、第1主面11aに素子回路層30が形成された半導体基板11を準備する。素子回路層30は、集積回路やセンサー回路等であって、複数の回路素子、配線層、及び絶縁層が積層形成されている。図4(a)では、第1主面11a表面から絶縁層31、素子配線層32、絶縁層33、第2素子配線層34、絶縁層35の順に積層形成されている構成を例示している。素子配線層32と第2素子配線層34とは貫通電極36によって接続されている。半導体基板11としてSi基板を用いた場合を例示して説明する。
Next, a method for manufacturing the semiconductor device described above will be described. In addition, since the manufacturing method of 1st Example-3rd Example mentioned above can be demonstrated in the same process, the case of 1st Example is illustrated and demonstrated. Further, a large number of through electrodes 50 are formed on the semiconductor substrate 11, and these are formed in a batch by batch processing in the state of a wafer substrate, and one of them will be described as an example.
4, 5, and 6 are partial cross-sectional views illustrating main processes in the method for manufacturing the semiconductor device 10. As shown in FIG. 4A, the semiconductor substrate 11 having the element circuit layer 30 formed on the first main surface 11a is prepared. The element circuit layer 30 is an integrated circuit, a sensor circuit, or the like, and a plurality of circuit elements, wiring layers, and insulating layers are laminated. FIG. 4A illustrates a configuration in which the insulating layer 31, the element wiring layer 32, the insulating layer 33, the second element wiring layer 34, and the insulating layer 35 are stacked in this order from the surface of the first main surface 11a. . The element wiring layer 32 and the second element wiring layer 34 are connected by a through electrode 36. A case where a Si substrate is used as the semiconductor substrate 11 will be described as an example.

まず、図4(a)に示すように、素子回路層30の形成面に接着剤61等を用いて支持基板60を貼着する。支持基板60は、以降の工程流動における割れの防止、取り扱い性を良好にするために用いるものであって、半導体基板11に対して熱膨張係数が近いものが好ましく、例えば、パイレックス(登録商標)ガラスや石英ガラスなどが用いられる。支持基板60を貼着した後、研削加工等により半導体基板11の上面12を第2主面11bまで研削する。   First, as shown in FIG. 4A, a support substrate 60 is attached to the formation surface of the element circuit layer 30 using an adhesive 61 or the like. The support substrate 60 is used in order to prevent cracking in the subsequent process flow and to improve the handleability, and preferably has a thermal expansion coefficient close to that of the semiconductor substrate 11, for example, Pyrex (registered trademark). Glass or quartz glass is used. After the support substrate 60 is attached, the upper surface 12 of the semiconductor substrate 11 is ground to the second main surface 11b by grinding or the like.

次に、図4(b)に示すように、半導体基板11に貫通孔20を形成する。貫通孔20は、素子回路層30が形成されている第1主面11aと、第1主面11aとは反対側の第2主面11bとの間を貫通し、第2主面11b側は開口し、第1主面11a側は絶縁層31(露出面31a)を露出させる。貫通孔20の開口工程は、RIE(Reactive Ion Etching)、ICP(Inductive Coupled Plasma etching)などのドライエッチングにて行う。これらのドライエッチング工程は、エッチングとデポジションを交互に繰り返すブッシュプロセスを応用することができ、エッチングプロセスガスとしてはSF6、またはO2を使用し、デポジションにはC46、またはO2を使用する。具体的には、レジストなどで孔を開口させたい部分を除いて被覆保護し、エッチング処理後にレジストを除去する工程を複数回繰り返すことで、アスペクト比が大きい孔を開口させることが可能となる。 Next, as shown in FIG. 4B, the through hole 20 is formed in the semiconductor substrate 11. The through hole 20 penetrates between the first main surface 11a where the element circuit layer 30 is formed and the second main surface 11b opposite to the first main surface 11a, and the second main surface 11b side is The insulating layer 31 (exposed surface 31a) is exposed on the first main surface 11a side. The opening process of the through hole 20 is performed by dry etching such as RIE (Reactive Ion Etching) and ICP (Inductive Coupled Plasma Etching). In these dry etching processes, a bushing process in which etching and deposition are alternately repeated can be applied. SF 6 or O 2 is used as an etching process gas, and C 4 F 6 or O 2 is used for deposition. Use 2 . Specifically, a hole having a large aspect ratio can be opened by repeating the process of covering and protecting a portion except where a hole is desired to be opened with a resist and removing the resist after the etching process.

本実施形態では、貫通孔20の開口径を10μm〜20μmとし、貫通孔深さを50μm〜100μmとした。この場合のアスペクト比は3〜7となる。
貫通孔20は、ウエハー内にアレイ状に配置してもよく、ペリフェラレル配置としてもよく、貫通孔20間の距離(ピッチ)は20μm〜30μm程度が可能となる。
In the present embodiment, the opening diameter of the through hole 20 is 10 μm to 20 μm, and the depth of the through hole is 50 μm to 100 μm. In this case, the aspect ratio is 3 to 7.
The through holes 20 may be arranged in an array in the wafer, or may be a peripheral arrangement, and the distance (pitch) between the through holes 20 can be about 20 μm to 30 μm.

次に、図4(c)に示すように、絶縁層31の貫通孔20内に露出されている露出面31aをドライエッチングにて除去し、素子配線層32の接続面32aを露出させる。なお、絶縁層31の材質はSiO2である。 Next, as shown in FIG. 4C, the exposed surface 31a exposed in the through hole 20 of the insulating layer 31 is removed by dry etching, and the connection surface 32a of the element wiring layer 32 is exposed. The material of the insulating layer 31 is SiO 2 .

次に、図5(d)に示すように、貫通孔20の内周面、及び第2主面11bの表面に連続する絶縁層40を形成する。絶縁層40は、素子配線層32の接続面32aにも形成される。絶縁層40は、SiO2、SiNなどをCVD法によって形成する。なお、絶縁層40の材質としては樹脂材料を用いることもできる。絶縁層40の厚みは、同一工程で形成しても形成する場所によって異なる。このことについて図5(e)及び表1を参照して説明する。 Next, as illustrated in FIG. 5D, an insulating layer 40 that is continuous with the inner peripheral surface of the through hole 20 and the surface of the second main surface 11 b is formed. The insulating layer 40 is also formed on the connection surface 32 a of the element wiring layer 32. The insulating layer 40 is made of SiO 2 , SiN or the like by a CVD method. A resin material can be used as the material of the insulating layer 40. Even if it forms in the same process, the thickness of the insulating layer 40 changes with places to form. This will be described with reference to FIG.

絶縁層40の厚みは、図5(e)に示すように貫通孔20が深くなるに従い薄くなる。第2主面11b表面に形成される厚みをt1、貫通孔20の開口部(第2主面11bの位置)の厚みをt2、底部の厚みをt3とする。   The thickness of the insulating layer 40 becomes thinner as the through hole 20 becomes deeper as shown in FIG. The thickness formed on the surface of the second main surface 11b is t1, the thickness of the opening of the through hole 20 (position of the second main surface 11b) is t2, and the thickness of the bottom is t3.

表1に示すように、絶縁層40の厚みは、t1>t2>t3の関係になる。つまり、貫通孔20が深くなるに従い薄くなる。また、絶縁層40の各部位の厚みは、貫通孔20の孔径(μm)、孔深さ(μm)、アスペクト比によって変わるが、アスペクト比が大きい方が、各部位間の絶縁層40の厚みの差が大きくなる傾向がある。このことは、アスペクト比を大きくすれば、後述する貫通電極50のテーパーを大きくすることが可能であることを示している。   As shown in Table 1, the thickness of the insulating layer 40 has a relationship of t1> t2> t3. That is, it becomes thinner as the through hole 20 becomes deeper. The thickness of each part of the insulating layer 40 varies depending on the hole diameter (μm), the hole depth (μm), and the aspect ratio of the through hole 20, but the larger the aspect ratio, the greater the thickness of the insulating layer 40 between the parts. The difference tends to increase. This indicates that if the aspect ratio is increased, the taper of the through electrode 50 described later can be increased.

