JP2013160613A - Storage battery characteristics derivation device - Google Patents

Storage battery characteristics derivation device Download PDF

Info

Publication number
JP2013160613A
JP2013160613A JP2012022218A JP2012022218A JP2013160613A JP 2013160613 A JP2013160613 A JP 2013160613A JP 2012022218 A JP2012022218 A JP 2012022218A JP 2012022218 A JP2012022218 A JP 2012022218A JP 2013160613 A JP2013160613 A JP 2013160613A
Authority
JP
Japan
Prior art keywords
storage battery
condition
constant
equivalent circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012022218A
Other languages
Japanese (ja)
Other versions
JP6035028B2 (en
Inventor
Shuhei Okada
修平 岡田
Yuki Tominaga
由騎 冨永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Yokogawa Electric Corp
Original Assignee
Honda Motor Co Ltd
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Yokogawa Electric Corp filed Critical Honda Motor Co Ltd
Priority to JP2012022218A priority Critical patent/JP6035028B2/en
Publication of JP2013160613A publication Critical patent/JP2013160613A/en
Application granted granted Critical
Publication of JP6035028B2 publication Critical patent/JP6035028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a storage battery characteristics derivation device capable of deriving an equivalent circuit constant of a storage battery with high precision.SOLUTION: A storage battery characteristics derivation device includes a current waveform analysis part that analyzes pulsed charging and discharging current waveforms during the transient response of the storage battery and a constant derivation part that derives part of an equivalent circuit constant of the storage battery based on each data on the charging and discharging currents of the storage battery and a voltage across the storage battery when the charging and discharging current waveforms analyzed by the current waveform analysis part satisfy a first condition and that derives another equivalent circuit constant of the storage battery based on each data of the charging and discharging currents of the storage battery and a voltage across the storage battery when the charging and discharging current waveforms analyzed by the current waveform analysis part satisfy a second condition. The equivalent circuit constant of the storage battery includes a first constant that is dominant at a frequency during a transient response when the first condition is satisfied and a second constant that is dominant at a frequency during a transient response when the second condition is satisfied. A pulse width and a pulse frequency during the transient response when the first condition is satisfied differ from a pulse width and a pulse frequency during the transient response when the second condition is satisfied, respectively.

Description

本発明は、蓄電池の等価回路定数を導出する蓄電池特性導出装置に関する。   The present invention relates to a storage battery characteristic deriving device for deriving an equivalent circuit constant of a storage battery.

図7は、蓄電池の内部インピーダンスを測定する装置の構成を示すブロック図である。図7に示す装置では、蓄電池に交流信号(「摂動信号」ともいう)が供給され、このとき蓄電池を流れる電流と端子電圧に基づいて当該蓄電池の内部インピーダンスを算出する。当該装置には交流信号を供給するための構成が必要であるため、小型化が困難であり、その使用場所又は設置場所も限定される。例えば、部品を搭載するためのスペースが限定された車両等に当該装置を搭載することは現実的ではない。しかし、EV(Electric Vehicle:電気自動車)やHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等の車両は蓄電池を備え、当該車両において蓄電池の特性又は状態を管理することは非常に重要である。   FIG. 7 is a block diagram showing a configuration of an apparatus for measuring the internal impedance of the storage battery. In the apparatus shown in FIG. 7, an AC signal (also referred to as “perturbation signal”) is supplied to the storage battery, and at this time, the internal impedance of the storage battery is calculated based on the current flowing through the storage battery and the terminal voltage. Since the apparatus requires a configuration for supplying an AC signal, it is difficult to reduce the size, and the place of use or installation is limited. For example, it is not realistic to mount the device on a vehicle or the like in which a space for mounting components is limited. However, vehicles such as EVs (Electric Vehicles) and HEVs (Hybrid Electrical Vehicles) have a storage battery, and it is very important to manage the characteristics or state of the storage battery in the vehicle.

図8は、蓄電池の内部インピーダンス特性の一例を示すナイキスト線図である。また、図9は、蓄電池の等価回路を示す図である。図8に示すように、蓄電池の内部インピーダンス特性は周波数毎に異なる。図8には、1kHz以上の周波数ではインダクタンス成分が支配的であり、1Hz〜1kHzの周波数ではコンダクタンス成分が支配的であり、1Hz以下の周波数ではCPE(Constant Phase Element)に応じた特性が示されている。特許文献1に記載の電池特性評価装置は、交流信号発生器を備えず、蓄電池の電流−電圧特性に基づき、等価回路モデルに対する回路定数を同定する。   FIG. 8 is a Nyquist diagram showing an example of the internal impedance characteristics of the storage battery. Moreover, FIG. 9 is a figure which shows the equivalent circuit of a storage battery. As shown in FIG. 8, the internal impedance characteristics of the storage battery differ for each frequency. In FIG. 8, the inductance component is dominant at a frequency of 1 kHz or higher, the conductance component is dominant at a frequency of 1 Hz to 1 kHz, and a characteristic corresponding to CPE (Constant Phase Element) is shown at a frequency of 1 Hz or lower. ing. The battery characteristic evaluation apparatus described in Patent Document 1 does not include an AC signal generator, and identifies circuit constants for an equivalent circuit model based on the current-voltage characteristics of the storage battery.

特開2011−141228号公報JP 2011-141228 A

しかし、蓄電池の内部インピーダンス特性を導出するために、当該蓄電池から得られる過渡応答波形の出力値からその蓄電池の等価回路モデルに対する回路定数を推定しても、その推定値は全周波数帯域で均一に最適化された値でしかない。すなわち、周波数によっては蓄電池の内部インピーダンス特性の推定精度が低い場合がある。図10は、蓄電池の5秒間のパルス放電時の電流波形と端子間電圧の応答波形の一例を示す図である。また、図11は、十字点で示す蓄電池の実際の内部インピーダンス特性と、実線で示す推定された内部インピーダンス特性との差異を示すナイキスト線図である。   However, in order to derive the internal impedance characteristics of a storage battery, even if the circuit constant for the equivalent circuit model of the storage battery is estimated from the output value of the transient response waveform obtained from the storage battery, the estimated value is uniform over the entire frequency band. It is only an optimized value. That is, depending on the frequency, the estimation accuracy of the internal impedance characteristics of the storage battery may be low. FIG. 10 is a diagram illustrating an example of a current waveform and a response waveform of the voltage between terminals when the storage battery is pulse-discharged for 5 seconds. FIG. 11 is a Nyquist diagram showing a difference between an actual internal impedance characteristic of the storage battery indicated by a cross point and an estimated internal impedance characteristic indicated by a solid line.

