JP2013161820A - Substrate and method for processing substrate - Google Patents
Substrate and method for processing substrate Download PDFInfo
- Publication number
- JP2013161820A JP2013161820A JP2012020067A JP2012020067A JP2013161820A JP 2013161820 A JP2013161820 A JP 2013161820A JP 2012020067 A JP2012020067 A JP 2012020067A JP 2012020067 A JP2012020067 A JP 2012020067A JP 2013161820 A JP2013161820 A JP 2013161820A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- laser
- single crystal
- modified layer
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 215
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000012545 processing Methods 0.000 title abstract description 37
- 239000013078 crystal Substances 0.000 claims abstract description 47
- 230000000737 periodic effect Effects 0.000 claims abstract description 21
- 230000002093 peripheral effect Effects 0.000 claims description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 26
- 239000010703 silicon Substances 0.000 claims description 26
- 230000003287 optical effect Effects 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 54
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 230000004075 alteration Effects 0.000 description 11
- 238000012937 correction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/0005—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
- B28D5/0011—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/0604—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
- B23K26/0613—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
- B23K26/0617—Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis and with spots spaced along the common axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
- B23K26/0853—Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/12—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
- B23K26/1224—Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B33/00—After-treatment of single crystals or homogeneous polycrystalline material with defined structure
- C30B33/06—Joining of crystals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1608—Silicon carbide
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Laser Beam Processing (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
Abstract
Description
本発明は、シリコン単結晶基板のような基板及び基板加工方法に関する。 The present invention relates to a substrate such as a silicon single crystal substrate and a substrate processing method.
従来、シリコン(Si)ウェハに代表される半導体ウェハを製造する場合には、石英るつぼ内に溶融されたシリコン融液から凝固した円柱形のインゴットを適切な長さのブロックに切断して、その周縁部を目標の直径になるよう研削し、その後、ブロック化されたインゴットをワイヤソーによりウェハ形にスライスして半導体ウェハを製造するようにしている(例えば、特許文献1および2参照。)。 Conventionally, when manufacturing a semiconductor wafer represented by a silicon (Si) wafer, a cylindrical ingot solidified from a silicon melt melted in a quartz crucible is cut into blocks of an appropriate length, The peripheral edge is ground to a target diameter, and then the block ingot is sliced into a wafer shape with a wire saw to manufacture a semiconductor wafer (see, for example, Patent Documents 1 and 2).
このようにして製造された半導体ウェハは、前工程で回路パターンの形成等、各種の処理が順次施されて後工程に供され、この後工程で裏面がバックグラインド処理されて薄片化が図られることにより、厚さが約750μmから100μm以下、例えば75μmや50μm程度に調整される。 The semiconductor wafer manufactured in this way is subjected to various processes such as circuit pattern formation in the previous process in order and used in the subsequent process. In this subsequent process, the back surface is back-grinded and thinned. Accordingly, the thickness is adjusted to about 750 μm to 100 μm or less, for example, about 75 μm or 50 μm.
従来における半導体ウェハは、以上のように製造され、インゴットがワイヤソーにより切断され、しかも、切断の際にワイヤソーの太さ以上の切り代が必要となるので、厚さ0.1mm以下の薄い半導体ウェハを製造することが非常に困難であり、製品率も向上しないという問題があった。 A conventional semiconductor wafer is manufactured as described above, and an ingot is cut with a wire saw, and a cutting allowance larger than the thickness of the wire saw is required for cutting, so a thin semiconductor wafer with a thickness of 0.1 mm or less It was very difficult to manufacture and the product rate was not improved.
一方、高開口数の集光レンズにガラス板からなる収差増強材を組み合わせ、波長1064nmのパルス状レーザによりシリコンウエハの内部に加工を施した後、これを剛性基板に貼りあわせ、剥離することで薄い単結晶シリコン基板を得る技術が開示されている(特許文献3参照。)。 On the other hand, by combining a high numerical aperture condensing lens with an aberration enhancing material made of a glass plate, processing the inside of a silicon wafer with a pulsed laser with a wavelength of 1064 nm, and then bonding it to a rigid substrate and peeling it off A technique for obtaining a thin single crystal silicon substrate is disclosed (see Patent Document 3).
この技術によると、シリコン基板内部に厚み100μm程度の加工層が形成されていた。このため、結晶性基板から厚さ0.1mm程度の薄い基板を多数スライスする場合、材料歩留まりに限界があった。また、例えば、シリコン用の赤外線観察用収差増強材を外しても、加工層の厚みは大きく減少させることができなかった。 According to this technique, a processed layer having a thickness of about 100 μm is formed inside the silicon substrate. For this reason, when a large number of thin substrates having a thickness of about 0.1 mm are sliced from the crystalline substrate, there is a limit to the material yield. For example, even if the infrared observation aberration enhancing material for silicon is removed, the thickness of the processed layer cannot be reduced greatly.
さらに、NAが0.5程度の対物レンズを使用した場合、加工層の厚みは減少するが、光量が減少して加工層の処理が十分に施されず、実際の剥離は困難であった。これに対して、照射回数を増やして加工層の処理を十分に施そうとすると、2次元の加工領域を1μmピッチの照射で埋め尽くす必要があるため、膨大な回数の照射パルスが必用になり、実用化には照射時間の問題が存在していた。 Further, when an objective lens having an NA of about 0.5 is used, the thickness of the processed layer is reduced, but the amount of light is reduced and the processed layer is not sufficiently processed, and actual peeling is difficult. On the other hand, if the number of times of irradiation is increased and processing of the processed layer is sufficiently performed, it is necessary to fill the two-dimensional processing region with 1 μm pitch irradiation, which requires a huge number of irradiation pulses. However, there was a problem of irradiation time in practical use.
なお、この明細書中においては、別記する場合を除いてウェハのことを基板と称することにする。 In this specification, a wafer is referred to as a substrate unless otherwise specified.
本発明は、上記課題に対してなされたもので、結晶性基板の内部にレーザ光照射による内部加工層を形成し、内部加工層を境に剥離するための基板及び加工方法であって、レーザ光源の選択肢が広く、内部加工層の厚みが薄く、かつ、少ない数のレーザパルス照射で、内部加工層を効率的に形成する基板及び基板加工方法を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and is a substrate and a processing method for forming an internal processing layer by laser light irradiation inside a crystalline substrate, and peeling the internal processing layer as a boundary. An object of the present invention is to provide a substrate and a substrate processing method for efficiently forming an internal processing layer with a wide choice of light sources, a thin internal processing layer, and a small number of laser pulse irradiations.
上述の課題を解決するために、本発明に係る基板は、単結晶の基板であって、前記基板は、その内部に当該基板の結晶方位とは異なる結晶方位を有する周期的構造が形成された改質層を有し、前記周期的構造は連結されているものである。 In order to solve the above-described problems, a substrate according to the present invention is a single crystal substrate, and the substrate has a periodic structure having a crystal orientation different from the crystal orientation of the substrate formed therein. It has a modified layer, and the periodic structures are connected.
前記周期的構造は、レーザ集光手段にてレーザ光を前記基板の表面に向けて照射することによって形成され、前記レーザ集光手段は、前記基板内部において、前記レーザ光を光軸に軸対称に集光するとともに、前記レーザ集光手段の外周部に入射した光が、前記レーザ集光手段の内周部に入射した光より、前記レーザ集光手段側で集光するように構成されていることが好ましい。 The periodic structure is formed by irradiating the surface of the substrate with laser light by a laser condensing means, and the laser condensing means is axially symmetric with respect to the optical axis within the substrate. And the light incident on the outer peripheral portion of the laser condensing means is condensed on the laser condensing means side from the light incident on the inner peripheral portion of the laser condensing means. Preferably it is.
前記周期的構造は、前記レーザ集光手段と前記基板を相対的に移動させて、前記レーザ集光手段によりレーザ光を前記基板に向けて照射することによって形成されたことが好ましい。 The periodic structure is preferably formed by relatively moving the laser condensing unit and the substrate and irradiating the substrate with laser light by the laser condensing unit.