Figure 2013165099
Figure 2013165099

なお、このデータは、CVDの処理時間を30分とした場合であって、絶縁層40の厚みの絶対値は、CVD処理条件を一定にしたときにCVD処理時間にほぼ比例して厚みが増すことが分かっている。   This data is obtained when the CVD processing time is 30 minutes, and the thickness of the insulating layer 40 increases in proportion to the CVD processing time when the CVD processing conditions are constant. I know that.

表1は、絶縁層40の各部位の厚みの関係を示したものであるが、実際の管理上から、t2>5μm、2μm<t3<5μm、t1>10μmとなるように、CVD処理条件(処理時間を含む)を制御することが好ましい。特に、t1は、寄生容量低減の観点からもt1>10μmとすることが望まれる。
なお、貫通孔20の底面の絶縁層31にも絶縁層40が形成される場合があり、これを除去する必要がある。
Table 1 shows the relationship between the thicknesses of the respective portions of the insulating layer 40. From the actual management, CVD processing conditions (t2> 5 μm, 2 μm <t3 <5 μm, t1> 10 μm are satisfied). It is preferable to control (including processing time). In particular, t1 is preferably set to t1> 10 μm from the viewpoint of reducing parasitic capacitance.
Note that the insulating layer 40 may also be formed on the insulating layer 31 on the bottom surface of the through-hole 20 and it is necessary to remove this.

続いて、図5(f)に示すように、貫通孔20内の絶縁層31をドライエッチングによって除去し、素子配線層32の接続面32aを露出させる。この絶縁層除去工程は、絶縁層40を除去したくない部分をレジスト保護した後、酸化膜エッチャーを用いて行う。プロセスガスとしては、C26、CF4、CHF3等を使用する。 Subsequently, as shown in FIG. 5F, the insulating layer 31 in the through hole 20 is removed by dry etching, and the connection surface 32a of the element wiring layer 32 is exposed. This insulating layer removal step is performed using an oxide film etcher after resist-protecting a portion where the insulating layer 40 is not desired to be removed. As the process gas, C 2 F 6 , CF 4 , CHF 3 or the like is used.

次に、図5(g)に示すように、絶縁層40の表面にバリア層41とシード層42をCVD法またはスパッタリング法で形成する。バリア層41とシード層42は共に、貫通孔20内の絶縁層40の内周壁、素子配線層32の接続面32a、及び第2主面11b上の絶縁層40の表面に形成する。バリア層41には、Ti、TiW,TiNのどを使用し、シード層42にはCuを使用する。バリア層41の厚みは100nm、シード層42の厚みは300nmとした。   Next, as shown in FIG. 5G, a barrier layer 41 and a seed layer 42 are formed on the surface of the insulating layer 40 by a CVD method or a sputtering method. Both the barrier layer 41 and the seed layer 42 are formed on the inner peripheral wall of the insulating layer 40 in the through hole 20, the connection surface 32a of the element wiring layer 32, and the surface of the insulating layer 40 on the second main surface 11b. The barrier layer 41 uses Ti, TiW, TiN throat, and the seed layer 42 uses Cu. The thickness of the barrier layer 41 was 100 nm, and the thickness of the seed layer 42 was 300 nm.

次に、図5(h)に示すように、貫通孔20の内周面に形成される絶縁層40の内部を充填する貫通電極50と、貫通電極50と連続し、第2主面11bに形成される絶縁層40の表面に再配線層51と、を形成する。貫通電極50と再配線層51の形成は、一連のCuメッキによって行われる。なお、貫通電極50と再配線層51とは、それぞれ別工程で形成してもよい。再配線層51の厚みは6μm程度である。   Next, as shown in FIG. 5 (h), the through electrode 50 filling the inside of the insulating layer 40 formed on the inner peripheral surface of the through hole 20 and the through electrode 50 are continuous with the second main surface 11b. A rewiring layer 51 is formed on the surface of the insulating layer 40 to be formed. The through electrode 50 and the rewiring layer 51 are formed by a series of Cu plating. The through electrode 50 and the rewiring layer 51 may be formed in separate steps. The thickness of the rewiring layer 51 is about 6 μm.

次に、図6(i)に示すように、第2主面11b上の絶縁層40、バリア層41、シード層42、再配線層51を所定の形状にパターニングする。このパターニング工程は、レジストマスクを用いてエッチングにより行う。なお、このパターニング工程は、絶縁層40を形成した後に、レジストマスクを用いて、バリア層41、シード層42、貫通電極50、再配線層51の順に形成してもよい。その後、レジストマスクを除去する。   Next, as shown in FIG. 6I, the insulating layer 40, the barrier layer 41, the seed layer 42, and the rewiring layer 51 on the second main surface 11b are patterned into a predetermined shape. This patterning step is performed by etching using a resist mask. In this patterning step, after forming the insulating layer 40, the barrier layer 41, the seed layer 42, the through electrode 50, and the rewiring layer 51 may be formed in this order using a resist mask. Thereafter, the resist mask is removed.

次に、図6(j)に示すように、絶縁層40を除去する。絶縁層40がSiO2の場合には、フッ酸ベーパーを用いてドライエッチング、またはフッ酸を用いてウェットエッチングにより行う。
このような一連の工程を経て、貫通電極50と半導体基板11の間に空隙Gを有する半導体装置10が形成される(図1も参照する)。なお、再配線層51の表面に、SnAgなどの低融点金属やAuなどの貴金属の層を形成してもよい。
その後、支持基板60を剥離し、半導体装置10の一つ一つに個片化する。また、半導体装置10を他の電子デバイスと接続する場合には、再配線層51の表面にバンプを形成してもよい。
Next, as shown in FIG. 6J, the insulating layer 40 is removed. When the insulating layer 40 is SiO 2 , dry etching using a hydrofluoric acid vapor or wet etching using hydrofluoric acid is performed.
Through such a series of steps, the semiconductor device 10 having the gap G between the through electrode 50 and the semiconductor substrate 11 is formed (see also FIG. 1). A layer of a low melting point metal such as SnAg or a noble metal such as Au may be formed on the surface of the rewiring layer 51.
Thereafter, the support substrate 60 is peeled and separated into individual semiconductor devices 10. Further, when the semiconductor device 10 is connected to another electronic device, bumps may be formed on the surface of the rewiring layer 51.

以上説明した半導体装置10の製造方法によれば、貫通孔20の内周面と、第2主面11bに絶縁層40を形成し、貫通電極50及び再配線層51を形成した後、絶縁層40を除去することで、貫通孔20の内周面と貫通電極50の間、及び第2主面11bと再配線層51との間に空隙を形成する。このような製造方法では、前述した従来技術のように、半導体基板11の貫通電極50に周囲に凹部(空隙)をエッチングによって形成する方法に比べ、絶縁層40を除去すれば空隙を形成することが可能である。従って、半導体基板11にエッチングによって凹部を形成することに伴う貫通電極50や半導体基板11にダメージを与えることがなく、半導体装置10の信頼性を高めることができる。   According to the method for manufacturing the semiconductor device 10 described above, the insulating layer 40 is formed on the inner peripheral surface of the through hole 20 and the second main surface 11b, and the insulating layer is formed after the through electrode 50 and the rewiring layer 51 are formed. By removing 40, gaps are formed between the inner peripheral surface of the through hole 20 and the through electrode 50, and between the second main surface 11b and the rewiring layer 51. In such a manufacturing method, a void is formed by removing the insulating layer 40 as compared with the method of forming a recess (gap) around the through electrode 50 of the semiconductor substrate 11 by etching as in the conventional technique described above. Is possible. Therefore, it is possible to improve the reliability of the semiconductor device 10 without damaging the through electrode 50 and the semiconductor substrate 11 due to the formation of the recesses in the semiconductor substrate 11 by etching.

