JP2014205168A - Laser processing apparatus - Google Patents

Laser processing apparatus Download PDF

Info

Publication number
JP2014205168A
JP2014205168A JP2013083823A JP2013083823A JP2014205168A JP 2014205168 A JP2014205168 A JP 2014205168A JP 2013083823 A JP2013083823 A JP 2013083823A JP 2013083823 A JP2013083823 A JP 2013083823A JP 2014205168 A JP2014205168 A JP 2014205168A
Authority
JP
Japan
Prior art keywords
correction ring
workpiece
laser beam
correction
condensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013083823A
Other languages
Japanese (ja)
Other versions
JP6037925B2 (en
Inventor
健太呂 飯塚
Kentaro Iizuka
健太呂 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2013083823A priority Critical patent/JP6037925B2/en
Publication of JP2014205168A publication Critical patent/JP2014205168A/en
Application granted granted Critical
Publication of JP6037925B2 publication Critical patent/JP6037925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Dicing (AREA)

Abstract

PROBLEM TO BE SOLVED: To focus laser beam on a predetermined position of a work piece with ease and precisely according to thickness of the work piece.SOLUTION: A laser processing apparatus (1) is detachably fitted with a correction ring rotation means (7) which performs aberration correction of an objective lens (51) by rotating a correction ring (52) of the objective lens fitted with the correction ring. The correction ring rotation means includes an engaging and gripping part (73) which moves to an acting position for engaging with the correction ring and a non-acting position for departing from the acting position, and a rotation drive part (76) which rotates the correction ring through the engaging and gripping part according to thickness of a work piece (W). Before starting of laser processing, rotation angle of the correction ring is adjusted under a condition in which the engaging and gripping part is engaged with the correction ring, and during the laser processing, a height position of the objective lens is made to follow surface displacement of the work piece under a condition in which the engaging and gripping part is separated from the correction ring.

Description

本発明は、被加工物にレーザー光線を照射して被加工物を加工するレーザー加工装置に関する。   The present invention relates to a laser processing apparatus that processes a workpiece by irradiating the workpiece with a laser beam.

IC或いはLSIなどの半導体デバイスの製造において、格子状に配列された分割ラインによって被加工物としての半導体基板の表面が多数の矩形領域に区画されている。各矩形領域には半導体デバイスが形成されており、分割ラインに沿って半導体基板を分割することで、個々の半導体デバイスに分離される。このような半導体基板の分割に関して、半導体基板に対して透過性を有するレーザー光線を分割ラインに沿って半導体基板の内部に照射して、半導体基板の内部に分割起点となる改質域を形成するレーザー加工装置が提案されている(例えば、特許文献1参照)。改質域が形成された半導体基板は、外力が加わることで改質域を分割起点として分割ラインに沿って分割される。   In the manufacture of a semiconductor device such as an IC or LSI, the surface of a semiconductor substrate as a workpiece is partitioned into a number of rectangular regions by dividing lines arranged in a lattice pattern. A semiconductor device is formed in each rectangular region, and is divided into individual semiconductor devices by dividing the semiconductor substrate along a dividing line. Regarding the division of the semiconductor substrate, a laser beam that irradiates the inside of the semiconductor substrate along the dividing line with a laser beam that is transmissive to the semiconductor substrate to form a modified region that becomes the division starting point inside the semiconductor substrate. A processing apparatus has been proposed (see, for example, Patent Document 1). The semiconductor substrate in which the modified region is formed is divided along the dividing line by using the modified region as a division starting point by applying an external force.

特許第3408805号公報Japanese Patent No. 3408805

本発明者の経験によれば、特許文献1に記載のレーザー加工装置において、被加工物の内部に改質域を生成するためには、被加工物の厚み方向の所定位置に精密にレーザー光線を集光させることが重要である。しかし、大気中を通過して被加工物内を透過するレーザー光線には、被加工物の上面から厚み方向の所定位置までの距離、すなわちレーザー光線の透過深さに応じて収差が生成される。この場合、レーザー光線の透過深さに応じて収差が変わるため、様々な厚みの被加工物に対して適切な深さにレーザー光線を精密に集光させることが困難であった。   According to the inventor's experience, in the laser processing apparatus described in Patent Document 1, in order to generate a modified region inside the workpiece, a laser beam is precisely applied to a predetermined position in the thickness direction of the workpiece. It is important to collect light. However, an aberration is generated in the laser beam that passes through the atmosphere and passes through the workpiece according to the distance from the upper surface of the workpiece to a predetermined position in the thickness direction, that is, the transmission depth of the laser beam. In this case, since the aberration changes according to the penetration depth of the laser beam, it is difficult to accurately focus the laser beam to an appropriate depth with respect to the workpiece having various thicknesses.

本発明はこのような点に鑑みてなされたものであり、被加工物の厚みに応じて、容易に且つ精密にレーザー光線を被加工物の所定位置に集光させることができるレーザー加工装置を提供することを目的とする。   The present invention has been made in view of the above points, and provides a laser processing apparatus capable of condensing a laser beam at a predetermined position of a workpiece easily and precisely according to the thickness of the workpiece. The purpose is to do.

本発明のレーザー加工装置は、被加工物を保持する保持手段と、該保持手段に保持された被加工物に対して透過性を有する波長のレーザー光線を照射するレーザー光線照射手段と、該レーザー光線を被加工物に発振する発振器と、該レーザー光線を被加工物の内部に集光させる集光手段と、被加工物のレーザー光線照射領域の表面変位を測定する測定手段と、該集光手段を支持し且つ該測定手段の測定結果に基づき該集光手段を被加工物に対して垂直方向に移動させる集光点位置調整手段と、を備えるレーザー加工装置であって、該集光手段は、外周面に複数の凹凸部を備えた補正環と、該補正環を回すことでレンズが内部でスライドし厚みに合わせた収差補正が行われる対物レンズとを備え、該補正環を回転させる補正環回転手段を備えており、該補正環回転手段は、該凹凸部に係合して該補正環を把持する少なくとも2個の係合把持部と、該係合把持部を該凹凸部と係合する作用位置と該凹凸部から離反した非作用位置とに移動させる移動部と、該係合把持部が作用位置に位置付けられた状態で該係合把持部を所定角度移動させて該補正環を所定角度回転させる回転駆動部と、被加工物の厚みに応じて適切な収差となる該補正環の回転角度情報を記憶する記憶部と、を備えており、被加工物の厚みが変更された際には、該係合把持部は該作用位置に位置付けられ、該記憶部により記憶された該回転角度情報により被加工物の厚みに応じた適切な回転角度に該補正環が回転され、該レーザー光線照射手段により被加工物にレーザー光線を照射する際には、該係合把持部は該非作用位置に位置付けられた状態で集光点位置を調整しながら加工を行うこと、を特徴とする。   The laser processing apparatus of the present invention includes a holding unit that holds a workpiece, a laser beam irradiation unit that irradiates a laser beam having a wavelength that is transmissive to the workpiece held by the holding unit, and a laser beam irradiation unit. An oscillator that oscillates on the workpiece, a condensing unit that condenses the laser beam inside the workpiece, a measuring unit that measures a surface displacement of a laser beam irradiation region of the workpiece, and supports the condensing unit; And a focusing point position adjusting unit that moves the focusing unit in a direction perpendicular to the workpiece based on the measurement result of the measuring unit, the focusing unit being arranged on the outer peripheral surface. And a correction ring rotating means for rotating the correction ring, comprising a correction ring having a plurality of concave and convex portions, and an objective lens in which the lens slides inside to perform aberration correction in accordance with the thickness by rotating the correction ring. prepare for The correction ring rotating means includes at least two engagement gripping portions that engage with the concave-convex portion and grip the correction ring, an action position that engages the engagement gripping portion with the concave-convex portion, and the A moving part that moves to a non-acting position separated from the concavo-convex part, and a rotation that rotates the correcting ring by a predetermined angle by moving the engaging and gripping part by a predetermined angle while the engaging and gripping part is positioned at the operating position. A drive unit, and a storage unit that stores rotation angle information of the correction ring that has an appropriate aberration according to the thickness of the workpiece, and when the thickness of the workpiece is changed, the storage unit The engagement gripping portion is positioned at the working position, and the correction ring is rotated at an appropriate rotation angle according to the thickness of the workpiece by the rotation angle information stored in the storage portion, and is covered by the laser beam irradiation means. When irradiating a workpiece with a laser beam, the engaging gripping part is inactive. Performing the processing while adjusting the focusing point in a state of being positioned in location, characterized by.