前記周期的構造は、前記基板において前記レーザ光の集光点を相変化することによって形成することが好ましい。 The periodic structure is preferably formed by changing the phase of the condensing point of the laser beam on the substrate.
前記改質層は、所定の厚さを有し、前記単結晶基板の表面から所定の深さに形成されたことが好ましい。 The modified layer preferably has a predetermined thickness and is formed at a predetermined depth from the surface of the single crystal substrate.
前記改質層は、前記基板の表面と平行に形成されたことが好ましい。 The modified layer is preferably formed in parallel with the surface of the substrate.
前記改質層は、前記基板の表面と平行に複数形成されたことが好ましい。 It is preferable that a plurality of the modified layers are formed in parallel with the surface of the substrate.
前記基板の表面は、鏡面であることが好ましい。 The surface of the substrate is preferably a mirror surface.
前記基板は、シリコン単結晶基板又はシリコンカーバイド単結晶基板であることが好ましい。 The substrate is preferably a silicon single crystal substrate or a silicon carbide single crystal substrate.
本発明に係る基板加工方法は、単結晶の基板を提供するステップと、前記基板の表面に向けてレーザ集光手段にてレーザ光を照射することによって、前記基板の内部に当該基板の結晶方位とは異なる結晶方位を有する周期的構造が形成された改質層を形成するステップとを有し、前記レーザ集光手段は、前記レーザ光を光軸に軸対称に集光するとともに、前記基板内部において、前記レーザ集光手段の外周部に入射した光が、前記レーザ集光手段の内周部に入射した光より、前記レーザ集光手段側で集光するように構成されているものである。 The substrate processing method according to the present invention includes a step of providing a single-crystal substrate, and irradiating a laser beam toward the surface of the substrate with a laser condensing unit, whereby the crystal orientation of the substrate is inside the substrate. Forming a modified layer in which a periodic structure having a different crystal orientation is formed, and the laser condensing means condenses the laser light axially symmetrically with respect to an optical axis, and Inside, the light incident on the outer peripheral portion of the laser condensing means is configured to condense on the laser condensing means side from the light incident on the inner peripheral portion of the laser condensing means. is there.
前記レーザ集光手段と前記基板を相対的に移動させる工程をさらに有することが好ましい。 Preferably, the method further includes a step of relatively moving the laser condensing unit and the substrate.
前記周期的構造は、前記基板において前記レーザ光の集光点を相変化することによって形成されることが好ましい。 The periodic structure is preferably formed by changing a phase of a condensing point of the laser beam on the substrate.
前記改質層は、所定の厚さを有し、前記単結晶基板の表面から所定の深さに形成されたことが好ましい。 The modified layer preferably has a predetermined thickness and is formed at a predetermined depth from the surface of the single crystal substrate.
前記改質層は、前記基板の表面と平行に形成されたことが好ましい。 The modified layer is preferably formed in parallel with the surface of the substrate.
前記改質層は、前記基板の表面と平行に複数形成されたことが好ましい。 It is preferable that a plurality of the modified layers are formed in parallel with the surface of the substrate.
前記基板の表面は、鏡面であることが好ましい。 The surface of the substrate is preferably a mirror surface.
前記基板は、シリコン単結晶基板又はシリコンカーバイド単結晶基板であることが好ましい。 The substrate is preferably a silicon single crystal substrate or a silicon carbide single crystal substrate.
前記基板を前記改質層にて剥離することによって割断することが好ましい。 It is preferable that the substrate is cleaved by peeling off the modified layer.
次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
又、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の実施の形態は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の実施の形態は、特許請求の範囲において、種々の変更を加えることができる。 Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the embodiments of the present invention include the material, shape, structure, The layout is not specified as follows. Various modifications can be made to the embodiment of the present invention within the scope of the claims.
(基板内部加工装置の構成)
図1は、基板内部加工装置100の構成を示す斜視図である。基板内部加工装置100は、ステージ110と、ステージ110がXY方向に移動可能なように支持するステージ支持部120と、ステージ110上に配置され、基板10を固定する基板固定具130とを有している。
(Configuration of substrate internal processing equipment)
FIG. 1 is a perspective view showing the configuration of the substrate internal processing apparatus 100. The substrate internal processing apparatus 100 includes a stage 110, a stage support unit 120 that supports the stage 110 so as to be movable in the XY directions, and a substrate fixture 130 that is disposed on the stage 110 and fixes the substrate 10. ing.
また、基板内部加工装置100は、レーザ光源150と、レーザ集光部160を有し、レーザ集光部160は、レーザ光源150から発したレーザ光190を集光して基板10に向けて照射する。レーザ集光部160は、対物レンズ170及び平凸レンズ180を有している。 The substrate internal processing apparatus 100 includes a laser light source 150 and a laser condensing unit 160, and the laser condensing unit 160 condenses the laser light 190 emitted from the laser light source 150 and irradiates the substrate 10. To do. The laser condensing unit 160 includes an objective lens 170 and a plano-convex lens 180.
図2は、ステージ110上に置いた基板10を示す上面図である。図3は、ステージ110上に置いた基板10を示す断面図である。 FIG. 2 is a top view showing the substrate 10 placed on the stage 110. FIG. 3 is a cross-sectional view showing the substrate 10 placed on the stage 110.
基板10は、ステージ110上において基板固定具130によって保持されている。基板固定具130は、その上に設けられた固定テーブル125によって基板10を固定している。固定テーブル125には、通常の粘着層、機械的なチャック、静電チャックなどが適用可能である。 The substrate 10 is held on the stage 110 by the substrate fixture 130. The substrate fixture 130 fixes the substrate 10 by a fixing table 125 provided thereon. A normal adhesive layer, mechanical chuck, electrostatic chuck or the like can be applied to the fixed table 125.
基板10に集光して照射されるレーザ光190の集光点Pは、基板10の内部において、表面から所定の深さの領域に所定の形状の軌跡12を形成することで、表面に水平方向に2次元状の内部改質層14を形成することができる。 The condensing point P of the laser beam 190 focused and irradiated on the substrate 10 forms a locus 12 having a predetermined shape in a region at a predetermined depth from the surface inside the substrate 10, thereby being horizontal to the surface. A two-dimensional internal reforming layer 14 can be formed in the direction.
図4は、基板10における内部改質層14の形成を説明する図である。基板内部加工装置100においては、レーザ光190は、レーザ集光部160の対物レンズ170及び平凸レンズ180を介して基板10に向けて照射され、基板10内部において集光される。 FIG. 4 is a diagram for explaining the formation of the internal modified layer 14 in the substrate 10. In the substrate internal processing apparatus 100, the laser light 190 is irradiated toward the substrate 10 through the objective lens 170 and the plano-convex lens 180 of the laser condensing unit 160 and is condensed inside the substrate 10.
本実施の形態においては、レーザ集光部160は、レーザ集光部160の出射するレーザ光190がその光軸について軸対称であり、基板10の内部において、レーザ光190の外周側の成分190bの光線が交差する集光点P2が、レーザ光190の内周側190aの成分の光線が交差する集光点P1よりもレーザ集光部160側にあるように構成されている。 In the present embodiment, the laser condensing unit 160 is configured such that the laser light 190 emitted from the laser condensing unit 160 is axially symmetric with respect to its optical axis, and the component 190b on the outer peripheral side of the laser light 190 inside the substrate 10. The condensing point P2 at which the light beams intersect with each other is configured to be closer to the laser condensing unit 160 than the condensing point P1 at which the light beams of the components on the inner peripheral side 190a of the laser light 190 intersect.
