JP2009200383A - Method of dividing substrate, and method of manufacturing display device - Google Patents

Method of dividing substrate, and method of manufacturing display device Download PDF

Info

Publication number
JP2009200383A
JP2009200383A JP2008042523A JP2008042523A JP2009200383A JP 2009200383 A JP2009200383 A JP 2009200383A JP 2008042523 A JP2008042523 A JP 2008042523A JP 2008042523 A JP2008042523 A JP 2008042523A JP 2009200383 A JP2009200383 A JP 2009200383A
Authority
JP
Japan
Prior art keywords
substrate
laser beam
substrates
end surface
beam irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008042523A
Other languages
Japanese (ja)
Inventor
Yutaka Yamazaki
豊 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008042523A priority Critical patent/JP2009200383A/en
Publication of JP2009200383A publication Critical patent/JP2009200383A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of dividing a substrate capable of suppressing and preventing burst damage in forming a reforming area near an end surface of the substrate. <P>SOLUTION: The substrates 1 and 2 are divided by applying an external force after irradiating a laser beam along dividing lines of the substrates 1 and 2 and forming a reforming area of a plurality of layers in the thickness direction of the substrates 1 and 2. Assuming that an amount of aberration correction of the laser beam is zero when the length of a laser beam condensing area in the thickness direction of the substrates is shortest at a near-side end surface of the substrates 1 and 2 in the laser beam irradiation direction, the reforming area of the plurality of layers is formed from an end surface of any one of the substrates 1 and 2 to an end surface of the other substrate under a condition that an amount of aberration correction of the laser beam is being set larger than the thickness of the substrates 1 and 2 to be divided. Thereby, an energy density per a unit length of the laser beam condensing area in the thickness direction of the substrates is reduced both in the near-side end surface of the substrates 1 and 2 in the laser beam irradiation direction, and in the back end surface thereof in the laser beam irradiation direction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザ光を照射して基板を分割する方法、特に基板の内部に改質領域を形成することにより基板を分割する基板分割方法、及びそれにより表示装置用基板を分割する表示装置の製造方法に関するものである。   The present invention relates to a method for dividing a substrate by irradiating a laser beam, particularly a substrate dividing method for dividing a substrate by forming a modified region inside the substrate, and a display device for dividing a substrate for a display device thereby. It relates to a manufacturing method.

このような基板分割方法としては、例えば下記の特許文献に記載されるものがある。このうち特許文献1では、基板の内部に改質領域を形成し、この改質領域が形成されている部分に外力を加えて基板を分割することが開示されている。また、特許文献2では、基板の厚さ方向に改質領域を複数形成し、その部分に外力を加えて基板を分割することが開示されている。また、特許文献3では、レーザビームの偏光方向の長軸と走査方向を一致させることが開示されている。
特開2002−192367号公報 特開2002−205180号公報 特開2002−192369号公報
Examples of such a substrate dividing method include those described in the following patent documents. Among these, Patent Document 1 discloses that a modified region is formed inside a substrate, and an external force is applied to a portion where the modified region is formed to divide the substrate. Patent Document 2 discloses that a plurality of modified regions are formed in the thickness direction of the substrate, and an external force is applied to the portion to divide the substrate. Patent Document 3 discloses that the major axis of the laser beam polarization direction coincides with the scanning direction.
JP 2002-192367 A JP 2002-205180 A JP 2002-192369 A

ところで、例えば液晶表示パネルに使用されるTFT(Thin Film Transistor)基板として、石英基板にレーザビームを照射して当該石英基板の厚さ方向に複数層の改質領域を形成し、その後、外力を加えて当該石英基板を分割する場合、特に石英基板の両端面近傍に改質領域を形成するときに各端面が大きく欠損してしまい、飛散物の発生や分割後の石英基板の外形精度悪化の原因となる。
本発明は、上記のような問題点に着目してなされたものであり、基板の両端面近傍に改質領域を形成するときの大きな欠損を防止することが可能な基板分割方法及び表示装置の製造方法を提供することを目的とするものである。
By the way, for example, as a TFT (Thin Film Transistor) substrate used in a liquid crystal display panel, a quartz substrate is irradiated with a laser beam to form a plurality of modified regions in the thickness direction of the quartz substrate. In addition, when the quartz substrate is divided, particularly when the modified regions are formed in the vicinity of both end surfaces of the quartz substrate, each end surface is largely lost, which causes generation of scattered objects and deterioration of the accuracy of the quartz substrate after the division. Cause.
The present invention has been made paying attention to the above-described problems, and is a substrate dividing method and display device capable of preventing a large defect when forming a modified region in the vicinity of both end faces of a substrate. The object is to provide a manufacturing method.

本発明の基板分割方法は、基板にレーザ光を照射して改質領域を形成することにより当該基板を分割する基板分割方法であって、基板のレーザ光照射方向手前側の端面及びレーザ光照射方向先方の端面において、レーザ光のエネルギー密度が低くなるように当該レーザ光の集光性を制御することを特徴とするものである。
この発明によれば、基板のレーザ光照射方向手前側の端面でもレーザ光照射方向先方の端面でも当該レーザ光の集光性を制御することによってエネルギー密度が低くなるので、両端面近傍に改質領域を形成するときの大きな欠損を防止することができる。
また、本発明の基板分割方法は、改質領域を基板の厚さ方向に複数層形成した後、当該基板に外力を加えることで当該基板を分割することを特徴とするものである。
この発明によれば、基板を確実に且つ精度良く分割することができる。
A substrate dividing method according to the present invention is a substrate dividing method for dividing a substrate by irradiating the substrate with laser light to form a modified region, and includes an end face on the near side of the substrate in the laser light irradiation direction and laser light irradiation. The condensing property of the laser beam is controlled so that the energy density of the laser beam is lowered at the end face in the direction.
According to the present invention, the energy density is lowered by controlling the condensing property of the laser beam on both the end surface on the front side in the laser beam irradiation direction of the substrate and the end surface on the front side in the laser beam irradiation direction. A large defect when forming the region can be prevented.
Further, the substrate dividing method of the present invention is characterized in that after a plurality of modified regions are formed in the thickness direction of the substrate, the substrate is divided by applying an external force to the substrate.
According to the present invention, the substrate can be reliably and accurately divided.