この構成によれば、係合把持部が補正環の凹凸部に係合して、補正環が被加工物の厚みに応じた回転角度に自動的に調整される。これにより、被加工物が厚みの異なる別の被加工物に変更された場合にも、被加工物の厚みに応じて適切な収差補正が行われる。また、レーザー光線が照射される場合には、被加工物のレーザー光線照射領域の表面変位にレーザー光線の集光点位置が追従される。これにより、被加工物の表面変位に合わせて適切な深さに改質域を形成できる。このとき、係合把持部が補正環の凹凸部から離反した状態でレーザー光線が照射されるため、係合把持部によって被加工物の表面変位に対する集光手段の追従動作が阻害されることがない。   According to this configuration, the engagement gripping portion is engaged with the uneven portion of the correction ring, and the correction ring is automatically adjusted to a rotation angle corresponding to the thickness of the workpiece. Accordingly, even when the workpiece is changed to another workpiece having a different thickness, appropriate aberration correction is performed according to the thickness of the workpiece. When the laser beam is irradiated, the condensing point position of the laser beam follows the surface displacement of the laser beam irradiation area of the workpiece. Thereby, the modified region can be formed at an appropriate depth according to the surface displacement of the workpiece. At this time, the laser beam is irradiated in a state where the engagement gripping part is separated from the uneven part of the correction ring, and therefore the follow-up operation of the light collecting means with respect to the surface displacement of the workpiece is not hindered by the engagement gripping part. .

本発明によれば、被加工物の厚みが変更される場合でも、被加工物の厚みに応じた回転角度に補正環を自動的に回転させることで、容易に且つ精密にレーザー光線を被加工物の所定位置に集光させることができる。   According to the present invention, even when the thickness of the workpiece is changed, the laser beam can be easily and accurately processed by automatically rotating the correction ring at a rotation angle corresponding to the thickness of the workpiece. The light can be condensed at a predetermined position.

本実施の形態に係るレーザー加工装置の斜視図である。It is a perspective view of the laser processing apparatus which concerns on this Embodiment. 本実施の形態に係る補正環回転手段の取り付け状態を示す斜視図である。It is a perspective view which shows the attachment state of the correction | amendment ring | wheel rotation means which concerns on this Embodiment. 本実施の形態に係る集光手段の模式図である。It is a schematic diagram of the condensing means which concerns on this Embodiment. 本実施の形態に係る補正環回転手段による収差補正の動作説明図である。It is operation | movement explanatory drawing of the aberration correction by the correction | amendment ring | wheel rotation means which concerns on this Embodiment. 本実施の形態に係る補正環回転手段の部分断面図である。It is a fragmentary sectional view of the correction ring rotation means concerning this embodiment. 本実施の形態に係る係合把持部の斜視図である。It is a perspective view of the engagement grip part which concerns on this Embodiment. 本実施の形態に係るレーザー加工前の準備からレーザー加工までの流れを示す図である。It is a figure which shows the flow from the preparation before the laser processing which concerns on this Embodiment to laser processing.

以下、図1及び図2を参照して、本実施の形態に係るレーザー加工装置の概略構成について詳細に説明する。図1は、本実施の形態に係るレーザー加工装置の斜視図である。図2は、本実施の形態に係る補正環回転手段の取り付け状態を示す斜視図である。なお、図1は、レーザー加工装置1から補正環回転手段7を取り外した状態を示している。また、図2Aは、補正環回転手段7の取り付け前の状態を示し、図2Bは、補正環回転手段7の取り付けた状態を示す。   Hereinafter, the schematic configuration of the laser processing apparatus according to the present embodiment will be described in detail with reference to FIGS. 1 and 2. FIG. 1 is a perspective view of the laser processing apparatus according to the present embodiment. FIG. 2 is a perspective view showing an attached state of the correction ring rotating means according to the present embodiment. FIG. 1 shows a state in which the correction ring rotating means 7 is removed from the laser processing apparatus 1. 2A shows a state before the correction ring rotating means 7 is attached, and FIG. 2B shows a state where the correction ring rotating means 7 is attached.

図1に示すように、レーザー加工装置1は、レーザー光線を照射するレーザー光線照射手段4と被加工物Wを保持した保持手段2とを相対移動させて、被加工物Wを加工するように構成されている。被加工物Wは略円板状に形成されており、表面が格子状の分割ライン81によって複数の領域に区画されている。この分割ライン81に区画された各領域には、各種デバイスが形成されている。なお、被加工物Wは、シリコン、ガリウム砒素等の半導体基板にIC、LSI等のデバイスが形成された半導体ウェーハでもよいし、セラミック、ガラス、サファイア系の無機材料基板にLED等の光デバイスが形成された光デバイスウェーハでもよい。   As shown in FIG. 1, the laser processing apparatus 1 is configured to process the workpiece W by relatively moving a laser beam irradiation means 4 for irradiating a laser beam and a holding means 2 holding the workpiece W. ing. The workpiece W is formed in a substantially disk shape, and the surface is partitioned into a plurality of regions by a grid-like dividing line 81. Various devices are formed in each region partitioned by the dividing line 81. The workpiece W may be a semiconductor wafer in which devices such as IC and LSI are formed on a semiconductor substrate such as silicon and gallium arsenide, or an optical device such as an LED on a ceramic, glass, and sapphire inorganic material substrate. It may be a formed optical device wafer.

レーザー加工装置1は、直方体状の基台11を有している。基台11の上面には、保持手段2をX軸方向に加工送りすると共に、Y軸方向に割出送りする保持手段移動機構3が設けられている。保持手段移動機構3の後方には、立壁部12が立設されている。立壁部12からはアーム部13が突出しており、アーム部13には保持手段2に対向するようにレーザー光線照射手段4が設けられている。   The laser processing apparatus 1 has a rectangular parallelepiped base 11. On the upper surface of the base 11, there is provided a holding means moving mechanism 3 for processing and feeding the holding means 2 in the X-axis direction and indexing and feeding it in the Y-axis direction. A standing wall portion 12 is erected on the rear side of the holding means moving mechanism 3. An arm portion 13 protrudes from the standing wall portion 12, and a laser beam irradiation means 4 is provided on the arm portion 13 so as to face the holding means 2.

保持手段移動機構3は、基台11の上面に配置されたY軸方向に平行な一対のガイドレール31と、一対のガイドレール31にスライド可能に設置されたモータ駆動のY軸テーブル32とを有している。また、保持手段移動機構3は、Y軸テーブル32の上面に配置されX軸方向に平行な一対のガイドレール33と、一対のガイドレール33にスライド可能に設置されたモータ駆動にX軸テーブル34とを有している。X軸テーブル34の上部には、レーザー光線照射手段4の下方で被加工物Wを保持する保持手段2が設けられている。   The holding means moving mechanism 3 includes a pair of guide rails 31 arranged on the upper surface of the base 11 and parallel to the Y-axis direction, and a motor-driven Y-axis table 32 slidably installed on the pair of guide rails 31. Have. The holding means moving mechanism 3 includes a pair of guide rails 33 arranged on the upper surface of the Y-axis table 32 and parallel to the X-axis direction, and an X-axis table 34 for driving the motor slidably installed on the pair of guide rails 33. And have. A holding means 2 that holds the workpiece W under the laser beam irradiation means 4 is provided above the X-axis table 34.