換言すると、基板10の表面はレーザ集光部160に対向しているので、レーザ光190の外周側の成分190bの集光点P2は、レーザ光190の内周側190aの集光点190bよりも、対物レンズ170及び平凸レンズ180側、すなわち基板10の表面から浅い位置にある。 In other words, since the surface of the substrate 10 faces the laser condensing unit 160, the condensing point P2 of the component 190b on the outer peripheral side of the laser light 190 is more than the condensing point 190b on the inner peripheral side 190a of the laser light 190. Also, the objective lens 170 and the plano-convex lens 180 are located at a shallow position from the surface of the substrate 10.
この状態は、基板10によりレーザ光190に生じた収差が過剰に補正されて状態であると見なすことができ、いわばピントを過剰に補正した「ピンボケ」状態であるということができる。このような状態によって、基板10の一定の深さの範囲においてレーザ光の径を実質的に絞ることができ、当該領域において内部改質層14を形成するために十分なエネルギー密度を確保することができる。図中においては、一定の深さの範囲tに形成された内部改質層14が示されている。 This state can be regarded as a state in which the aberration generated in the laser beam 190 by the substrate 10 is excessively corrected, and can be said to be a “out-of-focus” state in which the focus is excessively corrected. In such a state, the diameter of the laser beam can be substantially reduced within a certain depth range of the substrate 10, and sufficient energy density is ensured for forming the internal modified layer 14 in the region. Can do. In the figure, an internal reforming layer 14 formed in a range t having a constant depth is shown.
内部改質層14は、基板10にレーザ光190を集光して照射することによって、シリコン単結晶が溶融した後で冷却されることにより結合状態が変化することにより形成された多結晶シリコンの多結晶粒を有するものである。 The internal modified layer 14 is made of polycrystalline silicon formed by condensing and irradiating the laser beam 190 on the substrate 10 to change the bonding state by being cooled after the silicon single crystal is melted. It has polycrystalline grains.
このように形成された内部改質層14は、レーザ光190を周期的な間隔で照射したことにより、シリコン単結晶の結晶方位とは異なる結晶方位となる多結晶を有する周期的構造を有するものである。いうまでもなく、異なる結晶方位の多結晶もシリコン単結晶とは同一元素のシリコンからなるものである。 The inner modified layer 14 thus formed has a periodic structure having a polycrystal having a crystal orientation different from the crystal orientation of the silicon single crystal by irradiating the laser beam 190 at periodic intervals. It is. Needless to say, polycrystals having different crystal orientations are composed of silicon of the same element as a silicon single crystal.
内部改質層14は、後述する割断工程における歩留まり向上のため、基板10の端部に
露出していることが好ましい。内部改質層14を露出させる方法は、結晶方位のへき開を
利用しても、レーザ光190を利用してもよい。
The internal modified layer 14 is preferably exposed at the end of the substrate 10 in order to improve the yield in the cleaving process described later. As a method for exposing the internal modified layer 14, the cleavage of crystal orientation may be used, or the laser beam 190 may be used.
このようなレーザ集光部160を用い、基板10に対してレーザ光190を照射する実施の形態について説明する。図5は、第1の実施の形態を示す図である。図5においては、便宜上、レーザ集光部160を平凸レンズ180により代表し、光軸を横方向に記載するが、レーザ光の集光は平凸レンズ180を含むレーザ集光部160全体によって行われるものである。 An embodiment in which such a laser condensing unit 160 is used to irradiate the substrate 10 with laser light 190 will be described. FIG. 5 is a diagram illustrating the first embodiment. In FIG. 5, for convenience, the laser condensing unit 160 is represented by the plano-convex lens 180 and the optical axis is described in the horizontal direction, but the laser beam is collected by the entire laser condensing unit 160 including the plano-convex lens 180. Is.
この第1の実施の形態では、レーザ集光部160によって集光されたレーザ光190は、基板10の表面に向けて照射されている。このレーザ光190は、基板10によって屈折され、光軸から高い位置にある外周側の成分が、光軸から低い位置にある内周側の成分よりも基板10の表面から浅い位置で集光している。換言すると、外周側の光は、内周側の光よりもレーザ集光部190に近い位置で集光している。 In the first embodiment, the laser beam 190 condensed by the laser condensing unit 160 is irradiated toward the surface of the substrate 10. The laser beam 190 is refracted by the substrate 10 and is condensed at a position where the component on the outer peripheral side at a position higher from the optical axis is shallower than the surface of the substrate 10 than the component on the inner peripheral side at a position lower than the optical axis. ing. In other words, the light on the outer peripheral side is condensed at a position closer to the laser condensing unit 190 than the light on the inner peripheral side.
なお、レーザ集光部160の基板10に対する位置は、図示しない集光調整部によって移動することができる。この集光調整部は、後述するようにレーザ集光部160と基板10の距離等を調整することにより基板10におけるレーザ光190の集光位置、集光形状等を調整するものである。このような集光調整部は従来技術を用いて容易に実現することができる。 The position of the laser condensing unit 160 with respect to the substrate 10 can be moved by a condensing adjusting unit (not shown). As will be described later, the condensing adjustment unit adjusts the condensing position, condensing shape, and the like of the laser light 190 on the substrate 10 by adjusting the distance between the laser condensing unit 160 and the substrate 10. Such a condensing adjustment part can be easily realized by using a conventional technique.
図6は、基板に対するレーザ光の照射の第2の実施の形態を説明する図である。第2の実施の形態では、レーザ集光部160と基板10の距離が第1の実施の形態より拡大し、レーザ集光部160によって集光されたレーザ光190が基板10の表面を焦点とするように集光調整部によって調整されている。 FIG. 6 is a diagram for explaining a second embodiment of laser beam irradiation on a substrate. In the second embodiment, the distance between the laser condensing unit 160 and the substrate 10 is larger than that in the first embodiment, and the laser light 190 collected by the laser condensing unit 160 is focused on the surface of the substrate 10. It is adjusted by the condensing adjustment part.
この第2の実施の形態は、例えば、第1の実施の形態で示したように基板10内部に集光点を設定する前に、レーザ集光部190の基板10に対する位置を初期設定するときに使用することができる。すなわち、図示しない集光調整部によって、第2の実施の形態においてレーザ光190が基板10の表面を焦点とする初期状態からレーザ集光部190と基板10の表面の距離を所定値にわたって短縮することにより、第1の実施の形態のように基板10内部に所望の集光点を形成することができる。なお、このような初期設定は、基板10の表面に限らず、基板10の裏面に焦点を合わせて行うこともできる。 In the second embodiment, for example, as shown in the first embodiment, before the condensing point is set inside the substrate 10, the position of the laser condensing unit 190 with respect to the substrate 10 is initially set. Can be used for That is, the distance between the laser condensing unit 190 and the surface of the substrate 10 is shortened by a predetermined value from the initial state in which the laser light 190 is focused on the surface of the substrate 10 in the second embodiment by a condensing adjusting unit (not shown). Thereby, a desired condensing point can be formed inside the substrate 10 as in the first embodiment. Such an initial setting can be performed not only on the front surface of the substrate 10 but also on the back surface of the substrate 10.
図7は、基板における収差を説明する参考図である。この参考図は、第1の実施の形態と対比するために、レーザ集光部160を設けない場合に生じる収差を示すものである。例えば、通常の対物レンズのみを設置した場合が相当する。 FIG. 7 is a reference diagram for explaining the aberration in the substrate. This reference diagram shows aberrations that occur when the laser condensing unit 160 is not provided for comparison with the first embodiment. For example, the case where only a normal objective lens is installed corresponds.
図7(a)においては、第2の実施の形態と同様に、基板の10の表面を焦点としてレーザ光190が集光されている。この状態から基板10を光軸に沿って入射方向に移動してレーザ光190が基板10内で集光するようにする。この場合、図7(b)に示すように、光軸からの高さが高い光の外周側の成分が、光軸からの高さの低い内周側の成分よりも基板10の表面から深い位置で集光するようになる。 In FIG. 7A, as in the second embodiment, the laser beam 190 is focused on the surface of the substrate 10 as a focal point. From this state, the substrate 10 is moved in the incident direction along the optical axis so that the laser beam 190 is condensed in the substrate 10. In this case, as shown in FIG. 7B, the component on the outer peripheral side of light having a high height from the optical axis is deeper from the surface of the substrate 10 than the component on the inner peripheral side having a low height from the optical axis. Condensed at the position.