また、貫通電極50と半導体基板11との間に空隙Gによって、製造工程中の温度サイクルがかかる環境下において、貫通電極50、素子配線層32、半導体基板11の熱膨張率の差に伴い発生する応力を緩和し、貫通電極50と素子配線層32との接続部のクラックの発生を抑制することができ、信頼性をより一層向上させることができる。   Further, due to the gap G between the through electrode 50 and the semiconductor substrate 11, the gap G is generated in accordance with the difference in thermal expansion coefficient between the through electrode 50, the element wiring layer 32, and the semiconductor substrate 11 in an environment where a temperature cycle during the manufacturing process is applied. It is possible to relieve the stress to be generated, to suppress the occurrence of cracks at the connection portion between the through electrode 50 and the element wiring layer 32, and to further improve the reliability.

また、貫通電極50と半導体基板11の絶縁性を確保できることから、貫通電極50間の距離(ピッチ)を小さくでき、半導体装置10の高密度化と、小型化が実現できる。   Further, since the insulation between the through electrode 50 and the semiconductor substrate 11 can be secured, the distance (pitch) between the through electrodes 50 can be reduced, and the semiconductor device 10 can be increased in density and downsized.

また、絶縁層40の厚みを、再配線層51と第2主面11bとの間の厚みt1>第2主面11b側の貫通電極50と貫通孔20の内周面との間の厚みt2>第1主面11a側の貫通電極50と貫通孔20の内周面との間の厚みt3、の関係にしている。従って、絶縁層40を除去することで形成される空隙Gは、再配線層51と第2主面11bとの間の空隙の大きさG1>第2主面11b側の貫通電極50と貫通孔20の内周壁との間の空隙の大きさG2>第1主面11a側の貫通電極50と貫通孔20の内周壁との間の空隙の大きさG3、の関係にすることができる。   The thickness of the insulating layer 40 is set such that the thickness t1 between the rewiring layer 51 and the second main surface 11b> the thickness t2 between the through electrode 50 on the second main surface 11b side and the inner peripheral surface of the through hole 20. > Thickness t3 between the through electrode 50 on the first main surface 11a side and the inner peripheral surface of the through hole 20 is established. Therefore, the gap G formed by removing the insulating layer 40 is equal to the size G1 of the gap between the rewiring layer 51 and the second main surface 11b> the through electrode 50 and the through hole on the second main surface 11b side. The size of the gap G2 between the inner peripheral wall 20 and the size G3 of the gap between the through electrode 50 on the first main surface 11a side and the inner peripheral wall of the through hole 20 can be made.

また、このような製造方法によれば、貫通電極50が、素子配線層32側から再配線層51側に向かって徐々に細くなるテーパー形状となる。貫通電極50をテーパー形状にすることで、貫通電極50自身、及び貫通電極50と素子回路層30との接続部に発生する応力の緩和をはかることができる。   Further, according to such a manufacturing method, the through electrode 50 has a tapered shape that gradually becomes thinner from the element wiring layer 32 side toward the rewiring layer 51 side. By forming the through electrode 50 in a tapered shape, it is possible to reduce the stress generated in the through electrode 50 itself and the connection portion between the through electrode 50 and the element circuit layer 30.

なお、絶縁層40の除去範囲は、エッチング処理時間を制御することで任意に設定することができる。例えば、前述した実施例2(図2、参照)に記載の半導体装置10は、絶縁層40を除去する工程において、前記絶縁層の除去範囲を、再配線層51と第2主面11bとの間のみとすることで、貫通孔20の内周面と貫通電極50との間には絶縁層40が充填され、再配線層51と第2主面11bの間には空隙Gを有する半導体装置10を形成できる。   The removal range of the insulating layer 40 can be arbitrarily set by controlling the etching processing time. For example, in the semiconductor device 10 described in the second embodiment (see FIG. 2), in the step of removing the insulating layer 40, the removal range of the insulating layer is set between the rewiring layer 51 and the second main surface 11b. By providing only the gap, the insulating layer 40 is filled between the inner peripheral surface of the through hole 20 and the through electrode 50, and the semiconductor device has a gap G between the rewiring layer 51 and the second main surface 11 b. 10 can be formed.

このような製造方法によれば、貫通電極50と半導体基板11間の絶縁性を確保しつつ、貫通電極50の先端側の応力緩和を図ることができる。   According to such a manufacturing method, stress relaxation on the front end side of the through electrode 50 can be achieved while ensuring insulation between the through electrode 50 and the semiconductor substrate 11.

また、絶縁層40を除去する工程において、エッチング処理時間を制御することによって、絶縁層40の除去範囲を、再配線層51と第2主面11bとの間と、第2主面11bから半導体基板11の厚さの一部までの範囲とすることができる。このようにすれば、貫通孔20の内周面と貫通電極50の元部側との間に絶縁層40が形成され、第2主面11b側の貫通電極50の先端部と貫通孔20との間、及び第2主面11bと再配線層51との間には空隙Gを形成することができる。
また、貫通電極50の元部と貫通孔20間の絶縁性を確保しつつ、貫通電極50の先端部と貫通孔20の内周面との空隙Gが中間部よりも大きいことから、貫通電極50の先端側の絶縁性の確保と応力緩和をはかることができる。
(回路装置)
Further, in the step of removing the insulating layer 40, by controlling the etching processing time, the removal range of the insulating layer 40 can be reduced between the rewiring layer 51 and the second main surface 11b, and from the second main surface 11b to the semiconductor. The range can be up to a part of the thickness of the substrate 11. In this way, the insulating layer 40 is formed between the inner peripheral surface of the through hole 20 and the base portion side of the through electrode 50, and the front end portion of the through electrode 50 on the second main surface 11 b side, the through hole 20, and the like. A gap G can be formed between the second main surface 11 b and the rewiring layer 51.
Further, since the gap G between the front end portion of the through electrode 50 and the inner peripheral surface of the through hole 20 is larger than the intermediate portion while ensuring insulation between the base portion of the through electrode 50 and the through hole 20, the through electrode It is possible to ensure insulation and relieve stress on the front end side of 50.
(Circuit device)

続いて、前述した半導体装置10を用いた回路装置100について説明する。
図7は、実施形態1に係る回路装置100を示す部分断面図である。回路装置100は、前述した半導体装置10と、半導体装置10の第2主面11bに対向する表面に配線層83の一部が露出された電子デバイス80と、半導体装置10の再配線層51と電子デバイス80の配線層83とを接続する接続端子85と、を備えている。半導体装置10は前述した第1実施例〜第3実施例に記載されたものである。よって、半導体装置10の説明は省略し、第1実施例(図1、参照)と同じ符号を付している。
Subsequently, a circuit device 100 using the semiconductor device 10 described above will be described.
FIG. 7 is a partial cross-sectional view showing the circuit device 100 according to the first embodiment. The circuit device 100 includes the semiconductor device 10 described above, the electronic device 80 in which a part of the wiring layer 83 is exposed on the surface facing the second main surface 11b of the semiconductor device 10, and the rewiring layer 51 of the semiconductor device 10. And a connection terminal 85 that connects the wiring layer 83 of the electronic device 80. The semiconductor device 10 is the same as that described in the first to third embodiments. Therefore, the description of the semiconductor device 10 is omitted, and the same reference numerals as those in the first embodiment (see FIG. 1) are given.