また、本発明の基板分割方法は、レーザ光がフェムト秒からナノ秒のいずれかのパルス幅を有するパルスレーザであることを特徴とするものである。
この発明によれば、レーザ光がフェムト秒からナノ秒のいずれかのパルス幅を有するパルスレーザであることとしたため、基板の分割に適したレーザ光を用いて基板を分割することができる。
また、本発明の表示装置の製造方法は、前記本発明の基板分割方法で基板から表示装置用基板を分割することを特徴とするものである。
この発明によれば、前記本発明の基板分割方法で基板から表示装置用基板を分割することとしたため、両端面に大きな欠損のない基板で表示装置を製造することができる。
The substrate dividing method of the present invention is characterized in that the laser beam is a pulse laser having a pulse width of any one of femtoseconds to nanoseconds.
According to this invention, since the laser light is a pulse laser having a pulse width of any one of femtoseconds to nanoseconds, the substrate can be divided using the laser light suitable for dividing the substrate.
The display device manufacturing method of the present invention is characterized in that a substrate for a display device is divided from a substrate by the substrate dividing method of the present invention.
According to this invention, since the substrate for a display device is divided from the substrate by the substrate dividing method of the present invention, the display device can be manufactured with substrates having no large defects on both end faces.

次に、本発明の基板分割方法及び表示装置の製造方法の実施形態について、図面を用いて説明する。本実施形態は、液晶表示装置を構成する液晶表示パネルの製造工程において、当該液晶表示パネルに使用されるTFT用の基板をウエハ状の分割対象基板から切出す(分割する)ものである。ちなみに、液晶表示パネルは、周知のように、TFTを有するTFT基板、対向電極を有する対向基板、及び両基板間の隙間に充填された液晶などを備えて構成される。   Next, embodiments of the substrate dividing method and the display device manufacturing method of the present invention will be described with reference to the drawings. In the present embodiment, in a manufacturing process of a liquid crystal display panel constituting a liquid crystal display device, a TFT substrate used in the liquid crystal display panel is cut out (divided) from a wafer-like division target substrate. Incidentally, as is well known, the liquid crystal display panel includes a TFT substrate having TFTs, a counter substrate having counter electrodes, and liquid crystal filled in a gap between the substrates.

図1には、分割される直前の分割対象基板の平面図を示す。この分割対象基板4は、複数の石英基板を貼り合わせてなり、図示しない絶縁層、画素電極なども形成され、これらがTFT膜として機能部を構成している。図2には、分割対象基板4をレーザ光(ビーム)で分割するレーザスクライブ方法の概念図を示す。分割対象基板4は、前述のように対向基板や防塵基板など、複数の基板が貼り合わされてなるが、同図では、TFT基板1の上方に対向基板2を貼り合わせ、その間に機能部(図示せず)が形成されている状態を示している。そして、この分割対象基板4に、後述するレーザビーム照射装置からレーザビームを照射して集光すると、その集光領域に改質領域が形成される。この改質領域を、分割対象基板4の分割断面の厚さ方向に複数層形成し、その後、例えば図2の分割対象基板4の両端部に下向きのモーメントを外力として加えて当該分割対象基板4を分割する。   FIG. 1 shows a plan view of a substrate to be divided immediately before being divided. The division target substrate 4 is formed by bonding a plurality of quartz substrates, and an insulating layer, a pixel electrode, and the like (not shown) are formed, and these constitute a functional portion as a TFT film. FIG. 2 is a conceptual diagram of a laser scribing method for dividing the division target substrate 4 with laser light (beam). As described above, the substrate to be divided 4 is formed by bonding a plurality of substrates such as a counter substrate and a dust-proof substrate. In the figure, the counter substrate 2 is bonded to the upper side of the TFT substrate 1, and a functional unit (see FIG. (Not shown) is formed. When the division target substrate 4 is focused by irradiating a laser beam from a laser beam irradiation apparatus described later, a modified region is formed in the focused region. A plurality of the reformed regions are formed in the thickness direction of the divided cross section of the division target substrate 4, and then, for example, a downward moment is applied as an external force to both ends of the division target substrate 4 of FIG. Split.