この状態は、光軸からの高さが高い外周側の成分が光軸からの高さが低い内周側の成分より浅い位置に集光する第1の実施の形態とは、光線の高さと基板10における集光点の深さが逆の関係となっている。換言すると、外周側の成分が内周側の成分より浅い位置に集光する第1の実施の形態は、レーザ集光部160を設けることによって初めて実現が可能となるものである。 This state is different from the first embodiment in which the outer peripheral component having a high height from the optical axis is condensed at a position shallower than the inner peripheral component having a low height from the optical axis. The depth of the condensing point on the substrate 10 has an inverse relationship. In other words, the first embodiment in which the component on the outer peripheral side condenses at a position shallower than the component on the inner peripheral side can be realized only by providing the laser condensing unit 160.
図8は、基板に対するレーザ光の照射の第3の実施の形態を示す図である。第3の実施の形態においては、図示しない集光点調整部によってレーザ集光部160と基板10の表面の距離を短縮するように調整し、基板10内において基板10の裏面近くにレーザ光190の集光点が形成されるように調整したものである。この集光点によって、基板の10の裏面近くに基板10の表面に平行に内部改質層14が形成される。 FIG. 8 is a diagram showing a third embodiment of laser beam irradiation on the substrate. In the third embodiment, adjustment is performed by a condensing point adjusting unit (not shown) so that the distance between the laser condensing unit 160 and the surface of the substrate 10 is shortened. It is adjusted so that a condensing point of is formed. Due to this condensing point, the internal modified layer 14 is formed in parallel with the surface of the substrate 10 near the back surface of the substrate 10.
図9は、基板に対するレーザ光の照射の第4の実施の形態を示す図である。第4の実施の形態においては、第3の実施の形態により基板10の裏面近くに内部改質層14aを形成した後、図示しない集光点調整手段によってレーザ集光部160と基板10の表面の距離が拡大するように調整し、基板10内において基板10の表面近くにレーザ光190の集光点が形成されるようにしたものである。この集光点によって、基板10の表面近くに基板10の表面に平行に第2の内部改質層14bが形成される。なお、内部改質層14は、この第4の実施例のように2層に限らず、2層以上の複数層であってもよい。 FIG. 9 is a diagram showing a fourth embodiment of laser beam irradiation on a substrate. In the fourth embodiment, after the internal modified layer 14a is formed near the back surface of the substrate 10 according to the third embodiment, the laser condensing unit 160 and the surface of the substrate 10 are formed by a condensing point adjusting unit (not shown). The condensing point of the laser beam 190 is formed in the substrate 10 near the surface of the substrate 10. Due to this condensing point, the second internal modified layer 14 b is formed near the surface of the substrate 10 in parallel with the surface of the substrate 10. The internal modified layer 14 is not limited to two layers as in the fourth embodiment, and may be a plurality of layers of two or more layers.
(基板の割断)
図10は、割断装置を示す正面図である。第3又は第4の実施の形態によって内部改質層14が形成された基板10は、この割断装置を用いて内部改質層14において割断される。
(Cleaving the substrate)
FIG. 10 is a front view showing the cleaving device. The substrate 10 on which the internal modified layer 14 is formed according to the third or fourth embodiment is cleaved in the internal modified layer 14 using this cleaving apparatus.
この割断装置50において、架台52上に、基板10の両面に第1及び第2の金属板20、21が接着剤にて接着されてなる構造体40が載置される。この接着剤としては、基板10の内部改質層14近傍領域を形成する多結晶粒の凝集力よりも強い接着剤であればよく、例えば金属イオンを反応開始剤として硬化する嫌気性アクリル系二液モノマー成分からなる接着剤25を使用することができる。 In the cleaving apparatus 50, the structure 40 in which the first and second metal plates 20 and 21 are bonded to both surfaces of the substrate 10 with an adhesive is placed on the mount 52. The adhesive may be any adhesive that is stronger than the cohesive strength of the polycrystalline grains forming the region near the inner modified layer 14 of the substrate 10. For example, an anaerobic acrylic type resin that cures using metal ions as a reaction initiator. An adhesive 25 composed of a liquid monomer component can be used.
構造体40は、第2の金属板21に設けられた貫孔を利用して架台52に固定してよい。この状態において、第1の金属板20に割断冶具54によって下向きの押圧力を印加する。これによって、基板10は第1及び第2の金属板20、21に接着した上面及び下面の両面の方向に逆向きの力を受け、力が所定の閾値を越えると、基板10は分割され、構造体40は上下2つに分離される。 The structure 40 may be fixed to the gantry 52 using a through hole provided in the second metal plate 21. In this state, a downward pressing force is applied to the first metal plate 20 by the cleaving jig 54. As a result, the substrate 10 receives a reverse force in both directions of the upper surface and the lower surface bonded to the first and second metal plates 20, 21, and when the force exceeds a predetermined threshold, the substrate 10 is divided, The structure 40 is separated into two upper and lower parts.
(基板の剥離)
図11は、水中で金属板20から基板10を剥離する方法を説明する図である。水槽60に蓄えた80〜100℃の温水に、金属板20、21に接着剤25で接着された基板10を浸す。所定時間経過すると接着剤25が水と所定の反応を生じ、接着剤25から接着力が失われるので、水中で基板10から接着剤25を剥離することにより、金属板20、21から基板10を分離することができる。
(Peeling the substrate)
FIG. 11 is a diagram illustrating a method for peeling the substrate 10 from the metal plate 20 in water. The substrate 10 bonded to the metal plates 20 and 21 with the adhesive 25 is immersed in warm water of 80 to 100 ° C. stored in the water tank 60. After a predetermined time has elapsed, the adhesive 25 reacts with water in a predetermined manner, and the adhesive force is lost from the adhesive 25. Therefore, by peeling the adhesive 25 from the substrate 10 in water, the substrate 10 is removed from the metal plates 20, 21. Can be separated.
このように接着剤25が剥離された基板10を乾燥することによって、最終的な分割した基板を得ることができる。なお、第4の実施の形態のように内部改質層14a、14bが複数存在する場合には、基板10の割断の工程を複数回繰り返すことにより複数の内部改質層ごとに分割することができる。 By drying the substrate 10 from which the adhesive 25 has been peeled in this way, a final divided substrate can be obtained. In addition, when there are a plurality of internal modified layers 14a and 14b as in the fourth embodiment, it is possible to divide the substrate 10 into a plurality of internal modified layers by repeating the cleaving process of the substrate 10 a plurality of times. it can.
(レーザ集光部の具体例)
図12は、レーザ集光部の具体例を示す図である。この具体例において、レーザ集光部160は、例えば高NAで作動距離の長い対物レンズ170と基板10の表面側に設けた平凸レンズ180との組み合わせによって実現している。
(Specific example of laser focusing unit)
FIG. 12 is a diagram illustrating a specific example of the laser condensing unit. In this specific example, the laser condensing unit 160 is realized by a combination of an objective lens 170 having a high NA and a long working distance, and a plano-convex lens 180 provided on the surface side of the substrate 10, for example.
具体的には、厚み1mmの単結晶シリコンからなる基板10の内部加工については、基板10の表面側より、0.14mmの位置に焦点距離15mmのガラス製の平凸レンズ180(シグマ光機:SLB−10−15P)を置き、NA=0.3の対物レンズ170(シグマ光機:EPL−10)に組み合わせることができる。 Specifically, for internal processing of the substrate 10 made of single crystal silicon having a thickness of 1 mm, a plano-convex lens 180 made of glass having a focal length of 15 mm at a position of 0.14 mm from the surface side of the substrate 10 (Sigma light machine: SLB). -10-15P) and can be combined with an objective lens 170 (Sigma light machine: EPL-10) having NA = 0.3.
