JP2013164025A - System for controlling number of compressors - Google Patents

System for controlling number of compressors Download PDF

Info

Publication number
JP2013164025A
JP2013164025A JP2012027623A JP2012027623A JP2013164025A JP 2013164025 A JP2013164025 A JP 2013164025A JP 2012027623 A JP2012027623 A JP 2012027623A JP 2012027623 A JP2012027623 A JP 2012027623A JP 2013164025 A JP2013164025 A JP 2013164025A
Authority
JP
Japan
Prior art keywords
pressure
compressor
compressors
units
limit pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012027623A
Other languages
Japanese (ja)
Other versions
JP5915932B2 (en
Inventor
Shigeki Ochi
重喜 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012027623A priority Critical patent/JP5915932B2/en
Publication of JP2013164025A publication Critical patent/JP2013164025A/en
Application granted granted Critical
Publication of JP5915932B2 publication Critical patent/JP5915932B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system for controlling the number of compressors, capable of producing a compressed air in a manner quickly following a use load of the compressed air with a simple structure.SOLUTION: A system for controlling the number of compressors comprises: a plurality of compressor 2; a receiver tank 3 to which compressed air from the compressor 2 is supplied and which feeds the compressed air to a compressed air using apparatus; a pressure sensor 4 installed on the receiver tank 3; and an operating number controller 5 changing the number of operating compressors 2 on the basis of a detection pressure of the pressure sensor 4. An operating number reducing pressure as a boundary value whether to reduce the number of operating compressors by the operating number controller 5 is set to be lower as the number of operating compressors is larger. Each compressor 2 is subjected to capacity control so that a discharge pressure is maintained between an upper limit pressure and a lower limit pressure. The operating number controller 5, in which the upper limit pressure and the lower limit pressure of the compressor 2 are input as set values in advance, performs a control by determining the operating number reducing pressure C on the basis of the set values of the operating compressors 2.

Description

本発明は、複数台の空気圧縮機を備え、圧縮空気の使用負荷に応じて圧縮機の運転台数を変更する圧縮機台数制御システムに関するものである。   The present invention relates to a compressor number control system that includes a plurality of air compressors and changes the number of operating compressors according to the use load of compressed air.

従来、下記特許文献1に開示されるように、圧力とその変化率とに基づき、圧縮機の運転台数を増減する圧力閾値を変更することが提案されている。この特許文献1に記載の発明では、すべての圧縮機がオンオフ制御される(段落番号0029など)。   Conventionally, as disclosed in the following Patent Document 1, it has been proposed to change a pressure threshold value for increasing or decreasing the number of operating compressors based on a pressure and a rate of change thereof. In the invention described in Patent Document 1, all the compressors are on / off controlled (paragraph number 0029 and the like).

特開2007−120497号公報(特許請求の範囲、段落番号0140−0155、図15、図16)JP 2007-120497 A (claims, paragraph numbers 0140-0155, FIGS. 15 and 16)

しかしながら、圧力変化率は考慮されても、運転中の圧縮機の台数は考慮されていない。また、複数台の圧縮機は、単にオンオフ制御されている。これでは、圧縮空気の使用負荷に迅速に追従させて圧縮空気を製造することができない。   However, even if the pressure change rate is considered, the number of compressors in operation is not considered. In addition, the plurality of compressors are simply on / off controlled. In this case, the compressed air cannot be manufactured by quickly following the usage load of the compressed air.

本発明が解決しようとする課題は、簡易な構成で運転台数を考慮して制御し、圧縮空気の使用負荷に迅速に追従させて圧縮空気を製造することのできる圧縮機台数制御システムを提供することにある。   The problem to be solved by the present invention is to provide a compressor number control system capable of producing compressed air by controlling the number of operating units with a simple configuration and quickly following the usage load of the compressed air. There is.

本発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、複数台の圧縮機と、これら圧縮機から圧縮空気が供給されると共に圧縮空気利用機器へ圧縮空気を送る箇所に設けられ、圧縮空気の圧力を検出する圧力センサと、この圧力センサの検出圧力に基づき前記圧縮機の運転台数を変更する台数制御器とを備え、前記台数制御器により運転台数を減少させるか否かの境界値としての台数減少用圧力は、運転台数が多いほど低くなるよう設定され、前記各圧縮機は、吐出圧力を上限圧力と下限圧力との間に維持するように容量制御され、前記台数制御器は、前記各圧縮機の上限圧力と下限圧力とがそれぞれ予め設定値として入力されており、運転中の圧縮機の前記設定値に基づいて前記台数減少用圧力を求め、前記圧力センサの検出圧力がこの台数減少用圧力以上になると運転中の圧縮機を1台停止させることを特徴とする圧縮機台数制御システムである。   The present invention has been made to solve the above-mentioned problems, and the invention according to claim 1 is directed to a plurality of compressors, compressed air supplied from these compressors, and compressed air to a device using compressed air. A pressure sensor for detecting the pressure of compressed air, and a unit controller for changing the number of operating compressors based on the detected pressure of the pressure sensor. The number reduction pressure as a boundary value of whether to decrease or not is set so as to decrease as the number of operating units increases, and each compressor has a capacity so as to maintain the discharge pressure between the upper limit pressure and the lower limit pressure. And the upper limit pressure and the lower limit pressure of each of the compressors are previously input as set values, and the number controller obtains the number reduction pressure based on the set values of the compressors in operation. The pressure Detection pressure of the capacitors is compressor units control system characterized by stopping one compressor and in operation becomes more the number reduced Pressure.

請求項1に記載の発明によれば、運転台数を減少させるか否かの境界値としての台数減少用圧力は、運転台数が多いほど低くなるよう設定される。圧縮機の運転台数が多いほど、目標圧力に維持するための1台当たりの寄与率は下がり、圧力変動は抑えられるので、運転台数の増加に応じて台数減少用圧力を下げることができる。言い換えれば、通常、台数減少用圧力以上になれば圧縮機を1台停止し、台数増加用圧力以下になれば圧縮機を1台起動するが、運転台数を増すほど台数減少用圧力を下げて、圧力変動幅を抑制することができる。
また、各圧縮機は吐出圧力を上限圧力と下限圧力との間に維持するように容量制御されるが、その上限圧力と下限圧力とが台数制御器に設定され、運転中の圧縮機の設定値に基づいて台数減少用圧力を求めて制御される。従って、各圧縮機の上限圧力を互いに同一にしたり、下限圧力を互いに同一にしたりする必要がなく、また許容範囲内に収めるとしても、その許容範囲を大きくとることができる。さらに、必ずしも、各圧縮機の容量調整範囲を互いに同一または許容範囲内に収まるように調整する必要もなく、個々の圧縮機の実際の上限圧力と下限圧力を台数制御器に設定して、簡易に精度の高い台数制御が可能となる。
According to the first aspect of the present invention, the pressure for reducing the number of vehicles as a boundary value for determining whether or not to decrease the number of operating vehicles is set so as to decrease as the number of operating vehicles increases. As the number of operating compressors increases, the contribution rate per unit for maintaining the target pressure decreases, and the pressure fluctuation can be suppressed. Therefore, the pressure for reducing the number of units can be lowered as the number of operating units increases. In other words, one compressor is usually stopped when the pressure for reducing the number of units is higher than that, and one compressor is started when the pressure for increasing the number of units is lower, but the pressure for decreasing the number is lowered as the number of operating units increases. The pressure fluctuation range can be suppressed.
In addition, each compressor is capacity-controlled so that the discharge pressure is maintained between the upper limit pressure and the lower limit pressure, but the upper limit pressure and the lower limit pressure are set in the unit controller, and the setting of the compressor during operation is set. Based on the value, the pressure for reducing the number of units is obtained and controlled. Therefore, the upper limit pressures of the compressors do not need to be the same or the lower limit pressures do not have to be the same, and even if they are within the allowable range, the allowable range can be increased. Furthermore, it is not always necessary to adjust the capacity adjustment range of each compressor to be within the same or within the allowable range, and the actual upper limit pressure and lower limit pressure of each compressor can be set in the unit controller to simplify the operation. Highly accurate unit control is possible.

請求項2に記載の発明は、運転中の圧縮機について、前記上限圧力の平均値としての平均上限圧力と、前記下限圧力の平均値としての平均下限圧力とを求め、前記台数減少用圧力は、運転台数に基づき次式により設定されることを特徴とする請求項1に記載の圧縮機台数制御システムである。
台数減少用圧力={(平均上限圧力−平均下限圧力)/運転台数}+平均下限圧力
The invention according to claim 2 calculates an average upper limit pressure as an average value of the upper limit pressure and an average lower limit pressure as an average value of the lower limit pressures of the compressor in operation, and the number reduction pressure is The compressor number control system according to claim 1, wherein the compressor number control system is set by the following formula based on the number of operating units.
Number reduction pressure = {(average upper limit pressure-average lower limit pressure) / number of operating units} + average lower limit pressure

請求項2に記載の発明によれば、運転中の圧縮機の平均上限圧力と平均下限圧力の他、運転台数から、台数減少用圧力を求めて、簡易に制御することができる。   According to the invention described in claim 2, in addition to the average upper limit pressure and the average lower limit pressure of the compressor in operation, the number-decreasing pressure can be obtained from the number of operating units, and can be easily controlled.