図3には、レーザビーム照射装置の概略構成を示す。このレーザビーム照射装置10は、レーザビームを出射するレーザ光源11と、出射されたレーザビームを反射するダイクロイックミラー12と、反射したレーザビームを集光する集光レンズ13とを備えている。集光レンズ13の内部には、複数のレンズが配置されている。また、このレーザビーム照射装置10は、前述した分割対象基板4を載置するステージ17と、ステージ17を集光レンズ13に対して水平面直交2軸方向、即ち図3に記載のX軸及びY軸方向に移動させるX軸スライド部20及びY軸スライド部21と、ステージ17に載置された分割対象基板4に対して、集光レンズ13の高さ方向、即ち図3に記載のZ軸方向の位置を変えてレーザビームの集光点の位置を調整するZ軸スライド機構14と、集光レンズ13の一端に設けられ、レーザビームの収差を補正する補正環16と、ダイクロイックミラー12を挟んで集光レンズ13と反対側に位置する撮像装置22とを備えている。   FIG. 3 shows a schematic configuration of the laser beam irradiation apparatus. The laser beam irradiation apparatus 10 includes a laser light source 11 that emits a laser beam, a dichroic mirror 12 that reflects the emitted laser beam, and a condenser lens 13 that condenses the reflected laser beam. A plurality of lenses are arranged inside the condenser lens 13. In addition, the laser beam irradiation apparatus 10 includes a stage 17 on which the above-described division target substrate 4 is placed, and the stage 17 with respect to the condenser lens 13 in two directions orthogonal to the horizontal plane, that is, the X axis and the Y axis shown in FIG. With respect to the X-axis slide portion 20 and the Y-axis slide portion 21 that are moved in the axial direction and the division target substrate 4 placed on the stage 17, the height direction of the condenser lens 13, that is, the Z-axis shown in FIG. A Z-axis slide mechanism 14 that adjusts the position of the condensing point of the laser beam by changing the position of the direction, a correction ring 16 that is provided at one end of the condensing lens 13 and corrects the aberration of the laser beam, and a dichroic mirror 12 are provided. An imaging device 22 located on the opposite side of the condenser lens 13 is provided.

また、このレーザビーム照射装置10は、前記各構成を制御するメインコンピュータ30を備えており、メインコンピュータ30にはCPUや各種メモリの他に、撮像装置22で撮像した画像情報を処理する画像処理部34を備えている。撮像装置22は、同軸落射型光源とCCD(固体撮像素子)とが組み込まれており、同軸落射型光源から出射した可視光は、集光レンズ13を透過して焦点を結ぶ。また、このメインコンピュータ30には、レーザ加工の際に用いられる各種加工条件のデータを入力する入力部35と、レーザ加工時の各種情報を表示する表示部36とが接続されている。また、レーザ光源11の出力やパルス幅、パルス周期を制御するレーザ制御部31と、Z軸スライド機構14を駆動して集光レンズ13のZ軸方向の位置を制御するレンズ制御部32と、X軸スライド部20とY軸スライド部21を夫々レール18,19に沿って移動させるサーボモータ(不図示)を駆動するステージ制御部33とが接続されている。   The laser beam irradiation apparatus 10 includes a main computer 30 that controls the above-described components. The main computer 30 includes image processing for processing image information captured by the imaging device 22 in addition to a CPU and various memories. Part 34 is provided. The imaging device 22 incorporates a coaxial incident light source and a CCD (solid-state imaging device), and the visible light emitted from the coaxial incident light source passes through the condenser lens 13 to be focused. The main computer 30 is connected to an input unit 35 for inputting data of various processing conditions used during laser processing and a display unit 36 for displaying various information during laser processing. Further, a laser control unit 31 that controls the output, pulse width, and pulse period of the laser light source 11, a lens control unit 32 that drives the Z-axis slide mechanism 14 to control the position of the condenser lens 13 in the Z-axis direction, A stage control unit 33 that drives a servo motor (not shown) that moves the X-axis slide unit 20 and the Y-axis slide unit 21 along the rails 18 and 19 is connected.

集光レンズ13をZ軸方向に移動させるZ軸スライド機構14には、移動距離を検出可能な位置センサが内蔵されており、レンズ制御部32は、この位置センサの出力を検出して集光レンズ13のZ軸方向の位置を制御可能となっている。従って、撮像装置22の同軸落射型光源から出射した可視光の焦点が分割対象基板4の表面に一致するように集光レンズ13をZ軸方向に移動させれば、分割対象基板4の厚さを計測することが可能である。   The Z-axis slide mechanism 14 that moves the condensing lens 13 in the Z-axis direction has a built-in position sensor capable of detecting the moving distance, and the lens control unit 32 detects the output of the position sensor and collects the light. The position of the lens 13 in the Z-axis direction can be controlled. Therefore, if the condensing lens 13 is moved in the Z-axis direction so that the focus of the visible light emitted from the coaxial incident light source of the imaging device 22 coincides with the surface of the division target substrate 4, the thickness of the division target substrate 4 is increased. Can be measured.

レーザ光源11としては、例えばチタンサファイヤを固体光源とするレーザビームをフェムト秒のパルス幅で出射する、所謂フェムト秒レーザが用いられる。この場合、パルスレーザビームは、波長分散特性を有しており、中心波長が800nm、パルス幅は凡そ300fs(フェムト秒)、パルス周期は5kHz、出力は凡そ1000mWである。レーザ光源11には、これに代えて、ピコ秒レーザ(中心波長:800nm、パルス幅:3ps、平均出力:1W)やナノ秒レーザ(波長:355nm、パルス幅:35ns、平均出力:10W)を用いることも可能である。   As the laser light source 11, for example, a so-called femtosecond laser that emits a laser beam using titanium sapphire as a solid light source with a pulse width of femtosecond is used. In this case, the pulse laser beam has wavelength dispersion characteristics, the center wavelength is 800 nm, the pulse width is about 300 fs (femtosecond), the pulse period is 5 kHz, and the output is about 1000 mW. Instead of this, the laser light source 11 is a picosecond laser (center wavelength: 800 nm, pulse width: 3 ps, average output: 1 W) or nanosecond laser (wavelength: 355 nm, pulse width: 35 ns, average output: 10 W). It is also possible to use it.