図11に示す例では、2つの時定数による円弧が実際の特性と推定された特性とで異なるため、1Hz以降の高周波帯の内部インピーダンス特性が実値と推定値とで異なっている。当該相違は、時定数が小さい特性、すなわち、変化が顕著にみられる微小時間に対して、はるかに長い時間波形でフィッティングしているためである。すなわち、図10に示した例では、10秒間の波形データでフィッティングしているため、時間サンプル数の多い0.1Hz〜1Hz近辺の特性が重点的にフィッティングされている一方、1Hz以降の高周波側は相対的に誤差が大きくなるためである。その結果、蓄電池の等価回路定数の推定値の精度が下がる。   In the example shown in FIG. 11, since the arcs with two time constants are different between the actual characteristics and the estimated characteristics, the internal impedance characteristics in the high frequency band after 1 Hz are different between the actual value and the estimated value. This difference is due to the fact that fitting is performed with a much longer time waveform for a characteristic having a small time constant, that is, a minute time in which the change is noticeable. That is, in the example shown in FIG. 10, since fitting is performed with waveform data for 10 seconds, characteristics in the vicinity of 0.1 Hz to 1 Hz, which have a large number of time samples, are focused on the high frequency side after 1 Hz. This is because the error becomes relatively large. As a result, the accuracy of the estimated value of the equivalent circuit constant of the storage battery decreases.

本発明の目的は、蓄電池の等価回路定数を精度良く導出可能な蓄電池特性導出装置を提供することである。   An object of the present invention is to provide a storage battery characteristic deriving device capable of accurately deriving an equivalent circuit constant of a storage battery.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明の蓄電池特性導出装置は、蓄電池(例えば、実施の形態での蓄電セルC1,C2,…Cn)の等価回路定数を導出する蓄電池特性導出装置(例えば、実施の形態でのセルインピーダンス演算部13,131,132,…13n)であって、前記蓄電池のパルス状の過渡応答時の充放電電流の波形を解析する電流波形解析部(例えば、実施の形態での電流波形解析部121)と、前記電流波形解析部が解析した充放電電流の波形が第1の条件を満たすときの前記蓄電池の充放電電流及び両端電圧の各データに基づいて、前記蓄電池の一部の等価回路定数を導出し、前記電流波形解析部が解析した充放電電流の波形が第2の条件を満たすときの前記蓄電池の充放電電流及び両端電圧の各データに基づいて、前記蓄電池の他の等価回路定数を導出する定数導出部(例えば、実施の形態での演算部125)と、を備え、前記蓄電池の等価回路定数は、前記第1の条件を満たすときの過渡応答時の周波数で支配的な第1定数と、前記第2の条件を満たすときの過渡応答時の周波数で支配的な第2定数と、を含み、前記第1の条件を満たすときの過渡応答時のパルス幅及びパルス周波数は、前記第2の条件を満たすときの過渡応答時のパルス幅及びパルス周波数とそれぞれ異なることを特徴としている。   In order to solve the above problems and achieve the object, the storage battery characteristic deriving device of the invention according to claim 1 is an equivalent circuit constant of a storage battery (for example, storage cells C1, C2,... Cn in the embodiment). Is a storage battery characteristic deriving device (for example, cell impedance calculation units 13, 131, 132,... 13n in the embodiment), and analyzes the waveform of the charge / discharge current during the pulse-like transient response of the storage battery. The charge / discharge current and both ends of the storage battery when the waveform of the charge / discharge current analyzed by the current waveform analysis unit (for example, the current waveform analysis unit 121 in the embodiment) and the current waveform analysis unit satisfies the first condition Based on each data of voltage, the equivalent circuit constant of a part of the storage battery is derived, and the charge / discharge current of the storage battery when the waveform of the charge / discharge current analyzed by the current waveform analysis unit satisfies the second condition, and Both A constant deriving unit (for example, the arithmetic unit 125 in the embodiment) for deriving another equivalent circuit constant of the storage battery based on each data of the voltage, and the equivalent circuit constant of the storage battery is the first circuit constant A first constant that is dominant in the frequency at the time of the transient response when the second condition is satisfied, and a second constant that is dominant in the frequency at the time of the transient response when the second condition is satisfied, The pulse width and pulse frequency during the transient response when the condition is satisfied are different from the pulse width and pulse frequency during the transient response when the second condition is satisfied.

さらに、請求項2に記載の発明の蓄電池特性導出装置では、前記定数導出部は、前記蓄電池の充放電電流及び両端電圧の各データを周波数変換して得られた値から前記蓄電池の内部インピーダンスを周波数毎に算出し、前記蓄電池の内部インピーダンス特性を導出し、当該導出した内部インピーダンス特性に基づいて、前記蓄電池の等価回路定数を導出することを特徴としている。   Furthermore, in the storage battery characteristic deriving device according to the second aspect of the present invention, the constant deriving unit calculates the internal impedance of the storage battery from a value obtained by frequency-converting each data of the charge / discharge current and the voltage at both ends of the storage battery. The calculation is performed for each frequency, the internal impedance characteristic of the storage battery is derived, and the equivalent circuit constant of the storage battery is derived based on the derived internal impedance characteristic.

さらに、請求項3に記載の発明の蓄電池特性導出装置では、前記定数導出部は、前記第1の条件を満たすときの前記蓄電池の充放電電流及び両端電圧の各データを周波数変換して得られた値から導出した前記蓄電池の内部インピーダンス特性に基づいて導出した前記第1定数を固定値としたまま、前記第2の条件を満たすときの前記蓄電池の充放電電流及び両端電圧の各データを周波数変換して得られた値から導出した前記蓄電池の内部インピーダンス特性と先に導出した内部インピーダンス特性とを合成した特性に基づいて前記第2定数を導出することを特徴としている。   Furthermore, in the storage battery characteristic deriving device according to the third aspect of the present invention, the constant deriving unit is obtained by frequency-converting each data of the charge / discharge current and the both-end voltage of the storage battery when the first condition is satisfied. The charge / discharge current and the voltage at both ends of the storage battery when the second condition is satisfied while the first constant derived from the internal impedance characteristics of the storage battery derived from the measured value is fixed. The second constant is derived based on a characteristic obtained by synthesizing the internal impedance characteristic of the storage battery derived from the value obtained by the conversion and the internal impedance characteristic derived previously.

