JP2013161811A - Method and apparatus for cleaning substrate - Google Patents

Method and apparatus for cleaning substrate Download PDF

Info

Publication number
JP2013161811A
JP2013161811A JP2012019808A JP2012019808A JP2013161811A JP 2013161811 A JP2013161811 A JP 2013161811A JP 2012019808 A JP2012019808 A JP 2012019808A JP 2012019808 A JP2012019808 A JP 2012019808A JP 2013161811 A JP2013161811 A JP 2013161811A
Authority
JP
Japan
Prior art keywords
cleaning
substrate
substrates
bubble
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012019808A
Other languages
Japanese (ja)
Inventor
Hiroshi Hashigami
洋 橋上
Takenori Watabe
武紀 渡部
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012019808A priority Critical patent/JP2013161811A/en
Publication of JP2013161811A publication Critical patent/JP2013161811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for cleaning a substrate, the apparatus preventing substrates from sticking to each other without reducing productivity.SOLUTION: The apparatus for cleaning a substrate includes: a cleaning tank 105 storing a cleaning fluid 104; a carrier cassette 102 for holding and accommodating a plurality of substrates 101 being arranged so as to be spaced from each other at a predetermined interval; a carrier transfer machine 103 for taking the carrier cassette 102 in and out of the cleaning tank 105; and bubble supply means (a bubble introduction recess 106 and a bubble generating feeder 107) for mixing bubbles into the cleaning fluid between the substrates 101 in the carrier cassette 102 immersed in the cleaning tank 105. The apparatus controls to immerse the substrates 101 in the cleaning fluid 104 to clean them, mix bubbles into the cleaning fluid between the substrates 101, and raise the carrier cassette 102 from the cleaning tank 105 to take out the substrates 101 from the cleaning fluid 104 while the cleaning fluid mixed with the bubbles exists between the substrates 101.

Description

本発明は、太陽電池用のシリコン基板などの半導体基板や液晶用ガラス基板等の薄板状の基板を洗浄するための基板洗浄方法及び基板洗浄装置に関するものである。   The present invention relates to a substrate cleaning method and a substrate cleaning apparatus for cleaning a semiconductor substrate such as a silicon substrate for solar cells and a thin plate substrate such as a glass substrate for liquid crystal.

結晶シリコンを用いた太陽電池の製造工程では、基板を薬液に浸漬させて処理を行う、様々なウェット処理が行われている。例えば、まずシリコン基板に光閉じ込め効果を目的としたテクスチャを形成するために、アルカリ溶液又は酸溶液によるエッチング洗浄処理が行われる。続いて、pn接合形成のための不純物拡散後には、基板表面に不純物ガラス層が副次的に形成されるため、これを除去するためにフッ酸溶液によるエッチング洗浄処理が行われる。また、太陽電池を高性能化するために、基板最表面の欠陥であるシリコンの未結合手を低減する誘電体膜でのパッシベーションを行うが、パッシベーション効果を高めるためには酸やアルカリの複合的洗浄によってシリコン基板表面の清浄性を極力高める必要がある。   In the manufacturing process of a solar cell using crystalline silicon, various wet treatments are performed in which treatment is performed by immersing a substrate in a chemical solution. For example, first, an etching cleaning process using an alkali solution or an acid solution is performed to form a texture for the purpose of light confinement on a silicon substrate. Subsequently, after the impurity diffusion for forming the pn junction, an impurity glass layer is formed on the substrate surface as a subsidiary, and thus an etching cleaning process using a hydrofluoric acid solution is performed to remove the impurity glass layer. In order to improve the performance of solar cells, passivation is performed with a dielectric film that reduces the dangling bonds of silicon, which is a defect on the outermost surface of the substrate. To improve the passivation effect, a combination of acids and alkalis is used. It is necessary to improve the cleanliness of the silicon substrate surface as much as possible by cleaning.

これらの基板洗浄は、一般に複数の洗浄槽が連続して配列されてなるウェットベンチタイプの洗浄槽に、キャリアカセットに収納した複数枚のウエハを搬送装置によりキャリアカセット単位で順次浸漬して行う。この方式はバッチ式ウェット洗浄と呼ばれ、その装置の構成は、例えば特開平6−163506号公報(特許文献1)などに開示されている。   Such substrate cleaning is generally performed by sequentially immersing a plurality of wafers stored in a carrier cassette in units of carrier cassettes in a wet bench type cleaning tank in which a plurality of cleaning tanks are continuously arranged. This method is called batch wet cleaning, and the configuration of the apparatus is disclosed in, for example, Japanese Patent Laid-Open No. 6-163506 (Patent Document 1).

ところで、現在の太陽電池による電力は、在来の商用電力に比べて発電コストが依然高いという問題があり、そのため製造コストの大幅な低減が求められている。特に、主流である結晶シリコン太陽電池では、基板の薄型化によるコスト低減が進んでおり、現状では基板の厚さが180μm〜250μmであるが、将来的には50μm〜150μmを実現する必要があると言われている。   By the way, there is a problem that the power generated by the current solar cell is still higher in power generation cost than conventional commercial power, and therefore, a significant reduction in manufacturing cost is required. In particular, in the mainstream crystalline silicon solar cells, the cost reduction is progressing by thinning the substrate, and the thickness of the substrate is currently 180 μm to 250 μm, but it is necessary to realize 50 μm to 150 μm in the future. It is said.

しかしながら、このように基板が薄型化すると、従来のバッチ式ウェット洗浄では、洗浄液からキャリアカセットを取り上げた際、キャリアカセット内で隣り合う基板が貼り付いてしまう現象が頻発することがあった。この現象は、洗浄液の表面張力により基板間に引力が働いていることと、基板の薄型化に伴う基板の剛性低下によっておこる弾性変形とによって生じるものである。   However, when the substrate is thinned as described above, in the conventional batch-type wet cleaning, when the carrier cassette is picked up from the cleaning liquid, a phenomenon in which adjacent substrates are stuck in the carrier cassette often occurs. This phenomenon is caused by the attractive force acting between the substrates due to the surface tension of the cleaning liquid and the elastic deformation caused by the reduction in the rigidity of the substrate accompanying the thinning of the substrate.

そして、このように貼り付いた基板では、当然のことながら、洗浄や乾燥が正常に行われず、そのままでは不良になってしまうため、生産性が著しく低下してしまった。   And, as a matter of course, the substrate adhered in this way is not normally washed and dried, and becomes defective as it is, so that the productivity is remarkably lowered.

また、この問題に対する簡易的な回避策としては、基板の収納間隔を広げる方法があるが、1バッチあたりの処理枚数が減ってしまうことと、基板の厚さ変更の都度、新たな金型を用意する必要があったために、コストが高くなるという問題あった。   In addition, as a simple workaround for this problem, there is a method of widening the storage interval of the substrates, but the number of processed sheets per batch is reduced, and a new mold is added every time the thickness of the substrate is changed. Since it was necessary to prepare, there was a problem that the cost became high.

特開平6−163506号公報JP-A-6-163506

本発明は、以上の従来技術における課題に鑑みてなされたものであり、生産性を低下させることなく、洗浄後の基板同士の貼り付きを防止する基板洗浄方法及び基板洗浄装置を提供することを目的とする。   The present invention has been made in view of the above-described problems in the prior art, and provides a substrate cleaning method and a substrate cleaning apparatus that prevent sticking between substrates after cleaning without reducing productivity. Objective.