なお、Y軸テーブル32及びX軸テーブル34の背面側には、それぞれ図示しないナット部が形成されており、これらのナット部にボールネジ35、36が螺合されている。そして、ボールネジ35、36の一端部に連結された駆動モータ37、38が回転駆動されることで、保持手段2がガイドレール31、33に沿ってY軸方向及びX軸方向に移動される。   Note that nut portions (not shown) are formed on the back sides of the Y-axis table 32 and the X-axis table 34, and ball screws 35 and 36 are screwed to these nut portions. The holding motor 2 is moved along the guide rails 31 and 33 in the Y-axis direction and the X-axis direction by rotationally driving the drive motors 37 and 38 connected to one end portions of the ball screws 35 and 36.

保持手段2は、円板状に形成されており、θテーブル21を介してX軸テーブル34の上面に回転可能に設けられている。保持手段2の上面には、ポーラスセラミック材により保持面22が形成されている。保持面22は、保持手段2内の流路を通じて吸引源(不図示)に接続されており、保持面22上に生じる負圧によって被加工物Wが吸着保持される。   The holding means 2 is formed in a disk shape, and is rotatably provided on the upper surface of the X-axis table 34 via the θ table 21. On the upper surface of the holding means 2, a holding surface 22 is formed of a porous ceramic material. The holding surface 22 is connected to a suction source (not shown) through a flow path in the holding means 2, and the workpiece W is sucked and held by the negative pressure generated on the holding surface 22.

レーザー光線照射手段4は、アーム部13の先端に設けられた加工ヘッド41を有している。加工ヘッド41の下部には、レーザー光線を被加工物Wの内部に集光する集光手段5が設けられている。集光手段5は、対物レンズ51の外面に補正環52を設けた、いわゆる補正環付き対物レンズであり、補正環52を回すことで対物レンズ51内のレンズ(不図示)をスライドさせて収差補正する。レーザー加工の開始前に、補正環52の回転角度が調整されることで、被加工物Wの厚みに合わせて対物レンズ51が収差補正される。   The laser beam application means 4 has a processing head 41 provided at the tip of the arm portion 13. A condensing unit 5 that condenses the laser beam inside the workpiece W is provided below the processing head 41. The condensing means 5 is a so-called objective lens with a correction ring in which a correction ring 52 is provided on the outer surface of the objective lens 51. By rotating the correction ring 52, a lens (not shown) in the objective lens 51 is slid to cause aberration. to correct. By adjusting the rotation angle of the correction ring 52 before the start of laser processing, the aberration of the objective lens 51 is corrected in accordance with the thickness of the workpiece W.

アーム部13の内部には、被加工物Wに対して透過性を有する波長のレーザー光線を発振する発振器42が設けられている。発振器42から発振されたレーザー光線は、集光手段5において被加工物Wの内部に集光される。また、アーム部13には、レーザー光線照射手段4に加工送り方向(X軸方向)で隣り合うように測定手段6が設けられている。測定手段6は、非接触式のハイトセンサであり、被加工物Wの表面のレーザー光線照射領域に検出光を照射して、レーザー光線照射領域からの反射光を検出することで被加工物Wの表面変位を測定する。   An oscillator 42 that oscillates a laser beam having a wavelength that is transmissive to the workpiece W is provided inside the arm portion 13. The laser beam oscillated from the oscillator 42 is condensed inside the workpiece W by the condensing means 5. The arm 13 is provided with measuring means 6 so as to be adjacent to the laser beam irradiation means 4 in the processing feed direction (X-axis direction). The measuring means 6 is a non-contact type height sensor, which irradiates the laser beam irradiation region on the surface of the workpiece W with detection light and detects the reflected light from the laser beam irradiation region, thereby detecting the surface of the workpiece W. Measure the displacement.

さらに、加工ヘッド41内には、集光手段5による集光点位置を被加工物Wの表面変位に追従させる集光点位置調整手段61が設けられている(図3参照)。集光点位置調整手段61は、ピエゾ素子等で構成されており、被加工物Wの表面変位に応じて集光手段5を、被加工物Wに対して垂直方向に移動させることで集光点位置を調整する。収差補正後のレーザー加工時には、測定手段6によって被加工物Wにおけるレーザー光線照射領域の表面変位を測定して、集光点位置調整手段61によってレーザー光線の集光点位置を被加工物Wの表面変位に追従させながらレーザー加工が実施される。   Furthermore, a condensing point position adjusting unit 61 is provided in the processing head 41 to cause the condensing point position by the condensing unit 5 to follow the surface displacement of the workpiece W (see FIG. 3). The condensing point position adjusting unit 61 is configured by a piezo element or the like, and condenses by moving the condensing unit 5 in a direction perpendicular to the workpiece W according to the surface displacement of the workpiece W. Adjust the point position. At the time of laser processing after aberration correction, the surface displacement of the laser beam irradiation area on the workpiece W is measured by the measuring means 6, and the focal point position of the laser beam is determined by the focal point position adjusting means 61. Laser processing is carried out while following.

このように構成されたレーザー加工装置1では、加工ヘッド41の射出口が被加工物Wの分割ライン81に位置合わせされる。そして、加工ヘッド41から被加工物Wの内部にレーザー光線が照射された状態で保持手段2が移動されることで、分割起点となる改質域82(図7C参照)が分割ライン81に沿って形成される。なお、改質域82とは、レーザー光線の照射によって被加工物Wの内部の密度、屈折率、機械的強度やその他の物理的特性が周囲と異なる状態となり、周囲よりも強度が低下する領域のことをいう。改質域82は、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域であり、これらが混在した領域でもよい。   In the laser processing apparatus 1 configured as described above, the injection port of the processing head 41 is aligned with the dividing line 81 of the workpiece W. Then, the holding means 2 is moved in a state in which the laser beam is irradiated from the processing head 41 to the inside of the workpiece W, so that the modified region 82 (see FIG. 7C) serving as the division start point is along the division line 81. It is formed. The modified region 82 is a region in which the density, refractive index, mechanical strength and other physical characteristics of the workpiece W are different from the surroundings due to the irradiation of the laser beam, and the strength is lower than the surroundings. That means. The modified region 82 is, for example, a melt processing region, a crack region, a dielectric breakdown region, or a refractive index change region, and may be a region where these are mixed.

また、図2A及び図2Bに示すように、アーム部13には、被加工物Wの厚みに合わせて補正環52を自動回転させる補正環回転手段7が着脱可能に取り付けられる。補正環回転手段7のケース71は、上面視矩形状かつ薄厚であり、レーザー加工装置1への取り付け時に取り付け面711から中央に向けて集光手段5をガイドするように切り欠かれている。ケース71がレーザー加工装置1に取り付けられると、上面視C字状の回転部72が補正環52の周囲に位置付けられ、回転部72に設けられた3つの係合把持部73(図2Aでは1つのみ図示)の把持面が補正環52の外周面に対向する。   2A and 2B, the arm 13 is detachably attached with a correction ring rotating means 7 that automatically rotates the correction ring 52 in accordance with the thickness of the workpiece W. The case 71 of the correction ring rotating means 7 is rectangular and thin when viewed from above, and is notched so as to guide the light collecting means 5 from the attachment surface 711 toward the center when attached to the laser processing apparatus 1. When the case 71 is attached to the laser processing apparatus 1, a C-shaped rotating part 72 in a top view is positioned around the correction ring 52, and three engagement gripping parts 73 (1 in FIG. 2A) provided on the rotating part 72. (Only one is shown) faces the outer peripheral surface of the correction ring 52.