請求項1〜3に記載の発明の蓄電池特性導出装置によれば、蓄電池の等価回路定数を精度良く導出できる。   According to the storage battery characteristic deriving device of the invention described in claims 1 to 3, the equivalent circuit constant of the storage battery can be derived with high accuracy.

車両に搭載された蓄電池と電気駆動系の一部との関係を示すブロック図Block diagram showing the relationship between a storage battery mounted on a vehicle and a part of an electric drive system セルインピーダンス演算部の内部構成を示すブロック図Block diagram showing the internal configuration of the cell impedance calculation unit 第1の条件を満たす電流I及び同期した端子間電圧Vの各波形を示すグラフThe graph which shows each waveform of the electric current I which satisfy | fills the 1st condition, and the voltage V between the terminals synchronized 十字点で示す蓄電セルの実際の内部インピーダンス特性と、図3に示す電流Iと端子間電圧Vに基づいて算出された実線で示す内部インピーダンス特性とを示すナイキスト線図Nyquist diagram showing the actual internal impedance characteristics of the storage cell indicated by a cross point and the internal impedance characteristics indicated by the solid line calculated based on the current I and the inter-terminal voltage V shown in FIG. 第2の条件を満たす電流I及び同期した端子間電圧Vの各波形を示すグラフThe graph which shows each waveform of the electric current I which satisfy | fills 2nd conditions, and the voltage V between the terminals synchronized 十字点で示す蓄電セルの実際の内部インピーダンス特性と、図4に実線で示した内部インピーダンス特性の低周波側と図5に示す電流Iと端子間電圧Vに基づいて算出された内部インピーダンス特性の高周波側を合成した内部インピーダンス特性とを示すナイキスト線図The actual internal impedance characteristic of the storage cell indicated by the cross point, the internal impedance characteristic calculated based on the low frequency side of the internal impedance characteristic indicated by the solid line in FIG. 4, the current I and the inter-terminal voltage V shown in FIG. Nyquist diagram showing internal impedance characteristics combined with high frequency side 蓄電池の内部インピーダンスを測定する装置の構成を示すブロック図The block diagram which shows the structure of the apparatus which measures the internal impedance of a storage battery 蓄電池の内部インピーダンス特性の一例を示すナイキスト線図Nyquist diagram showing an example of internal impedance characteristics of storage battery 蓄電池の等価回路を示す図Diagram showing equivalent circuit of storage battery 蓄電池の5秒間のパルス放電時の電流波形と端子間電圧の応答波形の一例を示す図The figure which shows an example of the response waveform of the electric current waveform at the time of the pulse discharge of a storage battery for 5 second, and the voltage between terminals 十字点で示す蓄電池の実際の内部インピーダンス特性と、実線で示す推定された内部インピーダンス特性との差異を示すナイキスト線図Nyquist diagram showing the difference between the actual internal impedance characteristic of the storage battery indicated by the cross point and the estimated internal impedance characteristic indicated by the solid line

以下、本発明の実施形態について、図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、車両に搭載された蓄電池と電気駆動系の一部との関係を示すブロック図である。EV(Electric Vehicle:電気自動車)又はHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等の車両には、図1に示す系が設けられている。当該系では、組電池11からインバータINVを介して電動機MOTに電力が供給される。組電池11は、直列に接続された複数の蓄電セルC1,C2,…Cnを有する。また、当該系には、複数の蓄電セルの各々に対応するセルインピーダンス演算部131,132,…13nと、各セルインピーダンス演算部から得られた情報に基づいて組電池11の状態を管理する組電池状態管理部15とが設けられている。   FIG. 1 is a block diagram showing a relationship between a storage battery mounted on a vehicle and a part of an electric drive system. A vehicle such as EV (Electric Vehicle) or HEV (Hybrid Electrical Vehicle) is provided with a system shown in FIG. In this system, electric power is supplied from the assembled battery 11 to the electric motor MOT via the inverter INV. The assembled battery 11 has a plurality of power storage cells C1, C2,... Cn connected in series. In addition, the system includes cell impedance calculation units 131, 132,... 13n corresponding to each of the plurality of power storage cells, and a set for managing the state of the assembled battery 11 based on information obtained from each cell impedance calculation unit. A battery state management unit 15 is provided.

また、複数の蓄電セルC1,C2,…Cnの各々には電圧センサー171,172,…17nが並列に設けられている。電圧センサー171,172,…17nは、対応する蓄電セルの端子間電圧V1,V2,…Vnを検出する。また、組電池11からインバータINVへの電流経路上には電流センサー19が設けられている。電流センサー19は、組電池11からインバータINVへの経路を流れる放電電流(以下、単に「電流」という)Iを検出する。各電圧センサーが検出した端子間電圧を示す情報及び電流センサー19が検出した電流を示す情報は、対応するセルインピーダンス演算部に入力される。セルインピーダンス演算部131,132,…13nは、対応する蓄電セルの等価回路定数を演算によって求めることで、当該蓄電セルの内部インピーダンスを算出する。   Further, voltage sensors 171, 172,... 17n are provided in parallel in each of the plurality of power storage cells C1, C2,. Voltage sensors 171, 172,... 17n detect inter-terminal voltages V1, V2,. A current sensor 19 is provided on the current path from the assembled battery 11 to the inverter INV. The current sensor 19 detects a discharge current (hereinafter simply referred to as “current”) I flowing through the path from the assembled battery 11 to the inverter INV. Information indicating the inter-terminal voltage detected by each voltage sensor and information indicating the current detected by the current sensor 19 are input to the corresponding cell impedance calculation unit. The cell impedance calculators 131, 132,... 13n calculate the internal impedance of the storage cell by calculating the equivalent circuit constant of the corresponding storage cell.