本発明は、上記課題を解決するための手段として、下記の基板洗浄方法及び基板洗浄装置を提供する。
〔請求項1〕
キャリアカセット内に互いに所定間隔で離間して配置した状態で保持収納された複数の基板を洗浄槽内の洗浄液に浸漬して上記基板を洗浄する工程と、上記基板間の洗浄液中に気泡を混入する工程と、上記基板間に気泡混入洗浄液が存在している状態で上記キャリアカセットを引き上げて上記基板を洗浄液から取り出す工程とを有することを特徴とする基板洗浄方法。
〔請求項2〕
上記基板が太陽電池製造用の厚さ50〜250μmのシリコン基板であることを特徴とする請求項1に記載の基板洗浄方法。
〔請求項3〕
上記キャリアカセット内に基板相互を1〜8mmの間隔で離間させた状態で配置させたことを特徴とする請求項1又は2に記載の基板洗浄方法。
〔請求項4〕
上記洗浄液の表面張力が20mN/m以上76mN/m以下であることを特徴とする請求項1〜3のいずれか1項に記載の基板洗浄方法。
〔請求項5〕
上記気泡混入洗浄液における気泡の密度が50個/ml以上であることを特徴とする請求項1〜4のいずれか1項に記載の基板洗浄方法。
〔請求項6〕
洗浄液を収納した洗浄槽と、複数の基板を所定間隔で離間させて配置した状態で保持収納するキャリアカセットと、このキャリアカセットを上記洗浄槽へ入出させるキャリア搬送手段と、上記キャリアカセットが洗浄槽内に搬入されることにより洗浄液に浸漬された基板間の洗浄液に気泡を混入存在させる気泡供給手段とを備え、
上記基板を洗浄液に浸漬して洗浄すると共に、上記基板間の洗浄液中に気泡を混入させ、気泡混入洗浄液が上記基板間に存在している状態において上記キャリアカセットを洗浄槽から引き上げて上記基板を洗浄液から取り出す制御を行うことを特徴とする基板洗浄装置。
The present invention provides the following substrate cleaning method and substrate cleaning apparatus as means for solving the above problems.
[Claim 1]
A step of immersing a plurality of substrates held and stored in a carrier cassette in a state spaced apart from each other by a predetermined interval in a cleaning liquid in a cleaning tank, and cleaning the substrates, and mixing bubbles in the cleaning liquid between the substrates And a step of pulling up the carrier cassette and taking out the substrate from the cleaning liquid in a state where a bubble-containing cleaning liquid exists between the substrates.
[Claim 2]
The substrate cleaning method according to claim 1, wherein the substrate is a silicon substrate having a thickness of 50 to 250 μm for manufacturing a solar cell.
[Claim 3]
3. The substrate cleaning method according to claim 1, wherein the substrates are arranged in the carrier cassette in a state of being separated from each other at an interval of 1 to 8 mm.
[Claim 4]
The substrate cleaning method according to claim 1, wherein the cleaning liquid has a surface tension of 20 mN / m or more and 76 mN / m or less.
[Claim 5]
The substrate cleaning method according to claim 1, wherein a density of bubbles in the bubble-containing cleaning liquid is 50 / ml or more.
[Claim 6]
A cleaning tank that stores cleaning liquid, a carrier cassette that holds and stores a plurality of substrates spaced apart from each other at a predetermined interval, carrier transport means that allows the carrier cassette to enter and exit the cleaning tank, and the carrier cassette that is a cleaning tank A bubble supply means for causing bubbles to be mixed in the cleaning liquid between the substrates immersed in the cleaning liquid by being carried in,
The substrate is immersed in a cleaning solution for cleaning, bubbles are mixed in the cleaning solution between the substrates, and the carrier cassette is lifted from the cleaning tank in a state where the bubble-containing cleaning solution exists between the substrates, and the substrate is removed. A substrate cleaning apparatus that performs control to remove from a cleaning liquid.

本発明の基板洗浄方法及び基板洗浄装置によれば、洗浄液に浸漬した基板間の洗浄液中に気泡を混入させ、この基板間に気泡混入洗浄液が存在している状態でキャリアカセットを引き上げて基板を洗浄液から取り出すことにより、基板間で気泡混入洗浄液が気液界面の面積を増大させて基板同士の貼り付きを抑制して洗浄不良を防止するので、従来のキャリアカセットを用いて薄型基板の洗浄を安定して行うことが可能になる。また、太陽電池用途における低コスト化と生産性向上が可能になる。   According to the substrate cleaning method and the substrate cleaning apparatus of the present invention, air bubbles are mixed in the cleaning liquid between the substrates immersed in the cleaning liquid, and the carrier cassette is pulled up in a state where the bubble-containing cleaning liquid exists between the substrates. By removing from the cleaning liquid, the bubble-containing cleaning liquid increases the area of the gas-liquid interface between the substrates and suppresses sticking between the substrates to prevent poor cleaning, so the thin substrate can be cleaned using a conventional carrier cassette. It becomes possible to carry out stably. In addition, it is possible to reduce costs and improve productivity in solar cell applications.

本発明に係る基板洗浄装置の構成例(1)を示す断面概略図である。It is a section schematic diagram showing the example of composition (1) of the substrate cleaning device concerning the present invention. キャリアカセットの構成を示す平面図である。It is a top view which shows the structure of a carrier cassette. 本発明に係る基板洗浄装置の構成例(2)を示す断面概略図である。It is a section schematic diagram showing the example of composition (2) of the substrate cleaning device concerning the present invention. 本発明に係る基板洗浄装置の構成例(3)を示す断面概略図である。It is a section schematic diagram showing the example of composition (3) of the substrate cleaning device concerning the present invention. 本発明に係る基板洗浄装置の構成例(4)を示す断面概略図である。It is a section schematic diagram showing the example of composition (4) of the substrate cleaning device concerning the present invention.

以下に、本発明に係る基板洗浄方法及び基板洗浄装置の構成について図面を参照して説明する。
図1は、本発明に係る基板洗浄装置の構成例(1)を示す断面概略図である。
本発明の構成例(1)に係る基板洗浄装置は、複数の基板101が互いに所定間隔で離間して収納されたキャリアカセット102と、洗浄液104が入った洗浄槽105と、キャリアカセット102の洗浄槽105への浸漬及び洗浄槽105からの取り出しを行うキャリア搬送手段であるキャリア搬送機103とを有する。
Hereinafter, a configuration of a substrate cleaning method and a substrate cleaning apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing a configuration example (1) of a substrate cleaning apparatus according to the present invention.
The substrate cleaning apparatus according to the configuration example (1) of the present invention includes a carrier cassette 102 in which a plurality of substrates 101 are housed at predetermined intervals, a cleaning tank 105 containing a cleaning liquid 104, and a cleaning of the carrier cassette 102. A carrier transporter 103 that is a carrier transport unit that performs immersion in the tank 105 and removal from the cleaning tank 105.

また、図中、107は気泡発生供給器であり、この気泡発生供給器107には、バルブ109を介装する気体供給管108と、ポンプ111を介装する洗浄液循環管110とが連結していると共に、上記気泡発生供給器107には更に気泡混入洗浄液供給管107aが連結している。また、この気泡混入洗浄液供給管107aの先端は、洗浄槽105内にキャリアカセット102が搬入された際に複数の基板101に対向する洗浄槽底部位置に形成された気泡導入凹部106に連通している。   In the figure, reference numeral 107 denotes a bubble generating / supplying device. The bubble generating / supplying device 107 is connected to a gas supply pipe 108 having a valve 109 and a cleaning liquid circulation pipe 110 having a pump 111 interposed therebetween. In addition, a bubble mixed cleaning liquid supply pipe 107 a is further connected to the bubble generation supply unit 107. Further, the tip of the bubble mixed cleaning liquid supply pipe 107a communicates with a bubble introduction recess 106 formed at the bottom position of the cleaning tank facing the plurality of substrates 101 when the carrier cassette 102 is carried into the cleaning tank 105. Yes.