半導体装置10は、例えば、集積回路(IC)やセンサー回路等である。センサー回路としては、例えば、慣性センサーや温度センサー等が電子回路と共に基板上に形成されたいわゆるMEMS(Micro Electro Mechanical Systems)であってもよい。
また、電子デバイス80は、例えば、集積回路(IC)やセンサー回路等である。センサー回路としては、例えば、慣性センサーや温度センサー等が電子回路と共に基板上に形成されたいわゆるMEMS(Micro Electro Mechanical Systems)であってもよい。また、他の電子素子が実装された回路基板であってもよい。
The semiconductor device 10 is, for example, an integrated circuit (IC) or a sensor circuit. As the sensor circuit, for example, a so-called MEMS (Micro Electro Mechanical Systems) in which an inertial sensor, a temperature sensor, and the like are formed on a substrate together with an electronic circuit may be used.
The electronic device 80 is, for example, an integrated circuit (IC) or a sensor circuit. As the sensor circuit, for example, a so-called MEMS (Micro Electro Mechanical Systems) in which an inertial sensor, a temperature sensor, and the like are formed on a substrate together with an electronic circuit may be used. Further, it may be a circuit board on which other electronic elements are mounted.

電子デバイス80は、回路基板81の一方の表面に絶縁層82、配線層83、絶縁層84の順に積層形成されている。配線層83の一部は、半導体装置10側に露出されている接続面83aである。   The electronic device 80 is formed by laminating an insulating layer 82, a wiring layer 83, and an insulating layer 84 in this order on one surface of the circuit board 81. A part of the wiring layer 83 is a connection surface 83a exposed to the semiconductor device 10 side.

半導体装置10と電子デバイス80とは、半導体装置10側の再配線層51と電子デバイス80側の配線層83とを接続端子85によって接続されている。接続端子85には半田、SnAg等の低融点金属やAu等、または導電性接着剤等を用いる。なお、接続端子85として、再配線層51または配線層83にバンプを形成してもよい。このよう場合には、バンプ形成側に対向する配線層にはSnAg等の接続用電極を形成することが好ましい。図7には、再配線層51側にSnAgからなる接続用電極52を設けた場合を例示している。   In the semiconductor device 10 and the electronic device 80, the rewiring layer 51 on the semiconductor device 10 side and the wiring layer 83 on the electronic device 80 side are connected by a connection terminal 85. The connection terminal 85 is made of solder, a low melting point metal such as SnAg, Au, or a conductive adhesive. A bump may be formed on the rewiring layer 51 or the wiring layer 83 as the connection terminal 85. In such a case, it is preferable to form a connection electrode such as SnAg on the wiring layer facing the bump formation side. FIG. 7 illustrates a case where the connection electrode 52 made of SnAg is provided on the rewiring layer 51 side.

上述した回路装置100は、半導体装置10の第2主面11bと再配線層51との間にも空隙を設けることによって、絶縁性を高めると共に、貫通電極50(再配線層51を含む)と電子デバイス80の熱膨張率の差、及び接続に伴い発生する応力を緩和させることができる。よって、回路装置の信頼性を高めることができる。   In the circuit device 100 described above, by providing a gap between the second main surface 11b of the semiconductor device 10 and the rewiring layer 51, the insulation is improved and the through electrode 50 (including the rewiring layer 51) is provided. The difference in the thermal expansion coefficient of the electronic device 80 and the stress generated with the connection can be relaxed. Therefore, the reliability of the circuit device can be increased.

また、貫通電極50がテーパー形状であることから、電子デバイス80を接合する際に押し圧力が加えられて貫通電極50が傾いても、先端部に空隙を設けているので絶縁性が損なわれることがない。   In addition, since the through electrode 50 has a tapered shape, even when a pressing force is applied when the electronic device 80 is joined and the through electrode 50 is inclined, the insulating property is impaired because a gap is provided at the tip. There is no.

また、前述した半導体装置10は、貫通電極50と半導体基板11の絶縁性を確保できることから、貫通電極50間の距離を小さくでき、よって回路装置100の高密度化と、小型化が実現できる。   In addition, since the semiconductor device 10 described above can ensure the insulation between the through electrode 50 and the semiconductor substrate 11, the distance between the through electrodes 50 can be reduced, and thus the circuit device 100 can be increased in density and size.

なお。前述した第2実施例または第3実施例による半導体装置10を用いた回路装置100も同様な効果が得られる。
(実施形態2)
Note that. The circuit device 100 using the semiconductor device 10 according to the second embodiment or the third embodiment described above can achieve the same effect.
(Embodiment 2)

次に実施形態2に係る回路装置の製造方法について説明する。実施形態2の回路装置の構成は、前述した実施形態1の回路装置100の構成と同じである。実施形態1では、絶縁層40を除去した半導体装置10と電子デバイス80とを接続していることに対して、実施形態2では、半導体装置10と電子デバイス80とを接続した後に絶縁層40を除去することを特徴としている。従って、実施形態1との相違部分を中心に、実施形態1と同じ部位には同じ符号を付して説明する。   Next, a method for manufacturing the circuit device according to the second embodiment will be described. The configuration of the circuit device of the second embodiment is the same as the configuration of the circuit device 100 of the first embodiment described above. In the first embodiment, the semiconductor device 10 from which the insulating layer 40 is removed and the electronic device 80 are connected. In the second embodiment, after the semiconductor device 10 and the electronic device 80 are connected, the insulating layer 40 is changed. It is characterized by removing. Therefore, the same parts as those in the first embodiment will be described by assigning the same reference numerals to the differences from the first embodiment.

図8(a)〜(c)は、実施形態2に係る回路装置100の製造方法の主要工程を示す断面図である。図8(a)に半導体装置10の形態を示す。半導体装置10は、前述した実施形態1の半導体装置の製造方法を用いて、図6(i)に示した工程まで行っておく。つまり、第2主面11b上のバリア層41、シード層42、再配線層51が所定の形状にパターニングされた状態であり、絶縁層40は除去されていない。   8A to 8C are cross-sectional views illustrating main processes of the method for manufacturing the circuit device 100 according to the second embodiment. FIG. 8A shows a form of the semiconductor device 10. The semiconductor device 10 is performed up to the step shown in FIG. 6I using the semiconductor device manufacturing method of the first embodiment described above. That is, the barrier layer 41, the seed layer 42, and the rewiring layer 51 on the second main surface 11b are patterned into a predetermined shape, and the insulating layer 40 is not removed.

次に、図8(b)に示すように、電子デバイス80を半導体装置10に接続端子85によって接続する。電子デバイス80と半導体装置10との接続方法は実施形態1(図7、参照)と同じ方法を採用できる。   Next, as shown in FIG. 8B, the electronic device 80 is connected to the semiconductor device 10 by a connection terminal 85. The method for connecting the electronic device 80 and the semiconductor device 10 can be the same as that of the first embodiment (see FIG. 7).

続いて、図8(c)に示すように、電子デバイス80と半導体装置10とを接続した状態で絶縁層40を除去する。絶縁層40の除去方法も実施形態1と同じ方法を採用できる。   Subsequently, as illustrated in FIG. 8C, the insulating layer 40 is removed in a state where the electronic device 80 and the semiconductor device 10 are connected. The method for removing the insulating layer 40 can be the same as that of the first embodiment.