請求項3に記載の発明は、吐出容量の異なる圧縮機が含まれる場合、運転中の各圧縮機について、その圧縮機の吐出容量を次停止予定機の吐出容量で除した値としての比台数を求め、運転中の圧縮機について、各圧縮機の上限圧力にその比台数を乗じた値の総和を求めると共に、これを比台数の総和で除した値として前記平均上限圧力を求め、運転中の圧縮機について、各圧縮機の下限圧力にその比台数を乗じた値の総和を求めると共に、これを比台数の総和で除した値として前記平均下限圧力を求め、前記台数減少用圧力は、運転中の圧縮機の比台数の総和に基づき、次式により設定されることを特徴とする請求項2に記載の圧縮機台数制御システムである。
台数減少用圧力={(平均上限圧力−平均下限圧力)/(運転中の圧縮機の比台数の総和)}+平均下限圧力
In the invention according to claim 3, when compressors having different discharge capacities are included, for each compressor in operation, the specific number as a value obtained by dividing the discharge capacity of the compressor by the discharge capacity of the next scheduled stop machine For the compressors in operation, obtain the sum of the values obtained by multiplying the upper limit pressure of each compressor by its specific number of units, and calculate the average upper limit pressure as a value obtained by dividing this by the sum of the number of specific units. As for the compressors, the total lower limit pressure of each compressor is obtained by multiplying the specific number of units, and the average lower limit pressure is obtained as a value obtained by dividing this by the total number of specific units. 3. The compressor number control system according to claim 2, wherein the compressor number control system is set according to the following equation based on the total number of compressors in operation.
Number reduction pressure = {(Average upper limit pressure-Average lower limit pressure) / (Total number of compressors in operation)} + Average lower limit pressure

請求項3に記載の発明によれば、吐出容量の異なる圧縮機が含まれる場合でも、次停止予定機を基準の吐出容量として、運転中の各圧縮機の吐出容量を除した値である比台数という概念を用いて、台数減少用圧力を求めて制御することができる。   According to the third aspect of the present invention, even when compressors having different discharge capacities are included, the ratio that is a value obtained by dividing the discharge capacities of the compressors in operation with the next scheduled stoppage as a reference discharge capacity Using the concept of the number of units, the pressure for decreasing the number of units can be obtained and controlled.

さらに、請求項4に記載の発明は、前記圧力センサによる検出圧力が前記台数減少用圧力以上の状態を設定時間継続後に、前記圧縮機の運転台数を減少させることを特徴とする請求項1〜3のいずれか1項に記載の圧縮機台数制御システムである。   Furthermore, the invention according to claim 4 is characterized in that the number of operating compressors is decreased after a set time has elapsed in a state where the pressure detected by the pressure sensor is equal to or higher than the pressure for decreasing the number of units. The compressor number control system according to any one of items 3 to 3.

請求項4に記載の発明によれば、圧力センサによる検出圧力が台数減少用圧力以上の状態を設定時間継続後に圧縮機の運転台数を減少させるので、圧縮機が次々と過剰に停止されるのを防止できる。   According to the fourth aspect of the present invention, since the number of operating compressors is decreased after the set time is maintained while the pressure detected by the pressure sensor is equal to or higher than the pressure for decreasing the number of compressors, the compressors are excessively stopped one after another. Can be prevented.

本発明によれば、簡易な構成で運転台数を考慮して制御し、圧縮空気の使用負荷に迅速に追従させて圧縮空気を製造することができる。   According to the present invention, it is possible to manufacture compressed air by controlling in consideration of the number of operating units with a simple configuration and quickly following the usage load of the compressed air.

本発明の圧縮機台数制御システムの一実施例を示す概略図である。It is the schematic which shows one Example of the compressor number control system of this invention. 図1の圧縮機台数制御システムによる台数制御方法の一例を示す図であり、運転中の各圧縮機の吐出圧力、レシーバタンク内の圧力、運転台数増減表を示している。It is a figure which shows an example of the number control method by the compressor number control system of FIG. 1, and has shown the discharge pressure of each compressor during a driving | operation, the pressure in a receiver tank, and a driving | operation number increase / decrease table. 図1の圧縮機台数制御システムにおいて、台数制御器のタッチスクリーンの設定画面の一例を示す図である。In the compressor number control system of FIG. 1, it is a figure which shows an example of the setting screen of the touch screen of a number controller. 図1の圧縮機台数制御システムにおいて、台数制御器のタッチスクリーンの設定画面の他の例を示す図である。In the compressor number control system of FIG. 1, it is a figure which shows the other example of the setting screen of the touch screen of a number controller.

以下、本発明の具体的実施例を図面に基づいて詳細に説明する。
図1は、本発明の圧縮機台数制御システムの一実施例を示す概略図である。本実施例の圧縮機台数制御システム1は、複数台の圧縮機2,2,…と、これら圧縮機2から圧縮空気が供給されるレシーバタンク3と、このレシーバタンク3内の圧力を検出する圧力センサ4と、この圧力センサ4の検出圧力などに基づき前記各圧縮機2を制御する台数制御器5とを備える。
Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram showing an embodiment of a compressor number control system according to the present invention. The compressor number control system 1 according to the present embodiment detects a plurality of compressors 2, 2,..., A receiver tank 3 to which compressed air is supplied from the compressor 2, and a pressure in the receiver tank 3. A pressure sensor 4 and a number controller 5 for controlling the compressors 2 based on the pressure detected by the pressure sensor 4 are provided.

各圧縮機2は、電動式の空気圧縮機であり、圧縮機本体がモータで駆動され、外気を吸入し圧縮して吐出する。各圧縮機2からの圧縮空気は、共通のレシーバタンク3を介して、一または複数の各種の圧縮空気利用機器(図示省略)へ送られる。   Each compressor 2 is an electric air compressor, and the compressor body is driven by a motor to suck, compress, and discharge outside air. Compressed air from each compressor 2 is sent to one or a plurality of various compressed air utilization devices (not shown) via a common receiver tank 3.

各圧縮機2は、スクリュー式、ターボ式またはレシプロ式など、その構成を特に問わないが、典型的には互いに同一の構成とされる。また、各圧縮機2は、典型的には、同一の吐出容量とされる。   Each compressor 2 is not particularly limited in its configuration, such as a screw type, a turbo type, or a reciprocating type, but typically has the same configuration as each other. Each compressor 2 typically has the same discharge capacity.

本実施例の各圧縮機2は、容量制御可能に構成される。ここでは、機械的に自力で容量制御可能とされる。容量制御の具体的構成は特に問わないが、本実施例では、圧縮機2の吸込側に設けた容量調整弁(図示省略)の開度を調整することでなされる。   Each compressor 2 of a present Example is comprised so that capacity | capacitance control is possible. Here, the capacity can be controlled mechanically by itself. Although the specific configuration of the capacity control is not particularly limited, in this embodiment, the capacity control is performed by adjusting the opening of a capacity adjustment valve (not shown) provided on the suction side of the compressor 2.

容量調整弁は、圧縮機2の吐出側の圧力を所望に維持するように、自力で開度を調整する。つまり、圧縮機2の吐出側の圧力が上昇するのに伴い、容量調整弁は開度を絞って吸入量を減少させ、これにより圧縮機2は吐出量を減少させる一方、圧縮機2の吐出側の圧力が低下するのに伴い、容量調整弁は開度を拡げて吸入量を増加させ、これにより圧縮機2は吐出量を増加させる。   A capacity | capacitance adjustment valve adjusts an opening degree by itself so that the pressure of the discharge side of the compressor 2 may be maintained as desired. In other words, as the pressure on the discharge side of the compressor 2 increases, the capacity adjustment valve reduces the suction amount by reducing the opening, thereby reducing the discharge amount while the compressor 2 reduces the discharge amount. As the pressure on the side decreases, the capacity adjustment valve increases the opening to increase the intake amount, thereby causing the compressor 2 to increase the discharge amount.

より具体的には、容量調整弁は、図2において、圧縮機2の吐出側の圧力を、下限圧力PLと上限圧力PHとの間に維持するように開度を調整する。この場合、容量調整弁は、圧縮機2の吐出側の圧力が下限圧力PL以下になると全開される一方、上限圧力PH以上になると全閉される。また、下限圧力PLと上限圧力PHとの間では、下限圧力PLから上限圧力PHへ行くに従って比例的に開度が絞られる。このように、下限圧力PLと上限圧力PHとの圧力範囲が、容量調整弁の制御範囲とされる。つまり、各圧縮機2は、容量調整弁により、規定の調整範囲PL〜PHで、吐出圧力と吐出流量とが逆比例のリニアな特性を有する。言い換えれば、吐出圧力と圧縮機2の負荷率とは一次関数になっている。なお、万一、圧縮機2の吐出側の圧力が所定の停止圧力PSを超えると、圧縮機2は強制停止される。   More specifically, in FIG. 2, the capacity adjustment valve adjusts the opening so as to maintain the pressure on the discharge side of the compressor 2 between the lower limit pressure PL and the upper limit pressure PH. In this case, the capacity adjustment valve is fully opened when the pressure on the discharge side of the compressor 2 is lower than the lower limit pressure PL, and is fully closed when the pressure is higher than the upper limit pressure PH. Further, the opening degree is proportionally reduced between the lower limit pressure PL and the upper limit pressure PH as it goes from the lower limit pressure PL to the upper limit pressure PH. Thus, the pressure range between the lower limit pressure PL and the upper limit pressure PH is the control range of the capacity adjustment valve. That is, each compressor 2 has a linear characteristic in which the discharge pressure and the discharge flow rate are inversely proportional to each other within a specified adjustment range PL to PH by the capacity adjustment valve. In other words, the discharge pressure and the load factor of the compressor 2 are linear functions. If the pressure on the discharge side of the compressor 2 exceeds a predetermined stop pressure PS, the compressor 2 is forcibly stopped.