レーザー加工の開始前には、各係合把持部73が回転部72から内側に移動し、補正環52の外周面の凹凸部56に係合するように動作する。そして、各係合把持部73が補正環52に係合した状態で回転部72が回転され、補正環52の回転角度が自動的に調整されて被加工物Wの厚みに合わせた収差補正が行われる。なお、回転角度の調整方法の詳細については後述する。また、レーザー加工時には、各係合把持部73は回転部72内に収容され、補正環52の外周面の凹凸部56から離反するように動作する。各係合把持部73が補正環52から離反することで、レーザー加工時の被加工物Wの表面変位に対する集光手段5の追従動作が阻害されることがない。   Before the start of laser processing, each engagement gripping portion 73 moves inward from the rotation portion 72 and operates to engage with the uneven portion 56 on the outer peripheral surface of the correction ring 52. Then, the rotating portion 72 is rotated in a state where each engagement gripping portion 73 is engaged with the correction ring 52, and the rotation angle of the correction ring 52 is automatically adjusted to correct the aberration according to the thickness of the workpiece W. Done. The details of the adjustment method of the rotation angle will be described later. Further, at the time of laser processing, each engagement gripping portion 73 is accommodated in the rotating portion 72 and operates so as to be separated from the uneven portion 56 on the outer peripheral surface of the correction ring 52. Since each engagement gripping portion 73 is separated from the correction ring 52, the following operation of the light collecting unit 5 with respect to the surface displacement of the workpiece W during laser processing is not hindered.

このように、レーザー加工装置1に補正環回転手段7を取り付けることで、既存のレーザー加工装置1の構成を変更することなく、被加工物Wが異なる厚みの別の被加工物Wに変更された場合でも収差補正を自動的に行うことが可能になっている。なお、補正環回転手段7は、レーザー加工装置1に着脱可能に取り付けられる構成であればよく、例えば、レーザー加工装置1に対してネジ止によって固定される。   In this way, by attaching the correction ring rotating means 7 to the laser processing apparatus 1, the workpiece W is changed to another workpiece W having a different thickness without changing the configuration of the existing laser processing apparatus 1. Even in such a case, aberration correction can be automatically performed. The correction ring rotating means 7 may be configured to be detachably attached to the laser processing apparatus 1 and is fixed to the laser processing apparatus 1 by screwing, for example.

図3を参照して、集光手段の周辺部分について説明する。図3は、本実施の形態に係る集光手段の模式図である。なお、図3においては、説明の便宜上、補正環回転手段7については一部を除いて簡略化して記載している。   With reference to FIG. 3, the peripheral part of a condensing means is demonstrated. FIG. 3 is a schematic diagram of the light collecting means according to the present embodiment. In FIG. 3, for the sake of convenience of explanation, the correction ring rotating means 7 is simplified except for a part thereof.

図3に示すように、加工ヘッド41において、発振器42(図1参照)から発振されるレーザー光線の光路上には、ミラー43と集光手段5とが配置されている。ミラー43は、発振器42から発振されたレーザー光線を集光手段5に向けて反射し、集光手段5はレーザー光線を被加工物Wの内部に集光させる。   As shown in FIG. 3, in the machining head 41, the mirror 43 and the light condensing means 5 are arranged on the optical path of the laser beam oscillated from the oscillator 42 (see FIG. 1). The mirror 43 reflects the laser beam oscillated from the oscillator 42 toward the condensing unit 5, and the condensing unit 5 condenses the laser beam inside the workpiece W.

集光手段5の上半部は加工ヘッド41内の集光点位置調整手段61に支持され、集光手段5の下半部は加工ヘッド41の下方に突出されている。集光手段5の上半部にはフランジ部54が形成されており、フランジ部54が集光点位置調整手段61を介して加工ヘッド41の支持部44に支持されている。集光点位置調整手段61は、例えばピエゾ素子等のアクチュエータで構成されており、測定手段6(図1参照)の測定結果に応じた電圧が印加されることで光軸方向に伸縮する。これにより、レーザー加工時にレーザー光線照射領域の表面変位に追従して集光手段5が被加工物Wに対して垂直方向に動かされる。   The upper half part of the light condensing means 5 is supported by the light condensing point position adjusting means 61 in the processing head 41, and the lower half part of the light converging means 5 protrudes below the processing head 41. A flange portion 54 is formed in the upper half of the light collecting means 5, and the flange portion 54 is supported by the support portion 44 of the processing head 41 via the light collecting point position adjusting means 61. The condensing point position adjusting means 61 is composed of an actuator such as a piezo element, for example, and expands and contracts in the optical axis direction when a voltage corresponding to the measurement result of the measuring means 6 (see FIG. 1) is applied. Thereby, the condensing means 5 is moved in the direction perpendicular to the workpiece W following the surface displacement of the laser beam irradiation area during laser processing.

集光手段5の下半部は、補正環52付きの対物レンズ51で構成されており、環状のスリット板53が着脱可能に取り付けられている。スリット板53には、補正環52の回転角度を検出するためのイニシャル用のスリット(不図示)と目盛カウント用のスリット(不図示)が形成されている。また、集光手段5の下半部を囲むように補正環回転手段7が取り付けられており、補正環回転手段7にはスリット板53を挟んで発光素子と受光素子とを対向させたフォトセンサ74が設けられている。フォトセンサ74は、スリット板53の光の透過と遮断の繰り返しによって補正環52の回転角度を検出する。   The lower half part of the condensing means 5 is comprised with the objective lens 51 with the correction ring 52, and the cyclic | annular slit board 53 is attached so that attachment or detachment is possible. The slit plate 53 is formed with an initial slit (not shown) for detecting the rotation angle of the correction ring 52 and a scale count slit (not shown). Further, a correction ring rotating means 7 is attached so as to surround the lower half portion of the light collecting means 5, and a photo sensor in which the light emitting element and the light receiving element are opposed to each other with the slit plate 53 sandwiched in the correction ring rotating means 7. 74 is provided. The photo sensor 74 detects the rotation angle of the correction ring 52 by repeatedly transmitting and blocking light through the slit plate 53.

補正環回転手段7には、補正環回転手段7の動作を制御する制御部77と、被加工物Wの厚みに応じて適切な収差となる補正環52の回転角度情報を記憶した記憶部78とが設けられている。制御部77は、レーザー加工の開始前に被加工物Wの厚みに基づいて記憶部78から回転角度情報を読み込み、回転角度情報に基づいて補正環回転手段7の各部を駆動して補正環52の回転角度を調整する。このとき、フォトセンサ74から制御部77に補正環52の回転角度がフィードバックされ、駆動源となる駆動モータ761(図4参照)がサーボ制御されながら補正環52の回転角度が調整される。   The correction ring rotation unit 7 includes a control unit 77 that controls the operation of the correction ring rotation unit 7 and a storage unit 78 that stores rotation angle information of the correction ring 52 that has an appropriate aberration according to the thickness of the workpiece W. And are provided. The control unit 77 reads rotation angle information from the storage unit 78 based on the thickness of the workpiece W before the start of laser processing, and drives each unit of the correction ring rotation means 7 based on the rotation angle information to correct the correction ring 52. Adjust the rotation angle. At this time, the rotation angle of the correction ring 52 is fed back from the photosensor 74 to the control unit 77, and the rotation angle of the correction ring 52 is adjusted while the drive motor 761 (see FIG. 4) serving as a drive source is servo-controlled.

図4から図6を参照して、補正環回転手段の詳細構成及び補正環回転手段による収差補正について説明する。図4は、本実施の形態に係る補正環回転手段による収差補正の動作説明図である。図5は、補正環回転手段の部分断面図である。図6は、本実施の形態に係る係合把持部の斜視図である。なお、図4Aは補正環52を把持する前の状態、図4Bは補正環52を把持した状態、図4Cは、補正環52を回転動作させた状態をそれぞれ示している。また、図4においては、説明の便宜上、ケース71を省略して記載している。また、図5Aは図4AのA−A線に沿う断面、図5Bは図4BのB−B線に沿う断面をそれぞれ示す。   With reference to FIGS. 4 to 6, the detailed configuration of the correction ring rotation unit and the aberration correction by the correction ring rotation unit will be described. FIG. 4 is an explanatory diagram of the aberration correction operation by the correction ring rotating means according to the present embodiment. FIG. 5 is a partial cross-sectional view of the correction ring rotating means. FIG. 6 is a perspective view of the engagement gripping part according to the present embodiment. 4A shows a state before the correction ring 52 is gripped, FIG. 4B shows a state where the correction ring 52 is gripped, and FIG. 4C shows a state where the correction ring 52 is rotated. Further, in FIG. 4, the case 71 is omitted for convenience of explanation. 5A shows a cross section taken along line AA in FIG. 4A, and FIG. 5B shows a cross section taken along line BB in FIG. 4B.

