JP2005221487A - Method and instrument for measuring internal impedance of secondary battery, device for determining deterioration of secondary battery, and power source system - Google Patents

Method and instrument for measuring internal impedance of secondary battery, device for determining deterioration of secondary battery, and power source system Download PDF

Info

Publication number
JP2005221487A
JP2005221487A JP2004032553A JP2004032553A JP2005221487A JP 2005221487 A JP2005221487 A JP 2005221487A JP 2004032553 A JP2004032553 A JP 2004032553A JP 2004032553 A JP2004032553 A JP 2004032553A JP 2005221487 A JP2005221487 A JP 2005221487A
Authority
JP
Japan
Prior art keywords
secondary battery
current
internal impedance
measurement values
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004032553A
Other languages
Japanese (ja)
Other versions
JP4360621B2 (en
Inventor
Noriyasu Iwane
典靖 岩根
Yuichi Watanabe
勇一 渡辺
Toshiyuki Sato
敏幸 佐藤
Takashi Kimura
貴史 木村
Fumikazu Iwahana
史和 岩花
Katsumi Inaba
克己 稲庭
Tetsuya Kano
哲也 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004032553A priority Critical patent/JP4360621B2/en
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to EP13161594.0A priority patent/EP2613165B1/en
Priority to EP04746574A priority patent/EP1650575A4/en
Priority to CN2009101705314A priority patent/CN101639523B/en
Priority to EP11183141A priority patent/EP2472277A3/en
Priority to PCT/JP2004/009105 priority patent/WO2005015252A1/en
Priority to EP13161993.4A priority patent/EP2626716B1/en
Publication of JP2005221487A publication Critical patent/JP2005221487A/en
Priority to US11/317,286 priority patent/US7362074B2/en
Priority to US11/770,359 priority patent/US7616003B2/en
Application granted granted Critical
Publication of JP4360621B2 publication Critical patent/JP4360621B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring an internal impedance of a secondary battery capable of avoiding complicated constitution and cost-increase, by conducting Fourier-transformation using charge and discharge currents of various waveforms not having periodicity. <P>SOLUTION: In this method of measuring the internal impedance of the secondary battery in the present invention, the charge current or the discharge current serves as an input current of the secondary battery (step S102), the input current and a response voltage of the secondary battery are measured (steps S103, S104), a plurality of current measured values and voltage measured values are acquired on a time axis, the plurality of acquired current measured values and the plurality of acquired voltage measured values are Fourier-transformed respectively to find respective frequency components of the input current and the response voltage in a prescribed frequency (steps S105, S106), and a ratio of the frequency component of the input current to the frequency component of the response voltage is found to calculate the internal impedance of the secondary battery in the prescribed frequency (step S107). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、負荷に電力を供給する二次電池の内部インピーダンスを測定する方法及び装置等の技術分野に関するものである。   The present invention relates to a technical field such as a method and apparatus for measuring the internal impedance of a secondary battery that supplies power to a load.

従来から、自動車等に搭載される鉛蓄電池等の二次電池に関し、その内部インピーダンスを測定する技術が提案されている(例えば、特許文献1参照)。一般に、二次電池の内部インピーダンスを測定することにより、二次電池の劣化状態を判別できるので、重要度の高い技術となっている。二次電池の内部インピーダンスは、充電又は放電を行っていない状態で、二次電池に流れる電流及び応答電圧をそれぞれ検出し、両者を用いて所定の演算を行うことにより求めることができる。   Conventionally, a technique for measuring the internal impedance of a secondary battery such as a lead storage battery mounted in an automobile or the like has been proposed (see, for example, Patent Document 1). In general, the degradation state of the secondary battery can be determined by measuring the internal impedance of the secondary battery, which is a highly important technique. The internal impedance of the secondary battery can be obtained by detecting the current flowing through the secondary battery and the response voltage in a state where charging or discharging is not performed, and performing a predetermined calculation using both.

上記特許文献1には、二次電池の内部インピーダンスを測定する方法として、一定周波数の放電電流を二次電池に印加し、放電電流波形と応答電圧波形をフーリエ変換することにより内部インピーダンスを求める方法が提案されている。かかる方法により、比較的高い精度で二次電池の内部インピーダンスを求めることができ、二次電池の劣化状態を的確に判定することができる。
特開平10−56744
In Patent Document 1, as a method of measuring the internal impedance of a secondary battery, a method of obtaining internal impedance by applying a discharge current of a constant frequency to the secondary battery and Fourier transforming the discharge current waveform and the response voltage waveform. Has been proposed. By this method, the internal impedance of the secondary battery can be obtained with relatively high accuracy, and the deterioration state of the secondary battery can be accurately determined.
JP-A-10-56744

しかしながら、特許文献1に開示された方法は、二次電池に一定周波数のパルス電流を印加するものである。そのため、一定周波数のパルス電流を生成するための回路を設ける必要があり、構成の複雑化とコストの上昇を招く。また、二次電池の内部インピーダンスを求める際に周期的なパルス電流を二次電池に流すことは、本来は不要な充放電を繰り返す可能性があり、二次電池の消耗を大きくする恐れもある。   However, the method disclosed in Patent Document 1 applies a pulse current having a constant frequency to the secondary battery. For this reason, it is necessary to provide a circuit for generating a pulse current having a constant frequency, resulting in a complicated configuration and an increase in cost. In addition, when the internal impedance of the secondary battery is determined, flowing a periodic pulse current through the secondary battery may cause unnecessary repeated charge and discharge, which may increase the consumption of the secondary battery. .

そこで、本発明はこれらの問題を解決するためになされたものであり、二次電池の内部インピーダンスを測定する際、周期性を持たない多様な波形を持つ充放電電流を二次電池に流した状態で入力電流と応答電圧のフーリエ変換を行って内部インピーダンスを測定するようにしたので、複雑な構成やコストの上昇を回避するとともに二次電池の消耗を抑えることが可能な二次電池の内部インピーダンス測定方法等を提供することを目的としている。   Therefore, the present invention has been made to solve these problems. When measuring the internal impedance of a secondary battery, charging and discharging currents having various waveforms having no periodicity were passed through the secondary battery. Since the internal impedance is measured by performing Fourier transform of the input current and response voltage in the state, the inside of the secondary battery that can avoid the complicated configuration and cost increase and suppress the consumption of the secondary battery The object is to provide an impedance measurement method and the like.

上記課題を解決するために、請求項1に記載の二次電池の内部インピーダンス測定方法は、充電電流又は放電電流を二次電池の入力電流とし、前記二次電池の入力電流と応答電圧を測定し、時間軸上で複数の電流測定値及び電圧測定値を取得し、前記取得された複数の電流測定値及び複数の電圧測定値をそれぞれフーリエ変換することにより、所定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分を求め、前記入力電流の周波数成分と前記応答電圧の周波数成分の比をとって前記所定周波数における前記二次電池の内部インピーダンスを算出することを特徴とする。   In order to solve the above problem, the internal impedance measuring method of the secondary battery according to claim 1, wherein the charging current or discharging current is used as the input current of the secondary battery, and the input current and response voltage of the secondary battery are measured. And acquiring a plurality of current measurement values and voltage measurement values on a time axis, and performing a Fourier transform on the acquired plurality of current measurement values and voltage measurement values, respectively, and Each frequency component of the response voltage is obtained, and an internal impedance of the secondary battery at the predetermined frequency is calculated by taking a ratio between the frequency component of the input current and the frequency component of the response voltage.