本実施例の各圧縮機2は、典型的には、同時に複数台が運転される場合でもすべてが容量制御される。そのため、各圧縮機2は、全負荷運転に保持するためのフルロードロック機能を備える必要はない。   Each compressor 2 of the present embodiment is typically capacity-controlled even when a plurality of compressors 2 are operated at the same time. Therefore, it is not necessary for each compressor 2 to have a full load lock function for maintaining full load operation.

レシーバタンク3は、各圧縮機2から圧縮空気が供給される一方、一または複数の圧縮空気利用機器へ圧縮空気を供給する中空容器である。レシーバタンク3内の圧力を検出可能に、圧力センサ4が設けられる。   The receiver tank 3 is a hollow container that is supplied with compressed air from each compressor 2 and supplies compressed air to one or a plurality of compressed air using devices. A pressure sensor 4 is provided so that the pressure in the receiver tank 3 can be detected.

台数制御器5は、各圧縮機2および圧力センサ4に接続され、圧力センサ4による検出圧力などに基づき、各圧縮機2を制御する。本実施例では、各圧縮機2の運転の有無(つまり運転台数の変更)を切り替える。具体的な制御方法は、以下のとおりである。   The number controller 5 is connected to each compressor 2 and the pressure sensor 4, and controls each compressor 2 based on the pressure detected by the pressure sensor 4. In this embodiment, the presence or absence of operation of each compressor 2 (that is, change of the number of operating units) is switched. A specific control method is as follows.

図2は、本実施例の圧縮機台数制御システム1による台数制御方法の一例を示す図であり、運転中の各圧縮機2の吐出圧力と、レシーバタンク3内の圧力(つまり圧力センサ4の検出圧力)と、運転台数増減表とを示している。   FIG. 2 is a diagram showing an example of the number control method by the compressor number control system 1 of the present embodiment. The discharge pressure of each compressor 2 during operation and the pressure in the receiver tank 3 (that is, the pressure sensor 4) Detection pressure) and the number of operating units increase and decrease table.

運転台数増減表は、図2の中央に表形式で示すように、運転台数を増やすための起動表と、図2の右側に棒グラフ状に示すように、運転台数を減らすための停止表とに分けられる。起動表は、レシーバタンク3内の圧力Pとその変化率ΔPとに基づき、圧縮機2を如何に起動するか、言い換えれば運転台数を如何に増加させるかを示している。一方、停止表は、レシーバタンク3内の圧力Pと、現在実際に運転中の台数とに基づき、圧縮機2を如何に停止するか、言い換えれば運転台数を如何に減少させるかを示している。これらの制御は、圧力センサ4の検出圧力Pと圧力変化率ΔPとをそれぞれ所定周期で求め、それに基づき行われる。本実施例では、検出圧力Pとして、台数制御器5のCPUの演算周期の所定回数分(たとえば20回分)の平均値が用いられ、圧力変化率ΔPとして、直近の所定時間(たとえば直近20秒)の平均値が用いられる。   As shown in the form of a table in the center of FIG. 2, the operation number increase / decrease table is divided into a start table for increasing the operation number and a stop table for reducing the operation number as shown in a bar graph on the right side of FIG. Divided. The start-up table shows how to start the compressor 2 based on the pressure P in the receiver tank 3 and the rate of change ΔP, in other words, how to increase the number of operating units. On the other hand, the stop table shows how to stop the compressor 2 on the basis of the pressure P in the receiver tank 3 and the number of units currently in operation, in other words, how to reduce the number of units in operation. . These controls are performed based on the detected pressure P of the pressure sensor 4 and the pressure change rate ΔP at predetermined intervals. In the present embodiment, an average value for a predetermined number of times (for example, 20 times) of the calculation cycle of the CPU of the number controller 5 is used as the detected pressure P, and the most recent predetermined time (for example, the latest 20 seconds) is used as the pressure change rate ΔP. ) Average value is used.

圧力変化率ΔPとは、所定時間当たりの変動圧力である。圧力変化率ΔPがマイナスの場合、レシーバタンク3内の圧力は減少傾向にあり、圧力変化率ΔPがプラスの場合、レシーバタンク3内の圧力は増加傾向にある。圧縮空気利用機器による圧縮空気の使用量が、圧縮機2による圧縮空気の吐出量よりも多い場合、レシーバタンク3内の圧力は減少し、逆に、圧縮機2による圧縮空気の吐出量が、圧縮空気利用機器による圧縮空気の使用量よりも多い場合、レシーバタンク3内の圧力は増加する。   The pressure change rate ΔP is a fluctuating pressure per predetermined time. When the pressure change rate ΔP is negative, the pressure in the receiver tank 3 tends to decrease, and when the pressure change rate ΔP is positive, the pressure in the receiver tank 3 tends to increase. When the amount of compressed air used by the device using compressed air is larger than the amount of compressed air discharged by the compressor 2, the pressure in the receiver tank 3 decreases, and conversely, the amount of compressed air discharged by the compressor 2 is When the amount of compressed air used is greater than the amount of compressed air used by the device using compressed air, the pressure in the receiver tank 3 increases.

圧縮機2からレシーバタンク3への配管の圧力損失により、レシーバタンク3内の圧力は、圧縮機2の吐出圧力よりも若干低圧になる。そのため、図2において若干傾きのある破線で結んで示すように、レシーバタンク3内の圧力PL1,PL2は、それぞれ、圧縮機2の吐出圧力PL1´,PL2´と対応する。なお、本実施例の圧縮機台数制御システム1の場合、停止表から明らかなとおり、レシーバタンク3内の圧力が容量調整弁の制御範囲の上限圧力PHになるときは、すべての圧縮機2が停止され、空気流量は0になるので、上限圧力PHに関しては、圧縮機吐出圧力とレシーバタンク圧力とは同一になる。   Due to the pressure loss of the piping from the compressor 2 to the receiver tank 3, the pressure in the receiver tank 3 is slightly lower than the discharge pressure of the compressor 2. Therefore, the pressures PL1 and PL2 in the receiver tank 3 correspond to the discharge pressures PL1 ′ and PL2 ′ of the compressor 2, respectively, as shown by a broken line having a slight inclination in FIG. In the case of the compressor number control system 1 of this embodiment, as is apparent from the stop table, when the pressure in the receiver tank 3 becomes the upper limit pressure PH of the control range of the capacity adjustment valve, all the compressors 2 are Since the air flow rate is stopped, the compressor discharge pressure and the receiver tank pressure are the same with respect to the upper limit pressure PH.

台数制御器5は、圧力センサ4の検出圧力と、予め設定した圧力値とを比較して、圧縮機2の運転台数を増減する。この際、運転台数を増加させる圧力値は、前記起動表に示すように、圧力センサ4の検出圧力Pの圧力変化率ΔPに基づき異なるよう設定される。つまり、台数制御器5は、圧力センサ4の検出圧力Pが台数増加用圧力A以下になると圧縮機2を1台起動させるが、運転台数を増加させるか否かの境界値としての台数増加用圧力Aは、圧力変化率ΔPがマイナス側へ大きくなるほど段階的に高圧になるよう設定される。   The number controller 5 compares the detected pressure of the pressure sensor 4 with a preset pressure value, and increases or decreases the number of operating compressors 2. At this time, the pressure value for increasing the number of operating units is set to be different based on the pressure change rate ΔP of the detected pressure P of the pressure sensor 4 as shown in the startup table. In other words, the number controller 5 starts one compressor 2 when the detected pressure P of the pressure sensor 4 is equal to or less than the number-increasing pressure A, but increases the number as a boundary value of whether to increase the number of operating units. The pressure A is set so as to increase gradually as the pressure change rate ΔP increases to the negative side.

運転台数を増加させる場合、台数制御器5は、圧力センサ4の検出圧力Pが台数増加用圧力A以下の状態を維持する場合、所定時間(連続起動防止時間)を経過するごとに前記圧縮機2を1台起動させるが、圧力変化率ΔPが設定値(−ΔP1)以下の領域(つまりΔP≦−ΔP1)では、圧力センサ4の検出圧力Pが即時増加用圧力B以下になれば、前記所定時間の経過を待つことなくさらに1台起動させる。なお、即時増加用圧力Bは、圧力変化率ΔPの絶対値が大きいほど高圧に設定されるのがよい。   When the number of operating units is to be increased, the unit controller 5 is configured such that, when the detected pressure P of the pressure sensor 4 is maintained at a level equal to or lower than the number increasing pressure A, the compressor 2 is started, but in a region where the pressure change rate ΔP is equal to or less than the set value (−ΔP1) (that is, ΔP ≦ −ΔP1), if the detected pressure P of the pressure sensor 4 is equal to or less than the immediate increase pressure B, One more unit is activated without waiting for the elapse of a predetermined time. The immediate increase pressure B is preferably set to a higher pressure as the absolute value of the pressure change rate ΔP is larger.