図2は、セルインピーダンス演算部の内部構成を示すブロック図である。図2に示すように、セルインピーダンス演算部13は、ローパスフィルタ(LPF)101v,101iと、ADコンバータ(ADC)103v,103iと、クロック発生部105と、制御部107と、条件記憶部109と、等価回路定数演算部111とを有する。LPF101vは、対応する電圧センサーが検出した端子間電圧Vを示す信号の低周波成分のみを出力する。ADC103vは、LPF101vが出力した信号をAD変換して、等価回路定数演算部111に出力する。また、LPF101iは、電流センサー19が検出した電流Iを示す信号の低周波成分のみを出力する。ADC103iは、LPF101iが出力した信号をAD変換して、等価回路定数演算部111に出力する。なお、ADC103v,103iは、クロック発生部105が発生したクロック信号に応じて、当該クロック信号が入力されている間だけAD変換を行う。   FIG. 2 is a block diagram showing an internal configuration of the cell impedance calculation unit. As shown in FIG. 2, the cell impedance calculation unit 13 includes low-pass filters (LPF) 101v and 101i, AD converters (ADC) 103v and 103i, a clock generation unit 105, a control unit 107, a condition storage unit 109, And an equivalent circuit constant calculation unit 111. The LPF 101v outputs only the low frequency component of the signal indicating the inter-terminal voltage V detected by the corresponding voltage sensor. The ADC 103v AD-converts the signal output from the LPF 101v and outputs the signal to the equivalent circuit constant calculation unit 111. The LPF 101 i outputs only the low frequency component of the signal indicating the current I detected by the current sensor 19. The ADC 103 i AD-converts the signal output from the LPF 101 i and outputs it to the equivalent circuit constant calculation unit 111. Note that the ADCs 103v and 103i perform AD conversion only while the clock signal is input in accordance with the clock signal generated by the clock generation unit 105.

制御部107は、組電池状態管理部15から動作開始命令を受け取ると、所定のサンプルレートのクロック信号を発生するようクロック発生部105に指示する。また、制御部107は、動作開始命令を受け取ると、ADC103iから出力された電流Iを示す信号が示す波形の解析を行うよう等価回路定数演算部111に指示する。なお、制御部107がクロック発生部105に指示するクロック信号のサンプルレートは、等価回路定数演算部111が行った電流Iの解析結果によって異なっても良い。例えば、制御部107は、電流Iの放電パルス幅が5秒以上であり放電遮断後の状態が5秒以上続く場合はサンプルレートを1kHz以上に設定し、電流Iの放電パルス幅が50±10m秒であり放電遮断後の状態が50±10m秒である場合はサンプルレートを10kHz以上に設定しても良い。   When receiving the operation start command from the assembled battery state management unit 15, the control unit 107 instructs the clock generation unit 105 to generate a clock signal having a predetermined sample rate. Further, when the control unit 107 receives the operation start command, the control unit 107 instructs the equivalent circuit constant calculation unit 111 to analyze the waveform indicated by the signal indicating the current I output from the ADC 103i. Note that the sample rate of the clock signal instructed by the control unit 107 to the clock generation unit 105 may vary depending on the analysis result of the current I performed by the equivalent circuit constant calculation unit 111. For example, the control unit 107 sets the sample rate to 1 kHz or more when the discharge pulse width of the current I is 5 seconds or longer and the state after the discharge interruption continues for 5 seconds or longer, and the discharge pulse width of the current I is 50 ± 10 m. In the case of the second and the state after the discharge interruption is 50 ± 10 milliseconds, the sample rate may be set to 10 kHz or more.

条件記憶部109は、制御部107がクロック発生部105に指示するクロック信号のサンプルレートの条件を記憶する。また、条件記憶部109は、等価回路定数演算部111が蓄電セルの等価回路定数の演算を行う際の条件を記憶する。等価回路定数の演算を行う際の条件は、電流Iの放電パルス幅が5秒以上であり放電遮断後の状態が5秒以上続く低周波のパルス形状である第1の条件と、電流Iの放電パルス幅が50±10m秒であり放電遮断後の状態が50±10m秒の高周波のパルス形状である第2の条件とから構成される。   The condition storage unit 109 stores a sample rate condition of the clock signal that the control unit 107 instructs the clock generation unit 105. In addition, the condition storage unit 109 stores conditions when the equivalent circuit constant calculation unit 111 calculates the equivalent circuit constant of the storage cell. The condition for calculating the equivalent circuit constant is the first condition in which the discharge pulse width of the current I is 5 seconds or more and the state after the discharge interruption is a low frequency pulse shape lasting 5 seconds or more, and the current I The discharge pulse width is 50 ± 10 ms, and the state after the discharge interruption is composed of a second condition having a high-frequency pulse shape of 50 ± 10 ms.

等価回路定数演算部111は、電流波形解析部121と、データ記憶部123と、演算部125とを有する。電流波形解析部121は、制御部107から得られた解析指示に応じて、ADC103iから出力された電流Iを示す信号の波形を解析する。さらに、電流波形解析部121は、解析結果によって示される波形が条件記憶部109に格納されている上記説明した第1の条件及び第2の条件のいずれかを満たせば、演算部125に動作を指示する。なお、図1に示した系が搭載された車両のイグニッションスイッチがオンされた直後、組電池11は異なる周波数でパルス放電するよう制御される。したがって、第1の条件及び第2の条件は車両のイグニッションスイッチがオンされた直後に異なるタイミングで得られる。   The equivalent circuit constant calculation unit 111 includes a current waveform analysis unit 121, a data storage unit 123, and a calculation unit 125. In response to the analysis instruction obtained from the control unit 107, the current waveform analysis unit 121 analyzes the waveform of the signal indicating the current I output from the ADC 103i. Furthermore, the current waveform analysis unit 121 operates the calculation unit 125 when the waveform indicated by the analysis result satisfies either the first condition or the second condition described above stored in the condition storage unit 109. Instruct. Immediately after the ignition switch of the vehicle equipped with the system shown in FIG. 1 is turned on, the assembled battery 11 is controlled to perform pulse discharge at different frequencies. Therefore, the first condition and the second condition are obtained at different timings immediately after the ignition switch of the vehicle is turned on.

データ記憶部123は、ADC103vから出力された端子間電圧VのデータとADC103iから出力された電流Iのデータを時系列に同期した状態で記憶する。演算部125は、データ記憶部123に格納された端子間電圧V及び電流Iのデータから、蓄電セルの等価回路定数を算出する。   The data storage unit 123 stores the data of the voltage V between the terminals output from the ADC 103v and the data of the current I output from the ADC 103i in a time-synchronized state. The calculation unit 125 calculates the equivalent circuit constant of the storage cell from the data of the voltage V and the current I between the terminals stored in the data storage unit 123.