集光レンズ13は、例えば倍率100倍、開口数(NA)0.8、WD(Working Distance)3mmの対物レンズである。特に、集光レンズの開口数は0.1以上であればよく、上記に限定されるものではない。集光レンズ13は、Z軸スライド機構14から延設されたスタンドアーム14aによって支持されている。また、Z軸スライド機構14と共に移動するモータ15には回転アーム15aが延設され、この回転アーム15aの端部に補正環16が取付けられている。従って、レンズ制御部32は、Z軸スライド機構14を駆動すると共に、モータ15を駆動して回転アーム15aをZ軸回りに回転させることにより、集光レンズ13の補正環16が回転し、集光レンズ13の内部に配置された複数のレンズを移動させて収差を補正することが可能となっている。   The condenser lens 13 is, for example, an objective lens having a magnification of 100 times, a numerical aperture (NA) of 0.8, and a WD (Working Distance) of 3 mm. In particular, the numerical aperture of the condensing lens should just be 0.1 or more, and is not limited to the above. The condenser lens 13 is supported by a stand arm 14 a extending from the Z-axis slide mechanism 14. A rotating arm 15a extends from the motor 15 that moves with the Z-axis slide mechanism 14, and a correction ring 16 is attached to the end of the rotating arm 15a. Accordingly, the lens control unit 32 drives the Z-axis slide mechanism 14 and also drives the motor 15 to rotate the rotary arm 15a around the Z-axis, thereby rotating the correction ring 16 of the condenser lens 13 and collecting the light. Aberrations can be corrected by moving a plurality of lenses arranged inside the optical lens 13.

また、本実施形態のレーザビーム照射装置10には、レーザビームを用いた反射型距離計測装置9が搭載されている。この反射型距離計測装置9は、例えば複数の石英基板を積層した分割対象基板4であっても、各石英基板の上下面までの距離を計測することにより、各石英基板の厚さを検出することができる。図4には、この反射型距離計測装置9の計測原理を示す。この反射型距離計測装置9では、例えば一枚の石英基板であるTFT基板1の上下面(両表面)からのレーザビームの反射光の光スポットをCCDなどの位置検出素子で捉え、これを分割面に沿って走査したときの光スポットの位置変化量からTFT基板1の反射面、即ち上下面の高さ変動を求め、それを予め検出したTFT基板1の上下面高さに加減算してTFT基板1の上下面の位置、即ち厚さを検出する。対向基板2についても、同様にして厚さを検出することができる。   In addition, the laser beam irradiation apparatus 10 of the present embodiment is equipped with a reflection type distance measuring apparatus 9 using a laser beam. The reflection type distance measuring device 9 detects the thickness of each quartz substrate by measuring the distance to the upper and lower surfaces of each quartz substrate, for example, even in the case of the division target substrate 4 in which a plurality of quartz substrates are stacked. be able to. FIG. 4 shows the measurement principle of the reflection type distance measuring device 9. In the reflection type distance measuring device 9, for example, the light spot of the reflected light of the laser beam from the upper and lower surfaces (both surfaces) of the TFT substrate 1, which is a single quartz substrate, is captured by a position detection element such as a CCD and divided. The height variation of the reflection surface of the TFT substrate 1, that is, the upper and lower surfaces, is obtained from the amount of change in the position of the light spot when scanned along the surface, and this is added to and subtracted from the height of the upper and lower surfaces of the TFT substrate 1 detected in advance. The position of the upper and lower surfaces of the substrate 1, that is, the thickness is detected. The thickness of the counter substrate 2 can be similarly detected.

なお、本実施形態では、ステージ17は、Y軸スライド部21に支持されているが、X軸スライド部20とY軸スライド部21との位置関係を逆転させてX軸スライド部20にステージ17が支持される形態としてもよい。また、θテーブルを介してステージ17をY軸スライド部21に支持することが好ましい。これによれば、分割対象基板4を光軸に対してより垂直な状態とすることが可能となる。   In the present embodiment, the stage 17 is supported by the Y-axis slide unit 21, but the positional relationship between the X-axis slide unit 20 and the Y-axis slide unit 21 is reversed to place the stage 17 on the X-axis slide unit 20. May be supported. Moreover, it is preferable to support the stage 17 on the Y-axis slide part 21 via the θ table. According to this, it becomes possible to make the division | segmentation object board | substrate 4 into a more perpendicular | vertical state with respect to an optical axis.