一方、運転台数を減少させる圧力値は、前記停止表に示すように、現在実際に運転中の圧縮機2の運転台数に基づき異なるよう設定される。つまり、台数制御器5は、圧力センサ4の検出圧力Pが台数減少用圧力C以上になると圧縮機2を1台停止させるが、運転台数を減少させるか否かの境界値としての台数減少用圧力Cは、運転台数が増すほど段階的に低圧になるよう設定される。   On the other hand, as shown in the stop table, the pressure value for decreasing the number of operating units is set to be different based on the number of operating compressors 2 that are currently operating. That is, the number controller 5 stops one compressor 2 when the detected pressure P of the pressure sensor 4 is equal to or higher than the number reduction pressure C, but the number controller 5 serves as a boundary value for determining whether or not to reduce the number of operating units. The pressure C is set so as to gradually decrease as the number of operating units increases.

台数減少用圧力Cは、各圧縮機2の負荷率を考慮して決定するのがよい。すなわち、停止時(上限圧力PH以上)を負荷率0%、全負荷時(下限圧力PL以下)を負荷率100%とした場合に、運転中の圧縮機2の1台当たりの負荷率が次式により求められる停止負荷率以下になると、運転中の1台を停止させる。   The pressure C for reducing the number of units should be determined in consideration of the load factor of each compressor 2. That is, when the load factor is 0% when stopped (above the upper limit pressure PH) and the load factor is 100% when full load (lower limit pressure PL or less), the load factor per compressor 2 in operation is If it becomes below the stop load factor calculated | required by a type | formula, one in operation will be stopped.

Figure 2013164025
Figure 2013164025

台数制御器5は、運転中の台数に応じた停止負荷率で1台を停止させるために、運転中の台数に基づき台数減少用圧力Cを次式により求め、これに基づき運転台数を適宜減少させる。   The number controller 5 calculates the pressure C for reducing the number of units based on the number of units in operation by the following formula in order to stop one unit at a stop load factor according to the number of units in operation, and reduces the number of units operated accordingly based on this formula. Let

Figure 2013164025
Figure 2013164025

この数式2は、前記数式1を用いて、次のように書き換えることができる。   This Formula 2 can be rewritten as follows using the Formula 1.

Figure 2013164025
Figure 2013164025

このように、運転台数に応じて台数減少用圧力Cを規定することができる。なお、数式2および数式3にいう上限圧力PHおよび下限圧力PLは、前述したように容量調整弁の制御範囲を規定する圧縮機吐出圧力であるが、実際の停止制御は本実施例ではレシーバタンク3に設けた圧力センサ4の検出圧力に基づきなされるので、圧縮機2とレシーバタンク3との間の圧力損失を考慮して補正した値を用いるのが好ましい。但し、上限圧力PHについては、前述したように、圧縮機吐出圧力とレシーバタンク圧力とは同一になる。従って、下限圧力PLについて、レシーバタンク圧力に換算した値を用いるのが好ましい。あるいは、数式2および数式3で導出される台数減少用圧力Cは厳密には圧縮機吐出圧力であるので、これをレシーバタンク圧力に換算して制御するのが好ましい。   In this way, the pressure C for decreasing the number can be defined according to the number of operating units. Note that the upper limit pressure PH and the lower limit pressure PL in the formulas 2 and 3 are compressor discharge pressures that define the control range of the capacity adjustment valve as described above, but the actual stop control is performed in the receiver tank in this embodiment. 3 is performed based on the detected pressure of the pressure sensor 4 provided in 3, it is preferable to use a value corrected in consideration of the pressure loss between the compressor 2 and the receiver tank 3. However, as described above, the upper limit pressure PH is the same as the compressor discharge pressure and the receiver tank pressure. Therefore, it is preferable to use the value converted into the receiver tank pressure for the lower limit pressure PL. Alternatively, the number-decreasing pressure C derived from Equation 2 and Equation 3 is strictly a compressor discharge pressure, and is preferably controlled by converting it into a receiver tank pressure.

以下、具体的制御について、図2に基づき説明する。なお、第一下限圧力PL1よりも低圧で第二下限圧力PL2が設定され、第一下限圧力PL1および第二下限圧力PL2は、容量調整弁の制御範囲下限値PLよりも低圧に設定される。また、第一設定値ΔP1,第二設定値ΔP2は、圧縮機1台分の全負荷運転時の吐出容量を考慮して設定される。   Hereinafter, specific control will be described with reference to FIG. The second lower limit pressure PL2 is set lower than the first lower limit pressure PL1, and the first lower limit pressure PL1 and the second lower limit pressure PL2 are set lower than the control range lower limit PL of the capacity adjustment valve. The first set value ΔP1 and the second set value ΔP2 are set in consideration of the discharge capacity during full load operation for one compressor.

(1)圧縮機2の運転台数の増加制御
(1−1)圧力変化率ΔPの絶対値が第一設定値ΔP1未満である場合。具体的には、−ΔP1<ΔP<+ΔP1である場合。
圧力センサ4の検出圧力Pが台数増加用圧力Aとしての第二下限圧力PL2以下になると1台起動させる。これにより通常は圧力が第二下限圧力PL2を上回るが、この間も圧縮空気の使用負荷が増加し続けると、圧力が第二下限圧力PL2以下を維持する場合がある。その場合、所定の連続起動防止時間を経過するごとに圧縮機2を1台起動させる。つまり、圧力センサ4の検出圧力Pが図2における「1台起動」領域に留まる場合には、停止中の圧縮機2がある限り、連続起動防止時間を経過するごとに1台ずつ起動させる。
(1) Increase control of the number of operating units of the compressor 2 (1-1) When the absolute value of the pressure change rate ΔP is less than the first set value ΔP1. Specifically, when -ΔP1 <ΔP <+ ΔP1.
When the detected pressure P of the pressure sensor 4 is equal to or lower than the second lower limit pressure PL2 as the pressure A for increasing the number of units, one unit is activated. As a result, the pressure normally exceeds the second lower limit pressure PL2, but if the use load of compressed air continues to increase during this time, the pressure may remain below the second lower limit pressure PL2. In that case, every time the predetermined continuous activation prevention time elapses, one compressor 2 is activated. That is, when the detected pressure P of the pressure sensor 4 remains in the “one unit start” region in FIG. 2, as long as there is a compressor 2 that is stopped, one unit is started each time the continuous start prevention time elapses.

(1−2)圧力変化率ΔPの絶対値が第一設定値ΔP1以上であるが第二設定値ΔP2未満である場合。具体的には、−ΔP2<ΔP≦−ΔP1である場合。
圧力センサ4の検出圧力Pが台数増加用圧力Aとしての第一下限圧力PL1以下になると1台起動させる。この場合も、1台起動させても第一下限圧力PL1以下を維持する場合、所定の連続起動防止時間を経過するごとに1台起動させるが、即時増加用圧力Bとしての第二下限圧力PL2以下になれば、連続起動防止時間の経過を待つことなくさらにもう1台起動させる。
(1-2) A case where the absolute value of the pressure change rate ΔP is equal to or greater than the first set value ΔP1 but less than the second set value ΔP2. Specifically, when -ΔP2 <ΔP ≦ −ΔP1.
When the detected pressure P of the pressure sensor 4 is equal to or lower than the first lower limit pressure PL1 as the number increase pressure A, one unit is activated. In this case as well, if the first lower limit pressure PL1 or less is maintained even if one unit is activated, one unit is activated every time a predetermined continuous activation prevention time elapses, but the second lower limit pressure PL2 as the immediately increasing pressure B If it becomes below, another one is started, without waiting for progress of continuous starting prevention time.

つまり、図2において、「1台起動」領域に入ることで1台を起動させても、なおその領域に留まる場合には、停止中の圧縮機2がある限り、連続起動防止時間ごとに1台ずつ圧縮機2を起動させる。また、その間、「さらに1台起動」領域に入れば、連続起動防止時間を経過しないでも、さらに1台を起動させる。   That is, in FIG. 2, if one unit is started by entering the “one unit start” region and still remains in that region, it remains 1 every continuous start prevention time as long as there is a compressor 2 being stopped. The compressor 2 is started one by one. In the meantime, if the “one more unit activation” area is entered, one unit is activated even if the continuous activation prevention time has not elapsed.