以下、演算部125による蓄電セルの等価回路定数の算出方法について、図3〜図6を参照して詳細に説明する。
演算部125は、まず、第1の条件を満たしている間の端子間電圧Vのデータと電流Iのデータをデータ記憶部123から読み出し、端子間電圧V及び電流Iの各データに対して離散フーリエ変換を行う。さらに、演算部125は、離散フーリエ変換によって得られた複数の周波数毎に内部インピーダンス(Z=V/I)を算出する。
Hereinafter, the calculation method of the equivalent circuit constant of the storage cell by the calculation unit 125 will be described in detail with reference to FIGS.
First, the calculation unit 125 reads the data of the voltage V between the terminals and the data of the current I while satisfying the first condition from the data storage unit 123, and discretely calculates the data of the voltage V and the current I between the terminals. Perform Fourier transform. Further, the calculation unit 125 calculates an internal impedance (Z = V / I) for each of a plurality of frequencies obtained by the discrete Fourier transform.

図3は、第1の条件を満たす電流I及び同期した端子間電圧Vの各波形を示すグラフである。図3に示す電流Iは、放電パルス幅が約5秒であり、放電遮断後の状態が約5秒続く、比較的低周波数のパルス波である。当該パルス波は、第1項が約0.1Hzの正弦波とした複合正弦波によって構成されているため、0.1Hz付近の低周波で正確な内部インピーダンスを求めることができる。   FIG. 3 is a graph showing waveforms of the current I satisfying the first condition and the synchronized inter-terminal voltage V. The current I shown in FIG. 3 is a relatively low-frequency pulse wave having a discharge pulse width of about 5 seconds and a state after interruption of discharge lasts for about 5 seconds. Since the pulse wave is composed of a composite sine wave whose first term is a sine wave of about 0.1 Hz, an accurate internal impedance can be obtained at a low frequency around 0.1 Hz.

演算部125は、図4に実線で示される先に算出した内部インピーダンス特性を有する蓄電セルの等価回路定数をカーブフィッティングによって推定する。なお、カーブフィッティングによる等価回路定数の推定は、勾配法、発見法又は直接法等といった最適解探索アルゴリズムに基づいて行われる。   The arithmetic unit 125 estimates the equivalent circuit constant of the storage cell having the previously calculated internal impedance characteristic indicated by the solid line in FIG. 4 by curve fitting. The equivalent circuit constant is estimated by curve fitting based on an optimal solution search algorithm such as a gradient method, a discovery method, or a direct method.

蓄電セルの等価回路は、図9に示したように、抵抗R1,R2,R3とキャパシタC2,C3とCPEとによって構成される。なお、CPEのインピーダンスは、1/T(jω)によって表される。したがって、演算部125がカーブフィッティングを行うことによって、等価回路定数R1,R2,R3,C2,C3,T(CPE定数),p(CPE指数)が推定される。なお、定数の初期値は任意である。但し、蓄電セルの劣化前の特性における定数を用いることが望ましい。 As shown in FIG. 9, the equivalent circuit of the storage cell is composed of resistors R1, R2, R3 and capacitors C2, C3 and CPE. Note that the impedance of CPE is represented by 1 / T (jω) p . Therefore, the equivalent circuit constants R1, R2, R3, C2, C3, T (CPE constant), and p (CPE index) are estimated by the calculation unit 125 performing curve fitting. Note that the initial value of the constant is arbitrary. However, it is desirable to use constants in the characteristics of the storage cell before deterioration.

図4は、十字点で示す蓄電セルの実際の内部インピーダンス特性と、図3に示す電流Iと端子間電圧Vに基づいて算出された実線で示す内部インピーダンス特性とを示すナイキスト線図である。図4に示されているように、低周波側の内部インピーダンスは高い精度で算出されているが、高周波側の内部インピーダンスの算出精度は低い。このため、本実施形態では、演算部125が、続いて、第2の条件を満たしている間の端子間電圧Vのデータと電流Iのデータをデータ記憶部123から読み出し、端子間電圧V及び電流Iの各データに対して離散フーリエ変換を行う。さらに、演算部125は、離散フーリエ変換によって得られた複数の周波数毎に内部インピーダンス(Z=V/I)を算出する。   4 is a Nyquist diagram showing an actual internal impedance characteristic of the storage cell indicated by a cross point, and an internal impedance characteristic indicated by a solid line calculated based on the current I and the inter-terminal voltage V shown in FIG. As shown in FIG. 4, the internal impedance on the low frequency side is calculated with high accuracy, but the calculation accuracy of the internal impedance on the high frequency side is low. For this reason, in the present embodiment, the calculation unit 125 subsequently reads the data of the voltage V between the terminals and the data of the current I while satisfying the second condition from the data storage unit 123, Discrete Fourier transform is performed on each data of the current I. Further, the calculation unit 125 calculates an internal impedance (Z = V / I) for each of a plurality of frequencies obtained by the discrete Fourier transform.

図5は、第2の条件を満たす電流I及び同期した端子間電圧Vの各波形を示すグラフである。図5に示す電流Iは、放電パルス幅が約0.05秒(=50m秒)であり、放電遮断後の状態が約0.95秒続いている。演算部125は、高周波側の内部インピーダンス特性を導出するために、先頭から0.1秒分のデータを抽出する。抽出されたデータが示す比較的高周波数のパルス波は、第1項が10Hzの正弦波とした複合正弦波によって構成されているため、10Hz付近の高周波で正確な内部インピーダンスを求めることができる。したがって、演算部125は、先に算出した低周波側の内部インピーダンスと今回算出した高周波側の内部インピーダンスとを合成する。図6は、十字点で示す蓄電セルの実際の内部インピーダンス特性と、図4に実線で示した内部インピーダンス特性の低周波側と図5に示す電流Iと端子間電圧Vに基づいて算出された内部インピーダンス特性の高周波側を合成した内部インピーダンス特性とを示すナイキスト線図である。   FIG. 5 is a graph showing each waveform of the current I satisfying the second condition and the synchronized voltage V between the terminals. The current I shown in FIG. 5 has a discharge pulse width of about 0.05 seconds (= 50 milliseconds), and the state after the discharge interruption continues for about 0.95 seconds. The calculation unit 125 extracts data for 0.1 seconds from the beginning in order to derive the internal impedance characteristics on the high frequency side. Since the relatively high-frequency pulse wave indicated by the extracted data is composed of a composite sine wave whose first term is a sine wave of 10 Hz, an accurate internal impedance can be obtained at a high frequency around 10 Hz. Therefore, the arithmetic unit 125 combines the previously calculated low-frequency internal impedance and the high-frequency internal impedance calculated this time. 6 is calculated based on the actual internal impedance characteristic of the storage cell indicated by the cross point, the low frequency side of the internal impedance characteristic indicated by the solid line in FIG. 4, the current I and the inter-terminal voltage V shown in FIG. It is a Nyquist diagram which shows the internal impedance characteristic which synthesize | combined the high frequency side of the internal impedance characteristic.