このレーザビーム照射装置10では、前述したように、分割対象基板4の主として石英基板部分、つまり対向基板2及びTFT基板1にレーザビームを照射し、その集光部分に改質領域5を形成し、該改質領域5を、図5(a)に示すように、所定断面の厚さ方向に複数層形成した後、図5(b)のように外力を加えて分割する。改質領域5を分割対象基板4の厚さ方向に複数層形成する場合には、例えば前記特許文献2に記載されるように、レーザビームの照射方向先方から順に改質領域5の層を形成する。また、その際、収差補正手段としての石英ガラス板を用い、例えば特開2007−021556号公報に記載されるように、レーザビームの集光領域を長くして、つまりエネルギー密度の高い領域を長くして改質領域5を厚さ方向に長くするようにしてもよいし、石英ガラス板の代わりに収差補正機能を有した集光レンズ13を用いても良い。なお、図5(a)の符号6は、液晶配向膜として機能するポリイミド膜、符号7は配線部である。   In this laser beam irradiation apparatus 10, as described above, the quartz substrate portion of the division target substrate 4, that is, the counter substrate 2 and the TFT substrate 1 is irradiated with the laser beam, and the modified region 5 is formed in the condensing portion. As shown in FIG. 5A, the modified region 5 is formed in a plurality of layers in the thickness direction of a predetermined cross section, and then divided by applying an external force as shown in FIG. 5B. In the case where a plurality of modified regions 5 are formed in the thickness direction of the substrate 4 to be divided, for example, as described in Patent Document 2, the layers of the modified regions 5 are formed in order from the laser beam irradiation direction. To do. At that time, a quartz glass plate is used as the aberration correcting means, and as described in, for example, Japanese Patent Application Laid-Open No. 2007-021556, the condensing region of the laser beam is lengthened, that is, the region having a high energy density is lengthened. Thus, the modified region 5 may be elongated in the thickness direction, or a condensing lens 13 having an aberration correction function may be used instead of the quartz glass plate. In addition, the code | symbol 6 of Fig.5 (a) is a polyimide film which functions as a liquid crystal aligning film, and the code | symbol 7 is a wiring part.

本実施形態では、図5(a)に示すように、基板1,2の厚さ方向両端面に及ぶように改質領域5を形成する。その際、前述したレーザビームの収差補正の補正量を基板1,2の厚さより大きく設定する。具体的には、基板1,2の厚さが1mmであるのに対し、レーザビームの収差補正量を2mmとした。図6は、集光レンズ13をZ軸方向、即ち基板1,2の厚さ方向に移動した移動距離と、それに伴って基板1,2内に形成される改質領域5の位置を当該改質領域5の上端位置と下端位置とで表したものであり、基板1,2のレーザビーム照射方向手前側の端面でのレーザビームの集光領域の基板厚さ方向の長さが最も短い状態(レーザビームの集光性が最も高い状態)を当該レーザビームの収差補正の補正量が0であるとした場合に、図6(a)は収差補正量が1mm、図6(b)は収差補正量が2mmであるときのものである。つまり、同図の左側が基板1,2のレーザビーム照射方向手前側の端面、右側がレーザビーム照射方向先方の端面を表している。   In the present embodiment, as shown in FIG. 5A, the modified region 5 is formed so as to cover both end surfaces of the substrates 1 and 2 in the thickness direction. At this time, the correction amount of the laser beam aberration correction described above is set larger than the thickness of the substrates 1 and 2. Specifically, while the thickness of the substrates 1 and 2 is 1 mm, the aberration correction amount of the laser beam is 2 mm. FIG. 6 shows the movement distance in which the condenser lens 13 is moved in the Z-axis direction, that is, the thickness direction of the substrates 1 and 2, and the position of the modified region 5 formed in the substrates 1 and 2 accordingly. This is represented by the upper end position and the lower end position of the quality region 5, and the length in the substrate thickness direction of the condensing region of the laser beam at the end surface on the near side of the laser beam irradiation direction of the substrates 1 and 2 is the shortest. When the correction amount of the aberration correction of the laser beam is 0 (the state in which the condensing property of the laser beam is the highest), FIG. 6A shows the aberration correction amount of 1 mm, and FIG. This is when the correction amount is 2 mm. That is, the left side of the figure represents the end surface of the substrates 1 and 2 on the front side in the laser beam irradiation direction, and the right side represents the end surface of the laser beam irradiation direction ahead.

収差の本来の意味は、レンズの焦点が1点にならないことであり、収差補正とは、その焦点を1点にすることを意味している。しかしながら、石英基板からなる対向基板2やTFT基板1の場合、光の屈折率が空気中の場合とは異なるため、例えば基板1,2のレーザビーム照射方向手前側の端面では焦点が1点にまとまっても、当該基板1,2を透過したレーザビーム照射方向先方の端面では焦点が1点にまとまらない。基板1,2の厚さ方向で集光領域を評価すれば、レーザビーム照射方向手前側の端面での集光領域は短く、レーザビーム照射方向先方の端面での集光領域は長くなる。このレーザビーム照射方向先方の端面での集光領域を短くするのが、石英基板を分割する際のレーザ加工方法における収差補正であり、本来の意味からすると、逆収差補正とも言える。但し、逆収差補正を含めて、集光領域の補正を行うことを本発明では収差補正と定義する。   The original meaning of aberration is that the focal point of the lens does not become one point, and aberration correction means that the focal point becomes one point. However, in the case of the counter substrate 2 and the TFT substrate 1 made of a quartz substrate, the refractive index of light is different from that in the air. Even if they are gathered, the focal point is not collected at one point on the end face ahead of the laser beam irradiation direction transmitted through the substrates 1 and 2. If the condensing region is evaluated in the thickness direction of the substrates 1 and 2, the condensing region at the end surface on the front side in the laser beam irradiation direction is short, and the condensing region on the end surface ahead in the laser beam irradiation direction is long. Shortening the condensing region at the end face in the laser beam irradiation direction is aberration correction in the laser processing method when dividing the quartz substrate, and can be said to be reverse aberration correction in the original sense. However, in the present invention, correction of the condensing region including inverse aberration correction is defined as aberration correction.

従って、収差補正量を1mmとした図6(a)では、レーザビーム照射方向先方の端面での集光領域が短いのに対し、収差補正量を2mmとした図6(b)では、レーザビーム照射方向先方の端面での集光領域が長く、同時にレーザビーム照射方向手前側の端面での集光領域も長い。レーザビーム照射装置10の出力が一定であれば、集光領域が長いほどエネルギー密度が低い。この集光領域のエネルギー密度が高過ぎると、例えば基板端面に大きな欠損が生じる。図7は、本実施形態による石英基板の分割状態を示すものであり、図7(a)は石英基板の分割断面自体の状態を示し、図7(b)はレーザビーム照射方向手前側の端面(石英基板の表面(レーザ入射側))及びレーザビーム照射方向先方の端面(石英基板の裏面(レーザ出射側))の外力による分割前の状態、図7(c)はレーザビーム照射方向手前側の端面(表面、レーザ入射側)及びレーザビーム照射方向先方の端面(裏面、レーザ出射側)の外力による分割後の状態を示す。同図から明らかなように、レーザビーム照射方向手前側の端面における集光領域でも、レーザビーム照射方向先方の端面における集光領域でも、レーザビームのエネルギー密度が低い本実施形態では、端面には大きな欠損が見られず、極めて良好な分割形状をしていることが分かる。勿論、欠損に伴う飛散物も生じていない。また、集光領域が基板1,2の端面に及ばないようにすると、基板1,2の端面の近傍で形成される改質領域5の膨らみに伴う内部応力によって、当該基板1,2の端面に直進性の高い亀裂を生じさせることが可能となり、この亀裂によって分割形状をより精度の高いものとすることも可能となる。   Therefore, in FIG. 6A in which the aberration correction amount is 1 mm, the condensing region is short on the end face ahead of the laser beam irradiation direction, whereas in FIG. 6B in which the aberration correction amount is 2 mm, the laser beam The condensing region at the end surface ahead in the irradiation direction is long, and at the same time, the condensing region at the end surface near the laser beam irradiation direction is also long. If the output of the laser beam irradiation apparatus 10 is constant, the energy density is lower as the condensing region is longer. If the energy density of the light collecting region is too high, for example, a large defect occurs on the end surface of the substrate. FIG. 7 shows a divided state of the quartz substrate according to the present embodiment, FIG. 7 (a) shows a state of the divided section itself of the quartz substrate, and FIG. 7 (b) shows an end surface on the near side in the laser beam irradiation direction. (Quartz substrate surface (laser incident side)) and end surface ahead of laser beam irradiation direction (back surface of quartz substrate (laser emission side)) before splitting by external force, FIG. 7C is the laser beam irradiation direction front side The state after the division | segmentation by the external force of the end surface (front surface, laser incident side) of this, and the end surface (back surface, laser emission side) ahead of a laser beam irradiation direction is shown. As is clear from the figure, in the present embodiment where the energy density of the laser beam is low, both in the condensing region at the end surface on the front side in the laser beam irradiation direction and the condensing region on the end surface in the laser beam irradiation direction, the end surface has It can be seen that no large defects are seen and the shape is extremely good. Of course, there is no scattered matter associated with the defect. Further, if the condensing region does not reach the end surfaces of the substrates 1 and 2, the end surfaces of the substrates 1 and 2 are caused by internal stress accompanying the swelling of the modified region 5 formed in the vicinity of the end surfaces of the substrates 1 and 2. It is possible to generate a crack with high straightness, and it is possible to make the divided shape more accurate by this crack.

これに対し、図8には、収差補正の補正量が0である場合、即ち基板1,2のレーザビーム照射方向手前側の端面でのレーザビームの集光領域の基板厚さ方向の長さが最も短い状態で、基板1,2の端面の近傍に改質領域5を形成した場合のレーザビーム照射方向手前側の端面の状態を示す。このレーザ加工法では、基板1,2のレーザビーム照射方向手前側の端面での集光領域のエネルギー密度が最高となる。同図に見られる大きな欠損は、プラズマによる破壊であり、飛散物も発生している。一方、図9には、収差補正の補正量が1mmである場合、即ち基板1,2のレーザビーム照射方向先方の端面でのレーザビームの集光領域の基板厚さ方向の長さが最も短い状態で、基板1,2の端面の近傍に改質領域5を形成した場合のレーザビーム照射方向先方の端面の状態を示す。このレーザ加工法では、基板1,2のレーザビーム照射方向先方の端面での集光領域のエネルギー密度が最高となる。同図に見られる大きな欠損は、照射方向先方の端面に形成された改質領域5の拡がりをもった全方向的な内部応力によるものであり、この場合も飛散物が生じる。   On the other hand, in FIG. 8, when the correction amount of the aberration correction is 0, that is, the length in the substrate thickness direction of the condensing region of the laser beam at the end surface on the front side of the laser beam irradiation direction of the substrates 1 and 2. Shows the state of the end face on the near side in the laser beam irradiation direction when the modified region 5 is formed in the vicinity of the end faces of the substrates 1 and 2 in the shortest state. In this laser processing method, the energy density of the light condensing region at the end surface of the substrates 1 and 2 on the near side in the laser beam irradiation direction becomes the highest. The big defect seen in the figure is the destruction by the plasma, and the scattered matter is also generated. On the other hand, FIG. 9 shows that when the correction amount for aberration correction is 1 mm, that is, the length of the laser beam condensing region at the end surface of the substrates 1 and 2 ahead of the laser beam irradiation direction is the shortest in the substrate thickness direction. The state of the end face ahead of the laser beam irradiation direction when the modified region 5 is formed in the vicinity of the end faces of the substrates 1 and 2 is shown. In this laser processing method, the energy density of the condensing region at the end face of the substrates 1 and 2 in the direction of laser beam irradiation is maximized. The large defect seen in the figure is due to the omnidirectional internal stress with the expansion of the modified region 5 formed on the end face ahead of the irradiation direction, and in this case also scattered matter is generated.

このように、本実施形態の基板分割方法によれば、基板1,2にレーザビームを照射して改質領域5を形成することにより当該基板1,2を分割するにあたり、基板1,2のレーザビーム照射方向手前側の端面及びレーザビーム照射方向先方の端面において、レーザビームのエネルギー密度が低くなるように当該レーザビームの集光性を制御することとしたため、基板1,2のレーザビーム照射方向手前側の端面でもレーザビーム照射方向先方の端面でも当該レーザビームの集光性を制御することによってエネルギー密度が低くなるので、両端面近傍に改質領域5を形成するときの大きな欠損を防止することができる。   As described above, according to the substrate dividing method of the present embodiment, when the substrates 1 and 2 are divided by forming the modified region 5 by irradiating the substrates 1 and 2 with the laser beam, Since the condensing property of the laser beam is controlled so that the energy density of the laser beam is lowered at the end surface on the near side of the laser beam irradiation direction and the end surface ahead of the laser beam irradiation direction, the laser beam irradiation of the substrates 1 and 2 is performed. The energy density is lowered by controlling the condensing property of the laser beam on both the end surface in the front direction and the end surface in the direction of the laser beam irradiation, so that a large defect is prevented when the modified region 5 is formed in the vicinity of both end surfaces. can do.

また、改質領域5を基板1,2の厚さ方向に複数層形成した後、当該基板1,2に外力を加えることで当該基板1,2を分割することとしたため、基板1,2を確実に且つ精度良く分割することができる。
また、レーザ光がフェムト秒からナノ秒のいずれかのパルス幅を有するパルスレーザであることとしたため、基板の分割に適したレーザ光を用いて基板1,2を分割することができる。
また、前記本実施形態の基板分割方法で分割対象基板4から表示装置用基板を分割することとしたため、両端面に大きな欠損のない基板で表示装置を製造することができる。
In addition, since the modified region 5 is formed in a plurality of layers in the thickness direction of the substrates 1 and 2, and the substrates 1 and 2 are divided by applying an external force to the substrates 1 and 2, the substrates 1 and 2 are separated. It is possible to reliably and accurately divide.
Further, since the laser light is a pulse laser having a pulse width of any one of femtoseconds to nanoseconds, the substrates 1 and 2 can be divided using laser light suitable for dividing the substrate.
In addition, since the display device substrate is divided from the substrate to be divided 4 by the substrate dividing method of the present embodiment, the display device can be manufactured using substrates that do not have large defects on both end faces.

本発明を適用した分割対象基板の平面図である。It is a top view of the division | segmentation object board | substrate to which this invention is applied. 図1の分割対象基板に対する基板分割方法の説明図である。It is explanatory drawing of the board | substrate division | segmentation method with respect to the division | segmentation object board | substrate of FIG. 図2の基板分割方法に用いられるレーザビーム照射装置の概略構成図である。It is a schematic block diagram of the laser beam irradiation apparatus used for the board | substrate division | segmentation method of FIG. レーザビーム反射型距離計測装置の説明図である。It is explanatory drawing of a laser beam reflection type distance measuring device. 図2の基板分割方法で分割対象基板を分割する説明図である。It is explanatory drawing which divides | segments a division | segmentation object board | substrate with the board | substrate division | segmentation method of FIG. 収差補正の補正量が異なる場合の集光レンズ移動距離と改質領域形成位置の関係を示す説明図である。It is explanatory drawing which shows the relationship between a condensing lens moving distance and a modification area | region formation position in case the correction amount of aberration correction differs. 図5の基板分割方法による基板の分割状態の説明図である。It is explanatory drawing of the division | segmentation state of the board | substrate by the board | substrate division | segmentation method of FIG. 収差補正の補正量が0である場合の基板の分割状態の説明図である。It is explanatory drawing of the division | segmentation state of a board | substrate when the correction amount of aberration correction is 0. 収差補正の補正量が基板の厚さ相当である場合の基板の分割状態の説明図である。It is explanatory drawing of the division | segmentation state of a board | substrate when the correction amount of aberration correction is equivalent to the thickness of a board | substrate.

符号の説明Explanation of symbols

1 TFT基板、2 対向基板、4 分割対象基板、5 改質領域、6 ポリイミド膜、7 配線部、9 反射型距離計測装置、10 レーザビーム照射装置。 DESCRIPTION OF SYMBOLS 1 TFT substrate, 2 Opposite substrate, 4 Division | segmentation object substrate, 5 Modification | denaturation area | region, 6 Polyimide film, 7 Wiring part, 9 Reflection type distance measuring device, 10 Laser beam irradiation apparatus.