(1−3)圧力変化率ΔPの絶対値が第二設定値ΔP2以上である場合。具体的には、ΔP≦−ΔP2である場合。
レシーバタンク3内の圧力下降時(圧力変化率ΔPがマイナスの場合つまりΔP≦−ΔP2の場合)には、圧力センサ4の検出圧力Pが台数増加用圧力Aとしての容量調整弁の制御範囲上限値PH以下、言い換えれば容量調整弁の制御範囲PL〜PHであっても、1台起動させる。この場合も、1台起動させても容量調整弁の制御範囲PL〜PHを維持する場合、所定の連続起動防止時間を経過するごとに1台起動させるが、即時増加用圧力Bとしての第一下限圧力PL1以下になれば、連続起動防止時間の経過を待つことなくさらにもう1台起動させる。
(1-3) The absolute value of the pressure change rate ΔP is equal to or greater than the second set value ΔP2. Specifically, when ΔP ≦ −ΔP2.
When the pressure in the receiver tank 3 drops (when the pressure change rate ΔP is negative, that is, ΔP ≦ −ΔP2), the detection pressure P of the pressure sensor 4 is the upper limit of the control range of the capacity adjustment valve as the pressure A for increasing the number of units. Even if it is below the value PH, in other words, within the control range PL to PH of the capacity adjustment valve, one unit is activated. Also in this case, when the control range PL to PH of the capacity adjusting valve is maintained even if one unit is started, one unit is started every time a predetermined continuous start prevention time elapses. If the pressure falls below the lower limit pressure PL1, another unit is activated without waiting for the continuous activation prevention time to elapse.

つまり、図2において「1台起動」領域に入ることで1台を起動させても、なおその領域に留まる場合には、停止中の圧縮機2がある限り、連続起動防止時間ごとに1台ずつ圧縮機2を起動させる。また、その間、「さらに1台起動」領域に入れば、連続起動防止時間を経過しないでも、さらに1台を起動させる。   That is, even if one unit is started by entering the “one unit start” area in FIG. 2 and still remains in that region, as long as there is a compressor 2 that is stopped, one unit for each continuous start prevention time The compressor 2 is started one by one. In the meantime, if the “one more unit activation” area is entered, one unit is activated even if the continuous activation prevention time has not elapsed.

(2)圧縮機2の運転台数の減少制御
圧力センサ4により空気圧力を監視して、たとえば、2台運転している場合には、1台当たりの負荷率が50%以下になると1台停止させ、3台運転している場合には、1台当たりの負荷率が67%以下になると1台停止させ、4台運転している場合には、1台あたりの負荷率が75%以下になると1台停止させるというように、前述した数式1による停止負荷率を考慮して、圧縮機2の運転台数を減少させる。
(2) Reduction control of the number of operating compressors 2 When the air pressure is monitored by the pressure sensor 4 and, for example, two units are operating, one unit stops when the load factor per unit becomes 50% or less. When three units are operating, one unit is stopped when the load factor per unit is 67% or less. When four units are operating, the unit load rate is 75% or less. In this case, the number of operating compressors 2 is reduced in consideration of the stop load factor according to Equation 1 as described above.

これにより、1台だけ運転している場合には、負荷率が0〜100%で運転され、2台運転している場合には、1台当たりの負荷率が50〜100%で運転され、3台運転している場合には、1台当たりの負荷率が67〜100%で運転されるというように、台数が増すほど高負荷で運転される。   Thereby, when only one unit is operated, the load factor is operated at 0 to 100%, and when two units are operated, the load factor per unit is operated at 50 to 100%. In the case of operating three units, the operation is performed with a higher load as the number of units increases, such as operation with a load factor of 67 to 100% per unit.

圧力に基づく制御を行うには、前述した数式3(または数式2)により求められる運転台数に応じた台数減少用圧力C以上になれば、1台停止させればよい。たとえば、2台運転している場合には、「{(上限圧力PH−下限圧力PL)/2)}+下限圧力PL」以上になると、圧縮機2を1台停止させる。また、3台運転している場合には、「{(上限圧力PH−下限圧力PL)/3}+下限圧力PL」以上になると、圧縮機2を1台停止させるというように、運転中の台数に基づき数式3により台数減少用圧力Cが設定される。   In order to perform the control based on the pressure, it is only necessary to stop one unit if the pressure is not less than the number-decreasing pressure C corresponding to the number of operating units determined by the above-described Formula 3 (or Formula 2). For example, when two units are operating, when “{(upper limit pressure PH−lower limit pressure PL) / 2)} + lower limit pressure PL” or more, one compressor 2 is stopped. In addition, when operating three units, when “{(upper limit pressure PH−lower limit pressure PL) / 3} + lower limit pressure PL” or more, one compressor 2 is stopped so that one compressor is stopped. The number-decreasing pressure C is set according to Equation 3 based on the number.

ここで、圧力センサ4による検出圧力Pが台数減少用圧力C以上の状態を設定時間継続後に、圧縮機2の運転台数を減少させるのが好ましい。これにより、1台を停止させた後に次の1台を停止させるまでに規定の時間を要し、次々と過剰に停止させるおそれがない。   Here, it is preferable to reduce the number of operating compressors 2 after the set time continues for a state in which the pressure P detected by the pressure sensor 4 is equal to or higher than the pressure C for reducing the number of units. As a result, it takes a specified time to stop the next one after stopping one, and there is no risk of stopping one after another.

複数台を同時に運転する場合において、仮に1台だけを容量制御し他を全負荷運転させる場合、容量調整を1台のみで行っているので、空気使用量が急激に減少した場合に、レシーバタンク3内の圧力が過上昇するおそれがある。ところが、本実施例の構成によれば、複数台の圧縮機2を運転する場合でも、すべてを容量制御するので、空気使用量が急激に減少した場合でも、複数台の圧縮機2の容量制御機能が並行して作用することで、レシーバタンク3内の圧力が過上昇するのを防止することができる。たとえ空気使用量が突然に全くなくなったとしても、空気圧力が過上昇することはない。   When operating multiple units at the same time, if only one unit is capacity controlled and the others are operated at full load, the capacity adjustment is performed with only one unit, so if the air usage decreases rapidly, the receiver tank There is a possibility that the pressure in 3 will rise excessively. However, according to the configuration of this embodiment, even when a plurality of compressors 2 are operated, the capacity is controlled for all, so even if the amount of air used is drastically reduced, the capacity control of the plurality of compressors 2 is performed. By the functions acting in parallel, it is possible to prevent the pressure in the receiver tank 3 from rising excessively. Even if the air usage suddenly disappears at all, the air pressure does not rise excessively.

複数台を同時に運転する場合において、仮に1台だけを容量制御し他を全負荷運転させる場合、各圧縮機2には全負荷運転に保持するためのフルロードロック機能が必要となる。ところが、この機能は圧縮機2に標準的に装備されている訳ではなく圧縮機2を改造する必要がある。しかしながら、本実施例のシステム1によれば、各圧縮機2にフルロードロック機能は不要であるから、各圧縮機2を改造する必要がない。   In the case of operating a plurality of units simultaneously, if only one unit is capacity-controlled and the others are operated at full load, each compressor 2 needs a full load lock function for holding at full load operation. However, this function is not normally provided in the compressor 2, and the compressor 2 needs to be modified. However, according to the system 1 of the present embodiment, each compressor 2 does not need a full load lock function, so that it is not necessary to modify each compressor 2.

また、運転台数の増加に応じて台数減少用圧力Cを下げると、運転中の各圧縮機2の負荷率は前述したように上がり、言い換えれば、各圧縮機2は吐出圧力が低い側で運転することになる。そして、一般に、圧縮機2は吐出圧力が低い側で運転するほど高効率なので、台数減少用圧力Cを下げることで、運転効率を向上することができる。   Further, when the pressure C for decreasing the number is lowered in accordance with the increase in the number of operating units, the load factor of each operating compressor 2 increases as described above. In other words, each compressor 2 operates on the side where the discharge pressure is low. Will do. In general, the compressor 2 is more efficient as it operates at a lower discharge pressure. Therefore, the operation efficiency can be improved by lowering the pressure C for decreasing the number of units.

ところで、前記実施例では、各圧縮機2の容量調整弁は、上限圧力PHが互いに同一に設定されると共に、下限圧力PLが互いに同一に設定された例について説明した。しかしながら、各圧縮機2の容量調整弁の上限圧力PH同士および下限圧力PL同士を互いに同一に設定するのは困難であり、許容範囲内(たとえば10kPa以内)に収めるとしても、作業には熟練と時間を要する。そして、すべての圧縮機2を同一の容量調整範囲に設定できない場合、個々の圧縮機2の負荷率にバラツキを生じることになる。   By the way, in the said Example, the capacity | capacitance adjustment valve of each compressor 2 demonstrated the example in which the upper limit pressure PH was mutually set and the lower limit pressure PL was mutually set. However, it is difficult to set the upper limit pressures PH and lower limit pressures PL of the capacity adjustment valves of the compressors 2 to be the same, and even if they are within an allowable range (for example, within 10 kPa), they are skilled in work. It takes time. If all the compressors 2 cannot be set to the same capacity adjustment range, the load factors of the individual compressors 2 vary.

そこで、台数制御器5は、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとがそれぞれ予め設定値として入力され、運転中の圧縮機2の前記設定値に基づいて台数減少用圧力Cを求め、圧力センサ4の検出圧力がこの台数減少用圧力C以上になると圧縮機2の運転台数を減少させるのがよい。つまり、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiを台数制御器5に設定し、この設定値を用いて、台数制御器5は、圧縮機2の運転台数を減少させる停止負荷率になる台数減少用圧力Cを演算し、この台数減少用圧力C以上になると圧縮機2を1台停止させるのがよい。ここで、上限圧力PHiとは、複数台の圧縮機2の内、i号機の容量調整弁の上限圧力を示し、下限圧力PLiとは、i号機の容量調整弁の下限圧力を示している。   Therefore, the number controller 5 receives the upper limit pressure PHi and the lower limit pressure PLi of the capacity adjustment valve of each compressor 2 as preset values, respectively, and reduces the number of units based on the set value of the compressor 2 in operation. When the pressure C is obtained and the detected pressure of the pressure sensor 4 is equal to or higher than the pressure C for reducing the number of units, the number of operating compressors 2 is preferably decreased. In other words, the upper limit pressure PHi and the lower limit pressure PLi of the capacity adjustment valve of each compressor 2 are set in the number controller 5, and the number controller 5 uses this set value to stop the operation number of the compressors 2 from being reduced. It is preferable to calculate the number reduction pressure C to be a load factor, and to stop one compressor 2 when the number reduction pressure C is exceeded. Here, the upper limit pressure PHi indicates the upper limit pressure of the capacity adjustment valve of the i-th unit among the plurality of compressors 2, and the lower limit pressure PLi indicates the lower limit pressure of the capacity adjustment valve of the i-th unit.

より具体的に説明すると、まず事前に、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを試験により求めておく。たとえば、各圧縮機2を一台ずつ運転して、圧縮機2の吐出側の圧力と圧縮機2の負荷電流との関係から、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを求めることができる。   More specifically, first, the upper limit pressure PHi and the lower limit pressure PLi of the capacity adjustment valve of each compressor 2 are obtained in advance by a test. For example, each compressor 2 is operated one by one, and the upper limit pressure PHi and the lower limit pressure PLi of the capacity adjustment valve of each compressor 2 are determined from the relationship between the pressure on the discharge side of the compressor 2 and the load current of the compressor 2. Can be requested.

そして、このようにして求めた各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを、台数制御器5に入力して設定しておく。たとえば、図3は、台数制御器5のタッチスクリーンの設定画面の一例を示す図であるが、この図に示すように、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを台数制御器5に設定する。なお、この例では、圧縮機台数制御システム1は、1号機から5号機まで、5台の圧縮機2を備えた例を示しているが、圧縮機2の台数は適宜変更可能なことは言うまでもない。   Then, the upper limit pressure PHi and the lower limit pressure PLi of the capacity adjustment valve of each compressor 2 obtained in this way are input to the unit controller 5 and set. For example, FIG. 3 is a diagram showing an example of the setting screen of the touch screen of the number controller 5, and as shown in this figure, the upper limit pressure PHi and the lower limit pressure PLi of the capacity adjustment valve of each compressor 2 are shown. Set to the number controller 5. In this example, the compressor number control system 1 shows an example including five compressors 2 from No. 1 to No. 5, but it goes without saying that the number of compressors 2 can be changed as appropriate. Yes.

いま、各圧縮機2の吐出容量(定格時の吐出空気量)が同じであるとする。また、n号機からm台の圧縮機2が運転しているとする。つまり、n号機から(n+m−1)号機までが運転しているとする。なお、nおよびmは、正の整数(1,2,3,…のいずれかの数値)である。   Now, it is assumed that the discharge capacity (discharge air amount at the time of rating) of each compressor 2 is the same. In addition, it is assumed that m compressors 2 are operating from the n-th unit. That is, it is assumed that from the n-th unit to the (n + m-1) -th unit is operating. Note that n and m are positive integers (any one of 1, 2, 3,...).

この場合、台数制御器5は、運転中の圧縮機2の前記設定値(PHi,PLi)に基づいて、台数減少用圧力Cを求め、圧力センサ4の検出圧力が台数減少用圧力C以上になると、運転中の圧縮機2を1台停止させる。つまり、運転中の圧縮機2について、上限圧力の平均値としての平均上限圧力と、下限圧力の平均値としての平均下限圧力とを求め、これら平均上限圧力と平均下限圧力とを用いて前記数式3により台数減少用圧力Cを求め、圧力センサ4の検出圧力が台数減少用圧力C以上になると、運転中の圧縮機2を1台停止させる。   In this case, the number controller 5 obtains the number-decrease pressure C based on the set value (PHi, PLi) of the compressor 2 in operation, and the detected pressure of the pressure sensor 4 is equal to or higher than the number-decrease pressure C. Then, one compressor 2 in operation is stopped. That is, for the compressor 2 in operation, an average upper limit pressure as an average value of the upper limit pressure and an average lower limit pressure as an average value of the lower limit pressure are obtained, and the mathematical formula is calculated using these average upper limit pressure and average lower limit pressure. 3, the pressure C for decreasing the number of units is obtained. When the pressure detected by the pressure sensor 4 becomes equal to or higher than the pressure C for decreasing the number of units, one compressor 2 in operation is stopped.

より詳細には、台数制御器5は、運転中の圧縮機2について、下記数式4により平均上限圧力を求めると共に、下記数式5により平均下限圧力を求める。さらに、台数制御器5は、下記数式6により台数減少用圧力Cを求め、圧力センサ4の検出圧力がこの台数減少用圧力C以上になると、運転中の圧縮機2を1台停止させる。   More specifically, the number controller 5 calculates the average upper limit pressure by the following formula 4 and the average lower limit pressure by the following formula 5 for the compressor 2 in operation. Furthermore, the number controller 5 obtains the pressure C for decreasing the number by the following formula 6, and when the detected pressure of the pressure sensor 4 becomes equal to or higher than the pressure C for decreasing the number, one compressor 2 in operation is stopped.

Figure 2013164025
Figure 2013164025

Figure 2013164025
Figure 2013164025

Figure 2013164025
Figure 2013164025

このような構成の場合、各圧縮機2の容量調整弁の上限圧力PHiを互いに同一にしたり、下限圧力PLiを互いに同一にしたりする必要がなく、また許容範囲内に収めるとしても、その許容範囲を大きくとることができる。さらに、必ずしも、各圧縮機2の容量調整範囲を互いに同一または許容範囲内に収まるように調整する必要もない。つまり、個々の圧縮機2の容量調整弁の実際の上限圧力PHiと下限圧力PLiを台数制御器5に設定すればよく、それにより簡易に精度の高い台数制御が可能となる。   In such a configuration, the upper limit pressures PHi of the capacity adjustment valves of the compressors 2 do not have to be the same as each other, and the lower limit pressures PLi do not have to be the same as each other. Can be greatly increased. Furthermore, it is not always necessary to adjust the capacity adjustment ranges of the compressors 2 so that they are within the same range or within an allowable range. That is, the actual upper limit pressure PHi and the lower limit pressure PLi of the capacity adjusting valve of each compressor 2 may be set in the number controller 5, thereby enabling simple and accurate number control.

たとえば、5台運転中に、5台分の総合負荷率が4/5(すなわち80%)以下になると、運転台数を4台に減少させるが、運転している圧縮機2の容量調整弁の実際の上限圧力PHiと下限圧力PLiとを用いて、総合負荷率80%相当の台数減少用圧力Cを算出するので、精度のよい台数制御が可能となる。ここで、総合負荷率とは、運転中の各圧縮機2の上限圧力PHi同士および下限圧力PLi同士が互いに異なり、言い換えれば各圧縮機2の負荷率が互いに異なるので、それを考慮して、運転中のすべての圧縮機2全体でみた場合の負荷率という意である。   For example, if the total load factor for 5 units becomes 4/5 (ie 80%) or less during operation of 5 units, the number of units operated will be reduced to 4, but the capacity adjustment valve of the compressor 2 that is operating By using the actual upper limit pressure PHi and the lower limit pressure PLi, the number reduction pressure C corresponding to an overall load factor of 80% is calculated, so that accurate number control is possible. Here, the total load factor is that the upper limit pressures PHi and the lower limit pressures PLi of the compressors 2 in operation are different from each other, in other words, the load factors of the compressors 2 are different from each other. This means the load factor when viewed in the entirety of all the compressors 2 in operation.

なお、前記実施例と同様に、圧力センサ4による検出圧力が台数減少用圧力C以上の状態を設定時間継続後に、予め設定された次停止予定機の圧縮機2の運転を停止するのがよい。また、ここでは、圧縮機2の運転台数を減少させる制御について説明したが、運転台数を増加させる制御については、前記実施例と同様であるため説明を省略する。   As in the above-described embodiment, the operation of the compressor 2 of the next scheduled machine to be stopped should be stopped after a set time has elapsed while the pressure detected by the pressure sensor 4 is equal to or greater than the pressure C for decreasing the number of units. . Here, the control for decreasing the number of operating compressors 2 has been described, but the control for increasing the number of operating compressors is the same as in the above-described embodiment, and thus the description thereof is omitted.

さらに、ここでは、各圧縮機2は、容量調整弁により上限圧力PHiと下限圧力PLiとの間で容量制御され、各圧縮機2の上限圧力PHiと下限圧力PLiとを台数制御器5に設定する例について説明したが、各圧縮機2は、上限圧力PHiと下限圧力PLiとが設定されて運転されるのであれば、必ずしも容量調整弁で容量制御される必要はない。その場合でも、各圧縮機2の上限圧力PHiと下限圧力PLiとを台数制御器5に設定して、上述と同様に台数制御することができる。   Further, here, the capacity of each compressor 2 is controlled between the upper limit pressure PHi and the lower limit pressure PLi by the capacity adjustment valve, and the upper limit pressure PHi and the lower limit pressure PLi of each compressor 2 are set in the unit controller 5. However, as long as the upper limit pressure PHi and the lower limit pressure PLi are set and operated, the capacity of each compressor 2 is not necessarily controlled by the capacity adjustment valve. Even in that case, the upper limit pressure PHi and the lower limit pressure PLi of each compressor 2 can be set in the number controller 5 and the number control can be performed in the same manner as described above.

さて、上述の説明では、各圧縮機2の吐出容量は同じであるとしたが、吐出容量の異なる圧縮機2が含まれる場合、次のように制御すればよい。   In the above description, the discharge capacities of the compressors 2 are the same. However, when the compressors 2 having different discharge capacities are included, the following control may be performed.

この場合も、まず事前に、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを調べておく。そして、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiとを、台数制御器5に入力して設定しておく。さらに、各圧縮機2の吐出容量についても、台数制御器5に入力して設定しておく。   Also in this case, first, the upper limit pressure PHi and the lower limit pressure PLi of the capacity adjustment valve of each compressor 2 are checked in advance. Then, the upper limit pressure PHi and the lower limit pressure PLi of the capacity adjustment valve of each compressor 2 are input to the number controller 5 and set. Furthermore, the discharge capacity of each compressor 2 is also input to the number controller 5 and set.

たとえば、図4は、台数制御器5のタッチスクリーンの設定画面の他の例を示す図であるが、この図に示すように、各圧縮機2の容量調整弁の上限圧力PHiと下限圧力PLiの他、吐出容量を台数制御器5に設定する。なお、この例では、圧縮機台数制御システム1は、1号機から5号機まで、5台の圧縮機2を備えた例を示しているが、圧縮機2の台数は適宜変更可能なことは言うまでもない。また、この例では、1号機および2号機は、3号機〜5号機の2倍の吐出容量とされている。たとえば、1号機および2号機は、75kWの圧縮機であり、3号機〜5号機は、37kWの圧縮機である。   For example, FIG. 4 is a diagram showing another example of the setting screen of the touch screen of the number controller 5, but as shown in this figure, the upper limit pressure PHi and the lower limit pressure PLi of the capacity adjustment valve of each compressor 2 are shown. In addition, the discharge capacity is set in the number controller 5. In this example, the compressor number control system 1 shows an example including five compressors 2 from No. 1 to No. 5, but it goes without saying that the number of compressors 2 can be changed as appropriate. Yes. In this example, the first and second machines have a discharge capacity that is twice that of the third and fifth machines. For example, Unit 1 and Unit 2 are 75 kW compressors, and Units 3 to 5 are 37 kW compressors.

いま、n号機からm台の圧縮機2が運転しているとする。つまり、n号機から(n+m−1)号機までが運転しているとする。この場合、台数制御器5は、下記数式7を用いて、運転中の各圧縮機2について、その圧縮機2の吐出容量を次停止予定機の吐出容量で除した値としての比台数Niを求める。この比台数Niの総和は実質的な運転台数に相当するので、前記数式1を用いて、停止負荷率を求めることができる。   Assume that m compressors 2 are operating from the n-th unit. That is, it is assumed that from the n-th unit to the (n + m-1) -th unit is operating. In this case, the number controller 5 uses the following formula 7 to calculate the specific number Ni as a value obtained by dividing the discharge capacity of the compressor 2 by the discharge capacity of the next scheduled stop machine for each compressor 2 in operation. Ask. Since the total sum of the specific number Ni corresponds to the actual number of operating units, the stop load factor can be obtained using Equation 1 above.

Figure 2013164025
Figure 2013164025

たとえば、2号機(75kW機)と3号機(37kW機)とを運転中、次に停止させる圧縮機(次停止予定機)が3号機である場合、3号機の比台数は1となり、2号機の比台数は2となり、比台数の総和は3となる。よって、次停止予定機の3号機は、その負荷が前記数式1(式中、運転台数とは比台数の総和に相当)に基づき、2/3(負荷率67%)以下になれば停止される。   For example, when the No. 2 (75 kW machine) and No. 3 (37 kW machine) are in operation and the compressor to be stopped next (the next scheduled stop machine) is No. 3, the ratio of No. 3 is 1, and the No. 2 machine The specific number of units is 2, and the total number of specific units is 3. Therefore, the No. 3 machine scheduled for the next stop will be stopped if its load falls to 2/3 (load factor 67%) or less based on Formula 1 (where the number of operating units is equivalent to the sum of the ratios). The

また、2号機(75kW機)と3号機(37kW機)とを運転中、次に停止させる圧縮機(次停止予定機)が2号機である場合、2号機の比台数は1となり、3号機の比台数は0.5となり、比台数の総和は1.5となる。よって、次停止予定機の2号機は、その負荷が前記数式1(式中、運転台数とは比台数の総和に相当)に基づき、1/3(負荷率33%)以下になれば停止される。   In addition, when the No. 2 (75 kW) and No. 3 (37 kW) machines are in operation and the next compressor to be stopped (next scheduled stop) is No. 2, the ratio of No. 2 is 1, and No. 3 The specific number of units is 0.5, and the total number of specific units is 1.5. Therefore, the second scheduled stop machine will be stopped if its load falls to 1/3 (load factor 33%) or less based on the above formula 1 (where the number of operating units is equivalent to the sum of the ratios). The

より簡易に圧力制御するには、下記数式8により、運転中の圧縮機2について、その上限圧力PHiに比台数Niを乗じた値の総和を求めると共に、これを比台数Niの総和で除した値として平均上限圧力を求める。また、下記数式9により、運転中の圧縮機2について、その下限圧力PLiに比台数Niを乗じた値の総和を求めると共に、これを比台数Niの総和で除した値として平均下限圧力を求める。そして、このようにして求められた平均上限圧力と平均下限圧力の他、運転中の圧縮機2の比台数の総和に基づき、下記数式10により、台数減少用圧力Cを求めることができる。そして、台数制御器5は、圧力センサ4の検出圧力が台数減少用圧力C以上になれば、次停止予定機の運転を停止すればよい。   In order to perform pressure control more simply, the following formula 8 is used to calculate the sum of values obtained by multiplying the upper limit pressure PHi by the specific number Ni for the compressor 2 in operation, and this is divided by the sum of the specific number Ni. The average upper limit pressure is obtained as a value. Further, according to the following formula 9, for the compressor 2 in operation, the sum of values obtained by multiplying the lower limit pressure PLi by the specific number Ni is obtained, and the average lower limit pressure is obtained by dividing this by the sum of the specific number Ni. . In addition to the average upper limit pressure and the average lower limit pressure obtained in this way, the number C of pressure reduction can be obtained by the following formula 10 based on the total number of the specific number of compressors 2 in operation. Then, the number controller 5 may stop the operation of the next scheduled stop machine when the detected pressure of the pressure sensor 4 becomes equal to or higher than the pressure C for decreasing the number.

Figure 2013164025
Figure 2013164025

Figure 2013164025
Figure 2013164025

Figure 2013164025
Figure 2013164025

本発明の圧縮機台数制御システム1は、前記実施例(変形例を含む)の構成に限らず適宜変更可能である。特に、各圧縮機2の容量制御の方法は、前記実施例のように圧縮機2の吸込側に設けた容量調整弁に限らず、従来公知の他の構成を採用することもできる。また、特に、圧縮機2の運転台数を増加させる制御については、前記実施例の構成に限らず、従来公知の各種のものを用いることもできる。   The number-of-compressor control system 1 of the present invention is not limited to the configuration of the above-described embodiments (including modifications), and can be changed as appropriate. In particular, the capacity control method of each compressor 2 is not limited to the capacity adjustment valve provided on the suction side of the compressor 2 as in the above-described embodiment, and other conventionally known configurations may be employed. In particular, the control for increasing the number of operating compressors 2 is not limited to the configuration of the above embodiment, and various conventionally known ones can be used.

さらに、前記実施例では、各圧縮機2からの圧縮空気はレシーバタンク3を介して圧縮空気利用機器へ送り、そのレシーバタンク3に圧力センサ4を設けたが、レシーバタンク3以外に、各圧縮機2から圧縮空気が供給される箇所、あるいは圧縮空気利用機器へ圧縮空気を送る箇所に、圧力センサ4を設けてもよい。   Furthermore, in the said Example, although the compressed air from each compressor 2 was sent to the apparatus using compressed air via the receiver tank 3, and the pressure sensor 4 was provided in the receiver tank 3, in addition to the receiver tank 3, each compression The pressure sensor 4 may be provided at a location where the compressed air is supplied from the machine 2 or a location where the compressed air is sent to the device using the compressed air.

1 圧縮機台数制御システム
2 圧縮機
3 レシーバタンク
4 圧力センサ
5 台数制御器
A 台数増加用圧力
B 即時増加用圧力
C 台数減少用圧力
DESCRIPTION OF SYMBOLS 1 Compressor number control system 2 Compressor 3 Receiver tank 4 Pressure sensor 5 Number controller A Number of units increase pressure B Immediate increase pressure C Number of units decrease pressure

Claims (4)

複数台の圧縮機と、
これら圧縮機から圧縮空気が供給されると共に圧縮空気利用機器へ圧縮空気を送る箇所に設けられ、圧縮空気の圧力を検出する圧力センサと、
この圧力センサの検出圧力に基づき前記圧縮機の運転台数を変更する台数制御器とを備え、
前記台数制御器により運転台数を減少させるか否かの境界値としての台数減少用圧力は、運転台数が多いほど低くなるよう設定され、
前記各圧縮機は、吐出圧力を上限圧力と下限圧力との間に維持するように容量制御され、
前記台数制御器は、前記各圧縮機の上限圧力と下限圧力とがそれぞれ予め設定値として入力されており、運転中の圧縮機の前記設定値に基づいて前記台数減少用圧力を求め、前記圧力センサの検出圧力がこの台数減少用圧力以上になると運転中の圧縮機を1台停止させる
ことを特徴とする圧縮機台数制御システム。
Multiple compressors,
A pressure sensor for detecting the pressure of the compressed air, which is provided at a location where the compressed air is supplied from these compressors and the compressed air is sent to the device using the compressed air;
A number controller for changing the number of operating compressors based on the pressure detected by the pressure sensor,
The pressure for reducing the number of vehicles as a boundary value whether or not to reduce the number of operating units by the number controller is set so as to decrease as the number of operating units increases,
Each of the compressors is capacity-controlled so as to maintain the discharge pressure between an upper limit pressure and a lower limit pressure,
In the number controller, an upper limit pressure and a lower limit pressure of each compressor are input in advance as set values, respectively, and the pressure for reducing the number of units is obtained based on the set value of the compressor in operation. A compressor number control system, wherein one operating compressor is stopped when the detected pressure of the sensor exceeds the number reduction pressure.
運転中の圧縮機について、前記上限圧力の平均値としての平均上限圧力と、前記下限圧力の平均値としての平均下限圧力とを求め、
前記台数減少用圧力は、運転台数に基づき次式により設定される
ことを特徴とする請求項1に記載の圧縮機台数制御システム。
台数減少用圧力={(平均上限圧力−平均下限圧力)/運転台数}+平均下限圧力
For the compressor in operation, obtain an average upper limit pressure as an average value of the upper limit pressure and an average lower limit pressure as an average value of the lower limit pressure,
The compressor number control system according to claim 1, wherein the pressure for decreasing the number of units is set by the following equation based on the number of operating units.
Number reduction pressure = {(average upper limit pressure-average lower limit pressure) / number of operating units} + average lower limit pressure
吐出容量の異なる圧縮機が含まれる場合、運転中の各圧縮機について、その圧縮機の吐出容量を次停止予定機の吐出容量で除した値としての比台数を求め、
運転中の圧縮機について、各圧縮機の上限圧力にその比台数を乗じた値の総和を求めると共に、これを比台数の総和で除した値として前記平均上限圧力を求め、
運転中の圧縮機について、各圧縮機の下限圧力にその比台数を乗じた値の総和を求めると共に、これを比台数の総和で除した値として前記平均下限圧力を求め、
前記台数減少用圧力は、運転中の圧縮機の比台数の総和に基づき、次式により設定される
ことを特徴とする請求項2に記載の圧縮機台数制御システム。
台数減少用圧力={(平均上限圧力−平均下限圧力)/(運転中の圧縮機の比台数の総和)}+平均下限圧力
When compressors with different discharge capacities are included, for each compressor in operation, find the specific number of units as the value obtained by dividing the discharge capacity of the compressor by the discharge capacity of the next scheduled shutdown machine,
For the compressor in operation, obtain the sum of the values obtained by multiplying the upper limit pressure of each compressor by its specific number, and obtain the average upper limit pressure as a value obtained by dividing this by the sum of the specific number of units,
For the compressors in operation, obtain the sum of the values obtained by multiplying the lower limit pressure of each compressor by its specific number of units, and obtain the average lower limit pressure as a value obtained by dividing this by the total number of specific units,
The compressor number control system according to claim 2, wherein the pressure for decreasing the number of units is set by the following equation based on a total number of specific units of compressors in operation.
Number reduction pressure = {(Average upper limit pressure-Average lower limit pressure) / (Total number of compressors in operation)} + Average lower limit pressure
前記圧力センサによる検出圧力が前記台数減少用圧力以上の状態を設定時間継続後に、前記圧縮機の運転台数を減少させる
ことを特徴とする請求項1〜3のいずれか1項に記載の圧縮機台数制御システム。
The compressor according to any one of claims 1 to 3, wherein the number of operating compressors is decreased after a set time has continued for a state in which the pressure detected by the pressure sensor is equal to or greater than the pressure for decreasing the number of units. Unit control system.
JP2012027623A 2012-02-10 2012-02-10 Compressor number control system Active JP5915932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027623A JP5915932B2 (en) 2012-02-10 2012-02-10 Compressor number control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027623A JP5915932B2 (en) 2012-02-10 2012-02-10 Compressor number control system

Publications (2)

Publication Number Publication Date
JP2013164025A true JP2013164025A (en) 2013-08-22
JP5915932B2 JP5915932B2 (en) 2016-05-11

Family

ID=49175530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027623A Active JP5915932B2 (en) 2012-02-10 2012-02-10 Compressor number control system

Country Status (1)

Country Link
JP (1) JP5915932B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286246A (en) * 2016-09-12 2017-01-04 珠海格力电器股份有限公司 A kind of control method of compressor assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744787A (en) * 1980-08-20 1982-03-13 Kobe Steel Ltd Method for controlling number of rotary displacement type compressor in operation
US4502842A (en) * 1983-02-02 1985-03-05 Colt Industries Operating Corp. Multiple compressor controller and method
US5967761A (en) * 1997-07-15 1999-10-19 Ingersoll-Rand Company Method for modulation lag compressor in multiple compressor system
JP2003214354A (en) * 2002-01-24 2003-07-30 Yamatake Corp Method and apparatus for controlling number of operated air compressors
JP2004340024A (en) * 2003-05-15 2004-12-02 Anest Iwata Corp Operation control method for compressor
JP2011038434A (en) * 2009-08-07 2011-02-24 Mitsui Seiki Kogyo Co Ltd Operation control method for a plurality of compressors composed of simultaneous use of the same form, commercial machine and inverter machine, simultaneous use of commercial machine and always fixed commercial machine and simultaneous use of commercial machine, inverter machine and always fixed commercial machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744787A (en) * 1980-08-20 1982-03-13 Kobe Steel Ltd Method for controlling number of rotary displacement type compressor in operation
US4502842A (en) * 1983-02-02 1985-03-05 Colt Industries Operating Corp. Multiple compressor controller and method
US5967761A (en) * 1997-07-15 1999-10-19 Ingersoll-Rand Company Method for modulation lag compressor in multiple compressor system
JP2003214354A (en) * 2002-01-24 2003-07-30 Yamatake Corp Method and apparatus for controlling number of operated air compressors
JP2004340024A (en) * 2003-05-15 2004-12-02 Anest Iwata Corp Operation control method for compressor
JP2011038434A (en) * 2009-08-07 2011-02-24 Mitsui Seiki Kogyo Co Ltd Operation control method for a plurality of compressors composed of simultaneous use of the same form, commercial machine and inverter machine, simultaneous use of commercial machine and always fixed commercial machine and simultaneous use of commercial machine, inverter machine and always fixed commercial machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106286246A (en) * 2016-09-12 2017-01-04 珠海格力电器股份有限公司 A kind of control method of compressor assembly

Also Published As

Publication number Publication date
JP5915932B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP4924855B1 (en) Compressor number control system
KR101167556B1 (en) Number-of-compressors controlling system
JP2015152091A (en) Gas supply device, hydrogen station, and gas supply method
US20130287592A1 (en) Compressed gas supply unit
JP6111674B2 (en) Compressor number control system
JP5915931B2 (en) Compressor number control system
JP5646282B2 (en) Compressor and operation control method thereof
JP2005048755A (en) Compressor number control system
JP5758818B2 (en) Compressor system and operation control method thereof
WO2019189085A1 (en) Gas compressor
JP5915932B2 (en) Compressor number control system
TW201719021A (en) Gas compressor
WO2014050200A1 (en) Heat source system control device
JP5672551B2 (en) Compressor number control system
JP4938304B2 (en) Pump control method and water supply device
JP2005023818A (en) Compressor system
JP6823186B2 (en) Control method of compressed gas supply device and compressed gas supply device
JP6176518B2 (en) Compressor number control system
US11542951B2 (en) Gas compressor and control method therefor
JP7140090B2 (en) Automatic operation control method for compressed air supply system
JP5463339B2 (en) Compressor system
WO2017159279A1 (en) Compressor
JP4399655B2 (en) Compressed air production facility
JP5424970B2 (en) Compressor and operation method of compressor
JP2017198084A (en) Booster compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160324

R150 Certificate of patent or registration of utility model

Ref document number: 5915932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250