この発明によれば、二次電池の充放電を行っている際に、充放電電流を二次電池に流しつつ、フーリエ変換により入力電流と応答電圧の各周波数成分を求め、それにより二次電池の内部インピーダンスを算出するようにしたので、充放電回路以外の電流発生器や複雑な制御が不要となり、全体の構成を簡素化してコストの低減を図ることができる。また、フーリエ変換を用いるため、一定周波数のパルス電流を用いる必要はなく、通常の充放電電流を二次電池に流しつつ内部インピーダンスを測定できるので、制御が簡単になるとともに、不要なパルス電流を印加することによる二次電池の消耗を防止することができる。   According to the present invention, when charging / discharging the secondary battery, the frequency components of the input current and the response voltage are obtained by Fourier transform while flowing the charging / discharging current to the secondary battery, thereby the secondary battery. Since the internal impedance is calculated, a current generator other than the charge / discharge circuit and complicated control are not required, and the overall configuration can be simplified and the cost can be reduced. In addition, since the Fourier transform is used, it is not necessary to use a pulse current with a constant frequency, and the internal impedance can be measured while flowing a normal charge / discharge current to the secondary battery. The consumption of the secondary battery due to the application can be prevented.

請求項2に記載の二次電池の内部インピーダンス測定方法は、請求項1に記載の発明において、前記複数の電流測定値及び前記複数の電圧測定値は、それぞれ所定の時間間隔ΔtでサンプリングされたN個の測定値からなり、前記所定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分は、離散フーリエ変換により求められることを特徴とする。   The internal impedance measuring method of the secondary battery according to claim 2 is the invention according to claim 1, wherein the plurality of current measurement values and the plurality of voltage measurement values are each sampled at a predetermined time interval Δt. It consists of N measurement values, and each frequency component of the input current and the response voltage at the predetermined frequency is obtained by a discrete Fourier transform.

この発明によれば、上述の発明の作用に加えて、二次電池の入力電流と応答電圧をそれぞれサンプリングし、電流測定値及び電圧測定値をそれぞれ複数取得して離散フーリエ変換を適用するので、比較的簡単な演算処理により二次電池の内部インピーダンスを算出することができ、全体の構成及び制御を簡素化することができる。   According to the present invention, in addition to the operation of the above-described invention, the input current and the response voltage of the secondary battery are sampled, the current measurement values and the voltage measurement values are respectively acquired, and the discrete Fourier transform is applied. The internal impedance of the secondary battery can be calculated by relatively simple arithmetic processing, and the overall configuration and control can be simplified.

請求項3に記載の二次電池の内部インピーダンス測定方法は、請求項2に記載の発明において、前記入力電流の周波数成分I(ω)及び前記応答電圧の周波数成分V(ω)は、前記所定周波数をFとし、整数n(n=0,2…N−1)に対し前記N個の電流測定値をi(n・Δt)、前記N個の電圧測定値をv(n・Δt)としたとき、   The internal impedance measuring method of the secondary battery according to claim 3 is the invention according to claim 2, wherein the frequency component I (ω) of the input current and the frequency component V (ω) of the response voltage are the predetermined values. Let the frequency be F, and for the integer n (n = 0, 2,..., N−1), the N measured current values are i (n · Δt) and the N measured voltage values are v (n · Δt). When

(ただし、ω=2πF)
によりそれぞれ求められ、前記内部インピーダンスZ(ω)は、
(However, ω = 2πF)
Respectively, and the internal impedance Z (ω) is

により算出されることを特徴とする。 It is calculated by these.

この発明によれば、上述の発明の作用に加えて、内部インピーダンスZ(ω)を明確かつ簡単な演算処理により算出できるとともに、所定周波数Fやサンプリング条件の設定によって自在に演算処理の最適化を図ることができる。   According to the present invention, in addition to the operation of the above-described invention, the internal impedance Z (ω) can be calculated by a clear and simple calculation process, and the calculation process can be freely optimized by setting the predetermined frequency F and sampling conditions. Can be planned.

請求項4に記載の二次電池の内部インピーダンス測定方法は、請求項1から請求項3のいずれかに記載の発明において、前記内部インピーダンスとして、少なくともM個の異なる周波数に対応する複数の成分を算出し、前記二次電池の等価回路に含まれるM個の回路定数を未知数とする連立方程式を前記内部インピーダンスの複数の成分に基づき解くことにより、前記M個の回路定数を算出することを特徴とする。   The internal impedance measurement method for a secondary battery according to claim 4 is the invention according to any one of claims 1 to 3, wherein the internal impedance includes a plurality of components corresponding to at least M different frequencies. The M circuit constants are calculated by calculating and solving simultaneous equations having M circuit constants included in the equivalent circuit of the secondary battery as unknowns based on a plurality of components of the internal impedance. And

この発明によれば、上述の発明の作用に加えて、内部インピーダンスの複数の周波数成分により連立方程式を解くことにより、二次電池の等価回路を構成する定数を決定でき、より複雑な解析に応用することができる。   According to the present invention, in addition to the operation of the above-described invention, the constants constituting the equivalent circuit of the secondary battery can be determined by solving simultaneous equations with a plurality of frequency components of the internal impedance, and can be applied to more complicated analysis. can do.

請求項5に記載の二次電池の内部インピーダンス測定装置は、二次電池の充電時に充電電流を供給する充電回路と、前記二次電池の放電時に放電電流を供給する放電回路と、前記充電電流又は前記放電電流を前記二次電池の入力電流とし、前記二次電池の入力電流と応答電圧を測定するセンサ手段と、前記センサ手段の測定結果に基づき時間軸上で複数の電流測定値及び電圧測定値を取得し、当該取得された複数の電流測定値及び複数の電圧測定値をそれぞれフーリエ変換することにより、所定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分を求め、前記入力電流の周波数成分と前記応答電圧の周波数成分の比をとって前記所定周波数における前記二次電池の内部インピーダンスを算出する制御手段とを備えることを特徴とする。   The internal impedance measuring device for a secondary battery according to claim 5 is a charging circuit that supplies a charging current when the secondary battery is charged, a discharging circuit that supplies a discharging current when the secondary battery is discharged, and the charging current. Alternatively, sensor means for measuring the input current and response voltage of the secondary battery using the discharge current as the input current of the secondary battery, and a plurality of current measurement values and voltages on the time axis based on the measurement results of the sensor means A measurement value is obtained, and each of the obtained current measurement value and the plurality of voltage measurement values is Fourier transformed to obtain respective frequency components of the input current and the response voltage at a predetermined frequency, and the input current Control means for calculating the internal impedance of the secondary battery at the predetermined frequency by taking a ratio of the frequency component of the response voltage and the frequency component of the response voltage. And butterflies.

請求項6に記載の二次電池の内部インピーダンス測定装置は、請求項5に記載の発明において、前記制御手段は、前記複数の電流測定値及び前記複数の電圧測定値として、それぞれ所定の時間間隔ΔtでサンプリングされたN個の測定値を取得し、前記所定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分を離散フーリエ変換により求めることを特徴とする。   The internal impedance measuring device for a secondary battery according to claim 6 is the invention according to claim 5, wherein the control means is configured to each of the plurality of current measurement values and the plurality of voltage measurement values as predetermined time intervals. N measurement values sampled at Δt are acquired, and respective frequency components of the input current and the response voltage at the predetermined frequency are obtained by discrete Fourier transform.

請求項7に記載の二次電池劣化判定装置は、請求項5又は請求項6に記載の二次電池の内部インピーダンス測定装置によって算出された内部インピーダンスに基づき前記二次電池の劣化状態を判定することを特徴とする。   The secondary battery deterioration determination device according to claim 7 determines the deterioration state of the secondary battery based on the internal impedance calculated by the internal impedance measurement device of the secondary battery according to claim 5 or 6. It is characterized by that.

請求項8に記載の電源システムは、請求項5又は請求項6に記載の二次電池の内部インピーダンス測定装置を備えている。   The power supply system of Claim 8 is provided with the internal impedance measuring apparatus of the secondary battery of Claim 5 or Claim 6.

本発明によれば、二次電池の内部インピーダンスを測定する際、充電時又は放電時において入力電流と応答電圧を測定し、フーリエ変換を行うことにより所定周波数における二次電池の内部インピーダンスを算出するようにしたので、特別な電流発生器を設けることや周期的な波形の電流を用いることはいずれも不要となる。よって、構成の簡素化及び低コスト化の面で有益であって二次電池の消耗を抑えることが可能な二次電池の内部インピーダンス測定装置等を実現することが可能となる。   According to the present invention, when measuring the internal impedance of the secondary battery, the input current and the response voltage are measured during charging or discharging, and the internal impedance of the secondary battery at a predetermined frequency is calculated by performing Fourier transform. Thus, it is not necessary to provide a special current generator or use a current having a periodic waveform. Therefore, it is possible to realize a secondary battery internal impedance measuring device or the like that is beneficial in terms of simplification of configuration and cost reduction and that can suppress the consumption of the secondary battery.

以下、本発明を実施するための最良の形態を図面に基づいて説明する。ここでは、二次電池の内部インピーダンスを測定する機能を備えた電源システムに対して本発明を適用する場合を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. Here, the case where this invention is applied with respect to the power supply system provided with the function to measure the internal impedance of a secondary battery is demonstrated.

図1は、本実施形態に係る電源システムの概略の構成を示すブロック図である。図1においては、二次電池10と、電流センサ11と、電圧センサ12と、制御部13と、記憶部14と、充電回路15と、放電回路16を含んで電源システムが構成され、二次電池10から各種の負荷20に電力を供給する構成になっている。   FIG. 1 is a block diagram illustrating a schematic configuration of a power supply system according to the present embodiment. In FIG. 1, a power supply system is configured including a secondary battery 10, a current sensor 11, a voltage sensor 12, a control unit 13, a storage unit 14, a charging circuit 15, and a discharging circuit 16. Electric power is supplied from the battery 10 to various loads 20.

図1の構成において、負荷20に電力を供給するための二次電池10としては、例えば、車両用の鉛蓄電池が知られている。ここで、図2に二次電池10の等価回路を示す。図2に示すように、二次電池10は、それぞれ抵抗RΩ、Rct1、Rct2、Rct3とコンデンサCd1、Cd2、Cd3が組み合わされ、正極、電解液、負極が順次接続された等価回路で表すことができる。この場合、二次電池10の内部インピーダンスは、図2における各抵抗及びコンデンサの直並列回路の構成に適合するような複素インピーダンスで表される。後述するように、図2の等価回路で表される二次電池10において、入力電流と応答電圧をそれぞれフーリエ変換し、その結果得られる所定周波数における各々の周波数成分を用いて二次電池10の内部インピーダンスを算出することができる。   In the configuration of FIG. 1, for example, a lead storage battery for a vehicle is known as the secondary battery 10 for supplying power to the load 20. Here, an equivalent circuit of the secondary battery 10 is shown in FIG. As shown in FIG. 2, the secondary battery 10 may be represented by an equivalent circuit in which resistors RΩ, Rct1, Rct2, and Rct3 are combined with capacitors Cd1, Cd2, and Cd3, and a positive electrode, an electrolyte, and a negative electrode are sequentially connected. it can. In this case, the internal impedance of the secondary battery 10 is represented by a complex impedance that matches the configuration of the series-parallel circuit of each resistor and capacitor in FIG. As will be described later, in the secondary battery 10 represented by the equivalent circuit of FIG. 2, the input current and the response voltage are each subjected to Fourier transform, and each frequency component at a predetermined frequency obtained as a result is used. The internal impedance can be calculated.

次に、図1において、電流センサ11は、二次電池10を流れる電流を検出して、制御部13に電流値を送出する。また、電圧センサ12は、二次電池10の両端の電圧を検出して、制御部13に電圧値を送出する。これら電流センサ11と電圧センサ12は、本発明のセンサ手段として機能する。   Next, in FIG. 1, the current sensor 11 detects a current flowing through the secondary battery 10 and sends a current value to the control unit 13. The voltage sensor 12 detects the voltage across the secondary battery 10 and sends the voltage value to the control unit 13. These current sensor 11 and voltage sensor 12 function as sensor means of the present invention.

本発明の制御手段として機能する制御部13は、CPUにより構成され、電源システム全体の動作を制御するとともに、所定のタイミングで後述の内部インピーダンス算出のために必要な演算処理を実行し、求めた内部インピーダンスを車両の制御装置等に送出する。そして、制御部13に接続された記憶部14は、制御プログラム等の各種プログラムを予め記憶するROMや、制御部13による処理に必要なデータを一時的に記憶するRAMなどを含んでいる。   The control unit 13 that functions as a control unit of the present invention is configured by a CPU, controls the operation of the entire power supply system, and executes calculation processing necessary for calculating internal impedance described later at a predetermined timing. The internal impedance is sent to the vehicle control device. The storage unit 14 connected to the control unit 13 includes a ROM that stores various programs such as a control program in advance, a RAM that temporarily stores data necessary for processing by the control unit 13, and the like.

充電回路15は、二次電池10の充電動作を行うときに充電電流を供給する回路である。また、放電回路16は、二次電池10の放電動作を行うときに二次電池10から負荷20に流れる放電電流を供給する回路である。これらの充電回路15及び放電回路16は、制御部15によって制御され、充電動作時は充電回路15がオンの状態となり、放電動作時は放電回路16がオンの状態となる。   The charging circuit 15 is a circuit that supplies a charging current when the secondary battery 10 is charged. The discharge circuit 16 is a circuit that supplies a discharge current that flows from the secondary battery 10 to the load 20 when the secondary battery 10 is discharged. The charging circuit 15 and the discharging circuit 16 are controlled by the control unit 15, and the charging circuit 15 is turned on during the charging operation, and the discharging circuit 16 is turned on during the discharging operation.

本実施形態においては、充電回路15から供給される充電電流と放電回路16を経由して負荷20に供給される放電電流は、いずれも多様な波形を用いることができる。すなわち、後述の演算処理に際してフーリエ展開ではなくフーリエ変換を施すので、一定周波数のパルス波形に制約されることなく、周期性を持たない多様な波形を用いてフーリエ変換の計算を行うことができる。ただし、放電電流又は充電電流に対するフーリエ変換の計算精度を高めるには、求める周波数成分を十分に含む波形パターンを用いることが好ましい。後述するように周波数が20Hz程度に設定されることから、波形の時間的な変化が多い充電電流又は放電電流を用いることにより、計算精度を高めることができる。   In the present embodiment, the charging current supplied from the charging circuit 15 and the discharging current supplied to the load 20 via the discharging circuit 16 can use various waveforms. That is, since Fourier transform is performed instead of Fourier expansion in the arithmetic processing described later, the Fourier transform can be calculated using various waveforms having no periodicity without being restricted by a pulse waveform having a constant frequency. However, in order to increase the calculation accuracy of the Fourier transform for the discharge current or the charge current, it is preferable to use a waveform pattern that sufficiently includes the required frequency component. Since the frequency is set to about 20 Hz as will be described later, the calculation accuracy can be improved by using a charging current or a discharging current whose waveform changes with time.

次に、本実施形態に係る電源システムにおいて二次電池10の内部インピーダンスを測定する際の具体的な処理を説明する。図3は、主に制御部13が記憶部14に保持される制御プログラムに基づき実行する処理の流れを示すフローチャートである。図3に示す演算処理は、電源システムにおいて二次電池10の充電又は放電を実行している際に所定のタイミングで実行開始される。   Next, specific processing when measuring the internal impedance of the secondary battery 10 in the power supply system according to the present embodiment will be described. FIG. 3 is a flowchart showing a flow of processing mainly executed by the control unit 13 based on a control program held in the storage unit 14. The arithmetic processing shown in FIG. 3 is started at a predetermined timing when the secondary battery 10 is being charged or discharged in the power supply system.

図3において、電源システムにおける処理が開始されると、制御部13による演算に必要なパラメータの初期設定を行う(ステップS101)。ステップS101の初期設定の対象となるパラメータとしては、複数の電流測定値及び電圧測定値を取得する際のサンプリング間隔Δt及びサンプリング個数N、内部インピーダンス測定における所定の基準周波数Fなどがある。   In FIG. 3, when processing in the power supply system is started, parameters necessary for calculation by the control unit 13 are initialized (step S101). Parameters to be initially set in step S101 include sampling interval Δt and sampling number N when acquiring a plurality of current measurement values and voltage measurement values, a predetermined reference frequency F in internal impedance measurement, and the like.

ステップS101においては、例えば、Δt=0.001(秒)、N=100(個)、F=20(Hz)などの初期設定値を用いればよい。なお、二次電池10の特性に応じた適切な固定的な初期設定値を予め定めておくこともできるが、動作状況等に応じて初期設定値を適宜に変更できるようにしてもよい。   In step S101, for example, initial setting values such as Δt = 0.001 (seconds), N = 100 (pieces), F = 20 (Hz) may be used. Note that an appropriate fixed initial setting value according to the characteristics of the secondary battery 10 can be determined in advance, but the initial setting value may be changed as appropriate according to the operation state or the like.

次に、二次電池10の充電動作又は放電動作の開始の有無を判断する(ステップS102)。電源システムによって、充電動作時に測定するか、放電動作時に測定するかは異なる。機器或いは装置の使用時にある程度の電力を常に負荷に供給する電源システムの場合には充電動作時に測定するのが望ましい場合が多い。また、電源システムによっては予め充電と放電のタイミングが設定されている場合もある。その場合には充電或いは放電のタイミングに達しているかどうかをS102にて判断する。   Next, it is determined whether or not the secondary battery 10 is started to be charged or discharged (step S102). Depending on the power supply system, the measurement is different during the charging operation or during the discharging operation. In the case of a power supply system that always supplies a certain amount of power to a load during use of a device or apparatus, it is often desirable to measure during a charging operation. Depending on the power supply system, the charging and discharging timings may be set in advance. In that case, it is determined in S102 whether the timing of charging or discharging has been reached.

ステップS102で充電動作又は放電動作の開始が有りと判断された場合、続いて、二次電池10の入力電流と応答電圧の測定を開始し(ステップS103)ステップS101で設定された条件にて測定を行う(ステップS104)。具体的には、電流センサ11により二次電池10の入力電流を検出し、サンプリング間隔ΔtでN個の電流測定値を順次取得すると同時に、電圧センサ12により二次電池20の応答電圧を検出し、サンプリング間隔ΔtでN個の電圧検出値を順次取得する。これにより、時間軸上で、二次電池10の入力電流に対応するN個の電流測定値と、二次電池10の応答電圧に対応するN個の電圧測定値が得られることになる。   If it is determined in step S102 that the charging operation or discharging operation is started, then measurement of the input current and response voltage of the secondary battery 10 is started (step S103). Measurement is performed under the conditions set in step S101. Is performed (step S104). Specifically, the input current of the secondary battery 10 is detected by the current sensor 11 and N current measurement values are sequentially acquired at the sampling interval Δt, and at the same time, the response voltage of the secondary battery 20 is detected by the voltage sensor 12. The N voltage detection values are sequentially acquired at the sampling interval Δt. As a result, N current measurement values corresponding to the input current of the secondary battery 10 and N voltage measurement values corresponding to the response voltage of the secondary battery 10 are obtained on the time axis.

ここで、入力電流の時間関数をi(t)、応答電圧の時間関数をv(t)と表したとき、0,2,3,〜N−1の範囲で変化する整数nを用いて、ステップS104で得られた電流測定値はi(n・Δt)と表すことができ、電圧測定値はv(n・Δt)と表すことができる。   Here, when the time function of the input current is represented by i (t) and the time function of the response voltage is represented by v (t), an integer n that varies in the range of 0, 2, 3, to N−1 is used. The measured current value obtained in step S104 can be expressed as i (n · Δt), and the measured voltage value can be expressed as v (n · Δt).

次に、ステップS104で得られたN個の電流測定値を用いて、基準周波数Fにおける入力電流の周波数成分を計算する(ステップS105)。同様に、ステップS104で得られたN個の電圧測定値を用いて、基準周波数Fにおける応答電圧の周波数成分を計算する(ステップS106)。   Next, the frequency component of the input current at the reference frequency F is calculated using the N current measurement values obtained in step S104 (step S105). Similarly, the frequency component of the response voltage at the reference frequency F is calculated using the N voltage measurement values obtained in step S104 (step S106).

一般に、任意の時間関数y(t)をフーリエ変換することにより、次の(1)式で表される周波数成分Y(ω)を求めることができる。   In general, the frequency component Y (ω) represented by the following equation (1) can be obtained by Fourier transforming an arbitrary time function y (t).

ただし、ω=2πf(f:周波数)
従って、二次電池10の入力電流をフーリエ変換したときの周波数成分I(ω)は、時間関数i(t)を用いて次の(2)式にように表すことができる。
However, ω = 2πf (f: frequency)
Therefore, the frequency component I (ω) when the input current of the secondary battery 10 is Fourier transformed can be expressed as the following equation (2) using the time function i (t).

また、二次電池10の応答電圧をフーリエ変換したときの周波数成分V(ω)は、時間関数v(t)を用いて次の(3)式にように表すことができる。 Further, the frequency component V (ω) when the response voltage of the secondary battery 10 is Fourier-transformed can be expressed as the following equation (3) using the time function v (t).

そして、実際にステップS104の計算を行う場合は、(2)式の時間関数i(t)に対応するN個の電流測定値i(n・Δt)を用いた離散フーリエ変換を行い、次の(4)式のように、基準周波数Fにおける入力電流の周波数成分I(ω)を計算する。 When the calculation in step S104 is actually performed, a discrete Fourier transform is performed using N current measurement values i (n · Δt) corresponding to the time function i (t) in equation (2), and As shown in the equation (4), the frequency component I (ω) of the input current at the reference frequency F is calculated.

ただし、ω=2πF(F:基準周波数)
同様に、実際にステップS105の計算を行う場合は、(3)式の時間関数v(t)に対応するN個の電流測定値v(n・Δt)を用いた離散フーリエ変換を行い、次の(5)式のように、基準周波数Fにおける応答電圧の周波数成分V(ω)を計算する。
However, ω = 2πF (F: reference frequency)
Similarly, when the calculation of step S105 is actually performed, a discrete Fourier transform is performed using N current measurement values v (n · Δt) corresponding to the time function v (t) in equation (3), and As shown in equation (5), the frequency component V (ω) of the response voltage at the reference frequency F is calculated.

ただし、ω=2πF(F:基準周波数)
そして、上述の(4)式及び(5)式の計算結果に基づいて、基準周波数Fにおける二次電池10の内部インピーダンスZ(ω)を算出する(ステップS107)。すなわち、入力電流の周波数成分I(ω)と応答電圧の周波数成分V(ω)の比をとり、次の(6)式に従って、基準周波数Fにおける内部インピーダンスZ(ω)を求めればよい。
However, ω = 2πF (F: reference frequency)
Then, the internal impedance Z (ω) of the secondary battery 10 at the reference frequency F is calculated based on the calculation results of the above expressions (4) and (5) (step S107). That is, the ratio of the frequency component I (ω) of the input current and the frequency component V (ω) of the response voltage is taken, and the internal impedance Z (ω) at the reference frequency F may be obtained according to the following equation (6).

ただし、ω=2πF(F:基準周波数)
なお、(6)式で求める内部インピーダンスZ(ω)は、実数部を算出してもよいが、虚数部や絶対値を算出することも可能である。
However, ω = 2πF (F: reference frequency)
Note that the internal impedance Z (ω) obtained by equation (6) may be calculated as a real part, but it is also possible to calculate an imaginary part or an absolute value.

上記(6)式に従って算出される内部インピーダンスZ(ω)は、例えば、F=20(Hz)に対応する1成分のみを求めてもよいが、複数の周波数に対応する複数成分を求めてもよい。つまり、予めM個の周波数F1、F2、〜FMを設定し、それぞれについて(6)式の計算を行い、M個の内部インピーダンスZ1、Z2、〜ZMを求めてもよい。この場合、M個の内部インピーダンスの算出結果を用いれば、M個の未知数を含む連立方程式を解くことができる。例えば、図2に示す二次電池10の等価回路においてM個の回路定数を未知数とする連立方程式を立て、M個の内部インピーダンスの算出結果を代入して、回路定数を決定することもできる。   For the internal impedance Z (ω) calculated according to the above equation (6), for example, only one component corresponding to F = 20 (Hz) may be obtained, or a plurality of components corresponding to a plurality of frequencies may be obtained. Good. That is, M frequencies F1, F2,... FM may be set in advance, and calculation of equation (6) may be performed for each of them to obtain M internal impedances Z1, Z2,. In this case, simultaneous equations including M unknowns can be solved by using the calculation results of M internal impedances. For example, in the equivalent circuit of the secondary battery 10 shown in FIG. 2, it is possible to establish a simultaneous equation with M circuit constants as unknowns and substitute the calculation results of M internal impedances to determine the circuit constants.

図3に示す処理に基づき得られた内部インピーダンスは、例えば、電源システムにおいて二次電池10の劣化状態を検知する際に用いられる。一般に二次電池10の内部インピーダンスは、二次電池10の劣化状態と強い相関があるので、内部インピーダンスの測定結果に基づき二次電池10の劣化の度合を判断することができる。   The internal impedance obtained based on the processing shown in FIG. 3 is used, for example, when detecting the deterioration state of the secondary battery 10 in the power supply system. In general, since the internal impedance of the secondary battery 10 is strongly correlated with the deterioration state of the secondary battery 10, the degree of deterioration of the secondary battery 10 can be determined based on the measurement result of the internal impedance.

図4は、二次電池10の内部インピーダンスと劣化状態の関係を説明する図である。図4においては、二次電池10の長期間の劣化試験を行った際、二次電池10の内部インピーダンスの変化と二次電池10の放電電圧の変化をそれぞれ示している。図4の劣化試験では、内部インピーダンスは25℃で測定し、放電電圧は入力電流の大小2種(10A、25A)について−30°で放電開始から10秒後に測定したものである。   FIG. 4 is a diagram for explaining the relationship between the internal impedance of the secondary battery 10 and the deterioration state. FIG. 4 shows changes in the internal impedance of the secondary battery 10 and changes in the discharge voltage of the secondary battery 10 when a long-term deterioration test of the secondary battery 10 is performed. In the deterioration test of FIG. 4, the internal impedance was measured at 25 ° C., and the discharge voltage was measured at −30 ° for two types of input currents (10A and 25A) at 10 seconds after the start of discharge.

図4に示すように、二次電池10の内部インピーダンスは、初期状態においては安定しているが、時間経過が30〜35週の付近から増加している。一方、二次電池10の放電電圧は、時間経過が35週を過ぎる頃から急激に低下しており、大きく劣化することがわかる。また、入力電流が大きい方が二次電池10の劣化の度合も大きくなる。このような試験結果から、二次電池10の使用時間は35〜40週に達する頃に限界に達する。   As shown in FIG. 4, the internal impedance of the secondary battery 10 is stable in the initial state, but the elapsed time has increased from around 30 to 35 weeks. On the other hand, it can be seen that the discharge voltage of the secondary battery 10 has been drastically reduced since the passage of time has passed 35 weeks, and is greatly deteriorated. Further, the degree of deterioration of the secondary battery 10 increases as the input current increases. From such a test result, the usage time of the secondary battery 10 reaches a limit when it reaches 35 to 40 weeks.

図4に示すような劣化状態の変化に基づいて、上述のように算出した内部インピーダンスが大きくなることを監視し、二次電池10の劣化状態を把握することが可能である。例えば、算出した内部インピーダンスが所定の設定値を超えたとき、二次電池10が劣化状態にあると判定し、ユーザに二次電池10の交換を促すような表示を行えばよい。   Based on the change in the deterioration state as shown in FIG. 4, it is possible to monitor the increase in the internal impedance calculated as described above and grasp the deterioration state of the secondary battery 10. For example, when the calculated internal impedance exceeds a predetermined set value, it may be determined that the secondary battery 10 is in a deteriorated state, and a display that prompts the user to replace the secondary battery 10 may be performed.

以上説明したように本発明によれば、二次電池10の内部インピーダンスを測定する際、充電回路15から供給される充電電流、あるいは放電回路16から供給される放電電流をそのまま利用するようにしたので、特別な電流発生器や動作制御に伴う処理が不要となり、電源システム全体の構成及び制御の簡素化及びコスト低減の面で効果が大きい。この場合、内部インピーダンスの算出にフーリエ変換の手法を用いるので、充電電流又は放電電流は周期的なパルス波形を用いる必要がなく、測定の自由度を高め、付加的な回路構成が不要となる。また、二次電池10の通常の充電動作中又は放電動作中に内部インピーダンスを測定するので、二次電池10に不要な電流印加を繰り返す必要がなく、二次電池10の消耗を防止することができる。   As described above, according to the present invention, when the internal impedance of the secondary battery 10 is measured, the charging current supplied from the charging circuit 15 or the discharging current supplied from the discharging circuit 16 is used as it is. This eliminates the need for a special current generator and processing associated with operation control, and is advantageous in terms of simplifying the configuration and control of the entire power supply system and reducing costs. In this case, since the Fourier transform method is used to calculate the internal impedance, it is not necessary to use a periodic pulse waveform for the charging current or the discharging current, increasing the degree of freedom in measurement and eliminating the need for an additional circuit configuration. Further, since the internal impedance is measured during the normal charging operation or discharging operation of the secondary battery 10, it is not necessary to repeatedly apply unnecessary current to the secondary battery 10, and the secondary battery 10 can be prevented from being consumed. it can.

本実施形態に係る電源システムの概略の構成を示すブロック図である。It is a block diagram which shows the structure of the outline of the power supply system which concerns on this embodiment. 二次電池の等価回路を示す図である。It is a figure which shows the equivalent circuit of a secondary battery. 本実施形態に係る電源システムにおいて二次電池の内部インピーダンスを測定する際の具体的な処理を説明するフローチャートである。It is a flowchart explaining the specific process at the time of measuring the internal impedance of a secondary battery in the power supply system which concerns on this embodiment. 二次電池の内部インピーダンスと劣化状態の関係を説明する図である。It is a figure explaining the relationship between the internal impedance of a secondary battery, and a deterioration state.

符号の説明Explanation of symbols

10…二次電池
11…電流センサ
12…電圧センサ
13…制御部
14…記憶部
15…充電回路
16…放電回路
20…負荷
DESCRIPTION OF SYMBOLS 10 ... Secondary battery 11 ... Current sensor 12 ... Voltage sensor 13 ... Control part 14 ... Memory | storage part 15 ... Charge circuit 16 ... Discharge circuit 20 ... Load

Claims (8)

充電電流又は放電電流を二次電池の入力電流とし、前記二次電池の入力電流と応答電圧を測定し、時間軸上で複数の電流測定値及び電圧測定値を取得し、
前記取得された複数の電流測定値及び複数の電圧測定値をそれぞれフーリエ変換することにより、所定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分を求め、
前記入力電流の周波数成分と前記応答電圧の周波数成分の比をとって前記所定周波数における前記二次電池の内部インピーダンスを算出することを特徴とする二次電池の内部インピーダンス測定方法。
The charging current or discharging current is set as the input current of the secondary battery, the input current and the response voltage of the secondary battery are measured, and a plurality of current measurement values and voltage measurement values are obtained on the time axis,
Each of the obtained current measurement values and the plurality of voltage measurement values is subjected to Fourier transform to obtain respective frequency components of the input current and the response voltage at a predetermined frequency,
A method for measuring internal impedance of a secondary battery, wherein an internal impedance of the secondary battery at the predetermined frequency is calculated by taking a ratio of a frequency component of the input current and a frequency component of the response voltage.
前記複数の電流測定値及び前記複数の電圧測定値は、それぞれ所定の時間間隔ΔtでサンプリングされたN個の測定値からなり、
前記所定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分は、離散フーリエ変換により求められることを特徴とする請求項1に記載の二次電池の内部インピーダンス測定方法。
The plurality of current measurement values and the plurality of voltage measurement values are each composed of N measurement values sampled at a predetermined time interval Δt,
The method for measuring internal impedance of a secondary battery according to claim 1, wherein frequency components of the input current and the response voltage at the predetermined frequency are obtained by discrete Fourier transform.
前記入力電流の周波数成分I(ω)及び前記応答電圧の周波数成分V(ω)は、前記所定周波数をFとし、整数n(n=0,2…N−1)に対し前記N個の電流測定値をi(n・Δt)、前記N個の電圧測定値をv(n・Δt)としたとき、
(ただし、ω=2πF)
によりそれぞれ求められ、前記内部インピーダンスZ(ω)は、
により算出されることを特徴とする請求項2に記載の二次電池の内部インピーダンス測定方法。
The frequency component I (ω) of the input current and the frequency component V (ω) of the response voltage have the predetermined frequency F, and the N currents for an integer n (n = 0, 2,... N−1). When the measured value is i (n · Δt) and the N voltage measured values are v (n · Δt),
(However, ω = 2πF)
Respectively, and the internal impedance Z (ω) is
The internal impedance measurement method for a secondary battery according to claim 2, wherein
前記内部インピーダンスとして、少なくともM個の異なる周波数に対応する複数の成分を算出し、前記二次電池の等価回路に含まれるM個の回路定数を未知数とする連立方程式を前記内部インピーダンスの複数の成分に基づき解くことにより、前記M個の回路定数を算出することを特徴とする請求項1から請求項3のいずれかに記載の二次電池の内部インピーダンス測定方法。   As the internal impedance, a plurality of components corresponding to at least M different frequencies are calculated, and simultaneous equations having M circuit constants included in the equivalent circuit of the secondary battery as unknowns are expressed as a plurality of components of the internal impedance. The method of measuring the internal impedance of the secondary battery according to claim 1, wherein the M circuit constants are calculated by solving based on: 二次電池の充電時に充電電流を供給する充電回路と、
前記二次電池の放電時に放電電流を供給する放電回路と、
前記充電電流又は前記放電電流を前記二次電池の入力電流とし、前記二次電池の入力電流と応答電圧を測定するセンサ手段と、
前記センサ手段の測定結果に基づき時間軸上で複数の電流測定値及び電圧測定値を取得し、当該取得された複数の電流測定値及び複数の電圧測定値をそれぞれフーリエ変換することにより、所定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分を求め、前記入力電流の周波数成分と前記応答電圧の周波数成分の比をとって前記所定周波数における前記二次電池の内部インピーダンスを算出する制御手段と、
を備えることを特徴とする二次電池の内部インピーダンス測定装置。
A charging circuit for supplying a charging current when charging the secondary battery;
A discharge circuit for supplying a discharge current when the secondary battery is discharged;
Sensor means for measuring the input current and response voltage of the secondary battery using the charge current or the discharge current as the input current of the secondary battery,
A plurality of current measurement values and voltage measurement values are acquired on a time axis based on the measurement result of the sensor means, and the acquired plurality of current measurement values and voltage measurement values are respectively Fourier transformed to obtain a predetermined frequency. Control means for calculating the internal impedance of the secondary battery at the predetermined frequency by obtaining the frequency components of the input current and the response voltage of the input current and taking the ratio of the frequency component of the input current and the frequency component of the response voltage When,
A device for measuring internal impedance of a secondary battery, comprising:
前記制御手段は、前記複数の電流測定値及び前記複数の電圧測定値として、それぞれ所定の時間間隔ΔtでサンプリングされたN個の測定値を取得し、前記所定周波数における前記入力電流及び前記応答電圧のそれぞれの周波数成分を離散フーリエ変換により求めることを特徴とする請求項5に記載の二次電池の内部インピーダンス測定装置。   The control means acquires N measurement values sampled at a predetermined time interval Δt as the plurality of current measurement values and the plurality of voltage measurement values, respectively, and the input current and the response voltage at the predetermined frequency 6. The internal impedance measuring device for a secondary battery according to claim 5, wherein each of the frequency components is obtained by discrete Fourier transform. 請求項5又は請求項6に記載の二次電池の内部インピーダンス測定装置によって算出された内部インピーダンスに基づき前記二次電池の劣化状態を判定することを特徴とする二次電池劣化判定装置。   7. A secondary battery deterioration determination device, wherein the deterioration state of the secondary battery is determined based on the internal impedance calculated by the internal impedance measurement device of the secondary battery according to claim 5. 請求項5又は請求項6に記載の二次電池の内部インピーダンス測定装置を備えた電源システム。
The power supply system provided with the internal impedance measuring apparatus of the secondary battery of Claim 5 or Claim 6.
JP2004032553A 2003-06-27 2004-02-09 Secondary battery internal impedance measurement method, secondary battery internal impedance measurement device, secondary battery deterioration determination device, and power supply system Expired - Lifetime JP4360621B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2004032553A JP4360621B2 (en) 2004-02-09 2004-02-09 Secondary battery internal impedance measurement method, secondary battery internal impedance measurement device, secondary battery deterioration determination device, and power supply system
EP04746574A EP1650575A4 (en) 2003-06-27 2004-06-28 Method for judging deterioration of accumulator, method for measuring secondary cell internal impedance, device for measuring secondary cell internal impedance, device for judging deterioration of secondary cell, and power source system
CN2009101705314A CN101639523B (en) 2003-06-27 2004-06-28 Method and device for measuring internal impedance of secondary battery, method and device for determining deterioration, and power supply system
EP11183141A EP2472277A3 (en) 2003-06-27 2004-06-28 Method and device for measuring secondary cell internal impedance and judging deterioration
EP13161594.0A EP2613165B1 (en) 2003-06-27 2004-06-28 Method and device for measuring secondary cell internal impedance
PCT/JP2004/009105 WO2005015252A1 (en) 2003-06-27 2004-06-28 Method for judging deterioration of accumulator, method for measuring secondary cell internal impedance, device for measuring secondary cell internal impedance, device for judging deterioration of secondary cell, and power source system
EP13161993.4A EP2626716B1 (en) 2003-06-27 2004-06-28 Device and method for judging deterioration of accumulator / secondary cell
US11/317,286 US7362074B2 (en) 2003-06-27 2005-12-27 Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system
US11/770,359 US7616003B2 (en) 2003-06-27 2007-06-28 Method for determining deterioration of accumulator battery, method for measuring internal impedance of secondary battery, equipment for measuring internal impedance of secondary battery, equipment for determining deterioration of secondary battery, and power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004032553A JP4360621B2 (en) 2004-02-09 2004-02-09 Secondary battery internal impedance measurement method, secondary battery internal impedance measurement device, secondary battery deterioration determination device, and power supply system

Publications (2)

Publication Number Publication Date
JP2005221487A true JP2005221487A (en) 2005-08-18
JP4360621B2 JP4360621B2 (en) 2009-11-11

Family

ID=34997228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004032553A Expired - Lifetime JP4360621B2 (en) 2003-06-27 2004-02-09 Secondary battery internal impedance measurement method, secondary battery internal impedance measurement device, secondary battery deterioration determination device, and power supply system

Country Status (1)

Country Link
JP (1) JP4360621B2 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032683A (en) * 2006-06-29 2008-02-14 Hioki Ee Corp Internal resistance measuring device of battery
KR100823507B1 (en) * 2006-08-29 2008-04-21 삼성에스디아이 주식회사 Battery manegement system and the operating method thereof
WO2010093444A2 (en) * 2009-02-10 2010-08-19 National Semiconductor Corporation Magnetic state of charge sensor for a battery
WO2010096180A2 (en) * 2009-02-20 2010-08-26 National Semiconductor Corporation Adaptive energy management terminal for a battery
US20110015883A1 (en) * 2009-07-16 2011-01-20 Takahiro Yaguchi Power integrity analyzer, power integrity analysis method, and program
WO2011121975A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Power source device for vehicle
JP2012073256A (en) * 2010-09-27 2012-04-12 IFP Energies Nouvelles In-situ battery diagnosis method using electrochemical impedance spectroscopy
JP2012083142A (en) * 2010-10-07 2012-04-26 Toshiba Corp Calculation device for internal resistance of secondary battery
JP2013029411A (en) * 2011-07-28 2013-02-07 Yokogawa Electric Corp Battery impedance measuring device
JP2013029412A (en) * 2011-07-28 2013-02-07 Yokogawa Electric Corp Battery impedance measuring device
JP2013050433A (en) * 2011-07-29 2013-03-14 Yokogawa Electric Corp Battery monitoring device
JP2013088156A (en) * 2011-10-14 2013-05-13 Furukawa Electric Co Ltd:The Secondary battery state detector and secondary battery state detection method
JP2013113853A (en) * 2011-11-30 2013-06-10 Silicon Works Co Ltd Battery parameter management system and battery parameter estimation method
JP2013160613A (en) * 2012-02-03 2013-08-19 Yokogawa Electric Corp Storage battery characteristics derivation device
JP2013195232A (en) * 2012-03-19 2013-09-30 Toshiba Corp Apparatus and method for calculating internal resistance of secondary battery, apparatus and method for detecting abnormality of secondary battery, and apparatus and method for estimating deterioration in secondary battery
WO2014136593A1 (en) 2013-03-07 2014-09-12 古河電気工業株式会社 Secondary battery state detecting device and secondary battery state detecting method
WO2014141796A1 (en) 2013-03-14 2014-09-18 古河電気工業株式会社 Secondary cell state detection device and method for detecting secondary cell state
KR101445940B1 (en) 2012-12-27 2014-09-29 주식회사 포스코아이씨티 Apparatus and Method for Controlling Charging/Discharging of Battery
JP6410986B1 (en) * 2018-07-25 2018-10-24 株式会社東陽テクニカ Battery impedance evaluation apparatus and battery impedance evaluation method
JP2019528032A (en) * 2016-07-22 2019-10-03 エオス エナジー ストレージ, エルエルシー Battery management system
US10436847B2 (en) 2014-04-01 2019-10-08 Furukawa Electric Co., Ltd. Secondary battery state detection device and secondary battery state detection method
EP3617726A1 (en) 2018-08-30 2020-03-04 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
JP2020051785A (en) * 2018-09-25 2020-04-02 トヨタ自動車株式会社 Battery state estimation device
CN111856303A (en) * 2019-04-25 2020-10-30 丰田自动车株式会社 Battery resistance measuring device
CN113383338A (en) * 2019-12-27 2021-09-10 东洋系统株式会社 Analog battery construction method and analog battery construction device
US11143710B2 (en) 2016-03-29 2021-10-12 Furukawa Electric Co., Ltd. Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell
US11163010B2 (en) 2016-03-29 2021-11-02 Furukawa Electric Co., Ltd. Secondary battery deterioration estimation device and secondary battery deterioration estimation method
US11193983B2 (en) 2017-11-29 2021-12-07 Toyota Jidosha Kabushiki Kaisha Method of estimating deterioration state of secondary battery and secondary battery system
WO2022093454A1 (en) * 2020-10-30 2022-05-05 Cirrus Logic International Semiconductor Ltd. Battery model estimation based on battery terminal voltage and current transient due to load powered from the battery
US11428745B2 (en) 2017-08-23 2022-08-30 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
CN113383338B (en) * 2019-12-27 2024-04-30 东洋系统株式会社 Simulated battery construction method and simulated battery construction device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191539B1 (en) * 2010-06-30 2012-10-15 김영애 Fixing plate pott's disease for mushroom cultivation receptacle
US20150229150A1 (en) 2012-09-20 2015-08-13 Sekisui Chemical Co., Ltd. Apparatus for controlling operation of storage battery, and method and program for controlling operation of storage battery

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032683A (en) * 2006-06-29 2008-02-14 Hioki Ee Corp Internal resistance measuring device of battery
KR100823507B1 (en) * 2006-08-29 2008-04-21 삼성에스디아이 주식회사 Battery manegement system and the operating method thereof
US7847557B2 (en) 2006-08-29 2010-12-07 Samsung Sdi Co., Ltd. Battery management system and method of driving the same
WO2010093444A2 (en) * 2009-02-10 2010-08-19 National Semiconductor Corporation Magnetic state of charge sensor for a battery
WO2010093444A3 (en) * 2009-02-10 2010-11-04 National Semiconductor Corporation Magnetic state of charge sensor for a battery
WO2010096180A2 (en) * 2009-02-20 2010-08-26 National Semiconductor Corporation Adaptive energy management terminal for a battery
WO2010096180A3 (en) * 2009-02-20 2010-10-21 National Semiconductor Corporation Adaptive energy management terminal for a battery
US20110015883A1 (en) * 2009-07-16 2011-01-20 Takahiro Yaguchi Power integrity analyzer, power integrity analysis method, and program
US8583388B2 (en) * 2009-07-16 2013-11-12 Nec Corporation Power integrity analyzer, power integrity analysis method, and program
WO2011121975A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Power source device for vehicle
CN102823103A (en) * 2010-03-31 2012-12-12 松下电器产业株式会社 Power source device for vehicle
JP5799251B2 (en) * 2010-03-31 2015-10-21 パナソニックIpマネジメント株式会社 Vehicle power supply
US9071081B2 (en) 2010-03-31 2015-06-30 Panasonic Intellectual Property Management Co., Ltd. Power source device for vehicle
CN102823103B (en) * 2010-03-31 2015-03-11 松下电器产业株式会社 Power source device for vehicle
JPWO2011121975A1 (en) * 2010-03-31 2013-07-04 パナソニック株式会社 Vehicle power supply
JP2012073256A (en) * 2010-09-27 2012-04-12 IFP Energies Nouvelles In-situ battery diagnosis method using electrochemical impedance spectroscopy
JP2012083142A (en) * 2010-10-07 2012-04-26 Toshiba Corp Calculation device for internal resistance of secondary battery
JP2013029412A (en) * 2011-07-28 2013-02-07 Yokogawa Electric Corp Battery impedance measuring device
JP2013029411A (en) * 2011-07-28 2013-02-07 Yokogawa Electric Corp Battery impedance measuring device
US9164150B2 (en) 2011-07-28 2015-10-20 Yokogawa Electric Corporation Device for calculating impedances of battery cell and battery impedance measuring system
JP2013050433A (en) * 2011-07-29 2013-03-14 Yokogawa Electric Corp Battery monitoring device
JP2013088156A (en) * 2011-10-14 2013-05-13 Furukawa Electric Co Ltd:The Secondary battery state detector and secondary battery state detection method
JP2013113853A (en) * 2011-11-30 2013-06-10 Silicon Works Co Ltd Battery parameter management system and battery parameter estimation method
KR101852322B1 (en) * 2011-11-30 2018-04-27 주식회사 실리콘웍스 Management system and estimating method for battery parameter
JP2013160613A (en) * 2012-02-03 2013-08-19 Yokogawa Electric Corp Storage battery characteristics derivation device
JP2013195232A (en) * 2012-03-19 2013-09-30 Toshiba Corp Apparatus and method for calculating internal resistance of secondary battery, apparatus and method for detecting abnormality of secondary battery, and apparatus and method for estimating deterioration in secondary battery
KR101445940B1 (en) 2012-12-27 2014-09-29 주식회사 포스코아이씨티 Apparatus and Method for Controlling Charging/Discharging of Battery
WO2014136593A1 (en) 2013-03-07 2014-09-12 古河電気工業株式会社 Secondary battery state detecting device and secondary battery state detecting method
US10393820B2 (en) 2013-03-07 2019-08-27 Furukawa Electric Co., Ltd. Secondary battery state detecting device and secondary battery state detecting method
WO2014141796A1 (en) 2013-03-14 2014-09-18 古河電気工業株式会社 Secondary cell state detection device and method for detecting secondary cell state
US10466302B2 (en) 2013-03-14 2019-11-05 Furukawa Electric Co., Ltd. Secondary battery state detecting device and secondary battery state detecting method
US10436847B2 (en) 2014-04-01 2019-10-08 Furukawa Electric Co., Ltd. Secondary battery state detection device and secondary battery state detection method
US11163010B2 (en) 2016-03-29 2021-11-02 Furukawa Electric Co., Ltd. Secondary battery deterioration estimation device and secondary battery deterioration estimation method
US11143710B2 (en) 2016-03-29 2021-10-12 Furukawa Electric Co., Ltd. Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell
JP2019528032A (en) * 2016-07-22 2019-10-03 エオス エナジー ストレージ, エルエルシー Battery management system
US11368030B2 (en) 2016-07-22 2022-06-21 Eos Energy Storage Llc Battery management system
JP7030777B2 (en) 2016-07-22 2022-03-07 エオス エナジー ストレージ, エルエルシー Battery management system
US11428745B2 (en) 2017-08-23 2022-08-30 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
US11193983B2 (en) 2017-11-29 2021-12-07 Toyota Jidosha Kabushiki Kaisha Method of estimating deterioration state of secondary battery and secondary battery system
JP2020016520A (en) * 2018-07-25 2020-01-30 株式会社東陽テクニカ Battery impedance evaluation device and battery impedance evaluation method
JP6410986B1 (en) * 2018-07-25 2018-10-24 株式会社東陽テクニカ Battery impedance evaluation apparatus and battery impedance evaluation method
KR20200026739A (en) * 2018-08-30 2020-03-11 도요타 지도샤(주) Method of estimating deteriorated state of secondary battery and secondary battery system
US11009556B2 (en) 2018-08-30 2021-05-18 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
KR102292469B1 (en) 2018-08-30 2021-08-25 도요타 지도샤(주) Method of estimating deteriorated state of secondary battery and secondary battery system
EP3617726A1 (en) 2018-08-30 2020-03-04 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
JP2020051785A (en) * 2018-09-25 2020-04-02 トヨタ自動車株式会社 Battery state estimation device
JP7031545B2 (en) 2018-09-25 2022-03-08 トヨタ自動車株式会社 Battery state estimator
CN111856303A (en) * 2019-04-25 2020-10-30 丰田自动车株式会社 Battery resistance measuring device
US11137451B2 (en) 2019-04-25 2021-10-05 Toyota Jidosha Kabushiki Kaisha Battery resistance measuring device
JP2020180861A (en) * 2019-04-25 2020-11-05 トヨタ自動車株式会社 Battery resistance measuring device
CN111856303B (en) * 2019-04-25 2023-03-17 丰田自动车株式会社 Battery resistance measuring device
CN113383338A (en) * 2019-12-27 2021-09-10 东洋系统株式会社 Analog battery construction method and analog battery construction device
CN113383338B (en) * 2019-12-27 2024-04-30 东洋系统株式会社 Simulated battery construction method and simulated battery construction device
WO2022093454A1 (en) * 2020-10-30 2022-05-05 Cirrus Logic International Semiconductor Ltd. Battery model estimation based on battery terminal voltage and current transient due to load powered from the battery
GB2614011A (en) * 2020-10-30 2023-06-21 Cirrus Logic Int Semiconductor Ltd Battery model estimation based on battery terminal voltage and current transient due to load powered from the battery

Also Published As

Publication number Publication date
JP4360621B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4360621B2 (en) Secondary battery internal impedance measurement method, secondary battery internal impedance measurement device, secondary battery deterioration determination device, and power supply system
Waag et al. Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination
WO2007080802A1 (en) Battery discharge ability judging method, battery discharge ability judging device, and power supply system
KR102502106B1 (en) efficient battery tester
CN109828218B (en) Method for acquiring dynamic electrochemical impedance spectrum of battery
KR101895619B1 (en) State judging device, battery apparatus, state judging method
JP2005148056A (en) Device and method for simulating battery tester using constant resistance load
WO1999066340A1 (en) Method of and apparatus for measuring battery capacity
WO2004023579A2 (en) Battery test outputs adjusted based upon battery temperature and the state of discharge of the battery
JP2004191373A (en) Electronic battery tester
JP6227309B2 (en) Battery state detection device
US11125826B2 (en) Battery impedance measurement
JP4494904B2 (en) Secondary battery internal impedance measuring method, secondary battery internal impedance measuring apparatus and power supply system
JP2018096803A (en) Internal resistance calculation device, method for calculating internal resistance, and internal resistance calculation program
JP2010156702A (en) Method and apparatus for measuring internal impedance of secondary cell
US11029364B2 (en) Method and arrangement for determining the state of charge and the state of health of an electrical energy store
JP5625244B2 (en) Secondary battery capacity estimation device
US6788068B2 (en) Method and device for measuring pure resistance of on-vehicle battery by periodically measuring a discharge current and terminal voltage while a rush current flows into a constant load
JP2012083142A (en) Calculation device for internal resistance of secondary battery
JP5225731B2 (en) Insulation resistance measuring method and insulation resistance measuring apparatus
JP2020041917A (en) Battery state measuring method and battery state measuring device
JP2019090648A (en) Battery state measuring device and battery state measuring method
CN210015215U (en) Testing device for dynamic electrochemical impedance spectrum of battery
JP6074759B2 (en) Deterioration judgment method and degradation judgment device for lead acid battery
US20220291290A1 (en) Measurement appratus of power storage device and measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

R151 Written notification of patent or utility model registration

Ref document number: 4360621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250