なお、絶縁層の除去範囲は、第2実施例のように再配線層51と第2主面11bとの間のみとしてもよく、第3実施例のように再配線層51と第2主面11bとの間(図2、参照)と半導体基板11の厚みの中間部までの範囲(図3、参照)とすることができる。   The removal range of the insulating layer may be only between the rewiring layer 51 and the second main surface 11b as in the second embodiment, and the rewiring layer 51 and the second main surface as in the third embodiment. 11b (see FIG. 2) and the range up to the middle of the thickness of the semiconductor substrate 11 (see FIG. 3).

以上説明した実施形態2の回路装置100の製造方法は、半導体装置10と電子デバイス80とを接続した後、半導体装置10に形成されている絶縁層40を除去するものである。従って、半導体装置10と電子デバイス80とを接続する際には、貫通電極50と半導体基板11との間、再配線層51と第2主面11bの間は絶縁層40で充填されている。このように絶縁層40が残っている状態で半導体装置10と電子デバイス80との接続を行えば、貫通電極50の傾きや接合圧力による絶縁層40の破壊を防止できる。そして、半導体装置10と電子デバイス80の接続後、絶縁層40を除去することによって、回路装置100としての絶縁性の確保、貫通電極50(再配線層51を含む)と電子デバイス80の熱膨張率の差に伴う応力を緩和させることができる。よって、回路装置100の信頼性を高めることができる。
(電子機器)
In the method for manufacturing the circuit device 100 according to the second embodiment described above, after the semiconductor device 10 and the electronic device 80 are connected, the insulating layer 40 formed on the semiconductor device 10 is removed. Accordingly, when the semiconductor device 10 and the electronic device 80 are connected, the insulating layer 40 is filled between the through electrode 50 and the semiconductor substrate 11 and between the rewiring layer 51 and the second main surface 11b. If the semiconductor device 10 and the electronic device 80 are connected in a state where the insulating layer 40 remains in this way, it is possible to prevent the insulating layer 40 from being broken due to the inclination of the through electrode 50 or the bonding pressure. Then, after connecting the semiconductor device 10 and the electronic device 80, the insulating layer 40 is removed to ensure insulation as the circuit device 100, and the thermal expansion of the through electrode 50 (including the rewiring layer 51) and the electronic device 80. The stress accompanying the difference in rate can be relaxed. Therefore, the reliability of the circuit device 100 can be improved.
(Electronics)

次に、前述した回路装置100を有する電子機器について、テラヘルツカメラを例示して説明する。
図9は、電子機器の一具体例に係るテラヘルツカメラの外観を概略的に示す斜視図である。テラヘルツカメラ200は、筐体201を備える。筐体201の正面にはスリット202が形成されており、正面にレンズ203が装着されている。スリット202からはテラヘルツ帯の電磁波が対象物(図示せず)に向かって照射される。このような電磁波にはテラヘルツ波といわれる電波、及び赤外線といった光が含まれる。なお、テラヘルツ帯としては100GHz〜30THzの周波数帯を含む。レンズ203には対象物から反射してくるテラヘルツ帯の電磁波が取り込まれる。
Next, an electronic apparatus including the circuit device 100 described above will be described using a terahertz camera as an example.
FIG. 9 is a perspective view schematically showing an appearance of a terahertz camera according to a specific example of the electronic apparatus. The terahertz camera 200 includes a housing 201. A slit 202 is formed on the front surface of the housing 201, and a lens 203 is mounted on the front surface. From the slit 202, a terahertz band electromagnetic wave is irradiated toward an object (not shown). Such electromagnetic waves include radio waves called terahertz waves and light such as infrared rays. The terahertz band includes a frequency band of 100 GHz to 30 THz. The lens 203 receives a terahertz band electromagnetic wave reflected from the object.

テラヘルツカメラ200の構成をさらに詳しく説明する。
図10は、テラヘルツカメラ200の構成を概略的に示すブロック図である。図10に示すように、テラヘルツカメラ200は照射源(電磁波源)210を備える。照射源210には駆動回路211が接続される。駆動回路211は照射源210に所望の駆動信号を供給する。照射源210は駆動信号の受領に応じてテラヘルツ帯の電磁波を放射する。照射源210には、例えばレーザー光源が用いられることができる。
The configuration of the terahertz camera 200 will be described in more detail.
FIG. 10 is a block diagram schematically showing the configuration of the terahertz camera 200. As shown in FIG. 10, the terahertz camera 200 includes an irradiation source (electromagnetic wave source) 210. A drive circuit 211 is connected to the irradiation source 210. The drive circuit 211 supplies a desired drive signal to the irradiation source 210. The irradiation source 210 radiates terahertz band electromagnetic waves in response to receipt of the drive signal. As the irradiation source 210, for example, a laser light source can be used.

レンズ203は光学系212を構成する。光学系212はレンズ203のほかに光学部品を備えてもよい。レンズ203の光軸213上に、前述した半導体装置10を含む回路装置100が配置される。本実施形態において、回路装置100は光検出器である。従って、以降、回路装置100を光検出器100として説明する。なお、光検出器100には熱型光検出素子(図示せず)が含まれる。半導体基板11の表面は例えば光軸213に直交する。光検出器100には、アナログデジタル変換回路214が接続される。アナログデジタル変換回路214には光検出器100から熱型光検出素子(図示せず)の出力が順番に時系列で供給される。アナログデジタル変換回路214は、出力のアナログ信号をデジタル信号に変換する。   The lens 203 constitutes the optical system 212. The optical system 212 may include an optical component in addition to the lens 203. On the optical axis 213 of the lens 203, the circuit device 100 including the semiconductor device 10 described above is disposed. In the present embodiment, the circuit device 100 is a photodetector. Therefore, hereinafter, the circuit device 100 will be described as the photodetector 100. Note that the photodetector 100 includes a thermal detection element (not shown). The surface of the semiconductor substrate 11 is orthogonal to the optical axis 213, for example. An analog / digital conversion circuit 214 is connected to the photodetector 100. The analog-to-digital conversion circuit 214 is supplied with the output of a thermal detection element (not shown) from the photodetector 100 in time series. The analog-digital conversion circuit 214 converts the output analog signal into a digital signal.

アナログデジタル変換回路214には、演算処理回路(処理回路)215が接続される。演算処理回路215には、アナログデジタル変換回路214からデジタルの画像データが供給される。演算処理回路215は、画像データを処理し表示画面の画素ごとに画素データを生成する。演算処理回路215には、描画処理回路216が接続される。描画処理回路216は、画素データに基づき描画データを生成する。描画処理回路216には、表示装置217が接続される。表示装置217には、例えば液晶ディスプレイといったフラットパネルディスプレイが用いられることができる。表示装置217は、描画データに基づき画面上に画像を表示する。描画データは、記憶装置218に格納することができる。紙やプラスチック、繊維その他の物体に対する透過性、および、物質固有の吸収スペクトルに基づきテラヘルツカメラ200は、検査装置として利用することができる。   An arithmetic processing circuit (processing circuit) 215 is connected to the analog-digital conversion circuit 214. Digital image data is supplied from the analog-digital conversion circuit 214 to the arithmetic processing circuit 215. The arithmetic processing circuit 215 processes the image data and generates pixel data for each pixel of the display screen. A drawing processing circuit 216 is connected to the arithmetic processing circuit 215. The drawing processing circuit 216 generates drawing data based on the pixel data. A display device 217 is connected to the drawing processing circuit 216. As the display device 217, for example, a flat panel display such as a liquid crystal display can be used. The display device 217 displays an image on the screen based on the drawing data. The drawing data can be stored in the storage device 218. The terahertz camera 200 can be used as an inspection apparatus based on permeability to paper, plastic, fibers, and other objects, and an absorption spectrum unique to the substance.