図4に示すように、補正環回転手段7がレーザー加工装置1(図1参照)に取り付けられると、補正環52の周囲にC字状の回転部72が位置付けられる。回転部72には、所定の角度間隔で3つの係合把持部73をスライド可能に収容する収容部721(図5参照)が形成されている。図6に示すように、各係合把持部73は、円板状に形成されており、外周面の一部に補正環52の凹凸部56に係合する凹凸状の把持面731が形成されている。係合把持部73の上面には円柱状の突起部732が設けられ、係合把持部73の下面には直線状の凸部733が設けられている。   As shown in FIG. 4, when the correction ring rotating means 7 is attached to the laser processing apparatus 1 (see FIG. 1), a C-shaped rotating portion 72 is positioned around the correction ring 52. The rotating portion 72 is formed with an accommodating portion 721 (see FIG. 5) that slidably accommodates three engagement gripping portions 73 at predetermined angular intervals. As shown in FIG. 6, each engagement gripping portion 73 is formed in a disc shape, and an uneven gripping surface 731 that engages with the unevenness portion 56 of the correction ring 52 is formed on a part of the outer peripheral surface. ing. A cylindrical projection 732 is provided on the upper surface of the engagement gripping portion 73, and a linear convex portion 733 is provided on the lower surface of the engagement gripping portion 73.

図5に示すように、この突起部732は収容部721の奥側に位置し、凸部733は収容部721の奥方から前方に向かって延びている。収容部721の上面には係合把持部73の突起部732をガイドするガイド溝722が形成されており、収容部721の下面には係合把持部73の凸部733をガイドするガイド溝723が形成されている。図4に戻り、ガイド溝723は、補正環52の径方向に延びており、ガイド溝722はガイド溝723に対して所定角度を成すように斜め方向に延びている。また、回転部72には、係合把持部73を補正環52の径方向に向けてスライドさせる移動部75が連結されている。移動部75は、エアシリンダ751のロッド752を伸縮させることでリンク機構753を介して回転部72を回転させるように構成されている。エアシリンダ751のロッド752の往復運動によって、補正環52の周囲で回転部72に回転力が付与される。   As shown in FIG. 5, the projection 732 is located on the back side of the housing portion 721, and the convex portion 733 extends forward from the back of the housing portion 721. A guide groove 722 that guides the protrusion 732 of the engaging gripping portion 73 is formed on the upper surface of the housing portion 721, and a guide groove 723 that guides the convex portion 733 of the engaging gripping portion 73 on the lower surface of the housing portion 721. Is formed. Returning to FIG. 4, the guide groove 723 extends in the radial direction of the correction ring 52, and the guide groove 722 extends in an oblique direction so as to form a predetermined angle with respect to the guide groove 723. The rotating unit 72 is connected to a moving unit 75 that slides the engagement gripping unit 73 in the radial direction of the correction ring 52. The moving unit 75 is configured to rotate the rotating unit 72 via the link mechanism 753 by expanding and contracting the rod 752 of the air cylinder 751. The reciprocating motion of the rod 752 of the air cylinder 751 applies a rotational force to the rotating portion 72 around the correction ring 52.

また、回転部72には、補正環52の周囲で3つの係合把持部73を回転部72と共に回転させる回転駆動部76が連結されている。回転駆動部76は、駆動モータ761の出力軸に固定された駆動ギヤ762から回転部72に固定された円弧状の従動ギヤ763に動力を伝えるように構成されている。回転駆動部76は、3つの係合把持部73によって補正環52を把持した状態で、回転部72と補正環52とを一体回転させて補正環52の回転角度を調整している。このときの駆動モータ761の回転量は、上記したように制御部77によって記憶部78から回転角度情報が読み込まれることで制御されている。   The rotation unit 72 is connected to a rotation drive unit 76 that rotates the three engagement grips 73 together with the rotation unit 72 around the correction ring 52. The rotation drive unit 76 is configured to transmit power from a drive gear 762 fixed to the output shaft of the drive motor 761 to an arcuate driven gear 763 fixed to the rotation unit 72. The rotation drive unit 76 adjusts the rotation angle of the correction ring 52 by integrally rotating the rotation unit 72 and the correction ring 52 while holding the correction ring 52 by the three engagement gripping units 73. The rotation amount of the drive motor 761 at this time is controlled by reading the rotation angle information from the storage unit 78 by the control unit 77 as described above.

ここで、補正環回転手段7の動作について説明する。図4Aに示すように、初期状態ではエアシリンダ751のロッド752がシリンダ内に引き込まれており、3つの係合把持部73が補正環52の凹凸部56から離反した非作用位置に位置付けられている。このとき、図5Aに示すように、各係合把持部73は、回転部72の収容部721内の奥方に収容されており、収容部721の奥方において係合把持部73の突起部732及び凸部733がガイド溝722、723に係合している。   Here, the operation of the correction ring rotating means 7 will be described. As shown in FIG. 4A, in the initial state, the rod 752 of the air cylinder 751 is drawn into the cylinder, and the three engaging grips 73 are positioned at the non-acting positions separated from the concavo-convex part 56 of the correction ring 52. Yes. At this time, as shown in FIG. 5A, each engagement gripping portion 73 is housed in the interior of the housing portion 721 of the rotating portion 72, and the projection portion 732 of the engagement gripping portion 73 and the back of the housing portion 721 The convex portion 733 is engaged with the guide grooves 722 and 723.

次に図4Bに示すように、エアシリンダ751のロッド752が突出されると、リンク機構753を介して補正環52の周囲で回転部72が所定角度だけ回転される。回転部72が回転されると、係合把持部73上面の突起部732に対してガイド溝722が相対的に移動され、ガイド溝722の内周面に沿って係合把持部73が補正環52に向けて押し出される。このとき、図5Bに示すように、係合把持部73下面の凸部733がガイド溝723にガイドされて、係合把持部73が補正環52に向けて移動される。これにより、3つの係合把持部73が補正環52の凹凸部56に係合する作用位置に位置付けられる。   Next, as shown in FIG. 4B, when the rod 752 of the air cylinder 751 is protruded, the rotating portion 72 is rotated by a predetermined angle around the correction ring 52 via the link mechanism 753. When the rotating portion 72 is rotated, the guide groove 722 is moved relative to the protrusion 732 on the upper surface of the engaging gripping portion 73, and the engaging gripping portion 73 is moved along the inner peripheral surface of the guide groove 722. It is pushed toward 52. At this time, as shown in FIG. 5B, the convex portion 733 on the lower surface of the engagement gripping portion 73 is guided by the guide groove 723, and the engagement gripping portion 73 is moved toward the correction ring 52. As a result, the three engaging grips 73 are positioned at the operating positions where they engage with the concave and convex portions 56 of the correction ring 52.

上記構成では、エアシリンダ751のロッド752の伸縮動作が回転部72の回転動作に変換され、さらに回転部72の回転動作が係合把持部73のスライド動作に変換される。このようにして、移動部75は、各係合把持部73を補正環52の凹凸部56に係合する作用位置と凹凸部56から離反する非作用位置とに移動させている。   In the above configuration, the expansion / contraction operation of the rod 752 of the air cylinder 751 is converted into the rotation operation of the rotation unit 72, and the rotation operation of the rotation unit 72 is further converted into the slide operation of the engagement gripping unit 73. In this way, the moving part 75 moves each engagement gripping part 73 to the operating position where it engages with the concavo-convex part 56 of the correction ring 52 and to the non-operating position where it moves away from the concavo-convex part 56.