Claims (4)

基板にレーザ光を照射して改質領域を形成することにより当該基板を分割する基板分割方法であって、前記基板のレーザ光照射方向手前側の端面及びレーザ光照射方向先方の端面において、前記レーザ光のエネルギー密度が低くなるように当該レーザ光の集光性を制御することを特徴とする基板分割方法。   A substrate dividing method for dividing a substrate by irradiating the substrate with laser light to form a modified region, wherein the substrate has an end surface on the front side in the laser light irradiation direction and an end surface on the front side in the laser light irradiation direction. A substrate dividing method, wherein the condensing property of the laser beam is controlled so that the energy density of the laser beam is lowered. 前記改質領域を前記基板の厚さ方向に複数層形成した後、当該基板に外力を加えることで当該基板を分割することを特徴とする請求項1に記載の基板分割方法。   The substrate dividing method according to claim 1, wherein the substrate is divided by applying an external force to the substrate after forming the modified region in a plurality of layers in the thickness direction of the substrate. 前記レーザ光がフェムト秒からナノ秒のいずれかのパルス幅を有するパルスレーザであることを特徴とする請求項1又は2に記載の基板分割方法。   3. The substrate dividing method according to claim 1, wherein the laser beam is a pulse laser having a pulse width of any one of femtoseconds to nanoseconds. 前記請求項1乃至3の何れかに記載の基板分割方法で前記基板から表示装置用基板を分割することを特徴とする表示装置の製造方法。   4. A display device manufacturing method, wherein a display device substrate is divided from the substrate by the substrate dividing method according to claim 1.
JP2008042523A 2008-02-25 2008-02-25 Method of dividing substrate, and method of manufacturing display device Withdrawn JP2009200383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008042523A JP2009200383A (en) 2008-02-25 2008-02-25 Method of dividing substrate, and method of manufacturing display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008042523A JP2009200383A (en) 2008-02-25 2008-02-25 Method of dividing substrate, and method of manufacturing display device

Publications (1)

Publication Number Publication Date
JP2009200383A true JP2009200383A (en) 2009-09-03

Family

ID=41143546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008042523A Withdrawn JP2009200383A (en) 2008-02-25 2008-02-25 Method of dividing substrate, and method of manufacturing display device

Country Status (1)

Country Link
JP (1) JP2009200383A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115353A1 (en) * 2012-02-01 2013-08-08 信越ポリマー株式会社 Substrate and substrate processing method
WO2013118645A1 (en) * 2012-02-06 2013-08-15 信越ポリマー株式会社 Substrate processing method and substrate processing device
JP2013215798A (en) * 2012-04-12 2013-10-24 Disco Corp Laser processing apparatus
JP2014205168A (en) * 2013-04-12 2014-10-30 株式会社ディスコ Laser processing apparatus
JP2014233727A (en) * 2013-05-31 2014-12-15 株式会社ディスコ Laser processing apparatus
US9934907B2 (en) 2012-12-18 2018-04-03 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and manufacturing method therefor
JP2021010936A (en) * 2019-07-09 2021-02-04 株式会社ディスコ Laser processing device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013115353A1 (en) * 2012-02-01 2013-08-08 信越ポリマー株式会社 Substrate and substrate processing method
JP2013161820A (en) * 2012-02-01 2013-08-19 Shin Etsu Polymer Co Ltd Substrate and method for processing substrate
WO2013118645A1 (en) * 2012-02-06 2013-08-15 信越ポリマー株式会社 Substrate processing method and substrate processing device
JP2013161976A (en) * 2012-02-06 2013-08-19 Shin Etsu Polymer Co Ltd Substrate processing method and substrate processing device
JP2013215798A (en) * 2012-04-12 2013-10-24 Disco Corp Laser processing apparatus
US9934907B2 (en) 2012-12-18 2018-04-03 Murata Manufacturing Co., Ltd. Laminated ceramic electronic component and manufacturing method therefor
JP2014205168A (en) * 2013-04-12 2014-10-30 株式会社ディスコ Laser processing apparatus
JP2014233727A (en) * 2013-05-31 2014-12-15 株式会社ディスコ Laser processing apparatus
JP2021010936A (en) * 2019-07-09 2021-02-04 株式会社ディスコ Laser processing device

Similar Documents

Publication Publication Date Title
JP6353683B2 (en) Laser processing apparatus and laser processing method
JP6258787B2 (en) Laser processing apparatus and laser processing method
JP4752488B2 (en) Laser internal scribing method
US9821408B2 (en) Laser machining method and laser machining device
JP5410250B2 (en) Laser processing method and laser processing apparatus
JP2010017990A (en) Substrate dividing method
JP2009056482A (en) Substrate dividing method and manufacturing method of display device
JP2009200383A (en) Method of dividing substrate, and method of manufacturing display device
JP2008018547A (en) Manufacturing method of substrate, manufacturing method of tft substrate, manufacturing method of multilayered structural substrate and manufacturing method of display device
JP5242036B2 (en) Laser processing equipment
JP2007319881A (en) Method for producing base substance, laser beam machining apparatus, display, electro-optical apparatus and electronic component
JP2009202190A (en) Method of dividing substrate and method of manufacturing display device
JP2007021557A (en) Laser beam irradiation apparatus and laser beam scribing method
JP4407584B2 (en) Laser irradiation apparatus and laser scribing method
JP2009050892A (en) Substrate dividing method and method of manufacturing display device
JP2007185664A (en) Laser beam inside-scribing method
JP2007130675A (en) Laser scribing method
JP2010024068A (en) Method for dividing substrate and method for manufacturing display
JP2009195944A (en) Method of dividing substrate and method of manufacturing indicator
JP2008168328A (en) Laser scribing device, method for dividing substrate, and method for manufacturing electro-optical apparatus
JP2007284269A (en) Laser scribing method and electrooptical device
JP5230240B2 (en) Laser processing equipment
JP2009202218A (en) Substrate dividing method and display manufacturing method
JP2008311333A (en) Method for dividing substrate, and method for manufacturing display
JP4801634B2 (en) Laser processing apparatus and laser processing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110510