その他、テラヘルツカメラ200は、物質の定性分析や定量分析に利用することができる。こうした利用にあたって、例えばレンズ203の光軸213上には特定周波数のフィルターが配置されることができる。フィルターは特定波長以外の電磁波を遮断する。従って、特定波長の電磁波のみが光検出器100に到達することができる。これによって特定の物質の有無や量は検出することができる。   In addition, the terahertz camera 200 can be used for qualitative analysis and quantitative analysis of substances. For such use, for example, a filter having a specific frequency can be disposed on the optical axis 213 of the lens 203. The filter blocks electromagnetic waves other than a specific wavelength. Therefore, only electromagnetic waves having a specific wavelength can reach the photodetector 100. Thus, the presence or amount of a specific substance can be detected.

なお、本発明を適用した電子機器としては、上述したようなテラヘルツカメラ200に限らず、赤外線カメラ等に適用させることができる。
また、回路装置100が慣性センサーを含む場合には、ナビゲーション装置、電子カメラ、車載カメラ、モーションセンサー装置、ゲーム機コントローラー、ロボット装置などに適用できる。
また、回路装置100が物理量センサーを含む場合には、傾斜計、重量・重力計、流量計等などに適用可能で、特に小型化と高密度化が要求される携帯型電子機器に最適である。
The electronic apparatus to which the present invention is applied is not limited to the terahertz camera 200 as described above, but can be applied to an infrared camera or the like.
Further, when the circuit device 100 includes an inertial sensor, the circuit device 100 can be applied to a navigation device, an electronic camera, an in-vehicle camera, a motion sensor device, a game machine controller, a robot device, and the like.
Further, when the circuit device 100 includes a physical quantity sensor, it can be applied to an inclinometer, a weight / gravity meter, a flow meter, and the like, and is particularly suitable for a portable electronic device that requires a reduction in size and a high density. .

10…半導体装置、11…半導体基板、11a…第1主面、11b…第2主面、20…貫通孔、30…素子回路層、32…素子配線層、50…貫通電極、51…再配線層。   DESCRIPTION OF SYMBOLS 10 ... Semiconductor device, 11 ... Semiconductor substrate, 11a ... 1st main surface, 11b ... 2nd main surface, 20 ... Through-hole, 30 ... Element circuit layer, 32 ... Element wiring layer, 50 ... Through electrode, 51 ... Rewiring layer.

Claims (16)