図4Cに示すように、3つの係合把持部73に補正環52が把持されると、補正環52の回転動作が開始される。この場合、レーザー加工装置1内のデバイスデータに設定された被加工物Wの厚みに応じて、記憶部78から制御部77に適切な収差となる補正環52の回転角度情報が読み込まれる。この回転角度情報に基づいて制御部77各によって駆動モータ761の駆動量が制御される。駆動モータ761の出力軸から駆動ギヤ762を介して従動ギヤ763に動力が伝達され、従動ギヤ763に固定された回転部72が回転される。このとき、回転部72と移動部75とが設置された土台(不図示)ごと回転される。   As shown in FIG. 4C, when the correction ring 52 is gripped by the three engagement gripping portions 73, the rotation operation of the correction ring 52 is started. In this case, according to the thickness of the workpiece W set in the device data in the laser processing apparatus 1, the rotation angle information of the correction ring 52 that causes an appropriate aberration is read from the storage unit 78 into the control unit 77. Based on this rotation angle information, the drive amount of the drive motor 761 is controlled by each control unit 77. Power is transmitted from the output shaft of the drive motor 761 to the driven gear 763 via the drive gear 762, and the rotating portion 72 fixed to the driven gear 763 is rotated. At this time, the rotating part 72 and the moving part 75 are rotated together with the foundation (not shown).

そして、各係合把持部73が補正環52に係合した状態を保ちつつ、回転部72が補正環52と一体回転する。このとき、補正環52と共にスリット板53(図3参照)も回転されており、フォトセンサ74(図3参照)から補正環52の回転角度が駆動モータ761にフィードバックされている。これによって、駆動モータ761の駆動量が精度よく調整され、補正環52が被加工物Wの厚みに応じた適切な回転角度に調整される。このような構成により、レーザー加工の開始前に、補正環52の回転によって被加工物Wの厚みに応じて対物レンズ51の収差補正が実施される。   Then, the rotating portion 72 rotates integrally with the correction ring 52 while maintaining the state where each engagement gripping portion 73 is engaged with the correction ring 52. At this time, the slit plate 53 (see FIG. 3) is also rotated together with the correction ring 52, and the rotation angle of the correction ring 52 is fed back to the drive motor 761 from the photosensor 74 (see FIG. 3). As a result, the drive amount of the drive motor 761 is accurately adjusted, and the correction ring 52 is adjusted to an appropriate rotation angle corresponding to the thickness of the workpiece W. With such a configuration, the aberration correction of the objective lens 51 is performed according to the thickness of the workpiece W by the rotation of the correction ring 52 before the start of laser processing.

収差補正が完了すると、エアシリンダ751のロッド752がシリンダ内に引き込まれ、各係合把持部73が補正環52の凹凸部56から離反した非作用位置に動かされる(図4A参照)。これによって、各係合把持部73による補正環52の係合が解除され、レーザー加工が開始される。   When the aberration correction is completed, the rod 752 of the air cylinder 751 is drawn into the cylinder, and each engagement gripping portion 73 is moved to the non-operating position separated from the uneven portion 56 of the correction ring 52 (see FIG. 4A). Thereby, the engagement of the correction ring 52 by each engagement gripping portion 73 is released, and laser processing is started.

以下、図7を参照して、レーザー加工前の準備からレーザー加工までの流れについて説明する。図7は、本実施の形態に係るレーザー加工前の準備からレーザー加工までの流れを示す図である。   Hereinafter, the flow from preparation before laser processing to laser processing will be described with reference to FIG. FIG. 7 is a diagram showing a flow from preparation before laser processing to laser processing according to the present embodiment.

図7Aに示すように、レーザー加工装置1にスリット板53及び補正環52付きの対物レンズ51が取り付けられる。このとき、対物レンズ51のイニシャル位置(目盛0)とスリット板53の目盛カウント用のスリットのイニシャル位置(目盛0)とを合わせるように取り付けられる。また、対物レンズ51を囲むように補正環回転手段7がレーザー加工装置1に取り付けられる。このように、スリット板53及び補正環回転手段7を後付けできるため、既存のレーザー加工装置1を利用することが可能になっている。補正環回転手段7が取り付けられると、補正環回転手段7の係合把持部73がイニシャル位置に調整されると共に、補正環52の回転角度がイニシャル角度に調整される。   As shown in FIG. 7A, an objective lens 51 with a slit plate 53 and a correction ring 52 is attached to the laser processing apparatus 1. At this time, it is attached so that the initial position (scale 0) of the objective lens 51 and the initial position (scale 0) of the scale counting slit of the slit plate 53 are matched. Further, the correction ring rotating means 7 is attached to the laser processing apparatus 1 so as to surround the objective lens 51. Thus, since the slit plate 53 and the correction ring rotating means 7 can be retrofitted, the existing laser processing apparatus 1 can be used. When the correction ring rotating means 7 is attached, the engaging grip 73 of the correction ring rotating means 7 is adjusted to the initial position, and the rotation angle of the correction ring 52 is adjusted to the initial angle.

次に、図7Bに示すように、レーザー加工装置1内のデバイスデータに設定された被加工物Wの厚みに応じて、記憶部78から補正環52の回転角度情報が制御部77に読み込まれる。そして、各係合把持部73が補正環52に係合する作用位置に位置付けられ、回転角度情報に基づいて補正環52が回転される。これにより、補正環52の回転角度が調整され、被加工物Wの厚みに合わせて対物レンズ51が収差補正される。このとき、フォトセンサ74によってスリット板53の回転角度がフィードバックされることで、補正環52の回転角度(収差補正)が精度よく調整される。   Next, as shown in FIG. 7B, the rotation angle information of the correction ring 52 is read from the storage unit 78 into the control unit 77 in accordance with the thickness of the workpiece W set in the device data in the laser processing apparatus 1. . Then, each engagement grip 73 is positioned at an operating position where it engages with the correction ring 52, and the correction ring 52 is rotated based on the rotation angle information. Thereby, the rotation angle of the correction ring 52 is adjusted, and the objective lens 51 is aberration-corrected in accordance with the thickness of the workpiece W. At this time, the rotation angle (aberration correction) of the correction ring 52 is accurately adjusted by feeding back the rotation angle of the slit plate 53 by the photosensor 74.

次に、図7Cに示すように、収差補正が完了すると、各係合把持部73が補正環52から離反した非作用位置に位置付けられて、各係合把持部73による補正環52の把持が解除される。そして、測定手段6(図1参照)によって被加工物Wのレーザー光線照射領域の表面変位を測定し、被加工物Wの表面変位にレーザー光線の集光点位置を追従させながらレーザー加工が実施される。このとき、各係合把持部73が補正環52から離反しているため、被加工物Wの表面変位に対物レンズ51の高さ位置を追従させることが可能になっている。よって、被加工物Wの表面変位に応じて適切な深さに改質域82が形成される。   Next, as shown in FIG. 7C, when the aberration correction is completed, each engagement gripping portion 73 is positioned at a non-acting position separated from the correction ring 52, and the gripping of the correction ring 52 by each engagement gripping portion 73 is performed. Canceled. Then, the surface displacement of the laser beam irradiation area of the workpiece W is measured by the measuring means 6 (see FIG. 1), and laser processing is performed while the focal point position of the laser beam follows the surface displacement of the workpiece W. . At this time, since each engagement gripping portion 73 is separated from the correction ring 52, the height position of the objective lens 51 can be made to follow the surface displacement of the workpiece W. Therefore, the modified region 82 is formed at an appropriate depth according to the surface displacement of the workpiece W.