このようなレーザ集光部160においては、図示しない集光点調整部は、平凸レンズ80と基板10の表面の距離で集光点の形状を調整し、対物レンズ170と基板10の表面の距離で集光点の位置を調整するように構成することができる。 In such a laser condensing unit 160, a condensing point adjustment unit (not shown) adjusts the shape of the condensing point by the distance between the plano-convex lens 80 and the surface of the substrate 10, and the distance between the objective lens 170 and the surface of the substrate 10. It can comprise so that the position of a condensing point may be adjusted.
図13は、レーザ集光部の他の具体例を示す図である。他の具体例では、NA=0.5〜0.9の補正環を有するシリコン用の赤外線対物レンズにより実現している。具体的には、例えばオリンパス製レンズLCPLN100XIRを使用する場合、内部加工層14を結晶10の表面から300μmの位置に設けるときに補正環を0.6mmに設定することで、基板10内において、レーザ集光部160の外周部に入射した光が、内周部に入射した光より、レーザ集光160側で集光するように設定することができる。 FIG. 13 is a diagram illustrating another specific example of the laser condensing unit. In another specific example, this is realized by an infrared objective lens for silicon having a correction ring with NA = 0.5 to 0.9. Specifically, for example, when an Olympus lens LCPLN100XIR is used, the correction ring is set to 0.6 mm when the internal processing layer 14 is provided at a position of 300 μm from the surface of the crystal 10. It can be set so that the light incident on the outer peripheral portion of the condensing unit 160 is condensed on the laser condensing 160 side from the light incident on the inner peripheral portion.
この他の実施例によると、前述の実施例のように対物レンズ170及び平凸レンズ180という複数の構成部材を必要とすることなく、単一の補正環付き対物レンズにより構成できるので、装置の構成が簡単になり、操作が容易になる。 According to this other embodiment, it is possible to configure with a single objective lens with a correction ring without requiring a plurality of constituent members such as the objective lens 170 and the plano-convex lens 180 as in the above-described embodiments. Becomes simple and easy to operate.
なお、この他の具体例においては、基板10のより表面側に内部改質層14を形成する場合、レーザ集光手段160と基板10の表面との距離を大きくする必要がある。この場合、レーザ光190が基板10の表面に及ぼす影響を抑制するため、虹彩絞りやビームエクスパンダなどのビーム径調整手段をレーザ集光部160の入射側に設けレーザ光190の外周側成分の光量を低減することがある。 In another specific example, when the internal modified layer 14 is formed on the surface side of the substrate 10, it is necessary to increase the distance between the laser focusing unit 160 and the surface of the substrate 10. In this case, in order to suppress the influence of the laser beam 190 on the surface of the substrate 10, beam diameter adjusting means such as an iris diaphragm and a beam expander is provided on the incident side of the laser condensing unit 160, and the outer peripheral component of the laser beam 190 is reduced. The amount of light may be reduced.
実施例1においては、基板内部加工装置100のレーザ光源150として波長1064nm、繰り返し周波数200kHz、出力1.6W、パルス幅10nmのものを使用した。基板内部加工装置100において、x軸、y軸方向にそれぞれ最大速度200mm/sで移動可能なxyステージ110上に、大きさ50×50mm、厚み0.7mm、表面が鏡面加工された単結晶シリコンからなる基板10を載置固定した。 In Example 1, a laser light source 150 of the substrate internal processing apparatus 100 having a wavelength of 1064 nm, a repetition frequency of 200 kHz, an output of 1.6 W, and a pulse width of 10 nm was used. In the substrate internal processing apparatus 100, single crystal silicon having a size of 50 × 50 mm, a thickness of 0.7 mm, and a mirror-finished surface on an xy stage 110 movable at a maximum speed of 200 mm / s in the x-axis and y-axis directions, respectively. The substrate 10 made of was placed and fixed.
レーザ集光部160は、NA=0.85の補正環210付の対物レンズ200(オリンパス製LCPLN100XIR)を用いた。そして、補正環210を0mmに設定した上、参照光により観察し、対物レンズ200から照射される光が基板10の表面上に焦点を形成するように、対物レンズ200を基板10の表面に対して位置決めをした。このとき、対物レンズ200と基板10の間隔は0.6mmであった。 As the laser condensing unit 160, an objective lens 200 (an Olympus LCPLN100XIR) with a correction ring 210 of NA = 0.85 was used. Then, the correction ring 210 is set to 0 mm, and the objective lens 200 is observed with respect to the surface of the substrate 10 so that the light irradiated from the objective lens 200 forms a focal point on the surface of the substrate 10 while being observed with the reference light. Was positioned. At this time, the distance between the objective lens 200 and the substrate 10 was 0.6 mm.
ついで、この位置を基準に対物レンズ200を基板10の表面に向けて0.06mm移動させた。この状態で補正環210の設定を0.6mmとし、ステージ110をx方向に200mm/sの速度で移動させ、さらにy方向に10μm送ることを10回繰り返すことで、対物レンズ200から基板10に向けてレーザ光190を10μm間隔でそれぞれ10本の直線状に照射した。 Next, the objective lens 200 was moved 0.06 mm toward the surface of the substrate 10 with this position as a reference. In this state, the setting of the correction ring 210 is set to 0.6 mm, the stage 110 is moved at a speed of 200 mm / s in the x direction, and is further sent 10 μm in the y direction 10 times to repeat from the objective lens 200 to the substrate 10. The laser beam 190 was irradiated in the form of 10 straight lines at intervals of 10 μm.
この基板10を直線状の照射方向に直角に劈開を行い、断面を観察した。この結果、図14に示すように、基板10鏡面側表面から0.3mmの深さに加工領域の長さが30μm、かつ隣接する加工痕同士が連結する状態が確認できた。この加工跡は、レーザ照射による溶解及び冷却により単結晶構造が多結晶構造に変化(相変化)したものであり、単結晶の結晶方位とは異なる結晶方位の結晶を含み、多結晶構造の領域が連結した周期的構造を有する内部加工層14を構成している。 The substrate 10 was cleaved at right angles to the linear irradiation direction, and the cross section was observed. As a result, as shown in FIG. 14, it was confirmed that the processing region had a length of 30 μm at a depth of 0.3 mm from the mirror-side surface of the substrate 10 and adjacent processing traces were connected to each other. This processing trace is a change in the single crystal structure to a polycrystalline structure (phase change) due to melting and cooling by laser irradiation, including crystals with a crystal orientation different from the crystal orientation of the single crystal, and a region of the polycrystalline structure Constitutes an internally processed layer 14 having a periodic structure in which are connected.
レーザ光源150として波長1064nmのファイバーレーザAを用いて、繰り返し周波数200kHz、レーザ集光部160として開口数0.85の赤外用対物レンズを用い、対物レンズ後の出力1.6W、パルス幅39ns、レーザ照射間隔1μm、オフセット1μm、空気中換算でDF80μm、シリコン収差補正環0.6mmで厚み725μm両面鏡面加工(100)のシリコン単結晶の基板10の表面5mm×20mmの領域に向けてレーザ光190を照射して内部改質層14を形成した。なお、基板10の表面とはレーザ集光部160に対向する基板10の主面をいい、基板10のレーザ集光部160に対する反対側の主面を裏面というものとする。 Using a fiber laser A having a wavelength of 1064 nm as the laser light source 150, using an infrared objective lens having a repetition frequency of 200 kHz and a numerical aperture of 0.85 as the laser condensing unit 160, an output of 1.6 W after the objective lens, a pulse width of 39 ns, Laser beam 190 toward a region of surface 5 mm × 20 mm of a silicon single crystal substrate 10 having a laser irradiation interval of 1 μm, an offset of 1 μm, an DF of 80 μm in terms of air, a silicon aberration correction ring of 0.6 mm, and a thickness of 725 μm. To form an internal modified layer 14. The surface of the substrate 10 refers to the main surface of the substrate 10 facing the laser condensing unit 160, and the main surface of the substrate 10 opposite to the laser condensing unit 160 is referred to as the back surface.