素子回路層が設けられている第1主面と、前記第1主面とは反対側の第2主面とを有する半導体基板を備えた半導体装置であって、
前記第1主面と前記第2主面とを貫通する貫通孔と、
前記貫通孔の内部に形成され、且つ前記素子回路層の素子配線層に接続されると共に、前記第2主面に形成される再配線層に連続する貫通電極と、
前記貫通孔の内周面と前記貫通電極との間、及び前記再配線層と前記第2主面との間に設けられる空隙と、を有し、
前記空隙の大きさが、前記再配線層と前記第2主面との間の空隙の大きさ>前記第2主面側の貫通電極と前記貫通孔の内周壁との間の空隙の大きさ>前記第1主面側の前記貫通電極と前記貫通孔の内周壁との間の空隙の大きさ、の関係にあること、
を特徴とする半導体装置。
A semiconductor device comprising a semiconductor substrate having a first main surface provided with an element circuit layer and a second main surface opposite to the first main surface,
A through hole penetrating the first main surface and the second main surface;
A through electrode formed inside the through hole and connected to the element wiring layer of the element circuit layer and continuing to the rewiring layer formed on the second main surface;
A gap provided between the inner peripheral surface of the through hole and the through electrode, and between the redistribution layer and the second main surface,
The size of the air gap is the size of the air gap between the redistribution layer and the second main surface> the size of the air gap between the through electrode on the second main surface side and the inner peripheral wall of the through hole. > The size of the gap between the through electrode on the first main surface side and the inner peripheral wall of the through hole,
A semiconductor device characterized by the above.
前記貫通電極が、前記素子配線層側から前記再配線層側に向かって徐々に細くなるテーパー形状を有すること、
を特徴とする請求項1に記載の半導体装置。
The through electrode has a tapered shape that gradually decreases from the element wiring layer side toward the rewiring layer side;
The semiconductor device according to claim 1.
前記貫通孔の内周面と前記貫通電極との間の空隙を埋める絶縁層が、さらに形成されていること、
を特徴とする請求項1または請求項2に記載の半導体装置。
An insulating layer filling the gap between the inner peripheral surface of the through hole and the through electrode is further formed;
The semiconductor device according to claim 1, wherein:
前記絶縁層が、前記素子配線層から前記半導体基板の厚さの一部までの間に形成されていること、
を特徴とする請求項3に記載の半導体装置。
The insulating layer is formed between the element wiring layer and a part of the thickness of the semiconductor substrate;
The semiconductor device according to claim 3.
素子回路層が設けられている第1主面と、前記第1主面とは反対側の第2主面とを有する半導体基板に貫通孔を開口する工程と、
前記貫通孔の内周面、及び前記第2主面に絶縁層を形成する工程と、
前記素子回路層の前記第1主面側の素子配線層を、前記貫通孔内で露出させる工程と、
前記貫通孔の内周面に形成される前記絶縁層の内部を充填する貫通電極と、前記貫通電極と連続し、前記第2主面に形成される前記絶縁層の表面に延在される再配線層と、を形成する工程と、
前記再配線層を所定の形状にパターニングする工程と、
前記絶縁層を除去する工程と、
を含むことを特徴とする半導体装置の製造方法。
Opening a through hole in a semiconductor substrate having a first main surface provided with an element circuit layer and a second main surface opposite to the first main surface;
Forming an insulating layer on the inner peripheral surface of the through hole and the second main surface;
Exposing the element wiring layer on the first main surface side of the element circuit layer in the through hole;
A through-electrode filling the inside of the insulating layer formed on the inner peripheral surface of the through-hole, and a re-extending on the surface of the insulating layer formed in the second main surface, continuous with the through-electrode. A step of forming a wiring layer;
Patterning the rewiring layer into a predetermined shape;
Removing the insulating layer;
A method for manufacturing a semiconductor device, comprising:
前記絶縁層の厚みが、前記再配線層と前記第2主面との間の厚み>前記第2主面側の貫通電極と前記貫通孔の内周面との間の厚み>前記第1主面側の前記貫通電極と前記貫通孔の内周面との間の厚み、の関係にあること、
を特徴とする請求項5に記載の半導体装置の製造方法。
The thickness of the insulating layer is the thickness between the rewiring layer and the second main surface> the thickness between the through electrode on the second main surface side and the inner peripheral surface of the through hole> the first main The thickness between the through electrode on the surface side and the inner peripheral surface of the through hole,
A method for manufacturing a semiconductor device according to claim 5.
前記絶縁層を除去する工程において、
前記絶縁層の除去範囲が、前記再配線層と前記第2主面との間と、前記第2主面から前記半導体基板の厚さの一部までの範囲であること、
を特徴とする請求項5または請求項6に記載の半導体装置の製造方法。
In the step of removing the insulating layer,
The removal range of the insulating layer is between the redistribution layer and the second main surface, and a range from the second main surface to a part of the thickness of the semiconductor substrate;
The method for manufacturing a semiconductor device according to claim 5, wherein:
前記絶縁層を除去する工程において、
前記絶縁層の除去範囲が、前記再配線層と前記第2主面との間であること、
を特徴とする請求項5または請求項6に記載の半導体装置の製造方法。
In the step of removing the insulating layer,
The removal range of the insulating layer is between the rewiring layer and the second main surface;
The method for manufacturing a semiconductor device according to claim 5, wherein:
前記絶縁層がSiO2であること、
を特徴とする請求項5ないし請求項8のいずれか一項に記載の半導体装置の製造方法。
The insulating layer is SiO 2 ;
The method for manufacturing a semiconductor device according to claim 5, wherein:
素子回路層が設けられている第1主面と、前記第1主面とは反対側の第2主面とを有する半導体基板と、前記第1主面と前記第2主面との間を貫通する貫通孔と、前記貫通孔の内部に形成され、且つ前記素子回路層の素子配線層に接続されると共に、前記第2主面の表面に形成される再配線層に連続する貫通電極と、前記貫通孔の内周面と前記貫通電極との間、及び前記再配線層と前記第2主面との間に設けられる空隙と、を有し、前記空隙の大きさが、前記再配線層と前記第2主面との間の空隙の大きさ>前記第2主面側の貫通電極と前記貫通孔の内周壁との間の空隙の大きさ>前記第1主面側の前記貫通電極と前記貫通孔の内周壁との間の空隙の大きさ、の関係にある半導体装置と、
前記第2主面に対向する表面に配線層が露出された電子デバイスと
前記再配線層と前記電子デバイスの配線層とを接続する接続端子と、
を備えていることを特徴とする回路装置。
A semiconductor substrate having a first main surface on which an element circuit layer is provided, a second main surface opposite to the first main surface, and between the first main surface and the second main surface A through-hole penetrating through and a through-electrode formed inside the through-hole and connected to the element wiring layer of the element circuit layer and continuing to the rewiring layer formed on the surface of the second main surface; A gap provided between the inner peripheral surface of the through hole and the through electrode and between the rewiring layer and the second main surface, and the size of the gap is the rewiring The size of the gap between the layer and the second main surface> The size of the gap between the through electrode on the second main surface side and the inner peripheral wall of the through hole> The through on the first main surface side A semiconductor device in the relationship of the size of the gap between the electrode and the inner peripheral wall of the through hole, and
An electronic device having a wiring layer exposed on a surface facing the second main surface; a connection terminal connecting the rewiring layer and the wiring layer of the electronic device;
A circuit device comprising:
請求項1ないし請求項4のいずれか一項に記載の半導体装置の再配線層と、前記再配線層に対向する電子デバイスの配線層と、を接続端子によって接続する工程を含むこと、
を特徴とする請求項10に記載の回路装置の製造方法。
Including a step of connecting the rewiring layer of the semiconductor device according to any one of claims 1 to 4 and the wiring layer of an electronic device facing the rewiring layer by a connection terminal;
The method of manufacturing a circuit device according to claim 10.
素子回路層が設けられている第1主面と、前記第1主面とは反対側の第2主面とを有する半導体基板に、前記第1主面と前記第2主面との間に貫通孔を開口する工程と、前記貫通孔の内周面、及び前記第2主面に絶縁層を形成する工程と、
前記素子回路層の素子配線層を、前記貫通孔内で露出させる工程と、
前記貫通孔の内周面に形成される絶縁層の内部を充填する貫通電極と、前記貫通電極と連続し、前記第2主面に形成される絶縁層の表面に延在される再配線層と、を形成する工程と、
前記再配線層を所定の形状にパターニングする工程と、
を用いて半導体装置を製造し、
前記再配線層と、前記再配線層に対向する電子デバイスの配線層と、を接続端子によって接続する工程と、
前記半導体装置と前記電子デバイスとを接続した後、前記絶縁層を除去する工程と、
を含むことを特徴とする回路装置の製造方法。
A semiconductor substrate having a first main surface on which an element circuit layer is provided and a second main surface opposite to the first main surface, between the first main surface and the second main surface. A step of opening a through hole; a step of forming an insulating layer on the inner peripheral surface of the through hole and the second main surface;
Exposing the element wiring layer of the element circuit layer in the through hole;
A through electrode filling the inside of the insulating layer formed on the inner peripheral surface of the through hole, and a rewiring layer that is continuous with the through electrode and extends to the surface of the insulating layer formed on the second main surface And a step of forming
Patterning the rewiring layer into a predetermined shape;
A semiconductor device using
Connecting the rewiring layer and the wiring layer of the electronic device facing the rewiring layer by a connection terminal;
Removing the insulating layer after connecting the semiconductor device and the electronic device;
A method for manufacturing a circuit device, comprising:
前記絶縁層を形成する工程において、
前記絶縁層の厚みが、前記再配線層と前記第2主面との間の厚み>前記第2主面側の貫通電極と前記貫通孔との間の厚み>前記第1主面側の前記貫通電極との間の厚み、の関係にあること、
を特徴とする請求項12に記載の回路装置の製造方法。
In the step of forming the insulating layer,
The thickness of the insulating layer is such that the thickness between the redistribution layer and the second main surface> the thickness between the through electrode on the second main surface side and the through hole> the side on the first main surface side. The thickness is in a relationship with the through electrode,
The method of manufacturing a circuit device according to claim 12.
前記絶縁層を除去する工程において、
前記絶縁層の除去範囲が、前記再配線層と前記第2主面との間と、前記第2主面から前記半導体基板の厚さの一部までの範囲であること、
を特徴とする請求項12または請求項13に記載の回路装置の製造方法。
In the step of removing the insulating layer,
The removal range of the insulating layer is between the redistribution layer and the second main surface, and a range from the second main surface to a part of the thickness of the semiconductor substrate;
14. The method for manufacturing a circuit device according to claim 12 or 13, wherein:
前記絶縁層を除去する工程において、
前記絶縁層の除去範囲が、前記再配線層と前記第2主面との間であること、
を特徴とする請求項12または請求項13に記載の回路装置の製造方法。
In the step of removing the insulating layer,
The removal range of the insulating layer is between the rewiring layer and the second main surface;
14. The method for manufacturing a circuit device according to claim 12 or 13, wherein:
請求項1ないし請求項4のいずれか一項に記載の半導体装置、または請求項10に記載の回路装置を備えていること、を特徴とする電子機器。   An electronic apparatus comprising the semiconductor device according to claim 1 or the circuit device according to claim 10.
JP2012026083A 2012-02-09 2012-02-09 Semiconductor device, semiconductor device manufacturing method, circuit device, circuit device manufacturing method, electronic apparatus Active JP5948924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012026083A JP5948924B2 (en) 2012-02-09 2012-02-09 Semiconductor device, semiconductor device manufacturing method, circuit device, circuit device manufacturing method, electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012026083A JP5948924B2 (en) 2012-02-09 2012-02-09 Semiconductor device, semiconductor device manufacturing method, circuit device, circuit device manufacturing method, electronic apparatus

Publications (2)

Publication Number Publication Date
JP2013165099A true JP2013165099A (en) 2013-08-22
JP5948924B2 JP5948924B2 (en) 2016-07-06

Family

ID=49176300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012026083A Active JP5948924B2 (en) 2012-02-09 2012-02-09 Semiconductor device, semiconductor device manufacturing method, circuit device, circuit device manufacturing method, electronic apparatus

Country Status (1)