以上のように、本実施の形態に係るレーザー加工装置1によれば、係合把持部73が補正環52の凹凸部56に係合して、補正環52が被加工物Wの厚みに応じた回転角度に自動的に調整される。これにより、被加工物が厚みの異なる別の被加工物に変更された場合にも、被加工物Wの厚みに応じて適切な収差補正が行われる。また、レーザー光線が照射される場合には、被加工物Wのレーザー光線照射領域の表面変位にレーザー光線の集光点位置が追従される。これにより、被加工物Wの表面変位に合わせて適切な深さに改質域82を形成できる。このとき、係合把持部73が補正環52の凹凸部56から離反した状態でレーザー光線が照射されるため、係合把持部73によって被加工物Wの表面変位に対する集光手段5の追従動作が阻害されることがない。   As described above, according to the laser processing apparatus 1 according to the present embodiment, the engagement gripping portion 73 engages with the concavo-convex portion 56 of the correction ring 52, and the correction ring 52 corresponds to the thickness of the workpiece W. Automatically adjusted to the rotation angle. Accordingly, even when the workpiece is changed to another workpiece having a different thickness, appropriate aberration correction is performed according to the thickness of the workpiece W. Further, when the laser beam is irradiated, the condensing point position of the laser beam follows the surface displacement of the laser beam irradiation region of the workpiece W. Thereby, the modified region 82 can be formed at an appropriate depth according to the surface displacement of the workpiece W. At this time, the laser beam is irradiated in a state where the engagement gripping portion 73 is separated from the concave and convex portion 56 of the correction ring 52, so that the follow-up operation of the light collecting means 5 with respect to the surface displacement of the workpiece W is performed by the engagement gripping portion 73. There is no hindrance.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In addition, this invention is not limited to the said embodiment, It can change and implement variously. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effect of the present invention is exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

例えば、本実施の形態では、測定手段6は、被加工物Wの表面に検出光を照射することで被加工物Wの表面変位を測定する構成としたが、この構成に限定されない。測定手段6は、被加工物Wの表面変位を測定する構成であれば、どのような構成でもよい。   For example, in the present embodiment, the measuring unit 6 is configured to measure the surface displacement of the workpiece W by irradiating the surface of the workpiece W with detection light, but is not limited to this configuration. The measuring means 6 may have any configuration as long as it measures the surface displacement of the workpiece W.

また、本実施の形態では、集光点位置調整手段61は、ピエゾ素子によって集光手段5を被加工物Wに対して垂直方向に移動させる構成としたが、この構成に限定されない。集光点位置調整手段61は、集光手段5の高さ位置を調整可能であればよく、例えば、ボイスコイルモータを使用して集光手段5の高さ位置を調整してもよい。   Further, in the present embodiment, the condensing point position adjusting unit 61 is configured to move the condensing unit 5 in the vertical direction with respect to the workpiece W by a piezoelectric element, but is not limited to this configuration. The condensing point position adjusting unit 61 may adjust the height position of the condensing unit 5 as long as the height position of the condensing unit 5 can be adjusted, for example, using a voice coil motor.

また、本実施の形態では、補正環回転手段7は、3つの係合把持部73によって補正環52を把持する構成としたが、この構成に限定されない。補正環回転手段7は、2以上の係合把持部73を有していればよく、例えば、4以上の係合把持部73によって補正環52を把持する構成にしてもよい。   In the present embodiment, the correction ring rotating means 7 is configured to grip the correction ring 52 by the three engagement gripping portions 73, but is not limited to this configuration. The correction ring rotating means 7 only needs to have two or more engagement gripping portions 73. For example, the correction ring rotating means 7 may be configured to grip the correction ring 52 by four or more engagement gripping portions 73.

また、本実施の形態では、移動部75がエアシリンダ751のピストン動作によって各係合把持部73を作用位置と非作用位置とに移動させる構成としたが、この構成に限定されない。移動部75は、各係合把持部73を作用位置と非作用位置とに移動させる構成であればよく、例えば、電動シリンダ等の電動アクチュエータのピストン動作によって各係合把持部73を移動させてもよい。   Further, in the present embodiment, the moving unit 75 is configured to move each engagement gripping portion 73 to the operating position and the non-operating position by the piston operation of the air cylinder 751, but the present invention is not limited to this configuration. The moving part 75 may be configured to move each engagement gripping part 73 between the action position and the non-action position. For example, each movement gripping part 73 is moved by a piston operation of an electric actuator such as an electric cylinder. Also good.

また、本実施の形態では、回転駆動部76が駆動モータ761から駆動ギヤ762と従動ギヤ763を介して動力伝達する構成としたが、この構成に限定されない。回転駆動部76は、各係合把持部73を所定角度移動させて補正環52を所定角度回転させる構成であればよく、例えば、駆動ギヤ762及び従動ギヤ763の間にさらにギヤ列が設けられていてもよい。   In the present embodiment, the rotational drive unit 76 transmits power from the drive motor 761 via the drive gear 762 and the driven gear 763. However, the present invention is not limited to this configuration. The rotation drive unit 76 may be configured to move each engagement gripping unit 73 by a predetermined angle to rotate the correction ring 52 by a predetermined angle. For example, a gear train is further provided between the drive gear 762 and the driven gear 763. It may be.

以上説明したように、本発明は、被加工物の厚みに応じて、容易に且つ精密にレーザー光線を被加工物の所定位置に集光させることができるという効果を有し、特に、被加工物にレーザー光線を照射して被加工物を加工するレーザー加工装置に有用である。   As described above, the present invention has an effect that a laser beam can be easily and precisely focused on a predetermined position of a workpiece according to the thickness of the workpiece, and in particular, the workpiece. It is useful for a laser processing apparatus for processing a workpiece by irradiating a laser beam onto the workpiece.

1 レーザー加工装置
2 保持手段
4 レーザー光線照射手段
5 集光手段
6 測定手段
7 補正環回転手段
42 発振器
51 対物レンズ
52 補正環
56 凹凸部
61 集光点位置調整手段
72 回転部
73 係合把持部
75 移動部
76 回転駆動部
77 制御部
78 記憶部
81 分割ライン
82 改質域
W 被加工物
DESCRIPTION OF SYMBOLS 1 Laser processing apparatus 2 Holding means 4 Laser beam irradiation means 5 Condensing means 6 Measuring means 7 Correction ring rotating means 42 Oscillator 51 Objective lens 52 Correction ring 56 Concavity and convexity part 61 Condensing point position adjusting means 72 Rotating part 73 Engagement gripping part 75 Moving unit 76 Rotation drive unit 77 Control unit 78 Storage unit 81 Dividing line 82 Reforming zone W Workpiece

Claims (1)

被加工物を保持する保持手段と、該保持手段に保持された被加工物に対して透過性を有する波長のレーザー光線を照射するレーザー光線照射手段と、該レーザー光線を被加工物に発振する発振器と、該レーザー光線を被加工物の内部に集光させる集光手段と、被加工物のレーザー光線照射領域の表面変位を測定する測定手段と、該集光手段を支持し且つ該測定手段の測定結果に基づき該集光手段を被加工物に対して垂直方向に移動させる集光点位置調整手段と、を備えるレーザー加工装置であって、
該集光手段は、外周面に複数の凹凸部を備えた補正環と、該補正環を回すことでレンズが内部でスライドし厚みに合わせた収差補正が行われる対物レンズとを備え、
該補正環を回転させる補正環回転手段を備えており、
該補正環回転手段は、該凹凸部に係合して該補正環を把持する少なくとも2個の係合把持部と、該係合把持部を該凹凸部と係合する作用位置と該凹凸部から離反した非作用位置とに移動させる移動部と、該係合把持部が作用位置に位置付けられた状態で該係合把持部を所定角度移動させて該補正環を所定角度回転させる回転駆動部と、被加工物の厚みに応じて適切な収差となる該補正環の回転角度情報を記憶する記憶部と、を備えており、
被加工物の厚みが変更された際には、該係合把持部は該作用位置に位置付けられ、該記憶部により記憶された該回転角度情報により被加工物の厚みに応じた適切な回転角度に該補正環が回転され、
該レーザー光線照射手段により被加工物にレーザー光線を照射する際には、該係合把持部は該非作用位置に位置付けられた状態で集光点位置を調整しながら加工を行うこと、を特徴とするレーザー加工装置。
A holding means for holding the workpiece; a laser beam irradiation means for irradiating a laser beam having a wavelength that is transparent to the workpiece held by the holding means; an oscillator for oscillating the laser beam on the workpiece; Condensing means for condensing the laser beam inside the workpiece, measuring means for measuring the surface displacement of the laser beam irradiation area of the workpiece, and supporting the condensing means and based on the measurement result of the measuring means A condensing point position adjusting means for moving the condensing means in a direction perpendicular to the workpiece, and a laser processing apparatus comprising:
The condensing means includes a correction ring having a plurality of concave and convex portions on the outer peripheral surface, and an objective lens in which the lens slides inside by rotating the correction ring and aberration correction is performed according to the thickness.
A correction ring rotating means for rotating the correction ring;
The correction ring rotating means includes at least two engagement gripping portions that engage with the concave and convex portions to grip the correction ring, an operation position that engages the engagement gripping portions with the concave and convex portions, and the concave and convex portions. A moving portion that moves to a non-operating position that is separated from the rotation position, and a rotation drive portion that rotates the correction ring by a predetermined angle by moving the engaging gripping portion by a predetermined angle while the engaging gripping portion is positioned at the operating position. And a storage unit that stores rotation angle information of the correction ring that has an appropriate aberration according to the thickness of the workpiece,
When the thickness of the workpiece is changed, the engagement gripping portion is positioned at the working position, and an appropriate rotation angle corresponding to the thickness of the workpiece is determined by the rotation angle information stored in the storage portion. The correction ring is rotated,
When the laser beam is irradiated to the workpiece by the laser beam irradiation means, the engagement gripping part is processed while adjusting the position of the condensing point while being positioned at the non-operating position. Processing equipment.
JP2013083823A 2013-04-12 2013-04-12 Laser processing equipment Active JP6037925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083823A JP6037925B2 (en) 2013-04-12 2013-04-12 Laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083823A JP6037925B2 (en) 2013-04-12 2013-04-12 Laser processing equipment

Publications (2)

Publication Number Publication Date
JP2014205168A true JP2014205168A (en) 2014-10-30
JP6037925B2 JP6037925B2 (en) 2016-12-07

Family

ID=52119192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083823A Active JP6037925B2 (en) 2013-04-12 2013-04-12 Laser processing equipment

Country Status (1)

Country Link
JP (1) JP6037925B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107334A (en) * 2014-11-27 2016-06-20 株式会社東京精密 Laser processing device and laser processing method
JP2017064747A (en) * 2015-09-29 2017-04-06 株式会社東京精密 Laser processing device and laser processing method
JP2017069340A (en) * 2015-09-29 2017-04-06 株式会社東京精密 Laser processing apparatus and laser processing method
CN107442928A (en) * 2017-09-28 2017-12-08 安徽工业大学 A kind of method and apparatus of quick measure defocusing amount
WO2020009079A1 (en) * 2018-07-05 2020-01-09 浜松ホトニクス株式会社 Laser machining device
CN112484657A (en) * 2019-08-23 2021-03-12 松下知识产权经营株式会社 Laser processing device, laser processing method, and correction data generation method
CN114096372A (en) * 2019-07-18 2022-02-25 东京毅力科创株式会社 Processing apparatus and processing method
EP4270076A1 (en) * 2022-04-25 2023-11-01 SCREEN Holdings Co., Ltd. Objective lens unit and microscope

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200383A (en) * 2008-02-25 2009-09-03 Seiko Epson Corp Method of dividing substrate, and method of manufacturing display device
JP2009202190A (en) * 2008-02-27 2009-09-10 Seiko Epson Corp Method of dividing substrate and method of manufacturing display device
JP2010052014A (en) * 2008-08-28 2010-03-11 Disco Abrasive Syst Ltd Laser beam machining apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200383A (en) * 2008-02-25 2009-09-03 Seiko Epson Corp Method of dividing substrate, and method of manufacturing display device
JP2009202190A (en) * 2008-02-27 2009-09-10 Seiko Epson Corp Method of dividing substrate and method of manufacturing display device
JP2010052014A (en) * 2008-08-28 2010-03-11 Disco Abrasive Syst Ltd Laser beam machining apparatus

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107334A (en) * 2014-11-27 2016-06-20 株式会社東京精密 Laser processing device and laser processing method
JP2017064747A (en) * 2015-09-29 2017-04-06 株式会社東京精密 Laser processing device and laser processing method
JP2017069340A (en) * 2015-09-29 2017-04-06 株式会社東京精密 Laser processing apparatus and laser processing method
CN107442928A (en) * 2017-09-28 2017-12-08 安徽工业大学 A kind of method and apparatus of quick measure defocusing amount
CN112384324A (en) * 2018-07-05 2021-02-19 浜松光子学株式会社 Laser processing apparatus
JP2020006392A (en) * 2018-07-05 2020-01-16 浜松ホトニクス株式会社 Laser processing device
WO2020009079A1 (en) * 2018-07-05 2020-01-09 浜松ホトニクス株式会社 Laser machining device
CN112384324B (en) * 2018-07-05 2022-06-03 浜松光子学株式会社 Laser processing apparatus
JP7088761B2 (en) 2018-07-05 2022-06-21 浜松ホトニクス株式会社 Laser processing equipment
TWI828719B (en) * 2018-07-05 2024-01-11 日商濱松赫德尼古斯股份有限公司 Laser processing equipment
CN114096372A (en) * 2019-07-18 2022-02-25 东京毅力科创株式会社 Processing apparatus and processing method
CN114096372B (en) * 2019-07-18 2024-03-22 东京毅力科创株式会社 Processing apparatus and processing method
CN112484657A (en) * 2019-08-23 2021-03-12 松下知识产权经营株式会社 Laser processing device, laser processing method, and correction data generation method
CN112484657B (en) * 2019-08-23 2024-04-12 松下知识产权经营株式会社 Laser processing device, laser processing method, and correction data generation method
EP4270076A1 (en) * 2022-04-25 2023-11-01 SCREEN Holdings Co., Ltd. Objective lens unit and microscope

Also Published As

Publication number Publication date
JP6037925B2 (en) 2016-12-07

Similar Documents

Publication Publication Date Title
JP6037925B2 (en) Laser processing equipment
KR102251261B1 (en) Method for manufacturing chip
KR102148915B1 (en) Machining apparatus
JP4813993B2 (en) Wafer laser processing method
JP2011025279A (en) Optical system and laser machining device
JP2009113149A (en) Grinder
JP2009140959A (en) Laser dicing device and dicing method
KR101485451B1 (en) Laser dicing apparatus and dicing method
WO2008044394A1 (en) Position adjusting method for laser beam emitting device
JP2009140958A (en) Laser dicing device and dicing method
TW201538927A (en) Unevenness detecting device
JP2010089094A (en) Laser beam machining apparatus
KR101886357B1 (en) Method for detecting laser beam spot shape and apparatus for detecting laser beam spot shape
KR102008532B1 (en) Machining apparatus
KR20180119487A (en) Jig for evaluation of height position detection unit of laser machining apparatus and evaluation method of height position detection unit of laser machining apparatus
KR20130071364A (en) Laser machining apparatus
JP2018118296A (en) Laser processing device
US10946482B2 (en) Laser processing apparatus
JP2011067840A (en) Laser beam machine
JP5331417B2 (en) Laser processing equipment
KR20170107900A (en) Workpiece internal detection apparatus and workpiece internal detection method
CN108723599B (en) Method for detecting position of focused spot
JP6643837B2 (en) Laser processing equipment
JP2013215798A (en) Laser processing apparatus
JP2022029227A (en) Laser processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161101

R150 Certificate of patent or registration of utility model

Ref document number: 6037925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250