そして、基板10の表面と裏面の両面に接着剤を介して金属板を接着し、割断装置50を用いて内部改質層14を境として基板14を分割し、露出した分割面を日本電子製の走査電子顕微鏡(SEM)を用いて観察を行った。図15は、走査電子顕微鏡で表面側の分割面を拡大した写真である。図16は、走査電子顕微鏡で裏面側の分割面を拡大した写真である。 Then, a metal plate is bonded to both the front and back surfaces of the substrate 10 via an adhesive, and the substrate 14 is divided using the cleaving device 50 with the internal modified layer 14 as a boundary, and the exposed divided surface is made by JEOL. Observation was performed using a scanning electron microscope (SEM). FIG. 15 is an enlarged photograph of the surface-side divided surface with a scanning electron microscope. FIG. 16 is an enlarged photograph of the rear divided surface with a scanning electron microscope.
レーザ光源150として波長1064nmのファイバーレーザBを用いて、繰り返し周波数200kHz、レーザ集光部160として開口数0.85の赤外用対物レンズを用い、対物レンズ後の出力0.8W、パルス幅39ns、レーザ照射間隔1μm、オフセット1μm、空気中換算でDF80μm、シリコン収差補正環0.6mmで厚み725μm両面鏡面加工(100)のシリコン単結晶の基板10の表面5mm×20mmの領域に向けてレーザ光190を照射して内部加工層14を形成した。 Using a fiber laser B having a wavelength of 1064 nm as the laser light source 150, using an infrared objective lens having a repetition frequency of 200 kHz and a numerical aperture of 0.85 as the laser condensing unit 160, an output of 0.8 W after the objective lens, a pulse width of 39 ns, Laser beam 190 toward the region of surface 5 mm × 20 mm of the silicon single crystal substrate 10 having a laser irradiation interval of 1 μm, an offset of 1 μm, an DF of 80 μm in terms of air, a silicon aberration correction ring of 0.6 mm, and a thickness of 725 μm. Was applied to form an internal processed layer 14.
実施例2と同様に基板10を分割して分割面を観察した。図17は、走査電子顕微鏡で表面側の分割面を拡大した写真である。図18は、走査電子顕微鏡で裏面側の分割面を拡大した写真である。 In the same manner as in Example 2, the substrate 10 was divided and the divided surfaces were observed. FIG. 17 is an enlarged photograph of the surface-side divided surface with a scanning electron microscope. FIG. 18 is an enlarged photograph of the rear divided surface with a scanning electron microscope.
レーザ光源150として波長1064nmのファイバーレーザBを用いて、繰り返し周波数200kHz、レーザ集光部160として開口数0.85の赤外用対物レンズを用い、対物レンズ後の出力0.8W、パルス幅39ns、レーザ照射間隔1μm、オフセット2μm、空気中換算でDF80μm、シリコン収差補正環0.6mmで厚み725μm両面鏡面加工(100)のシリコン単結晶の基板10の表面5mm×20mmの領域に向けてレーザ光190を照射して内部加工層14を形成した。 Using a fiber laser B having a wavelength of 1064 nm as the laser light source 150, using an infrared objective lens having a repetition frequency of 200 kHz and a numerical aperture of 0.85 as the laser condensing unit 160, an output of 0.8 W after the objective lens, a pulse width of 39 ns, Laser beam 190 toward a region of surface 5 mm × 20 mm of a silicon single crystal substrate 10 having a laser irradiation interval of 1 μm, an offset of 2 μm, an DF of 80 μm in terms of air, a silicon aberration correction ring of 0.6 mm, and a thickness of 725 μm. Was applied to form an internal processed layer 14.
実施例2と同様に基板10を分割して分割面を観察した。図19は、走査電子顕微鏡で表面側の分割面を拡大した写真である。図20は、走査電子顕微鏡で裏面側の分割面を拡大した写真である。 In the same manner as in Example 2, the substrate 10 was divided and the divided surfaces were observed. FIG. 19 is an enlarged photograph of the divided surface on the surface side with a scanning electron microscope. FIG. 20 is an enlarged photograph of the rear divided surface with a scanning electron microscope.
〔比較例1〕
レーザ光源150として波長1064nmのファイバーレーザAを用いて、繰り返し周波数200kHz、レーザ集光部160として開口数0.85の赤外用対物レンズを用い、対物レンズ後の出力1.2W、パルス幅39ns、レーザ照射間隔1μm、オフセット1μm、空気中換算でDF80μm、シリコン収差補正環0.6mmで厚み725μm両面鏡面加工(100)のシリコン単結晶の基板10の表面5mm×10mmの領域に向けてレーザ光190を照射して内部加工層14を形成した。
[Comparative Example 1]
Using a fiber laser A having a wavelength of 1064 nm as the laser light source 150, using an infrared objective lens with a repetition frequency of 200 kHz and a numerical aperture of 0.85 as the laser condensing unit 160, an output of 1.2 W after the objective lens, a pulse width of 39 ns, Laser beam 190 toward a region of surface 5 mm × 10 mm of a silicon single crystal substrate 10 having a laser irradiation interval of 1 μm, an offset of 1 μm, an DF of 80 μm in air equivalent, a silicon aberration correction ring of 0.6 mm and a thickness of 725 μm and double-sided mirror processing (100). Was applied to form an internal processed layer 14.
実施例2と同様に基板10を分割して分割面を観察した。図21は、走査電子顕微鏡で表面側の分割面を拡大した写真である。図22は、走査電子顕微鏡で裏面側の分割面を拡大した写真である。 In the same manner as in Example 2, the substrate 10 was divided and the divided surfaces were observed. FIG. 21 is an enlarged photograph of the divided surface on the surface side with a scanning electron microscope. FIG. 22 is an enlarged photograph of the rear divided surface with a scanning electron microscope.
〔比較例2〕
レーザ光源150として波長1064nmのファイバーレーザBを用いて、繰り返し周波数200kHz、レーザ集光部160として開口数0.85の赤外用対物レンズを用い、対物レンズ後の出力0.6W、パルス幅60ns、レーザ照射間隔1μm、オフセット1μm、空気中換算でDF80μm、シリコン収差補正環0.6mmで厚み725μm両面鏡面加工(100)のシリコン単結晶の基板10の表面5mm×10mmの領域に向けてレーザ光190を照射して内部加工層14を形成した。
[Comparative Example 2]
Using a fiber laser B having a wavelength of 1064 nm as the laser light source 150, an infrared objective lens having a repetition frequency of 200 kHz and a numerical aperture of 0.85 as the laser condensing unit 160, an output of 0.6 W after the objective lens, a pulse width of 60 ns, Laser beam 190 toward a region of surface 5 mm × 10 mm of a silicon single crystal substrate 10 having a laser irradiation interval of 1 μm, an offset of 1 μm, an DF of 80 μm in air equivalent, a silicon aberration correction ring of 0.6 mm and a thickness of 725 μm and double-sided mirror processing (100). Was applied to form an internal processed layer 14.
実施例2と同様に基板10を分割して分割面を観察した。図23は、走査電子顕微鏡で表面側の分割面を拡大した写真である。図24は、走査電子顕微鏡で裏面側の分割面を拡大した写真である。 In the same manner as in Example 2, the substrate 10 was divided and the divided surfaces were observed. FIG. 23 is an enlarged photograph of the surface-side divided surface with a scanning electron microscope. FIG. 24 is an enlarged photograph of the rear divided surface with a scanning electron microscope.