Country Link
JP (1) JP5948924B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093313A1 (en) * 2013-12-16 2015-06-25 ソニー株式会社 Semiconductor element, method for producing semiconductor element, and electronic apparatus
ITUB20160027A1 (en) * 2016-02-01 2017-08-01 St Microelectronics Srl PROCEDURE FOR PRODUCING SEMICONDUCTOR AND CORRESPONDING DEVICES
WO2017150343A1 (en) * 2016-03-03 2017-09-08 株式会社デンソー Semiconductor device
WO2018079243A1 (en) * 2016-10-24 2018-05-03 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device, manufacturing method, and solid-state imaging device
JP2019036651A (en) * 2017-08-17 2019-03-07 キヤノン株式会社 Semiconductor device and manufacturing method of the same
JP2019067812A (en) * 2017-09-28 2019-04-25 大日本印刷株式会社 Through-electrode substrate and manufacturing method thereof
JP2019067798A (en) * 2017-09-28 2019-04-25 大日本印刷株式会社 Through-electrode substrate and manufacturing method thereof
US10566283B2 (en) 2017-07-28 2020-02-18 Stmicroelectronics S.R.L. Semiconductor device and a corresponding method of manufacturing semiconductor devices
US10593625B2 (en) 2017-07-28 2020-03-17 Stmicroelectronics S.R.L. Semiconductor device and a corresponding method of manufacturing semiconductor devices
US10790226B2 (en) 2017-07-28 2020-09-29 Stmicroelectronics S.R.L. Integrated electronic device with a redistribution region and a high resilience to mechanical stresses and method for its preparation
US11469194B2 (en) 2018-08-08 2022-10-11 Stmicroelectronics S.R.L. Method of manufacturing a redistribution layer, redistribution layer and integrated circuit including the redistribution layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127242A (en) * 1999-10-22 2001-05-11 Seiko Epson Corp Semiconductor chip, multichip package, semiconductor device, and electronic equipment, and manufacturing method thereof
JP2009135193A (en) * 2007-11-29 2009-06-18 Powertech Technology Inc Semiconductor chip device with silicon through hole, and manufacturing method thereof
JP2010135348A (en) * 2008-12-02 2010-06-17 Panasonic Corp Method for forming through electrode
JP2010251791A (en) * 2010-06-24 2010-11-04 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001127242A (en) * 1999-10-22 2001-05-11 Seiko Epson Corp Semiconductor chip, multichip package, semiconductor device, and electronic equipment, and manufacturing method thereof
JP2009135193A (en) * 2007-11-29 2009-06-18 Powertech Technology Inc Semiconductor chip device with silicon through hole, and manufacturing method thereof
JP2010135348A (en) * 2008-12-02 2010-06-17 Panasonic Corp Method for forming through electrode
JP2010251791A (en) * 2010-06-24 2010-11-04 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9978797B2 (en) 2013-12-16 2018-05-22 Sony Corporation Semiconductor element, manufacturing method of semiconductor element, and electronic apparatus
JPWO2015093313A1 (en) * 2013-12-16 2017-03-16 ソニー株式会社 Semiconductor device, method for manufacturing semiconductor device, and electronic device
US11610929B2 (en) 2013-12-16 2023-03-21 Sony Corporation Semiconductor element, manufacturing method of semiconductor element, and electronic apparatus
US10950648B2 (en) 2013-12-16 2021-03-16 Sony Corporation Semiconductor element, manufacturing method of semiconductor element, and electronic apparatus
WO2015093313A1 (en) * 2013-12-16 2015-06-25 ソニー株式会社 Semiconductor element, method for producing semiconductor element, and electronic apparatus
US10483220B2 (en) 2016-02-01 2019-11-19 Stimicroelectronics S.R.L. Method of manufacturing semiconductor devices and corresponding device
ITUB20160027A1 (en) * 2016-02-01 2017-08-01 St Microelectronics Srl PROCEDURE FOR PRODUCING SEMICONDUCTOR AND CORRESPONDING DEVICES
WO2017150343A1 (en) * 2016-03-03 2017-09-08 株式会社デンソー Semiconductor device
WO2018079243A1 (en) * 2016-10-24 2018-05-03 ソニーセミコンダクタソリューションズ株式会社 Semiconductor device, manufacturing method, and solid-state imaging device
CN110073475A (en) * 2016-10-24 2019-07-30 索尼半导体解决方案公司 Semiconductor devices, manufacturing method and solid imaging element
US11018110B2 (en) 2016-10-24 2021-05-25 Sony Semiconductor Solutions Corporation Semiconductor device, manufacturing method, and solid-state imaging device
US10593625B2 (en) 2017-07-28 2020-03-17 Stmicroelectronics S.R.L. Semiconductor device and a corresponding method of manufacturing semiconductor devices
US10566283B2 (en) 2017-07-28 2020-02-18 Stmicroelectronics S.R.L. Semiconductor device and a corresponding method of manufacturing semiconductor devices
US10790226B2 (en) 2017-07-28 2020-09-29 Stmicroelectronics S.R.L. Integrated electronic device with a redistribution region and a high resilience to mechanical stresses and method for its preparation
US11587866B2 (en) 2017-07-28 2023-02-21 Stmicroelectronics S.R.L. Integrated electronic device with a redistribution region and a high resilience to mechanical stresses and method for its preparation
JP2019036651A (en) * 2017-08-17 2019-03-07 キヤノン株式会社 Semiconductor device and manufacturing method of the same
JP7009111B2 (en) 2017-08-17 2022-01-25 キヤノン株式会社 Semiconductor devices and their manufacturing methods
JP2019067798A (en) * 2017-09-28 2019-04-25 大日本印刷株式会社 Through-electrode substrate and manufacturing method thereof
JP7043768B2 (en) 2017-09-28 2022-03-30 大日本印刷株式会社 Through Electrode Substrate and Its Manufacturing Method
JP7087319B2 (en) 2017-09-28 2022-06-21 大日本印刷株式会社 Through Silicon Via Board and Its Manufacturing Method
JP2019067812A (en) * 2017-09-28 2019-04-25 大日本印刷株式会社 Through-electrode substrate and manufacturing method thereof
US11469194B2 (en) 2018-08-08 2022-10-11 Stmicroelectronics S.R.L. Method of manufacturing a redistribution layer, redistribution layer and integrated circuit including the redistribution layer

Also Published As

Publication number Publication date
JP5948924B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5948924B2 (en) Semiconductor device, semiconductor device manufacturing method, circuit device, circuit device manufacturing method, electronic apparatus
US20220246512A1 (en) Through-hole electrode substrate
JP5957926B2 (en) Manufacturing method of semiconductor device
TWI387065B (en) Electronic device packages and methods of formation
TWI573253B (en) Sensor package with exposed sensor array and method of making same
US9349673B2 (en) Substrate, method of manufacturing substrate, semiconductor device, and electronic apparatus
TWI502705B (en) Chip package and fabrication method thereof
TWI538132B (en) Semiconductor device having through hole with double structure and manufacturing method of the same
TWI473223B (en) Chip package and fabrication method thereof
JP5450295B2 (en) Imaging apparatus and manufacturing method of imaging apparatus
TWI761852B (en) Through-electrode substrate, method for manufacturing the same, and mounting substrate
JP5568357B2 (en) Semiconductor device and manufacturing method thereof
JP2009181981A (en) Manufacturing process of semiconductor device, and the semiconductor device
TWI500132B (en) Fabrication method of semiconductor device, through substrate via process and structure thereof
JPWO2008023826A1 (en) Semiconductor device and manufacturing method thereof
TWI525805B (en) Low profile image sensor
JP2010263130A (en) Semiconductor device and method of manufacturing semiconductor device
JP2003007909A (en) Method of manufacturing semiconductor device and semiconductor device manufactured thereby, and electronic equipment using the semiconductor device
JP5825415B2 (en) Sensor package and manufacturing method thereof
JP4285604B2 (en) Substrate with through electrode, method for manufacturing the same, and electronic device
JP4537793B2 (en) Sensor unit and manufacturing method thereof
JP2011103473A (en) Sensor package and method of manufacturing the same
JP7273153B2 (en) Semiconductor device with through-substrate via and method for manufacturing semiconductor device with through-substrate via
JP2009267152A (en) Semiconductor device, and manufacturing method thereof
TW201633399A (en) Semiconductor structure and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5948924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150