上述したように、1Hz以下の周波数の内部インピーダンスはCPEの変数の成分が支配的である。演算部125は、図6に実線で示される先に算出した内部インピーダンス特性を有する蓄電セルの等価回路定数の内、CPEの定数に係るTとpは先の推定値に固定したまま、R1,R2,R3,C2,C3をカーブフィッティングによって再度推定する。演算部125は、このようにして推定した蓄電セルの等価回路定数R1,R2,R3,C2,C3,T,pを組電池状態管理部15に送る。   As described above, the CPE variable component is dominant in the internal impedance of the frequency of 1 Hz or less. The arithmetic unit 125, while maintaining the T and p related to the CPE constant among the equivalent circuit constants of the storage cell having the internal impedance characteristic calculated earlier indicated by the solid line in FIG. R2, R3, C2, and C3 are estimated again by curve fitting. The calculation unit 125 sends the equivalent circuit constants R1, R2, R3, C2, C3, T, and p of the storage cell estimated in this way to the assembled battery state management unit 15.

以上説明したように、本実施形態によれば、蓄電セルの内部インピーダンス特性が、低周波のパルス放電時に得られた電流I及び端子間電圧Vに基づいて導出され、また、高周波のパルス放電時に得られた電流I及び端子間電圧Vに基づいても導出される。また、蓄電セルの内部インピーダンス特性が示す曲線にフィッティングする等価回路定数を推定する際には、低周波側で支配的に関与しているCPEに係る定数(T,p)と高周波側で支配的に関与している定数(R1,R2,R3,C2,C3)を段階的に特定する。このように、蓄電セルの等価回路定数の推定値は、適当な周波数帯における内部インピーダンス特性から導出される。その結果、蓄電セルの等価回路定数を精度良く推定することができる。   As described above, according to the present embodiment, the internal impedance characteristics of the storage cell are derived based on the current I and the inter-terminal voltage V obtained during the low-frequency pulse discharge, and during the high-frequency pulse discharge. It is also derived based on the obtained current I and inter-terminal voltage V. In addition, when estimating the equivalent circuit constant that is fitted to the curve indicated by the internal impedance characteristics of the storage cell, the constant (T, p) related to the CPE that is predominantly involved on the low frequency side and the dominant on the high frequency side. The constants (R1, R2, R3, C2, C3) involved in are specified stepwise. As described above, the estimated value of the equivalent circuit constant of the storage cell is derived from the internal impedance characteristics in an appropriate frequency band. As a result, the equivalent circuit constant of the storage cell can be estimated with high accuracy.

なお、上記説明では、まず、低周波のパルス放電時に得られた電流I及び端子間電圧Vに基づいて内部インピーダンス特性を求めた上で推定した蓄電セルの等価回路定数の内、CPEに係る定数(T,p)を特定した後、先に説明した合成した内部インピーダンス特性に基づいて、残りの定数(R1,R2,R3,C2,C3)を特定している。しかし、まず、高周波のパルス放電時に得られた電流I及び端子間電圧Vに基づいて内部インピーダンス特性を求めた上で推定した蓄電セルの等価回路定数の内、一部の定数(R1,R2,R3,C2,C3)を特定した後、先に説明した合成した内部インピーダンス特性に基づいて、CPEに係る定数(T,p)を特定しても良い。   In the above description, first, among the equivalent circuit constants of the storage cell estimated after obtaining the internal impedance characteristics based on the current I and the inter-terminal voltage V obtained during the low-frequency pulse discharge, the constants related to the CPE After specifying (T, p), the remaining constants (R1, R2, R3, C2, C3) are specified based on the synthesized internal impedance characteristics described above. However, first, some of the equivalent circuit constants (R1, R2, R2, R2, R2) of the equivalent circuit constants of the storage cell estimated after obtaining the internal impedance characteristics based on the current I and the inter-terminal voltage V obtained during high-frequency pulse discharge. After specifying R3, C2, and C3), the constant (T, p) related to CPE may be specified based on the synthesized internal impedance characteristics described above.

また、上記説明では、蓄電セルの内部インピーダンスを算出する際に、低周波のパルス放電時及び高周波のパルス放電時の端子間電圧V及び電流Iの各データに対してそれぞれ離散フーリエ変換を行うことで周波数変換を行っているが、低周波のパルス放電時及び高周波のパルス放電時の端子間電圧V及び電流Iの各データをそれぞれラプラス変換して蓄電セルの等価回路定数を推定しても良い。   Further, in the above description, when calculating the internal impedance of the storage cell, discrete Fourier transform is performed on each data of the voltage V and current I between the terminals at the time of low frequency pulse discharge and at the time of high frequency pulse discharge. However, the equivalent circuit constant of the storage cell may be estimated by performing Laplace conversion on each of the terminal voltage V and current I during low-frequency pulse discharge and high-frequency pulse discharge. .

また、上記説明では、電流センサー19が検出する電流Iとして放電電流を例に説明したが、組電池11への充電電流が電流Iであっても良い。   In the above description, the discharge current is described as an example of the current I detected by the current sensor 19, but the charging current to the assembled battery 11 may be the current I.