以上の実施例1〜4、比較例1〜2から明らかなように、実施例2〜4においては、実施例1のように内部加工層14において周期的構造の加工跡が形成され、加工領域の長さが30μmと短く、隣接する加工跡が連結して形成されている。実施例2〜4は、このように連結して形成された加工跡を有する内部改質層14を割段するため、周期構造を有する滑らかな断面を得ることができる。したがって、さらに研磨する必要がなく、ケミカルエッチングのような湿式工程やレーザエッチングなど別工程に要する工数及びそれに伴う不純物汚染の影響を低減することができる。 As is clear from Examples 1 to 4 and Comparative Examples 1 and 2 described above, in Examples 2 to 4, a processing mark having a periodic structure is formed in the internal processing layer 14 as in Example 1, and a processing region is formed. Is as short as 30 μm and is formed by connecting adjacent processing traces. In Examples 2 to 4, since the internal modified layer 14 having the processing traces formed by being connected in this way is divided, a smooth cross section having a periodic structure can be obtained. Therefore, there is no need for further polishing, and the number of steps required for another process such as a wet process such as chemical etching or laser etching and the influence of impurity contamination associated therewith can be reduced.
前述のように、実施例1〜4のような加工領域の長さが短く隣接する加工跡が連結して形成された内部加工層14は、基板10の内部においてレーザ光190の外周側の成分の集光点が内周側の成分の集光点よりもレーザ集光部160にあるように構成されたレーザ集光部160を用いることによって可能になるものである。 As described above, the inner processing layer 14 formed by connecting adjacent processing traces with a short processing region length as in the first to fourth embodiments is a component on the outer peripheral side of the laser beam 190 inside the substrate 10. This is made possible by using the laser condensing unit 160 configured such that the condensing point of the laser beam is located in the laser condensing unit 160 rather than the condensing point of the inner peripheral component.
比較例1〜2においては、内部改質層14において隣接する加工跡が連結されていないため、断面は粗い粒度を有している。したがって、この断面はさらに研磨の工程が必要である。 In Comparative Examples 1 and 2, since the adjacent processing traces in the internal modified layer 14 are not connected, the cross section has a coarse particle size. Therefore, this cross section requires an additional polishing step.
なお、上記の実施の形態においてはシリコン単結晶基板について例示したが、例えば
シリコンカーバイド(SiC)等にも同様に適用することができる。
In the above embodiment, the silicon single crystal substrate is exemplified. However, the present invention can be similarly applied to, for example, silicon carbide (SiC).
本発明の基板加工装置及び方法により基板を効率良く薄く形成することができることから、薄く切り出された基板は、Si基板であれば、太陽電池に応用可能であり、また、GaN系半導体デバイスなどのサファイア基板などであれば、発光ダイオード、レーザダイオードなどに応用可能であり、SiCなどであれば、SiC系パワーデバイスなどに応用可能であり、透明エレクトロニクス分野、照明分野、ハイブリッド/電気自動車分野など幅広い分野において適用可能である。 Since the substrate can be efficiently and thinly formed by the substrate processing apparatus and method of the present invention, the thinly cut substrate can be applied to a solar cell as long as it is a Si substrate. If it is a sapphire substrate, etc., it can be applied to light emitting diodes, laser diodes, etc. If it is SiC, it can be applied to SiC-based power devices, etc., and it is widely used in the fields of transparent electronics, lighting, hybrid / electric vehicles Applicable in the field.
10 基板
14 内部改質層
20、21 金属板
25 接着剤
50 割断装置
52 架台
54 割断冶具
100 基板内部加工装置
110 ステージ
120 ステージ支持部
150 レーザ光源
160 レーザ集光部
DESCRIPTION OF SYMBOLS 10 Substrate 14 Internal modified layers 20 and 21 Metal plate 25 Adhesive 50 Cleaving device 52 Base 54 Cleaving jig 100 Substrate internal processing device 110 Stage 120 Stage support unit 150 Laser light source 160 Laser condensing unit
Claims (18)
前記基板は、その内部に当該基板の結晶方位とは異なる結晶方位を有する周期的構造が形成された改質層を有し、前記周期的構造は連結されていることを特徴とする基板。 A single crystal substrate,
The substrate, wherein the substrate has a modified layer in which a periodic structure having a crystal orientation different from the crystal orientation of the substrate is formed, and the periodic structures are connected.
前記基板の表面に向けてレーザ集光手段にてレーザ光を照射することによって、前記基板の内部に当該基板の結晶方位とは異なる結晶方位を有する周期的構造が形成された改質層を形成するステップとを有し、
前記レーザ集光手段は、前記レーザ光を光軸に軸対称に集光するとともに、前記基板内部において、前記レーザ集光手段の外周部に入射した光が、前記レーザ集光手段の内周部に入射した光より、前記レーザ集光手段側で集光するように構成されていること
を特徴とする方法。 Providing a single crystal substrate;
By irradiating the surface of the substrate with laser light by a laser focusing means, a modified layer in which a periodic structure having a crystal orientation different from the crystal orientation of the substrate is formed inside the substrate And a step of
The laser condensing means condenses the laser light symmetrically with respect to the optical axis, and the light incident on the outer peripheral portion of the laser condensing means inside the substrate is an inner peripheral portion of the laser condensing means. A method for condensing light on the laser condensing means side from light incident on the light.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012020067A JP6044919B2 (en) | 2012-02-01 | 2012-02-01 | Substrate processing method |
TW102103674A TWI524960B (en) | 2012-02-01 | 2013-01-31 | Substrate and substrate processing method |
PCT/JP2013/052327 WO2013115353A1 (en) | 2012-02-01 | 2013-02-01 | Substrate and substrate processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012020067A JP6044919B2 (en) | 2012-02-01 | 2012-02-01 | Substrate processing method |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2013161820A true JP2013161820A (en) | 2013-08-19 |
JP2013161820A5 JP2013161820A5 (en) | 2014-11-13 |
JP6044919B2 JP6044919B2 (en) | 2016-12-14 |
Family
ID=48905381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012020067A Active JP6044919B2 (en) | 2012-02-01 | 2012-02-01 | Substrate processing method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6044919B2 (en) |
TW (1) | TWI524960B (en) |
WO (1) | WO2013115353A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015204442A (en) * | 2014-04-16 | 2015-11-16 | 信越ポリマー株式会社 | Master disc manufacturing method and master disc |
CN105414776A (en) * | 2014-09-16 | 2016-03-23 | 株式会社迪思科 | SiC INGOT SLICING METHOD |
CN106346619A (en) * | 2015-07-16 | 2017-01-25 | 株式会社迪思科 | Wafer producing method |
JP2018168048A (en) * | 2017-03-30 | 2018-11-01 | 国立大学法人埼玉大学 | Glass slicing method |
JP2019511122A (en) * | 2016-03-22 | 2019-04-18 | シルテクトラ ゲゼルシャフト ミット ベシュレンクター ハフトゥング | Complex laser processing of solids to be separated |
US10978311B2 (en) | 2016-12-12 | 2021-04-13 | Siltectra Gmbh | Method for thinning solid body layers provided with components |
CN113710408A (en) * | 2019-04-19 | 2021-11-26 | 东京毅力科创株式会社 | Processing apparatus and processing method |
KR20220034190A (en) | 2019-07-18 | 2022-03-17 | 도쿄엘렉트론가부시키가이샤 | Processing device and processing method |
KR20220035418A (en) | 2019-07-18 | 2022-03-22 | 도쿄엘렉트론가부시키가이샤 | Processing device and processing method |
KR20220035441A (en) | 2019-07-18 | 2022-03-22 | 도쿄엘렉트론가부시키가이샤 | Processing device and processing method |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015000449A1 (en) * | 2015-01-15 | 2016-07-21 | Siltectra Gmbh | Solid body distribution by means of material conversion |
JP6562819B2 (en) * | 2015-11-12 | 2019-08-21 | 株式会社ディスコ | Method for separating SiC substrate |
JP2018063407A (en) * | 2016-10-14 | 2018-04-19 | 株式会社ディスコ | Method of processing bonded substrate |
JP6923877B2 (en) | 2017-04-26 | 2021-08-25 | 国立大学法人埼玉大学 | Substrate manufacturing method |