このような構成の基板洗浄装置では、上記洗浄液循環管110から洗浄槽105内の洗浄液104が、気体供給管108から気体がそれぞれ気泡発生供給器107に導入されて、この中で気泡混入洗浄液が形成され、これが気泡混入洗浄液供給管107aより気泡導入凹部106に供給され、更に基板101間にこの気泡混入洗浄液が導入されるようになっている。   In the substrate cleaning apparatus having such a configuration, the cleaning liquid 104 in the cleaning tank 105 is introduced from the cleaning liquid circulation pipe 110 and the gas is introduced from the gas supply pipe 108 to the bubble generating / supplying unit 107, and the bubble-containing cleaning liquid is contained therein. Then, this is supplied from the bubble mixed cleaning liquid supply pipe 107 a to the bubble introduction recess 106, and this bubble mixed cleaning liquid is introduced between the substrates 101.

ここで、基板101は、本発明の基板洗浄装置により洗浄される被洗浄材であり、例えば太陽電池の製造に用いられる結晶シリコン基板などの半導体基板や液晶用のガラス基板などの薄板基板である。この場合、基板101の厚さ、特に太陽電池製造用のシリコン基板の厚さは50〜250μmであることが好ましく、また各基板101は1〜8mmの間隔で離間するように配置されることが好ましい。   Here, the substrate 101 is a material to be cleaned which is cleaned by the substrate cleaning apparatus of the present invention, and is, for example, a semiconductor substrate such as a crystalline silicon substrate used for manufacturing a solar cell or a thin substrate such as a glass substrate for liquid crystal. . In this case, the thickness of the substrate 101, in particular, the thickness of the silicon substrate for manufacturing the solar cell is preferably 50 to 250 μm, and the substrates 101 are arranged so as to be spaced apart at an interval of 1 to 8 mm. preferable.

なお、基板101は、生産性や剛性等が考慮された厚さを有しており、例えば洗浄液104の室温における表面張力が20mN/m以上76mN/m以下であり、洗浄槽105内の洗浄液104における気泡の密度が50個/ml以上である場合、50μm以上250μm以下の範囲で本発明の効果がより有利に得られる。50μm未満では基板101の剛性が低下し、キャリアカセットでの保持が困難になるため、対象基板として現実的ではない。250μm超では基板101の剛性が十分高く貼り付きがほとんど起きなくなるため、気泡を導入する必要がない。   The substrate 101 has a thickness in consideration of productivity, rigidity, and the like. For example, the surface tension of the cleaning liquid 104 at room temperature is 20 mN / m or more and 76 mN / m or less, and the cleaning liquid 104 in the cleaning tank 105 is used. In the case where the density of the bubbles is 50 / ml or more, the effect of the present invention is more advantageously obtained in the range of 50 μm or more and 250 μm or less. If the thickness is less than 50 μm, the rigidity of the substrate 101 is lowered and it is difficult to hold the substrate 101 with a carrier cassette. If it exceeds 250 μm, the rigidity of the substrate 101 is sufficiently high and sticking hardly occurs, so that it is not necessary to introduce bubbles.

また、基板101同士の間隔が1mm未満では気泡混入洗浄液の供給によっても基板101同士の貼り付きを防止することが困難な場合があり、8mm超ではキャリアカセット102に収納可能な基板101の数が少なくなり、洗浄処理の効率(生産性)が低下するおそれがある。   In addition, if the distance between the substrates 101 is less than 1 mm, it may be difficult to prevent the substrates 101 from sticking even by supplying the bubble-containing cleaning liquid. If the distance between the substrates 101 is more than 8 mm, the number of the substrates 101 that can be stored in the carrier cassette 102 is small. This may reduce the efficiency (productivity) of the cleaning process.

キャリアカセット102は、主に合成樹脂により成形され、複数の基板101を一定間隔で保持して該基板101同士を離間させた状態で洗浄可能に収納するものである。   The carrier cassette 102 is mainly formed of a synthetic resin, and holds a plurality of substrates 101 at regular intervals so that the substrates 101 can be cleaned while being separated from each other.

図2に、キャリアカセット102の具体例を示す。
キャリアカセット102は、従来より基板洗浄用に使用されているものであり、板状であって互いに対向させて配置された一対のフレーム102b,102bと、フレーム102b,102b間が所定の間隔となるように一対のフレーム102b,102bそれぞれの両端部を連結するフレーム102a,102aとを有する箱型のケース部材であり、少なくとも箱型の一方向、例えば洗浄槽105に浸漬したときの上下方向(図2において紙面垂直方向)に液体が通過可能に開口したものとなっている。また、フレーム102b,102bの内面側には、それぞれ互いに対向した状態で複数の間仕切り102cがキャリアカセット102における液体通過方向と直交する方向に等間隔で立設されている。これにより、互いに隣接する間仕切り102c間に1枚の基板101の両端部がそれぞれ挿入され、所定枚数の基板101が各基板101間で隙間が確保された状態でキャリアカセット102において保持されるようになる。
FIG. 2 shows a specific example of the carrier cassette 102.
The carrier cassette 102 is conventionally used for substrate cleaning, and has a pair of frames 102b and 102b that are plate-shaped and arranged to face each other, and a predetermined interval is provided between the frames 102b and 102b. The box-shaped case member having the frames 102a and 102a for connecting both ends of the pair of frames 102b and 102b as described above, and at least one direction of the box shape, for example, the vertical direction when immersed in the cleaning tank 105 (see FIG. In FIG. 2, the liquid is opened in a direction perpendicular to the paper surface). A plurality of partitions 102c are erected at equal intervals in the direction perpendicular to the liquid passing direction in the carrier cassette 102 in a state of being opposed to each other on the inner surfaces of the frames 102b and 102b. Thus, both end portions of one substrate 101 are inserted between the partitions 102c adjacent to each other, and a predetermined number of substrates 101 are held in the carrier cassette 102 in a state where a gap is secured between the substrates 101. Become.

なお、間仕切り102cの幅wと設置間隔pは特に限定されないが、太陽電池の生産性の観点からそれぞれw=2〜3mm及びp=4〜6mmとすることが好ましい。すなわち、w=2mm未満及びp=4mm未満では基板101同士を接触することなく保持することが困難な場合があり、w=3mm超及びp=6mm超では1つのキャリアカセット102で保持できる基板101の枚数が少なくなり生産性が悪くなるおそれがある。   In addition, although the width w and the installation space | interval p of the partition 102c are not specifically limited, From a viewpoint of the productivity of a solar cell, it is preferable to set it as w = 2-3mm and p = 4-6mm, respectively. That is, if w = 2 mm or less and p = 4 mm or less, it may be difficult to hold the substrates 101 without contacting each other, and if w = 3 mm or more and p = 6 mm or more, the substrate 101 that can be held by one carrier cassette 102. There is a risk that the number of sheets will be reduced and the productivity will deteriorate.

キャリア搬送機103は、図1に示すように、洗浄槽105上方で、キャリアカセット102の両側部を把持して吊り下げることにより該キャリアカセット102を洗浄槽105内の洗浄液104中に浸漬し、吊り上げることにより該キャリアカセット102を洗浄槽105から取り出すことを行う。キャリア搬送機103の駆動機構は、公知のものでよい。   As shown in FIG. 1, the carrier transporter 103 immerses the carrier cassette 102 in the cleaning liquid 104 in the cleaning tank 105 by gripping and suspending both sides of the carrier cassette 102 above the cleaning tank 105, The carrier cassette 102 is taken out from the cleaning tank 105 by lifting. The drive mechanism of the carrier conveyance machine 103 may be a known one.

洗浄液104は、基板101の洗浄目的に応じて選定される。例えば、太陽電池製造工程で使用される洗浄液としては、各処理工程に応じて有機溶剤や酸性及びアルカリ性溶液など様々なものが使用される。   The cleaning liquid 104 is selected according to the purpose of cleaning the substrate 101. For example, as the cleaning liquid used in the solar cell manufacturing process, various liquids such as organic solvents and acidic and alkaline solutions are used according to each processing process.

すなわち、太陽電池製造工程では、まず基板表面に光閉じ込めのためのテクスチャを形成するテクスチャ形成工程があるが、本工程では一般的に、洗浄液として、水酸化ナトリウム水溶液、水酸化カリウム水溶液又は水酸化テトラメチルアンモニウム水溶液などのアルカリ洗浄液や、フッ硝酸に酢酸や水などを混合した酸洗浄液を用いる。
また、続いてpn接合形成のための不純物拡散処理を行った後には、基板表面に不純物ガラス層が副次的に形成されるため、これを除去するためのエッチング洗浄のために洗浄液としてフッ酸を用いる。
また、太陽電池を高性能化するために、基板最表面の欠陥であるシリコンの未結合手を低減する誘電体膜でのパッシベーションを行うが、パッシベーション効果を高めるためにシリコン表面の清浄性を極力高める必要がある。この目的のために、洗浄液として、過酸化水素水、硝酸、フッ酸、硫酸、塩酸などの酸溶液や、アンモニア水やテトラメチルアンモニウム水溶液などのアルカリ溶液が複合的に用いられる。
さらに、シリコン基板に拡散層や絶縁膜、また金属膜をパターン形成する場合には、酸レジストやフォトレジストなどの有機材料によりマスキングを行う。例えば、太陽電池の電極を受光面と反対の裏面にのみ形成する裏面電極型太陽電池では、裏面側に正極と負極の両方を形成するため、両極にあたる拡散層をパターン形成する必要がある。拡散層のパターニングは酸化シリコン膜や窒化シリコン膜などの誘電体膜をマスクに用いるが、これらの膜のパターニングには例えば酸レジストを用い、所望の拡散を行う領域の酸化膜を露出させ、フッ酸で酸化膜を除去する。酸化膜のパターニング後は酸レジストを除去するが、これには通常、アセトンやメタノールなどの有機溶剤を粗洗浄剤として用いる。
That is, in the solar cell manufacturing process, there is a texture forming process in which a texture for light confinement is first formed on the substrate surface. In this process, a sodium hydroxide aqueous solution, a potassium hydroxide aqueous solution or a hydroxide is generally used as a cleaning liquid. An alkali cleaning solution such as tetramethylammonium aqueous solution or an acid cleaning solution in which acetic acid or water is mixed with hydrofluoric acid is used.
In addition, after the impurity diffusion treatment for forming the pn junction is subsequently performed, an impurity glass layer is formed on the substrate surface as a secondary, so that hydrofluoric acid is used as a cleaning liquid for etching cleaning for removing the impurity glass layer. Is used.
In addition, in order to improve the performance of solar cells, passivation is performed with a dielectric film that reduces silicon dangling bonds, which are defects on the outermost surface of the substrate. However, in order to enhance the passivation effect, the cleanliness of the silicon surface is minimized. Need to increase. For this purpose, an acid solution such as hydrogen peroxide, nitric acid, hydrofluoric acid, sulfuric acid or hydrochloric acid, or an alkaline solution such as aqueous ammonia or tetramethylammonium solution is used in combination as the cleaning liquid.
Further, when patterning a diffusion layer, an insulating film, or a metal film on a silicon substrate, masking is performed with an organic material such as an acid resist or a photoresist. For example, in a back electrode type solar cell in which the electrodes of the solar cell are formed only on the back surface opposite to the light receiving surface, since both the positive electrode and the negative electrode are formed on the back surface side, it is necessary to pattern the diffusion layers corresponding to both electrodes. For patterning the diffusion layer, a dielectric film such as a silicon oxide film or a silicon nitride film is used as a mask. For patterning these films, for example, an acid resist is used to expose the oxide film in a desired diffusion region, and then the mask is formed. The oxide film is removed with acid. After patterning of the oxide film, the acid resist is removed. Usually, an organic solvent such as acetone or methanol is used as a rough cleaning agent.

なお、洗浄槽105、気泡導入凹部106、気泡発生供給器107、洗浄液循環管110及びポンプ111の洗浄液104と接触する部位には、前述したような薬剤の洗浄液104に適した材料を用いる必要がある。ほとんどの場合、塩化ビニル樹脂やフッ素樹脂をはじめとした各種合成樹脂を利用することが可能である。   It should be noted that a material suitable for the chemical cleaning liquid 104 as described above must be used for the cleaning tank 105, the bubble introduction recess 106, the bubble generation supply device 107, the cleaning liquid circulation pipe 110, and the portion of the pump 111 that contacts the cleaning liquid 104. is there. In most cases, various synthetic resins including vinyl chloride resin and fluororesin can be used.

ここで、洗浄槽105は、キャリアカセット102を浸漬可能なように洗浄液104を貯留するものである。   Here, the cleaning tank 105 stores the cleaning liquid 104 so that the carrier cassette 102 can be immersed therein.

気泡導入凹部106は、洗浄槽105の底部のキャリアカセット102の浸漬位置に設けられた凹部であって、気泡発生供給器107から気泡混入洗浄液供給管107aを経由して気泡混入洗浄液が供給され、該気泡混入洗浄液を洗浄槽105に浸漬したキャリアカセット102内の基板101間に導入するためのものである。また、気泡導入凹部106の洗浄槽105の底部における開口部の大きさは、キャリアカセット102を洗浄槽105内に配置したときに、キャリアカセット102の底部が気泡導入凹部106の開口部を跨り該底部の両端部が洗浄槽105の底部で支持されるようになると共に、該キャリアカセット102の底部が気泡導入凹部106の開口部をできるだけふさぐようになる程度が好ましい。これにより、気泡導入凹部106内の気泡混入洗浄液がキャリアカセット102内の基板101間に効率的に供給されるようになる。   The bubble introduction recess 106 is a recess provided at the dipping position of the carrier cassette 102 at the bottom of the cleaning tank 105, and the bubble mixed cleaning liquid is supplied from the bubble generation supply unit 107 via the bubble mixed cleaning liquid supply pipe 107a. The bubble-containing cleaning solution is introduced between the substrates 101 in the carrier cassette 102 immersed in the cleaning tank 105. The size of the opening of the bubble introduction recess 106 at the bottom of the cleaning tank 105 is such that when the carrier cassette 102 is placed in the cleaning tank 105, the bottom of the carrier cassette 102 straddles the opening of the bubble introduction recess 106. It is preferable that both end portions of the bottom portion are supported by the bottom portion of the cleaning tank 105 and that the bottom portion of the carrier cassette 102 closes the opening of the bubble introduction recess 106 as much as possible. Thereby, the bubble mixed cleaning liquid in the bubble introduction recess 106 is efficiently supplied between the substrates 101 in the carrier cassette 102.

気泡発生供給器107には、気体供給管108からバルブ109によって流量調節された気体が供給され、洗浄液循環管110からポンプ111を介して洗浄液104が供給されるようになっており、気泡発生供給器107において供給された気体と洗浄液104を混合して、所定サイズ及び密度の気泡を含んだ洗浄液104を生成して気泡導入凹部106へ供給する。   A gas whose flow rate is adjusted by a valve 109 is supplied from a gas supply pipe 108 to a bubble generation supply unit 107, and a cleaning liquid 104 is supplied from a cleaning liquid circulation pipe 110 via a pump 111. The gas supplied in the vessel 107 and the cleaning liquid 104 are mixed to generate a cleaning liquid 104 containing bubbles of a predetermined size and density, and supplied to the bubble introduction recess 106.

気泡発生供給器107は、高密度かつ微細な気泡混入洗浄液を生成し、洗浄槽105側(本実施形態では気泡導入凹部106)に供給する手段である。このような気泡混入洗浄液を生成する方式としては、所望の気泡密度が得られれば、いかなる気泡発生方式であってもよいが、例えば加圧溶解法や気液2相流旋回法が挙げられ、本発明ではこれらの方式の市販されている気泡発生装置を用いることができる。   The bubble generation and supply device 107 is a means for generating a high-density and fine bubble-containing cleaning solution and supplying it to the cleaning tank 105 side (the bubble introduction recess 106 in this embodiment). As a method for generating such a bubble-containing cleaning liquid, any bubble generation method may be used as long as a desired bubble density is obtained. Examples thereof include a pressure dissolution method and a gas-liquid two-phase flow swirl method. In the present invention, commercially available bubble generators of these systems can be used.

なお、気泡供給時に強い水流を伴う気泡供給器は、基板洗浄装置における気泡発生供給器107とキャリアカセット102の位置関係や基板101の厚さによっては、基板101が振動し、損傷するおそれがあるので、気泡発生供給器107とキャリアカセット102の距離を離すなどの注意が必要である。   It should be noted that the bubble feeder with a strong water flow at the time of bubble supply may be damaged due to the vibration of the substrate 101 depending on the positional relationship between the bubble generation and supply device 107 and the carrier cassette 102 and the thickness of the substrate 101 in the substrate cleaning apparatus. Therefore, care must be taken such as increasing the distance between the bubble generating / supplying device 107 and the carrier cassette 102.

キャリアカセット102内の基板101間に導入する気泡混入洗浄液における気泡のサイズや密度は、基板101の厚さ、使用するキャリアカセット102の間仕切り幅w、間仕切り設置間隔p、洗浄液104の種類(表面張力)等により最適条件は大きく変化する。   The size and density of bubbles in the bubble mixed cleaning liquid introduced between the substrates 101 in the carrier cassette 102 are the thickness of the substrate 101, the partition width w of the carrier cassette 102 to be used, the partition installation interval p, the type of the cleaning liquid 104 (surface tension). ) Etc., the optimum conditions change greatly.

また、洗浄液104により基板101間に発生する引力は、基板101間に供給される気泡と洗浄液104との界面面積に反比例する。したがって、キャリアカセット102の寸法及び洗浄液104の表面張力が一定として、基板101を薄くした場合には、基板101はより弾性変形し易くなるため、供給する気泡混入洗浄液における気泡の密度(供給気泡密度と称する。)を高める必要がある。   Further, the attractive force generated between the substrates 101 by the cleaning liquid 104 is inversely proportional to the interface area between the bubbles supplied between the substrates 101 and the cleaning liquid 104. Accordingly, when the dimensions of the carrier cassette 102 and the surface tension of the cleaning liquid 104 are constant, and the substrate 101 is thinned, the substrate 101 is more easily elastically deformed. Therefore, the density of bubbles in the supplied bubble-containing cleaning liquid (supply bubble density) Need to be improved.

例えば、太陽電池用シリコン基板の洗浄で主に使われる洗浄液の中では、有機溶剤が最も低い表面張力を示し、通常用いられる室温(20℃)付近での使用温度帯(15〜25℃)で概ね20〜40mN/m(ミリニュートン/メートル)である。洗浄液104がこのような有機溶剤の場合、厚さ150μmより厚く、250μm以下の基板101に対する供給気泡密度は、少なくとも50個/ml以上150個/ml以下が好ましく、80個/ml以上120個/ml以下がより好ましい。また、同じ条件で厚さ50μm以上150μm以下の基板101に対する供給気泡密度は、100個/ml以上350個/ml以下が好ましい。このときの供給気泡密度が50個/ml未満(厚さ150μmより厚く、250μm以下の基板101のとき)、100個/ml未満(厚さ50μm以上150μm以下の基板101のとき)では、洗浄液104の表面張力により発生する基板101の間の引力を低減させる効果が少ない場合がある。また、供給気泡密度が150個/ml超(厚さ150μmより厚く、250μm以下の基板101のとき)、350個/ml超(厚さ50μm以上150μm以下の基板101のとき)では、供給気泡密度をそれ以上大きくしても洗浄液104の表面張力により発生する基板101の間の引力を低減させる効果があまり変わらない場合がある。   For example, among cleaning liquids mainly used for cleaning silicon substrates for solar cells, organic solvents exhibit the lowest surface tension, and are usually used in a temperature range (15 to 25 ° C.) around room temperature (20 ° C.). It is approximately 20 to 40 mN / m (millinewton / meter). When the cleaning liquid 104 is such an organic solvent, the supply bubble density with respect to the substrate 101 having a thickness of more than 150 μm and not more than 250 μm is preferably at least 50 / ml to 150 / ml, more preferably 80 / ml to 120 / More preferred is ml or less. Further, the supply bubble density for the substrate 101 having a thickness of 50 μm or more and 150 μm or less under the same conditions is preferably 100 / ml or more and 350 / ml or less. At this time, when the supply bubble density is less than 50 / ml (when the substrate 101 is thicker than 150 μm and 250 μm or less) or less than 100 / ml (when the substrate 101 is 50 μm or more and 150 μm or less in thickness), the cleaning liquid 104 is used. In some cases, the effect of reducing the attractive force between the substrates 101 generated by the surface tension is small. When the supply bubble density exceeds 150 / ml (when the substrate 101 is thicker than 150 μm and 250 μm or less) or more than 350 / ml (when the substrate 101 has a thickness of 50 μm to 150 μm), the supply bubble density Even if it is further increased, the effect of reducing the attractive force between the substrates 101 generated by the surface tension of the cleaning liquid 104 may not change much.

一方、太陽電池用シリコン基板の洗浄で主に使われる洗浄液の中では、水が最も高い表面張力を示し、通常用いられる使用温度帯(15〜100℃)で58〜76mN/mである。洗浄液104がこのような水の場合、厚さ150μmより厚く、250μm以下の基板101に対する供給気泡密度は、1000個/ml以上4000個/ml以下が好ましく、2000個/ml以上3000個/ml以下がより好ましい。また、同じ条件で厚さ50μm以上150μm以下の基板101に対する供給気泡密度は、4000個/ml以上30000個/ml以下が好ましい。このときの供給気泡密度が1000個/ml未満(厚さ150μmより厚く、250μm以下の基板101のとき)、4000個/ml未満(厚さ50μm以上150μm以下の基板101のとき)では、洗浄液104の表面張力により発生する基板101の間の引力を低減させる効果が少ない場合がある。また、供給気泡密度が4000個/ml超(厚さ150μmより厚く、250μm以下の基板101のとき)、30000個/ml超(厚さ50μm以上150μm以下の基板101のとき)では、供給気泡密度をそれ以上大きくしても洗浄液104の表面張力により発生する基板101の間の引力を低減させる効果があまり変わらない場合がある。   On the other hand, among cleaning liquids mainly used for cleaning silicon substrates for solar cells, water exhibits the highest surface tension, and is 58 to 76 mN / m in a normal use temperature range (15 to 100 ° C.). When the cleaning liquid 104 is such water, the supply bubble density with respect to the substrate 101 having a thickness of more than 150 μm and not more than 250 μm is preferably 1000 / ml to 4000 / ml, more preferably 2000 / ml to 3000 / ml. Is more preferable. In addition, the supply bubble density for the substrate 101 having a thickness of 50 μm or more and 150 μm or less under the same conditions is preferably 4000 / ml or more and 30000 / ml or less. At this time, when the supply bubble density is less than 1000 / ml (when the substrate 101 is thicker than 150 μm and 250 μm or less) and less than 4000 / ml (when the substrate 101 is 50 μm or more and 150 μm or less in thickness), the cleaning liquid 104 is used. In some cases, the effect of reducing the attractive force between the substrates 101 generated by the surface tension is small. When the supply bubble density exceeds 4000 / ml (when the substrate 101 is thicker than 150 μm and 250 μm or less) or more than 30000 / ml (when the substrate 101 has a thickness of 50 μm or more and 150 μm or less), the supply bubble density Even if it is further increased, the effect of reducing the attractive force between the substrates 101 generated by the surface tension of the cleaning liquid 104 may not change much.

また、洗浄液104中に気泡を形成するために使用する気体の種類には制限は無く、大気(空気)を用いてもよい。また、高い清浄性を要求する場合や基板101表面との化学反応を嫌う場合には、純粋なアルゴンや窒素といった不活性ガスを用いることが好ましい。   Moreover, there is no restriction | limiting in the kind of gas used in order to form a bubble in the washing | cleaning liquid 104, You may use air | atmosphere (air). In addition, when high cleanliness is required or when chemical reactions with the surface of the substrate 101 are disliked, it is preferable to use an inert gas such as pure argon or nitrogen.

本発明の基板洗浄装置を用いた基板洗浄は、次の手順で行われる(図1参照。)。
(手順1) 基板101が収納されたキャリアカセット102をキャリア搬送機103によって洗浄槽105内の洗浄液104に浸漬する。このとき、キャリアカセット102に収納された基板101は、洗浄槽105の底部の気泡導入凹部106を跨ぐように配置されている。
(手順2) 基板101の洗浄処理を行う。基板101の洗浄処理は公知の処理でよい。
(手順3) 基板101の洗浄処理が終了すると、気泡発生供給器107への気体及び洗浄液104の供給を開始する。これにより、気泡発生供給器107が気泡混入洗浄液を生成し、気泡導入凹部106へ供給する。
(手順4) 気泡発生供給器107への気体及び洗浄液104の供給をキャリアカセット102の取り出しが完了するまで継続して行う。これにより、気泡発生供給器107から気泡混入洗浄液が一定の圧力で気泡導入凹部106へ継続して供給され、気泡導入凹部106から気泡混入洗浄液がキャリアカセット102内の基板101間に供給される。
(手順5) キャリアカセット102内に入った気泡混入洗浄液は、キャリアカセット102内の基板101間を通って上方に流れる。このとき、基板101間の洗浄液中では気泡が存在することにより、気液界面の面積が増大し、基板101にかかる洗浄液104の表面張力に起因した引力は大幅に低減される。その結果、隣り合う基板101同士は貼り付かずに両者の間隔が維持された状態となる。
(手順6) ついで、キャリアカセット102をキャリア搬送機103によって洗浄槽105から取り出す。このとき、キャリアカセット102内の隣り合う基板101同士は貼り付かずに両者の間隔が維持された状態で洗浄液面から外部に取り出されるため、基板101同士の貼り付きに起因する洗浄不良を防止することができる。
Substrate cleaning using the substrate cleaning apparatus of the present invention is performed in the following procedure (see FIG. 1).
(Procedure 1) The carrier cassette 102 in which the substrate 101 is stored is immersed in the cleaning liquid 104 in the cleaning tank 105 by the carrier transporter 103. At this time, the substrate 101 accommodated in the carrier cassette 102 is disposed so as to straddle the bubble introduction recess 106 at the bottom of the cleaning tank 105.
(Procedure 2) The substrate 101 is cleaned. The substrate 101 may be cleaned by a known process.
(Procedure 3) When the cleaning process of the substrate 101 is completed, supply of the gas and the cleaning liquid 104 to the bubble generation supply unit 107 is started. Thereby, the bubble generation supply unit 107 generates a bubble mixed cleaning liquid and supplies it to the bubble introduction recess 106.
(Procedure 4) The supply of the gas and the cleaning liquid 104 to the bubble generation supply device 107 is continued until the carrier cassette 102 is completely taken out. As a result, the bubble mixed cleaning liquid is continuously supplied from the bubble generation supply unit 107 to the bubble introducing recess 106 at a constant pressure, and the bubble mixed cleaning liquid is supplied between the substrates 101 in the carrier cassette 102 from the bubble introducing recess 106.
(Procedure 5) The bubble-containing cleaning liquid that has entered the carrier cassette 102 flows upward between the substrates 101 in the carrier cassette 102. At this time, the presence of bubbles in the cleaning liquid between the substrates 101 increases the area of the gas-liquid interface, and the attractive force due to the surface tension of the cleaning liquid 104 applied to the substrate 101 is greatly reduced. As a result, the adjacent substrates 101 are not attached to each other and the distance between them is maintained.
(Procedure 6) Next, the carrier cassette 102 is taken out from the washing tank 105 by the carrier transporter 103. At this time, the adjacent substrates 101 in the carrier cassette 102 are not attached to each other and are taken out from the cleaning liquid surface in a state in which the distance between the two is maintained, so that a cleaning failure caused by the attachment of the substrates 101 is prevented. be able to.

なお、本発明の基板洗浄装置を用いた基板洗浄における気泡供給のタイミングは特に限定されるものではないが、基板101が洗浄液面を通過する前に基板101間に気泡が十分供給されている必要があるため、少なくとも洗浄槽105からの取り出しのためにキャリアカセット102が上昇し始める前(上記手順6の前)にキャリアカセット102内に気泡混入洗浄液を導入する。あるいは、キャリアカセット102の搬送タイミングに拘らず、気泡供給を終始連続的に行い、洗浄処理を行うようにしてもよい。   Note that the timing of supplying bubbles in the substrate cleaning using the substrate cleaning apparatus of the present invention is not particularly limited, but it is necessary that the bubbles are sufficiently supplied between the substrates 101 before the substrate 101 passes through the cleaning liquid surface. Therefore, the bubble-containing cleaning liquid is introduced into the carrier cassette 102 at least before the carrier cassette 102 starts to rise for removal from the cleaning tank 105 (before the procedure 6). Alternatively, regardless of the conveyance timing of the carrier cassette 102, the bubble supply may be performed continuously throughout the cleaning process.

また、気泡供給手段の構成は、キャリアカセット102内に気泡混入洗浄液を導入するものであれば、図1の構成に限られるものではない。例えば、図3に示すように、洗浄槽105’の底部に気泡導入凹部106を設けずに、気泡発生供給器107から気泡混入洗浄液供給管107aを経由して気泡混入洗浄液を洗浄槽105’の底部付近に直接供給して、該気泡混入洗浄液をキャリアカセット102内に導入するようにしてもよい。この場合、気泡発生供給器107(気泡混入洗浄液供給管107a、気体供給管108、バルブ109、洗浄液循環管110及びポンプ111を含む。)が気泡供給手段となる。なお、図3において、図1の構成と変わらないものは、図1と同じ参照符号を付し、その説明を省略する(図4,図5においても同じ。)。   Further, the configuration of the bubble supply means is not limited to the configuration shown in FIG. 1 as long as the bubble mixed cleaning liquid is introduced into the carrier cassette 102. For example, as shown in FIG. 3, without providing the bubble introduction recess 106 at the bottom of the cleaning tank 105 ′, the bubble-containing cleaning liquid is supplied from the bubble generation supply unit 107 via the bubble-containing cleaning liquid supply pipe 107a to the cleaning tank 105 ′. The bubble-containing cleaning liquid may be introduced into the carrier cassette 102 by being supplied directly to the vicinity of the bottom. In this case, the bubble generation supply unit 107 (including the bubble mixed cleaning liquid supply pipe 107a, the gas supply pipe 108, the valve 109, the cleaning liquid circulation pipe 110, and the pump 111) serves as the bubble supply means. 3 that are the same as those in FIG. 1 are denoted by the same reference numerals as those in FIG. 1 and description thereof is omitted (the same applies to FIGS. 4 and 5).

また、洗浄液104を必ずしも循環させる必要はなく、例えば、図4に示すように、洗浄液104を貯留する洗浄液供給器112を設けて該洗浄液供給器112から気泡発生供給器107に気泡混入洗浄液を生成するための洗浄液104を供給し、洗浄槽105''から洗浄液104をオーバーフローさせてそのまま排液する構成としてもよい。   Further, it is not always necessary to circulate the cleaning liquid 104. For example, as shown in FIG. 4, a cleaning liquid supplier 112 for storing the cleaning liquid 104 is provided, and a bubble mixed cleaning liquid is generated from the cleaning liquid supplier 112 to the bubble generation supply 107. Alternatively, the cleaning liquid 104 may be supplied, and the cleaning liquid 104 may be overflowed from the cleaning tank 105 ″ and discharged as it is.

また、図5に示すように、気泡発生供給器107’を洗浄槽105下部の気泡導入凹部106’内に配置し、気泡導入凹部106’内で洗浄液と気体の混合を行い、気泡混入洗浄液の生成を行う構成でもよい。あるいは、気体発生供給器107’が微細孔を多数形成した多孔質材からなるものとして、該気泡発生供給器107’に洗浄液を供給せず、気体のみを供給して気泡発生供給器107’の微細孔から気体を放出して気泡導入凹部106’内で微細な気泡を発生する構成としてもよい。   Further, as shown in FIG. 5, the bubble generating / supplying device 107 ′ is disposed in the bubble introduction recess 106 ′ below the cleaning tank 105, and the cleaning liquid and the gas are mixed in the bubble introduction recess 106 ′. It may be configured to generate. Alternatively, it is assumed that the gas generating / supplying device 107 ′ is made of a porous material in which a large number of micropores are formed, and the cleaning liquid is not supplied to the bubble generating / supplying device 107 ′, but only the gas is supplied and the bubble generating / supplying device 107 ′ A configuration may be adopted in which gas is discharged from the fine holes to generate fine bubbles in the bubble introduction recess 106 '.

以下、本発明の実施例を説明する。
〔実施例1〕
以下の条件で、基板の洗浄を行った。
(基板洗浄処理)
(1)使用基板
・基板101;太陽電池用シリコン基板(15cm角、厚さ150μm)
(2)基板洗浄装置(図1に示すもの)
・キャリアカセット102;間仕切り幅w=2mm、間仕切り設置間隔p=4mm
・洗浄液104;工業用メタノール(表面張力(20℃):22.11mN/m)
・洗浄槽105;石英製洗浄槽(容積80L)
・気泡発生供給器107;加圧溶解方式、使用気体:Ar)
(3)基板洗浄手順
(i) キャリアカセット102に厚さ90μmの基板101を50枚収納し、キャリア搬送機103により該キャリアカセット102を洗浄槽105内の洗浄液104として工業用メタノールに浸漬し、基板101が十分洗浄される時間だけ保持した。
(ii) つぎに、気泡発生供給器107に対して、ポンプ111を起動させて洗浄液104を供給すると共に、バルブ109を調整して所定流量のArガスを供給し、気泡混入洗浄液を生成させ、気泡導入凹部106を経由してキャリアカセット102内に該気泡混入洗浄液を供給した。このときの気泡導入凹部106における気泡混入洗浄液の気泡密度をレーザー光遮断方式のパーティクルカウンターで測定した。
(iii) 基板101間に気泡が十分供給されたところで、気泡混入洗浄液の供給を継続しながら、キャリア搬送機103によりキャリアカセット102を洗浄槽105から取り出した。
Examples of the present invention will be described below.
[Example 1]
The substrate was cleaned under the following conditions.
(Substrate cleaning process)
(1) Substrate used / substrate 101; silicon substrate for solar cell (15 cm square, 150 μm thick)
(2) Substrate cleaning device (shown in FIG. 1)
Carrier cassette 102; partition width w = 2 mm, partition installation interval p = 4 mm
Washing liquid 104: industrial methanol (surface tension (20 ° C.): 22.11 mN / m)
・ Cleaning tank 105: Quartz cleaning tank (volume: 80L)
・ Bubble generation and supply device 107; pressure dissolution method, gas used: Ar)
(3) Substrate cleaning procedure (i) 50 substrates of 90 μm thickness are stored in the carrier cassette 102, and the carrier cassette 102 is immersed in industrial methanol as the cleaning liquid 104 in the cleaning tank 105 by the carrier transporter 103, The substrate 101 was held for a sufficient cleaning time.
(Ii) Next, the pump 111 is activated to supply the cleaning liquid 104 to the bubble generation supply unit 107, and the valve 109 is adjusted to supply a predetermined flow rate of Ar gas to generate a bubble-containing cleaning liquid. The bubble mixed cleaning liquid was supplied into the carrier cassette 102 via the bubble introduction recess 106. The bubble density of the bubble-containing cleaning liquid in the bubble introduction recess 106 at this time was measured with a laser light blocking type particle counter.
(Iii) When the bubbles were sufficiently supplied between the substrates 101, the carrier cassette 102 was taken out of the cleaning tank 105 by the carrier transfer device 103 while continuing to supply the bubble-containing cleaning liquid.

(評価)
気泡発生供給器107の条件を変更することにより、ステップS22における気泡混入洗浄液の気泡密度を0個/ml(気泡なし)と80個/mlに変化させ、それぞれの気泡密度ごとで基板洗浄処理を行った後、キャリアカセット102から基板101を取り出し、目視により基板101の表面に汚れが認められるものを不良、汚れが認められないものを良と判定して、基板101同士の貼り付きに起因する不良率(不良の試料数/50)を調べた。
なお、気泡混入洗浄液の各気泡密度において同じ実験を3回行い、不良率の平均値を求めた。
その結果を表1に示す。

Figure 2013161811
(Evaluation)
By changing the conditions of the bubble generation and supply device 107, the bubble density of the bubble mixed cleaning liquid in step S22 is changed to 0 / ml (no bubbles) and 80 / ml, and the substrate cleaning process is performed for each bubble density. After the removal, the substrate 101 is taken out from the carrier cassette 102. If the surface of the substrate 101 is visually recognized as dirty, the substrate 101 is determined to be defective, and the substrate 101 is not defective. The defective rate (number of defective samples / 50) was examined.
In addition, the same experiment was performed 3 times for each bubble density of the bubble-containing cleaning solution, and the average value of the defective rate was obtained.
The results are shown in Table 1.
Figure 2013161811

〔実施例2〕
実施例1において、基板101(太陽電池用シリコン基板)の厚さを90μmとし、気泡発生供給器107の条件を変更することにより、ステップS22における気泡混入洗浄液の気泡密度を0個/ml(気泡なし)と120個/mlに変化させ、それ以外は実施例1と同じ条件で基板洗浄処理を行い、同様にして基板101同士の貼り付きに起因する不良率を調べた。
その結果を表2に示す。

Figure 2013161811
[Example 2]
In Example 1, the thickness of the substrate 101 (solar cell silicon substrate) is set to 90 μm, and the conditions of the bubble generation and supply device 107 are changed, whereby the bubble density of the bubble-containing cleaning liquid in step S22 is 0 / ml (bubbles). The substrate cleaning process was performed under the same conditions as in Example 1 except that, and the defect rate due to the sticking between the substrates 101 was examined in the same manner.
The results are shown in Table 2.
Figure 2013161811

なお、これまで本発明を図面に示した実施形態をもって説明してきたが、本発明は図面に示した実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用・効果を奏する限り、本発明の範囲に含まれるものである。   Although the present invention has been described with the embodiments shown in the drawings, the present invention is not limited to the embodiments shown in the drawings, and other embodiments, additions, modifications, deletions, etc. Can be changed within the range that can be conceived, and any embodiment is included in the scope of the present invention as long as the effects and advantages of the present invention are exhibited.

101 基板
102 キャリアカセット
102a,102b フレーム
102c 間仕切り
103 キャリア搬送機
104 洗浄液
105,105’,105'' 洗浄槽
106,106’ 気泡導入凹部
107,107’ 気泡発生供給器
107a 気泡混入洗浄液供給管
108 気体供給管
109 バルブ
110 洗浄液循環管
111 ポンプ
112 洗浄液供給器
w 間仕切り幅
p 間仕切り設置間隔
101 Substrate 102 Carrier cassette 102a, 102b Frame 102c Partition 103 Carrier transporter 104 Cleaning liquid 105, 105 ′, 105 ″ Cleaning tank 106, 106 ′ Bubble introducing recess 107, 107 ′ Bubble generation supply 107a Bubble mixed cleaning liquid supply pipe 108 Gas Supply pipe 109 Valve 110 Cleaning liquid circulation pipe 111 Pump 112 Cleaning liquid supplier w Partition width p Partition setting interval

Claims (6)

キャリアカセット内に互いに所定間隔で離間して配置した状態で保持収納された複数の基板を洗浄槽内の洗浄液に浸漬して上記基板を洗浄する工程と、上記基板間の洗浄液中に気泡を混入する工程と、上記基板間に気泡混入洗浄液が存在している状態で上記キャリアカセットを引き上げて上記基板を洗浄液から取り出す工程とを有することを特徴とする基板洗浄方法。   A step of immersing a plurality of substrates held and stored in a carrier cassette in a state spaced apart from each other by a predetermined interval in a cleaning liquid in a cleaning tank, and cleaning the substrates, and mixing bubbles in the cleaning liquid between the substrates And a step of pulling up the carrier cassette and taking out the substrate from the cleaning liquid in a state where a bubble-containing cleaning liquid exists between the substrates. 上記基板が太陽電池製造用の厚さ50〜250μmのシリコン基板であることを特徴とする請求項1に記載の基板洗浄方法。   The substrate cleaning method according to claim 1, wherein the substrate is a silicon substrate having a thickness of 50 to 250 μm for manufacturing a solar cell. 上記キャリアカセット内に基板相互を1〜8mmの間隔で離間させた状態で配置させたことを特徴とする請求項1又は2に記載の基板洗浄方法。   3. The substrate cleaning method according to claim 1, wherein the substrates are arranged in the carrier cassette in a state of being separated from each other at an interval of 1 to 8 mm. 上記洗浄液の表面張力が20mN/m以上76mN/m以下であることを特徴とする請求項1〜3のいずれか1項に記載の基板洗浄方法。   The substrate cleaning method according to claim 1, wherein the cleaning liquid has a surface tension of 20 mN / m or more and 76 mN / m or less. 上記気泡混入洗浄液における気泡の密度が50個/ml以上であることを特徴とする請求項1〜4のいずれか1項に記載の基板洗浄方法。   The substrate cleaning method according to claim 1, wherein a density of bubbles in the bubble-containing cleaning liquid is 50 / ml or more. 洗浄液を収納した洗浄槽と、複数の基板を所定間隔で離間させて配置した状態で保持収納するキャリアカセットと、このキャリアカセットを上記洗浄槽へ入出させるキャリア搬送手段と、上記キャリアカセットが洗浄槽内に搬入されることにより洗浄液に浸漬された基板間の洗浄液に気泡を混入存在させる気泡供給手段とを備え、
上記基板を洗浄液に浸漬して洗浄すると共に、上記基板間の洗浄液中に気泡を混入させ、気泡混入洗浄液が上記基板間に存在している状態において上記キャリアカセットを洗浄槽から引き上げて上記基板を洗浄液から取り出す制御を行うことを特徴とする基板洗浄装置。
A cleaning tank that stores cleaning liquid, a carrier cassette that holds and stores a plurality of substrates spaced apart from each other at a predetermined interval, carrier transport means that allows the carrier cassette to enter and exit the cleaning tank, and the carrier cassette that is a cleaning tank A bubble supply means for causing bubbles to be mixed in the cleaning liquid between the substrates immersed in the cleaning liquid by being carried in,
The substrate is immersed in a cleaning solution for cleaning, bubbles are mixed in the cleaning solution between the substrates, and the carrier cassette is lifted from the cleaning tank in a state where the bubble-containing cleaning solution exists between the substrates, and the substrate is removed. A substrate cleaning apparatus that performs control to remove from a cleaning liquid.
JP2012019808A 2012-02-01 2012-02-01 Method and apparatus for cleaning substrate Pending JP2013161811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019808A JP2013161811A (en) 2012-02-01 2012-02-01 Method and apparatus for cleaning substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019808A JP2013161811A (en) 2012-02-01 2012-02-01 Method and apparatus for cleaning substrate

Publications (1)

Publication Number Publication Date
JP2013161811A true JP2013161811A (en) 2013-08-19

Family

ID=49173854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019808A Pending JP2013161811A (en) 2012-02-01 2012-02-01 Method and apparatus for cleaning substrate

Country Status (1)

Country Link
JP (1) JP2013161811A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221417A (en) * 2014-05-23 2015-12-10 シャープ株式会社 Washing apparatus and washing method for electrically conductive substrate
JP2016181629A (en) * 2015-03-24 2016-10-13 株式会社カネカ Device for manufacturing silicon substrate for solar battery and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256219A (en) * 1997-03-10 1998-09-25 Matsushita Electric Ind Co Ltd Method for drying substrate
JP2008177460A (en) * 2007-01-22 2008-07-31 Takatori Corp Drying method and drying apparatus for substrate
WO2010082567A1 (en) * 2009-01-13 2010-07-22 株式会社エクサ Wafer separating apparatus, wafer separating/transferring apparatus, wafer separating method, wafer separating/transferring method and solar cell wafer separating/transferring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10256219A (en) * 1997-03-10 1998-09-25 Matsushita Electric Ind Co Ltd Method for drying substrate
JP2008177460A (en) * 2007-01-22 2008-07-31 Takatori Corp Drying method and drying apparatus for substrate
WO2010082567A1 (en) * 2009-01-13 2010-07-22 株式会社エクサ Wafer separating apparatus, wafer separating/transferring apparatus, wafer separating method, wafer separating/transferring method and solar cell wafer separating/transferring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015221417A (en) * 2014-05-23 2015-12-10 シャープ株式会社 Washing apparatus and washing method for electrically conductive substrate
JP2016181629A (en) * 2015-03-24 2016-10-13 株式会社カネカ Device for manufacturing silicon substrate for solar battery and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5872456B2 (en) High productivity porous semiconductor layer forming equipment
JP6300139B2 (en) Substrate processing method and substrate processing system
US7682457B2 (en) Frontside structure damage protected megasonics clean
JP2012074601A (en) Substrate processing apparatus and substrate processing method
US7648580B2 (en) Substrate processing method and substrate processing device
US20200273727A1 (en) Substrate treatment apparatus
JP2013161811A (en) Method and apparatus for cleaning substrate
JP2011124498A (en) Cleaning method
US7410814B1 (en) Process and apparatus for cleaning silicon wafers
TW434730B (en) Wafer cleaning device and tray used for the device
JPH08195372A (en) Cleaning device and its method
JP3253219B2 (en) Cleaning equipment in semiconductor processing system
JP5036795B2 (en) Method for processing a semiconductor wafer
JP2006303042A (en) Substrate surface processing apparatus
US11854841B2 (en) Space filling device for wet bench
JP2840799B2 (en) Single wafer cleaning method and apparatus
JP2020088085A (en) Substrate processing method and substrate processing apparatus
WO2023120229A1 (en) Substrate processing device and substrate processing method
JP7203579B2 (en) Substrate processing equipment
JP5818751B2 (en) Solar cell manufacturing apparatus and solar cell manufacturing method using the same
KR20080010790A (en) Method and apparatus for wafer cleaning
JP5871478B2 (en) Substrate holder and substrate processing apparatus
KR20150078602A (en) Method for treating substrate
JP4487626B2 (en) Substrate processing apparatus and substrate processing method using the same
TW202147432A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150519