INV インバータ
MOT 電動機
C1,C2,…Cn 蓄電セル
11 組電池
13,131,132,…13n セルインピーダンス演算部
15 組電池状態管理部
171,172,…17n 電圧センサー
19 電流センサー
101v,101i ローパスフィルタ(LPF)
103v,103i ADコンバータ(ADC)
105 クロック発生部
107 制御部
109 条件記憶部
111 等価回路定数演算部
121 電流波形解析部
123 データ記憶部
125 演算部
INV inverter MOT motors C1, C2,... Cn battery cell 11 assembled batteries 13, 131, 132,... 13n cell impedance calculation unit 15 assembled battery state management units 171, 172, ... 17n voltage sensor 19 current sensors 101v, 101i low-pass filter ( LPF)
103v, 103i AD converter (ADC)
105 Clock Generation Unit 107 Control Unit 109 Condition Storage Unit 111 Equivalent Circuit Constant Calculation Unit 121 Current Waveform Analysis Unit 123 Data Storage Unit 125 Calculation Unit

Claims (3)

蓄電池の等価回路定数を導出する蓄電池特性導出装置であって、
前記蓄電池のパルス状の過渡応答時の充放電電流の波形を解析する電流波形解析部と、
前記電流波形解析部が解析した充放電電流の波形が第1の条件を満たすときの前記蓄電池の充放電電流及び両端電圧の各データに基づいて、前記蓄電池の一部の等価回路定数を導出し、前記電流波形解析部が解析した充放電電流の波形が第2の条件を満たすときの前記蓄電池の充放電電流及び両端電圧の各データに基づいて、前記蓄電池の他の等価回路定数を導出する定数導出部と、を備え、
前記蓄電池の等価回路定数は、前記第1の条件を満たすときの過渡応答時の周波数で支配的な第1定数と、前記第2の条件を満たすときの過渡応答時の周波数で支配的な第2定数と、を含み、
前記第1の条件を満たすときの過渡応答時のパルス幅及びパルス周波数は、前記第2の条件を満たすときの過渡応答時のパルス幅及びパルス周波数とそれぞれ異なることを特徴とする蓄電池特性導出装置。
A storage battery characteristic deriving device for deriving an equivalent circuit constant of a storage battery,
A current waveform analyzer for analyzing a waveform of a charge / discharge current at the time of a pulsed transient response of the storage battery;
Based on each data of the charging / discharging current of the storage battery and the voltage at both ends when the waveform of the charging / discharging current analyzed by the current waveform analysis unit satisfies the first condition, an equivalent circuit constant of a part of the storage battery is derived. The other equivalent circuit constants of the storage battery are derived based on the data of the charge / discharge current of the storage battery and the voltage at both ends when the waveform of the charge / discharge current analyzed by the current waveform analysis unit satisfies the second condition. A constant derivation unit,
The equivalent circuit constant of the storage battery is a first constant that is dominant in the frequency at the time of transient response when the first condition is satisfied and a frequency that is dominant in the frequency at the time of transient response when the second condition is satisfied. Including two constants,
The storage battery characteristic deriving device, wherein the pulse width and pulse frequency at the time of transient response when satisfying the first condition are different from the pulse width and pulse frequency at the time of transient response when satisfying the second condition, respectively. .
請求項1に記載の蓄電池特性導出装置であって、
前記定数導出部は、前記蓄電池の充放電電流及び両端電圧の各データを周波数変換して得られた値から前記蓄電池の内部インピーダンスを周波数毎に算出し、前記蓄電池の内部インピーダンス特性を導出し、当該導出した内部インピーダンス特性に基づいて、前記蓄電池の等価回路定数を導出することを特徴とする蓄電池特性導出装置。
The storage battery characteristic deriving device according to claim 1,
The constant derivation unit calculates the internal impedance of the storage battery for each frequency from a value obtained by frequency-converting each data of the charge / discharge current and both-end voltage of the storage battery, and derives the internal impedance characteristic of the storage battery, An apparatus for deriving storage battery characteristics, wherein an equivalent circuit constant of the storage battery is derived based on the derived internal impedance characteristics.
請求項2に記載の蓄電池特性導出装置であって、
前記定数導出部は、前記第1の条件を満たすときの前記蓄電池の充放電電流及び両端電圧の各データを周波数変換して得られた値から導出した前記蓄電池の内部インピーダンス特性に基づいて導出した前記第1定数を固定値としたまま、前記第2の条件を満たすときの前記蓄電池の充放電電流及び両端電圧の各データを周波数変換して得られた値から導出した前記蓄電池の内部インピーダンス特性と先に導出した内部インピーダンス特性とを合成した特性に基づいて前記第2定数を導出することを特徴とする蓄電池特性導出装置。
The storage battery characteristic deriving device according to claim 2,
The constant deriving unit is derived based on the internal impedance characteristics of the storage battery derived from values obtained by frequency-converting each data of the charging / discharging current and both-end voltage of the storage battery when the first condition is satisfied. The internal impedance characteristics of the storage battery derived from the values obtained by frequency-converting the data of the charge / discharge current and the voltage at both ends of the storage battery when the second condition is satisfied while the first constant is a fixed value A storage battery characteristic deriving device, wherein the second constant is derived based on a characteristic obtained by combining the internal impedance characteristic derived previously and the internal impedance characteristic.
JP2012022218A 2012-02-03 2012-02-03 Battery characteristics deriving device Active JP6035028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012022218A JP6035028B2 (en) 2012-02-03 2012-02-03 Battery characteristics deriving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022218A JP6035028B2 (en) 2012-02-03 2012-02-03 Battery characteristics deriving device

Publications (2)

Publication Number Publication Date
JP2013160613A true JP2013160613A (en) 2013-08-19
JP6035028B2 JP6035028B2 (en) 2016-11-30

Family

ID=49172975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022218A Active JP6035028B2 (en) 2012-02-03 2012-02-03 Battery characteristics deriving device

Country Status (1)

Country Link
JP (1) JP6035028B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224919A (en) * 2014-05-27 2015-12-14 株式会社デンソー Device for estimating parameters of equivalent circuit for vehicle secondary battery
JP2020034383A (en) * 2018-08-29 2020-03-05 トヨタ自動車株式会社 Secondary battery system
JP2020128910A (en) * 2019-02-08 2020-08-27 学校法人同志社 Voltage drop estimation method and voltage drop estimation device
WO2021131958A1 (en) * 2019-12-27 2021-07-01 東洋システム株式会社 Simulated battery construction method and simulated battery construction device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369364A (en) * 1993-04-26 1994-11-29 Medtronic, Inc. Battery state of charge determination with plural periodic measurements to determine its internal impedance and geometric capacitance
JP2003004780A (en) * 2001-04-20 2003-01-08 Nf Corp Method and apparatus for estimation of impedance parameter
JP2005100969A (en) * 2003-08-22 2005-04-14 Furukawa Electric Co Ltd:The Method and device for measuring internal impedance of secondary battery, and power supply system
JP2005221487A (en) * 2004-02-09 2005-08-18 Furukawa Electric Co Ltd:The Method and instrument for measuring internal impedance of secondary battery, device for determining deterioration of secondary battery, and power source system
JP2006098135A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Device for estimating degree of deterioration in battery
JP2007265894A (en) * 2006-03-29 2007-10-11 Yokogawa Electric Corp Characteristic measuring device and method of fuel cell
US20080054848A1 (en) * 2006-08-29 2008-03-06 Samsung Sdi Co., Ltd. Battery management system and method of driving the same
JP2010157492A (en) * 2008-12-01 2010-07-15 Calsonic Kansei Corp Battery model identification method
JP2010230469A (en) * 2009-03-27 2010-10-14 Calsonic Kansei Corp Device and method for determining state of health of secondary battery
JP2011141228A (en) * 2010-01-08 2011-07-21 Yokogawa Electric Corp Battery characteristic evaluation device
JP2011196906A (en) * 2010-03-23 2011-10-06 Furukawa Electric Co Ltd:The Battery internal state estimation device and battery internal state estimation method
JP2013026114A (en) * 2011-07-25 2013-02-04 Yokogawa Electric Corp Battery deterioration determination device and method for determining battery deterioration

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369364A (en) * 1993-04-26 1994-11-29 Medtronic, Inc. Battery state of charge determination with plural periodic measurements to determine its internal impedance and geometric capacitance
JP2003004780A (en) * 2001-04-20 2003-01-08 Nf Corp Method and apparatus for estimation of impedance parameter
JP2005100969A (en) * 2003-08-22 2005-04-14 Furukawa Electric Co Ltd:The Method and device for measuring internal impedance of secondary battery, and power supply system
JP2005221487A (en) * 2004-02-09 2005-08-18 Furukawa Electric Co Ltd:The Method and instrument for measuring internal impedance of secondary battery, device for determining deterioration of secondary battery, and power source system
JP2006098135A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Device for estimating degree of deterioration in battery
JP2007265894A (en) * 2006-03-29 2007-10-11 Yokogawa Electric Corp Characteristic measuring device and method of fuel cell
US20080054848A1 (en) * 2006-08-29 2008-03-06 Samsung Sdi Co., Ltd. Battery management system and method of driving the same
JP2010157492A (en) * 2008-12-01 2010-07-15 Calsonic Kansei Corp Battery model identification method
JP2010230469A (en) * 2009-03-27 2010-10-14 Calsonic Kansei Corp Device and method for determining state of health of secondary battery
JP2011141228A (en) * 2010-01-08 2011-07-21 Yokogawa Electric Corp Battery characteristic evaluation device
JP2011196906A (en) * 2010-03-23 2011-10-06 Furukawa Electric Co Ltd:The Battery internal state estimation device and battery internal state estimation method
JP2013026114A (en) * 2011-07-25 2013-02-04 Yokogawa Electric Corp Battery deterioration determination device and method for determining battery deterioration

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224919A (en) * 2014-05-27 2015-12-14 株式会社デンソー Device for estimating parameters of equivalent circuit for vehicle secondary battery
JP2020034383A (en) * 2018-08-29 2020-03-05 トヨタ自動車株式会社 Secondary battery system
JP7070251B2 (en) 2018-08-29 2022-05-18 トヨタ自動車株式会社 Rechargeable battery system
JP2020128910A (en) * 2019-02-08 2020-08-27 学校法人同志社 Voltage drop estimation method and voltage drop estimation device
JP7168981B2 (en) 2019-02-08 2022-11-10 学校法人同志社 Voltage drop estimation method and voltage drop estimation device
WO2021131958A1 (en) * 2019-12-27 2021-07-01 東洋システム株式会社 Simulated battery construction method and simulated battery construction device
JP2021108246A (en) * 2019-12-27 2021-07-29 東洋システム株式会社 Simulated battery construction method and simulated battery construction device
KR20210120059A (en) * 2019-12-27 2021-10-06 도요시스템 가부시키가이샤 Simulation battery construction method and simulation battery construction device
KR102646875B1 (en) * 2019-12-27 2024-03-12 도요시스템 가부시키가이샤 Mock cell construction method and mock cell construction device

Also Published As

Publication number Publication date
JP6035028B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
Wang et al. A novel system for measuring alternating current impedance spectra of series-connected lithium-ion batteries with a high-power dual active bridge converter and distributed sampling units
JP5303528B2 (en) Parameter estimation device using filter
JP7172838B2 (en) battery monitor
JP5850492B2 (en) Battery system and battery evaluation method
JP5751207B2 (en) Battery DC resistance evaluation device
CN109690337A (en) The diagnostic method of battery, the diagnostic program of battery, cell managing device and accumulating system
US11644512B2 (en) Battery monitoring device
KR20140066361A (en) Method for estimating of battery's state by measuring battery impedence and battery management apparatus
JPWO2014073208A1 (en) Method for detecting state of power storage device
KR20150019190A (en) Method of Estimating Battery Stste-Of-Charge and Apparatus therefor the same
JP6035028B2 (en) Battery characteristics deriving device
KR20200050950A (en) Electrical architecture for electrochemical impedance spectroscopy
JP2010230469A (en) Device and method for determining state of health of secondary battery
JP2018096803A (en) Internal resistance calculation device, method for calculating internal resistance, and internal resistance calculation program
JP2014106119A (en) Ac impedance measuring device
JP2023086798A (en) Battery monitoring device
JP2017090152A (en) Internal resistance computing device, computer program, and internal resistance computing method
TW201128209A (en) Method of estimating battery residual capacity and system using the same
US20190391211A1 (en) Method and Arrangement for Determining the State of Charge and the State of Health of an Electrical Energy Store
JP2014016254A (en) Cell voltage monitoring device
Gadoue et al. Electrochemical impedance spectroscopy state of charge measurement for batteries using power converter modulation
JP2006038494A (en) Remaining capacity arithmetic unit for electric power storage device
CN110967559A (en) Insulation detection circuit, method and battery management system
US20240230770A9 (en) Battery measurement method and apparatus
JP2014106038A (en) Battery impedance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141022

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6035028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250