JP6943388B2 (en) * | 2017-10-06 | 2021-09-29 | 国立大学法人埼玉大学 | Substrate manufacturing method |
JP7121941B2 (en) | 2018-03-09 | 2022-08-19 | 国立大学法人埼玉大学 | Substrate manufacturing method |
JP7417411B2 (en) * | 2019-02-13 | 2024-01-18 | 株式会社ディスコ | Confirmation method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000073768A (en) * | 1999-05-14 | 2000-12-05 | 황인길 | Method for slicing a silicon ingot with a laser beam |
JP2008078236A (en) * | 2006-09-19 | 2008-04-03 | Hamamatsu Photonics Kk | Laser machining method |
JP2009200383A (en) * | 2008-02-25 | 2009-09-03 | Seiko Epson Corp | Method of dividing substrate, and method of manufacturing display device |
JP2011003624A (en) * | 2009-06-17 | 2011-01-06 | Shin Etsu Polymer Co Ltd | Method and apparatus for manufacturing semiconductor wafer |
JP2011155070A (en) * | 2010-01-26 | 2011-08-11 | Saitama Univ | Method of processing substrate |
JP2011224658A (en) * | 2010-04-14 | 2011-11-10 | Samsung Electronics Co Ltd | Method of processing substrate using laser beam |
-
2012
- 2012-02-01 JP JP2012020067A patent/JP6044919B2/en active Active
-
2013
- 2013-01-31 TW TW102103674A patent/TWI524960B/en active
- 2013-02-01 WO PCT/JP2013/052327 patent/WO2013115353A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000073768A (en) * | 1999-05-14 | 2000-12-05 | 황인길 | Method for slicing a silicon ingot with a laser beam |
JP2008078236A (en) * | 2006-09-19 | 2008-04-03 | Hamamatsu Photonics Kk | Laser machining method |
JP2009200383A (en) * | 2008-02-25 | 2009-09-03 | Seiko Epson Corp | Method of dividing substrate, and method of manufacturing display device |
JP2011003624A (en) * | 2009-06-17 | 2011-01-06 | Shin Etsu Polymer Co Ltd | Method and apparatus for manufacturing semiconductor wafer |
JP2011155070A (en) * | 2010-01-26 | 2011-08-11 | Saitama Univ | Method of processing substrate |
JP2011224658A (en) * | 2010-04-14 | 2011-11-10 | Samsung Electronics Co Ltd | Method of processing substrate using laser beam |
Non-Patent Citations (2)
Title |
---|
伊東宏季、外3名: "YAGレーザを用いたシリコンの薄化技術", 2009年度精密工学会秋季大会学術講演会講演論文集 [ONLINE], JPN6016019561, August 2009 (2009-08-01), pages 3 - 4, ISSN: 0003324355 * |
松尾利香、外5名: "シリコンウエハのレーザスライシングに関する研究(第2報)", 2011年度精密工学会秋季大会学術講演会講演論文集 [ONLINE], JPN6016019559, September 2011 (2011-09-01), pages 613 - 614, ISSN: 0003324354 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015204442A (en) * | 2014-04-16 | 2015-11-16 | 信越ポリマー株式会社 | Master disc manufacturing method and master disc |
KR102305371B1 (en) | 2014-09-16 | 2021-09-24 | 가부시기가이샤 디스코 | SLICING METHOD OF SiC INGOT |
CN105414776A (en) * | 2014-09-16 | 2016-03-23 | 株式会社迪思科 | SiC INGOT SLICING METHOD |
KR20160032678A (en) * | 2014-09-16 | 2016-03-24 | 가부시기가이샤 디스코 | SLICING METHOD OF SiC INGOT |
JP2016062949A (en) * | 2014-09-16 | 2016-04-25 | 株式会社ディスコ | Slice method of SiC |
CN106346619A (en) * | 2015-07-16 | 2017-01-25 | 株式会社迪思科 | Wafer producing method |
CN106346619B (en) * | 2015-07-16 | 2019-11-19 | 株式会社迪思科 | The generation method of chip |
US11130200B2 (en) | 2016-03-22 | 2021-09-28 | Siltectra Gmbh | Combined laser treatment of a solid body to be split |
JP2019511122A (en) * | 2016-03-22 | 2019-04-18 | シルテクトラ ゲゼルシャフト ミット ベシュレンクター ハフトゥング | Complex laser processing of solids to be separated |
US10978311B2 (en) | 2016-12-12 | 2021-04-13 | Siltectra Gmbh | Method for thinning solid body layers provided with components |
JP2018168048A (en) * | 2017-03-30 | 2018-11-01 | 国立大学法人埼玉大学 | Glass slicing method |
CN113710408A (en) * | 2019-04-19 | 2021-11-26 | 东京毅力科创株式会社 | Processing apparatus and processing method |
KR20210153091A (en) | 2019-04-19 | 2021-12-16 | 도쿄엘렉트론가부시키가이샤 | Processing device and processing method |
CN113710408B (en) * | 2019-04-19 | 2023-10-31 | 东京毅力科创株式会社 | Processing apparatus and processing method |
KR20220034190A (en) | 2019-07-18 | 2022-03-17 | 도쿄엘렉트론가부시키가이샤 | Processing device and processing method |
KR20220035418A (en) | 2019-07-18 | 2022-03-22 | 도쿄엘렉트론가부시키가이샤 | Processing device and processing method |
KR20220035441A (en) | 2019-07-18 | 2022-03-22 | 도쿄엘렉트론가부시키가이샤 | Processing device and processing method |
US11969827B2 (en) | 2019-07-18 | 2024-04-30 | Tokyo Electron Limited | Processing apparatus and processing method |
Also Published As
Publication number | Publication date |
---|---|
TWI524960B (en) | 2016-03-11 |
JP6044919B2 (en) | 2016-12-14 |
TW201345640A (en) | 2013-11-16 |
WO2013115353A1 (en) | 2013-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6044919B2 (en) | Substrate processing method | |
JP5875122B2 (en) | Single crystal substrate manufacturing method and internal modified layer forming single crystal member | |
JP6004338B2 (en) | Single crystal substrate manufacturing method and internal modified layer forming single crystal member | |
JP5875121B2 (en) | Method for producing single crystal substrate and method for producing internal modified layer-forming single crystal member | |
JP6899653B2 (en) | Composite wafer manufacturing method using laser processing and temperature-induced stress | |
JP5995045B2 (en) | Substrate processing method and substrate processing apparatus | |
JP5476063B2 (en) | Processing object cutting method | |
JP5843393B2 (en) | Single crystal substrate manufacturing method, single crystal substrate, and internal modified layer forming single crystal member manufacturing method | |
JP5509448B2 (en) | Substrate slicing method | |
JP6004339B2 (en) | Internal stress layer forming single crystal member and single crystal substrate manufacturing method | |
JP2015123466A (en) | Substrate processing device and substrate processing method | |
JP2014019120A (en) | Method of manufacturing single crystal member for forming internal processing layer | |
JP2015119076A (en) | Internal processing layer formation single crystal member and manufacturing method therefor | |
JP2015123465A (en) | Substrate processing device and substrate processing method | |
JP5561666B2 (en) | Substrate slicing method | |
JP6664686B2 (en) | Substrate processing method and peeled substrate manufacturing method | |
JP2005109322A (en) | Laser beam dicing device | |
WO2018150636A1 (en) | Method for manufacturing peeled substrate | |
JP6202695B2 (en) | Single crystal substrate manufacturing method | |
JP6202696B2 (en) | Single crystal substrate manufacturing method | |
JP2019069870A (en) | Substrate manufacturing method | |
JP6202694B2 (en) | Substrate processing method and substrate processing apparatus | |
JP2006024782A (en) | Substrate manufacturing method and apparatus | |
JP6970415B2 (en) | Substrate processing method | |
JP6381110B2 (en) | Substrate processing method and substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140919 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140919 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20140919 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160722 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161011 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6044919 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |