JP2013195232A - Apparatus and method for calculating internal resistance of secondary battery, apparatus and method for detecting abnormality of secondary battery, and apparatus and method for estimating deterioration in secondary battery - Google Patents

Apparatus and method for calculating internal resistance of secondary battery, apparatus and method for detecting abnormality of secondary battery, and apparatus and method for estimating deterioration in secondary battery Download PDF

Info

Publication number
JP2013195232A
JP2013195232A JP2012062578A JP2012062578A JP2013195232A JP 2013195232 A JP2013195232 A JP 2013195232A JP 2012062578 A JP2012062578 A JP 2012062578A JP 2012062578 A JP2012062578 A JP 2012062578A JP 2013195232 A JP2013195232 A JP 2013195232A
Authority
JP
Japan
Prior art keywords
internal resistance
secondary battery
unit
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012062578A
Other languages
Japanese (ja)
Other versions
JP6026120B2 (en
Inventor
Koji Sakata
康治 坂田
Koji Morimoto
孝司 森本
Masahiro Tohara
正博 戸原
Asami Mizutani
麻美 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012062578A priority Critical patent/JP6026120B2/en
Publication of JP2013195232A publication Critical patent/JP2013195232A/en
Application granted granted Critical
Publication of JP6026120B2 publication Critical patent/JP6026120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide an internal resistance calculation apparatus for secondary batteries capable of improving calculation accuracy of an internal resistance value.SOLUTION: An internal resistance calculation apparatus 10 for secondary batteries includes: a voltage measuring unit 3 that is connected between a positive electrode terminal and a negative electrode terminal of each battery cell 1 constituting a secondary battery and measures an interterminal voltage; a current measuring unit 4 that is inserted into a current route and measures charge/discharge currents with respect to the battery cell 1; a control unit 6 that controls measurements in the voltage measuring unit 3 and the current measuring unit 4; and an arithmetic unit 8 that is connected to the control unit 6, performs wavelet transformation from each measurement value of the voltage measuring unit 3 and the current measuring unit 4, obtains wavelet coefficients of the current and the voltage for every frequency and calculates the internal resistance of the secondary battery from a ratio thereof.

Description

本発明の実施形態は、二次電池の内部抵抗演算装置及びその内部抵抗演算方法、二次電池の異常検出装置及びその異常検出方法、並びに二次電池の劣化推定装置及びその劣化推定方法に関する。   Embodiments described herein relate generally to a secondary battery internal resistance calculation device and its internal resistance calculation method, a secondary battery abnormality detection device and abnormality detection method, a secondary battery deterioration estimation device, and a deterioration estimation method thereof.

二次電池の内部状態を把握する一指標として、電池の内部抵抗がある。内部抵抗の算出方法として様々な提案がなされている。   One index for grasping the internal state of the secondary battery is the internal resistance of the battery. Various proposals have been made as a method for calculating the internal resistance.

例えば、第1に、電流変化量のパラメータと、電圧変化量及びインピーダンス変化量に基づくパラメータとを直線近似し、近似した直線の傾きから電池のインピーダンスを算出する方法がある。   For example, firstly, there is a method of linearly approximating a parameter of the current change amount and a parameter based on the voltage change amount and the impedance change amount, and calculating the battery impedance from the slope of the approximated straight line.

第2に、周波数フィルタを用いて電流及び電圧変化を高周波成分と低周波成分とに分離し、拡散抵抗に相当する低周波成分を除いた高周波成分のみを抽出して内部抵抗を算出する方法がある。   Second, there is a method of calculating an internal resistance by separating current and voltage changes into a high frequency component and a low frequency component using a frequency filter, and extracting only the high frequency component excluding the low frequency component corresponding to the diffusion resistance. is there.

第3に、電流及び電圧変化をそれぞれフーリエ変換し、周波数毎の信号強度を求めて、それらの周波数成分の比から内部抵抗を算出する方法がある。この方法は、複数の異なる周波数成分から内部抵抗を算出し、二次電池を等価回路で表した場合の回路定数を推定するものである。   Third, there is a method in which the current resistance and the voltage change are each subjected to Fourier transform, the signal intensity for each frequency is obtained, and the internal resistance is calculated from the ratio of these frequency components. This method calculates the internal resistance from a plurality of different frequency components, and estimates the circuit constant when the secondary battery is represented by an equivalent circuit.

特開2006−250905号公報JP 2006-250905 A 特開2005−106616号公報JP 2005-106616 A 特開2005−221487号公報JP 2005-221487 A

上述した第1〜第3の方法は、充放電電流と電池電圧の変化から内部抵抗を推定するものである。しかし、第1の方法では、電流及び電圧変化の周波数成分が考慮されていない。   In the first to third methods described above, the internal resistance is estimated from the change in charge / discharge current and battery voltage. However, in the first method, frequency components of current and voltage change are not taken into consideration.

これに対して、第2及び第3の方法では、周波数解析などを利用して特定の周波数から内部抵抗を算出している。しかしながら、これらの方法においては、充放電時の電流と電圧の変化の相関が高い特定の周波数においては内部抵抗値を精度良く算出することが可能であるが、それ以外の周波数ではその精度が悪くなる可能性があった。   On the other hand, in the second and third methods, the internal resistance is calculated from a specific frequency using frequency analysis or the like. However, in these methods, it is possible to accurately calculate the internal resistance value at a specific frequency where the correlation between the current and voltage change during charging and discharging is high, but the accuracy is poor at other frequencies. There was a possibility.

これは、周波数によっては充放電時の電流と電圧との相関性が低い場合があるためと考えられる。また、蓄電池システムの各種センサによる計測タイミングのずれが生じると、電流と電圧の変化分の相関にも影響を与えるため、高周波成分ではその影響が顕著に表れることも要因の一つとして挙げられる。   This is considered to be because the correlation between the current and voltage during charging / discharging may be low depending on the frequency. In addition, if a measurement timing shift occurs due to various sensors of the storage battery system, it also affects the correlation between changes in current and voltage, so that the influence of the high-frequency component is prominent.

本発明の実施形態は、上記課題に鑑みてなされたものであり、内部抵抗値の算出精度を向上できる二次電池の内部抵抗演算装置及びその内部抵抗演算方法を提供することを目的とする。   Embodiments of the present invention have been made in view of the above problems, and an object thereof is to provide an internal resistance calculation device for a secondary battery and an internal resistance calculation method thereof that can improve the calculation accuracy of the internal resistance value.

また、本発明の他の実施形態は、内部抵抗値の算出に基づき、二次電池の異常を検出できる二次電池の異常検出装置及びその異常検出方法を提供することを目的とする。   Another object of the present invention is to provide an abnormality detection device for a secondary battery and an abnormality detection method thereof that can detect the abnormality of the secondary battery based on the calculation of the internal resistance value.

さらに、本発明の他の実施形態は、内部抵抗値の算出に基づき、二次電池の劣化を推定できる二次電池の劣化推定装置及びその劣化推定方法を提供することを目的とする。   Another object of the present invention is to provide a secondary battery deterioration estimation device and a deterioration estimation method thereof that can estimate the deterioration of the secondary battery based on the calculation of the internal resistance value.

上述の目的を達成するため、本発明の第1の実施形態に係る内部抵抗演算装置は、二次電池を構成する各電池セルの正極端子と負極端子間に接続され、端子間電圧を測定する電圧測定部と、電流経路に挿入され、前記電池セルへの充放電電流を測定する電流測定部と、前記電圧測定部及び前記電流測定部における測定を制御する制御部と、当該制御部に接続され、前記電圧測定部及び前記電流測定部からの各測定値からウェーブレット変換を行い、周波数毎に電流及び電圧のウェーブレット係数を求め、これらの比率から二次電池の内部抵抗を演算する演算部と、を備えることを特徴とする。   In order to achieve the above-mentioned object, the internal resistance calculation device according to the first embodiment of the present invention is connected between the positive terminal and the negative terminal of each battery cell constituting the secondary battery, and measures the inter-terminal voltage. A voltage measurement unit, a current measurement unit that is inserted into a current path and measures charge / discharge current to the battery cell, a control unit that controls measurement in the voltage measurement unit and the current measurement unit, and a connection to the control unit A wavelet transform from each measurement value from the voltage measurement unit and the current measurement unit, to obtain a wavelet coefficient of current and voltage for each frequency, and a calculation unit to calculate the internal resistance of the secondary battery from these ratios; It is characterized by providing.

また、本発明の第2の実施形態に係る二次電池の異常検出装置は、前記二次電池の内部抵抗演算装置の前記制御部に、前記演算部により演算された二次電池の各内部抵抗値から所定の統計処理を用いて電池セルの異常を判定する異常セル判定部を接続したことを特徴とする。   Further, in the secondary battery abnormality detection device according to the second embodiment of the present invention, each internal resistance of the secondary battery calculated by the calculation unit is added to the control unit of the internal resistance calculation device of the secondary battery. An abnormal cell determination unit that determines an abnormality of the battery cell using a predetermined statistical process from the value is connected.

さらに、本発明の第3の実施形態に係る二次電池の劣化推定装置は、前記二次電池の内部抵抗演算装置において、前記電池セルの温度を測定する温度測定部を設け、かつ前記制御部に、予め記録された基準となる内部抵抗値と前記演算部により算出された二次電池の内部抵抗の測定結果とを比較して劣化度合を推定する劣化推定部を接続したことを特徴とする。   Furthermore, the secondary battery deterioration estimation device according to the third embodiment of the present invention is provided with a temperature measurement unit that measures the temperature of the battery cell in the internal resistance calculation device of the secondary battery, and the control unit In addition, a deterioration estimation unit that estimates a degree of deterioration by comparing a reference internal resistance value recorded in advance with a measurement result of the internal resistance of the secondary battery calculated by the calculation unit is connected. .

また、前記のような第1〜第3の実施形態で実行される方法も本発明の実施形態の1つである。   The method executed in the first to third embodiments as described above is also one embodiment of the present invention.

二次電池の等価回路モデルの一例を示す概略図。Schematic which shows an example of the equivalent circuit model of a secondary battery. 従来のV−I特性の直線回帰方法を用いた内部抵抗値の分布状態を示すグラフ。The graph which shows the distribution state of the internal resistance value using the linear regression method of the conventional VI characteristic. 電流と電圧の相関が低い周波数成分(レベルj=1)での(W)(a,b)と(W)(a,b)との関係の一例を示すグラフ。The graph which shows an example of the relationship between ( Wv ) (a, b) and ( Wi ) (a, b) in the frequency component (level j = 1) with a low correlation of an electric current and a voltage. 電流と電圧の相関が高い周波数成分(レベルj=5)での(W)(a,b)と(W)(a,b)との関係の一例を示すグラフ。The graph which shows an example of the relationship between ( Wv ) (a, b) and ( Wi ) (a, b) in the frequency component (level j = 5) with a high correlation of an electric current and a voltage. 周波数(レベルj)とサンプリングデータの相関(決定係数R)との関係についての一例を示すグラフ。Graph showing an example of the relationship between the frequency correlation (level j) the sampling data (coefficient of determination R 2). 周波数(レベルj)とサンプリングデータの相関(決定係数R)との関係についての他の例を示すグラフ。Graph showing another example of the relationship between the frequency correlation (level j) the sampling data (coefficient of determination R 2). 本発明の第1の実施形態に係る内部抵抗演算装置の構成を示す概略図。Schematic which shows the structure of the internal resistance calculating apparatus which concerns on the 1st Embodiment of this invention. 第1の実施形態における内部抵抗を計算する処理手順を示すフローチャート。The flowchart which shows the process sequence which calculates the internal resistance in 1st Embodiment. 第1の実施形態における内部抵抗演算方法により計算した内部抵抗値の分布状態を示すグラフ。The graph which shows the distribution state of the internal resistance value computed by the internal resistance calculation method in 1st Embodiment. 本発明の第2の実施形態に係る二次電池の異常検出装置の構成を示す概略図。Schematic which shows the structure of the abnormality detection apparatus of the secondary battery which concerns on the 2nd Embodiment of this invention. 第2の実施形態における二次電池の異常を検出する処理手順を示すフローチャート。The flowchart which shows the process sequence which detects abnormality of the secondary battery in 2nd Embodiment. 本発明の第3の実施形態に係る二次電池の劣化推定装置の構成を示す概略図。Schematic which shows the structure of the degradation estimation apparatus of the secondary battery which concerns on the 3rd Embodiment of this invention. 通常電池と劣化電池の内部抵抗をレベル別にプロットした例を示すグラフ。The graph which shows the example which plotted the internal resistance of the normal battery and the deterioration battery according to the level.

以下に説明する本発明の各実施形態では、電流波形と電圧波形をウェーブレット変換により解析し、それぞれの信号強度の相関が高い周波数において内部抵抗を算出する手法を用いている。以下、各実施形態で用いる手法の原理について説明する。   In each embodiment of the present invention described below, a method is used in which a current waveform and a voltage waveform are analyzed by wavelet transform, and an internal resistance is calculated at a frequency where the correlation between the signal strengths is high. Hereinafter, the principle of the method used in each embodiment will be described.

(従来のV−I特性の直線回帰方法)
電池電圧Vと電池電流IのV−I特性の直線回帰方法については、従来例の第1の方法等で既に公知になっている。この方法において、例えば、図1に示す二次電池の等価回路を用いるものとする。ここで、RΩ、R1〜n、C1〜nはそれぞれ、電解質抵抗、電荷移動抵抗、電気二重層容量である。この場合、二次電池の内部抵抗は、電荷移動抵抗R1〜n及び電気二重層容量C1〜nについてそれぞれ同じ添字番号同士を一対ずつ並列に組み合わせ、さらに電解質抵抗RΩと共に直列に組み合わせたものとして表わされる。
(Conventional linear regression method of VI characteristics)
The linear regression method of the VI characteristics of the battery voltage V and the battery current I has already been publicly known by the first method of the conventional example. In this method, for example, the equivalent circuit of the secondary battery shown in FIG. 1 is used. Wherein, R Ω, R 1~n, C 1~n respectively, electrolyte resistance, charge transfer resistance, an electric double layer capacitor. In this case, as for the internal resistance of the secondary battery, the same subscript numbers are combined in parallel for each of the charge transfer resistances R 1 to n and the electric double layer capacities C 1 to n , and further combined in series with the electrolyte resistance . Expressed as a thing.

図2は、図1に示した電池の等価回路における直流成分RΩ、交流成分(CnとRnによるインピーダンス)の合成抵抗をさまざまな合成比率でプロットしたものである。図2に示すV−I特性のグラフにおいて、各プロットから直線を近似し、この直線の傾きから内部抵抗が求められる。しかしながら、この手法では、測定時の充放電周波数に応じて回帰直線の傾きは異なるため、領域Aで示すように内部抵抗値の分布領域が広くなり、内部抵抗値の推定精度が低下してしまう。 Figure 2 is a plot at various combination ratio of the combined resistance of the direct current component R Omega, the AC component (impedance due C n and R n) in the equivalent circuit of the battery shown in FIG. In the VI characteristic graph shown in FIG. 2, a straight line is approximated from each plot, and the internal resistance is obtained from the slope of the straight line. However, in this method, since the slope of the regression line differs depending on the charge / discharge frequency at the time of measurement, the distribution region of the internal resistance value becomes wide as shown by the region A, and the estimation accuracy of the internal resistance value decreases. .

これに対して、電圧値と電流値のウェーブレット係数の関係を直線回帰する方法では、充放電波形に対して周波数毎の内部抵抗値を演算することができる。以下、ウェーブレット変換を用いた内部抵抗演算方法について説明する。   On the other hand, in the method of linear regression of the relationship between the wavelet coefficient of the voltage value and the current value, the internal resistance value for each frequency can be calculated for the charge / discharge waveform. Hereinafter, an internal resistance calculation method using wavelet transform will be described.

(ウェーブレット変換を用いた内部抵抗演算方法)
波形f(t)のウェーブレット変換WΨfは、式(1)により求めることができる。

Figure 2013195232
また、Ψa,b(t)はアナライジング・ウェーブレットと呼ばれ、ダイレーション(拡大縮小)のパラメータを実数a、t軸上でのシフトのパラメータを実数bとし、式(2)のように定義される。
Figure 2013195232
Ψ(t)としては、さまざまなものが提案されており、適宜選択可能である。式(3)に例としてガボールウェーブレットの定義を示す。
Figure 2013195232
ここで、ω0は振動の中心周波数である。
計測された電流波形をi(t)、電圧波形をv(t)とすると、それぞれのウェーブレット変換は式(4)、式(5)のようになり、この変換結果はウェーブレット係数と呼ばれる。
Figure 2013195232
Figure 2013195232
すると、式(6)によって、同一のダイレーションa、シフトbの電流、電圧のウェーブレット係数の比から、内部抵抗を計算することができる。
Figure 2013195232
このとき、ダイレーションaが周波数に相当し、ダイレーションaが定まれば内部抵抗はシフトbによらず一定であると考えられる。そこで、特定のダイレーションaに対してシフトbを変化させて、(WΨ )(a,b)と(WΨ )(a,b)の関係を最小二乗法を用いて直線近似すると、その傾きから周波数毎の内部抵抗値R(a)が算出できる。ここで、直線近似の精度を表す決定係数Rを算出する。(WΨ )(a,b)と(WΨ )(a,b)の分散および共分散をそれぞれνwi、νwv、νwviとすると、νwi、νwv、νwviは、それぞれ式(7)〜(9)で求められる。
Figure 2013195232
Figure 2013195232
Figure 2013195232
これより、(WΨ )(a,b)と(WΨ )(a,b)の関係を直線近似した時の決定係数Rは以下の式で求められる。
Figure 2013195232
(Internal resistance calculation method using wavelet transform)
The wavelet transform W Ψ f of the waveform f (t) can be obtained by Expression (1).
Figure 2013195232
Also, Ψ a, b (t) is called an analyzing wavelet, the dilation (enlargement / reduction) parameter is a real number a, the shift parameter on the t-axis is a real number b, and the equation (2) Defined.
Figure 2013195232
Various Ψ (t) have been proposed and can be selected as appropriate. Formula (3) shows the definition of Gabor wavelet as an example.
Figure 2013195232
Here, ω0 is the center frequency of vibration.
Assuming that the measured current waveform is i (t) and the voltage waveform is v (t), the respective wavelet transforms are as shown in Equations (4) and (5), and the transformation results are called wavelet coefficients.
Figure 2013195232
Figure 2013195232
Then, the internal resistance can be calculated from the ratio of the current and voltage wavelet coefficients of the same dilation a, shift b, and voltage according to equation (6).
Figure 2013195232
At this time, the dilation a corresponds to the frequency, and if the dilation a is determined, the internal resistance is considered to be constant regardless of the shift b. Therefore, when the shift b is changed with respect to a specific dilation a, the relationship between (W Ψ i ) (a, b) and (W Ψ v ) (a, b) is linearly approximated using the least square method. The internal resistance value R (a) for each frequency can be calculated from the inclination. Here, to calculate the coefficient of determination R 2 representing the accuracy of the linear approximation. When the dispersion and covariance of (W Ψ i ) (a, b) and (W Ψ v ) (a, b) are respectively ν wi , ν wv , and ν wvi , ν wi , ν wv , and ν wvi are respectively It calculates | requires by Formula (7)-(9).
Figure 2013195232
Figure 2013195232
Figure 2013195232
From this, the determination coefficient R 2 when the relationship between (W Ψ i ) (a, b) and (W Ψ v ) (a, b) is linearly approximated is obtained by the following expression.
Figure 2013195232

(周波数による電圧値及び電流値のウェーブレット係数の相関性)
周波数毎に算出された電圧値と電流値のウェーブレット係数から決定係数Rを算出し、これらの相関を求めることができる。
例えば、決定係数Rが低くなる周波数(レベルj=1)では、図3に示すように、電圧値及び電流値のウェーブレット係数の相関が低い。このため、これらの比から内部抵抗値を算出すると精度が低下してしまう。
(Correlation of wavelet coefficient of voltage value and current value by frequency)
Calculating the coefficient of determination R 2 from the wavelet coefficients of the voltage value and the current value calculated for each frequency, it is possible to determine these correlations.
For example, the coefficient of determination R 2 is lower frequency (level j = 1), as shown in FIG. 3, the low correlation of the wavelet coefficient of the voltage and current values. For this reason, if the internal resistance value is calculated from these ratios, the accuracy decreases.

これに対して、決定係数Rが高くなる周波数(レベルj=5)では、図4に示すように、電圧値及び電流値のウェーブレット係数の相関が高く、内部抵抗値を精度良く算出することができる。 In contrast, in the coefficient of determination R 2 is high frequency (level j = 5), as shown in FIG. 4, the correlation of the wavelet coefficient of the voltage and current values higher, to accurately calculate the internal resistance value Can do.

また、図5に、ウェーブレット変換を行なった周波数(レベルj)とサンプリングデータの相関(決定係数R)の関係についての一例を示す。この結果より、レベルjが5のときに相関性(決定係数R)が最大となっていることが分かる。このように、電流と電圧の相関が高い周波数を特定し、その周波数成分で内部抵抗値を算出することにより、内部抵抗の算出精度を向上させることができる。 FIG. 5 shows an example of the relationship between the frequency (level j) subjected to wavelet transform and the correlation (determination coefficient R 2 ) between sampling data. From this result, it can be seen that when the level j is 5, the correlation (determination coefficient R 2 ) is maximum. As described above, by specifying a frequency having a high correlation between current and voltage and calculating the internal resistance value using the frequency component, the calculation accuracy of the internal resistance can be improved.

さらに、図6に、ウェーブレット変換を行なった周波数(レベルj)とサンプリングデータの相関(決定係数R)の関係についての他の例を示す。このように、解析対象の電流波形及び電圧波形が変わると、その周波数成分に依存して決定係数Rが最大となる周波数が変わる場合がある。また、内部抵抗を算出する周波数によりその内部抵抗値も異なるため、周波数毎に区別した算出を行なう。 FIG. 6 shows another example of the relationship between the frequency (level j) subjected to wavelet transform and the correlation (determination coefficient R 2 ) between sampling data. Thus, the current and voltage waveforms to be analyzed is changed, the coefficient of determination R 2 depending on the frequency components in some cases change the frequency with the maximum. In addition, since the internal resistance value varies depending on the frequency at which the internal resistance is calculated, the calculation is performed for each frequency.

以上説明したように、ウェーブレット変換により算出された充放電電流と電圧それぞれのウェーブレット係数を最小二乗法により直線近似し、この時の決定係数R(最小二乗法における残差であり、計測値に対する近似直線の適合具合を表す)が高い周波数を特定し、その周波数成分で内部抵抗値を算出することにより、内部抵抗の算出精度を向上させることができる。 As described above, the wavelet coefficients of the charge / discharge current and voltage calculated by the wavelet transform are linearly approximated by the least square method, and the determination coefficient R 2 at this time (the residual in the least square method, It is possible to improve the accuracy of calculation of the internal resistance by specifying a frequency having a high (applicable degree of approximation line) and calculating the internal resistance value with the frequency component.

以下、上述したウェーブレット変換方法を用いた各実施形態について図面を参照して具体的に説明する。   Hereinafter, each embodiment using the wavelet transform method described above will be specifically described with reference to the drawings.

[第1の実施形態]
(内部抵抗演算装置の構成)
図7に、本発明の第1の実施形態に係る内部抵抗演算装置の構成を示す。この内部抵抗演算装置10は、二次電池を構成する電池セル1を複数個直列に接続した組電池2と、各電池セル1の正極端子と負極端子間に接続され端子間電圧を測定する電圧測定部3と、電流経路に挿入され電池セル1への充放電電流を測定する電流測定部4と、電池セル1の近傍に配置され電池セル1の温度を測定する温度測定部5と、を備えている。
[First Embodiment]
(Configuration of internal resistance calculation device)
FIG. 7 shows the configuration of the internal resistance arithmetic unit according to the first embodiment of the present invention. The internal resistance calculation device 10 includes a battery pack 2 in which a plurality of battery cells 1 constituting a secondary battery are connected in series, and a voltage that is connected between a positive terminal and a negative terminal of each battery cell 1 and measures a voltage between terminals. A measuring unit 3; a current measuring unit 4 that is inserted in the current path to measure a charging / discharging current to the battery cell 1; and a temperature measuring unit 5 that is disposed in the vicinity of the battery cell 1 and measures the temperature of the battery cell 1. I have.

また、内部抵抗演算装置10は、電圧測定部3、電流測定部4、温度測定部5の測定条件を制御し、これらの部位からの各測定値を処理する制御部6と、制御部6に接続され各測定値等を記録する記録部7と、制御部6に接続され各測定値からウェーブレット変換を行い内部抵抗を演算する演算部8と、制御部6に接続され二次電池外部と通信を行う通信インターフェイス9と、を具備している。   Further, the internal resistance calculation device 10 controls the measurement conditions of the voltage measurement unit 3, the current measurement unit 4, and the temperature measurement unit 5, and controls the control unit 6 that processes each measurement value from these parts, and the control unit 6. A recording unit 7 connected to record each measurement value, etc., a calculation unit 8 connected to the control unit 6 to perform wavelet transformation from each measurement value and calculate an internal resistance, and connected to the control unit 6 to communicate with the outside of the secondary battery And a communication interface 9 for performing the above.

この内部抵抗演算装置10における電池セル1の等価回路は、図1のように示すことができる。すなわち、二次電池の内部抵抗は、電荷移動抵抗R1〜n及び電気二重層容量C1〜nについてそれぞれ同じ添字番号同士を一対ずつ並列に組み合わせ、さらに電解質抵抗RΩと共に直列に組み合わせたものとして表わされる。 An equivalent circuit of the battery cell 1 in the internal resistance calculation device 10 can be shown as shown in FIG. That is, the internal resistance of the secondary battery is a combination of the same subscript numbers in parallel for each of the charge transfer resistances R 1 to n and the electric double layer capacities C 1 to n , and further combined in series with the electrolyte resistance RΩ. Is represented as

この内部抵抗演算装置10を用いて、ウェーブレット変換により内部抵抗を計算する処理の手順について、離散ウェーブレット変換を使った場合を例にして説明する。   The procedure for calculating the internal resistance by wavelet transformation using the internal resistance computing device 10 will be described by taking the case of using discrete wavelet transformation as an example.

(内部抵抗を計算する処理手順)
図8は、ウェーブレット変換により内部抵抗を計算する処理手順を示すフローチャートである。まず、処理の開始により、演算部8による演算に必要なパラメータの初期設定を行う(ステップS101)。ステップS101の初期設定のパラメータとしては、電圧及び電流のサンプリング間隔Δt、内部抵抗を算出する区間(充電時、放電時、充放電時)、サンプリング数N、演算に使用するウェーブレットを定義する情報などがある。
(Processing procedure to calculate internal resistance)
FIG. 8 is a flowchart showing a processing procedure for calculating the internal resistance by wavelet transformation. First, at the start of processing, parameters necessary for calculation by the calculation unit 8 are initialized (step S101). As initial setting parameters in step S101, voltage and current sampling intervals Δt, internal resistance calculation intervals (charging, discharging, charging / discharging), number of samplings N, information defining wavelets used for calculation, etc. There is.

次に、電圧測定部3及び電流測定部4により、それぞれ電流及び電圧の測定を実施する(ステップS102)。制御部6は、電圧測定部3および電流測定部4からサンプリング時間Δt毎に電圧値と電流値を取得する。さらに、制御部6は、充放電状態が初期設定で内部抵抗の算出区間とした状態かどうかを判断する(ステップS103)。対象となる区間であった場合(ステップS103でYes)、制御部6は、測定したデータにタイムスタンプ(計測時刻データ)を付与して記録部7に記録させる(ステップS104)。対象となる区間外であった場合(ステップS103でNo)は、再度、電流及び電圧の測定を実施する(ステップS102)。   Next, the current and voltage are measured by the voltage measuring unit 3 and the current measuring unit 4, respectively (step S102). The control unit 6 acquires a voltage value and a current value from the voltage measurement unit 3 and the current measurement unit 4 for each sampling time Δt. Further, the control unit 6 determines whether or not the charge / discharge state is a state where the internal resistance is calculated in the initial setting (step S103). If it is a target section (Yes in step S103), the control unit 6 adds a time stamp (measurement time data) to the measured data and records it in the recording unit 7 (step S104). If it is outside the target section (No in step S103), the current and voltage are measured again (step S102).

次に、制御部6は、計測したデータ数が、内部抵抗の算出に必要なデータ数Nに達したかどうかを判断する(ステップS105)。未達の場合(ステップS105のNo)は、ステップS102から処理を繰り返す。これに対して、必要なデータ数を取得できた場合(ステップS105のYes)は、S106以降のウェーブレット変換処理に進む。   Next, the control unit 6 determines whether or not the measured number of data has reached the number N of data necessary for calculating the internal resistance (step S105). If not reached (No in step S105), the process is repeated from step S102. On the other hand, when the necessary number of data can be acquired (Yes in step S105), the process proceeds to the wavelet transform process from S106.

ウェーブレット変換処理では、まず、演算部8において、レベルと呼ばれる周波数に相当するパラメータjの初期値を1とする(ステップS106)。次に、演算部8は、記録部7に記録されたデータをもとに、電流及び電圧のウェーブレット変換を行う(ステップS107)。離散ウェーブレット変換では、式(2)において、a=2、b=2kとして、式(11)のように離散化する。

Figure 2013195232
ここで、Ψ(t)は式(12)で定義され、式(12)に含まれるφ(t)は式(13)で定義される。
Figure 2013195232
Figure 2013195232
上記式(12)、式(13)で記載されたp、qは、ウェーブレットを表す数列であり、式(14)の関係がある。
Figure 2013195232
ここで、ウェーブレット数列としては、ハール(Haar)やドベシィ(Daubechies)のウェーブレットなどを利用することができる。 In the wavelet transform process, first, the calculation unit 8 sets the initial value of the parameter j corresponding to the frequency called level to 1 (step S106). Next, the computing unit 8 performs wavelet transform of current and voltage based on the data recorded in the recording unit 7 (step S107). In the discrete wavelet transform, in Equation (2), a = 2 j and b = 2 j k are used to discretize as in Equation (11).
Figure 2013195232
Here, Ψ (t) is defined by Expression (12), and φ (t) included in Expression (12) is defined by Expression (13).
Figure 2013195232
Figure 2013195232
The formula (12), p n described in Formula (13), q n is a sequence representing wavelet, a relationship of Equation (14).
Figure 2013195232
Here, as the wavelet sequence, Haar, Daubechies wavelets, and the like can be used.

式(4)、式(5)と同様に、電流波形をi(t)、電圧波形v(t)を離散ウェーブレット変換すると式(15)、式(16)のようになる。

Figure 2013195232
Figure 2013195232
Similar to Equations (4) and (5), when the current waveform is i (t) and the voltage waveform v (t) is discrete wavelet transformed, Equations (15) and (16) are obtained.
Figure 2013195232
Figure 2013195232

次に、演算部8は、レベルjにおける式(15)、式(16)で算出された電流および電圧のウェーブレット係数の関係を最小二乗法により直線近似し、その時の相関を表す決定係数Rを算出する(ステップS108)。さらに、演算部8は、ステップ108で求めた直線近似の傾きから、レベルjにおける内部抵抗を算出する(ステップS109)。 Next, the calculation unit 8 linearly approximates the relationship between the current and voltage wavelet coefficients calculated by the equations (15) and (16) at the level j by the least square method, and determines the coefficient R 2 representing the correlation at that time. Is calculated (step S108). Further, the computing unit 8 calculates the internal resistance at level j from the slope of the linear approximation obtained in step 108 (step S109).

続いて、演算部8は、ステップS110において、レベルを1つ増やし、ウェーブレット変換(ステップS107)、決定係数Rの算出(ステップS108)、及び内部抵抗計算(ステップS109)の各処理を実施する。次に、レベルjが式(17)の条件を満たしているか否かを判定し(ステップS111)、満たしていない場合(ステップS111のNo)はループ処理を継続し、満たしている場合(ステップS111のYes)はループ処理を終了する。

Figure 2013195232
Subsequently, the arithmetic unit 8, in step S110, the level is incremented by one, wavelet transform (step S107), the calculation of the coefficient of determination R 2 (step S108), and carrying out the processes of the internal resistance calculation (step S109) . Next, it is determined whether or not the level j satisfies the condition of Expression (17) (step S111). If not satisfied (No in step S111), the loop processing is continued and if satisfied (step S111). Yes) ends the loop processing.
Figure 2013195232

さらに、制御部6は、各レベル別に得られた内部抵抗値を記録部7に記録する(ステップS112)。上述したように、各レベルにおける電流と電圧の相関(決定係数R)が高い所で、内部抵抗値の算出精度が高くなる。相関を示す決定係数の明確な基準は存在しないが、一般的に決定係数が0.8以上であれば精度が良いとされている。このように、精度良く算出された内部抵抗値を周波数毎に区別し、記録部7に記録する。 Further, the control unit 6 records the internal resistance value obtained for each level in the recording unit 7 (step S112). As described above, the calculation accuracy of the internal resistance value is high where the correlation between the current and the voltage (determination coefficient R 2 ) at each level is high. Although there is no clear standard for the coefficient of determination indicating the correlation, it is generally said that the accuracy is good if the coefficient of determination is 0.8 or more. Thus, the internal resistance value calculated with high accuracy is distinguished for each frequency and recorded in the recording unit 7.

さらに、二次電池の状態を監視することを目的として、制御部6は、記録部7に記録された内部抵抗値を通信インターフェイス9経由で外部へ通知しても良い。   Further, for the purpose of monitoring the state of the secondary battery, the control unit 6 may notify the internal resistance value recorded in the recording unit 7 to the outside via the communication interface 9.

(効果)
(1)これまで内部抵抗の計測は実運用中の蓄電システムから二次電池を切り離してしか計測できなかったが、本実施形態によれば、実運用中の充放電電流波形及び電圧波形をウェーブレット変換し、ウェーブレット係数の比から内部抵抗を演算することにより、蓄電システムから切り離すことなく行なうことができる。
(effect)
(1) Until now, the internal resistance could only be measured by disconnecting the secondary battery from the storage system in actual operation. However, according to this embodiment, the charge / discharge current waveform and voltage waveform in actual operation are By converting and calculating the internal resistance from the ratio of the wavelet coefficients, it can be performed without disconnecting from the power storage system.

(2)ウェーブレット変換を用いることで、時間−周波数解析が可能となり、充放電電流とセル電圧の相関が高い周波数における内部抵抗の算出や、周波数毎の内部抵抗の解析が可能となる。 (2) By using the wavelet transform, time-frequency analysis is possible, calculation of internal resistance at a frequency where the correlation between the charge / discharge current and the cell voltage is high, and analysis of the internal resistance for each frequency are possible.

(3)ウェーブレット変換により算出された充放電電流と電圧それぞれのウェーブレット係数を最小二乗法により直線近似し、この時の決定係数Rが高い周波数において内部抵抗値を特定することにより、内部抵抗の算出精度を向上させることが可能になる。 (3) The charge and discharge current and voltage each wavelet coefficient calculated by the wavelet transform linearly approximated by the least square method, by identifying the internal resistance value in the coefficient of determination R 2 is high frequency upon this, the internal resistance The calculation accuracy can be improved.

即ち、従来のV−I特性の直線回帰方法により算出した内部抵抗値の分布は図2の領域Aに示すようにばらつきの大きいものとなるが、本実施形態により算出した内部抵抗値の分布は図9の領域Bに示すように、ばらつきの少ない(領域Bの面積<領域Aの面積)ものとなる。   That is, the distribution of the internal resistance value calculated by the conventional linear regression method of the VI characteristic has a large variation as shown in the region A of FIG. 2, but the distribution of the internal resistance value calculated by the present embodiment is As shown in the region B of FIG. 9, the variation is small (the area of the region B <the area of the region A).

(4)また、本実施形態によれば、蓄電池システムを構成する二次電池セルの内部抵抗を特定の充放電運転により算出する必要がなく、交流インピーダンス法のように周波数解析装置などの特殊な計測装置を用いる必要もない。 (4) Further, according to the present embodiment, there is no need to calculate the internal resistance of the secondary battery cell constituting the storage battery system by a specific charge / discharge operation, and a special analysis such as a frequency analyzer as in the AC impedance method is performed. There is no need to use a measuring device.

[第2の実施形態]
(内部抵抗値の算出結果を用いた二次電池の異常検出)
二次電池の異常を検出するには、電池セル毎の内部抵抗値を継続的に監視し、その上昇率などを統計的に処理する方法が考えられる。このため、電池の内部状態を示す内部抵抗値を精度良く算出する必要がある。以下に、第1の実施形態で説明した内部抵抗値の算出方法を用いた二次電池の異常検出装置について説明する。
[Second Embodiment]
(Detection of secondary battery anomalies using internal resistance calculation results)
In order to detect abnormality of a secondary battery, the internal resistance value for every battery cell is continuously monitored and the method of processing the increase rate etc. statistically can be considered. For this reason, it is necessary to accurately calculate the internal resistance value indicating the internal state of the battery. The secondary battery abnormality detection apparatus using the internal resistance value calculation method described in the first embodiment will be described below.

(二次電池の異常検出装置の構成)
図10に、本発明の第2の実施形態に係る二次電池の異常検出装置の構成を示す。なお、第1の実施形態と同一部分については同一符号を付して説明を省略する。
(Configuration of secondary battery abnormality detection device)
FIG. 10 shows the configuration of an abnormality detection device for a secondary battery according to the second embodiment of the present invention. Note that the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

この異常検出装置20は、第1の実施形態の内部抵抗演算装置10の制御部6に、所定の統計処理を用いて電池セルの異常を判定する異常セル判定部11を接続したものである。   The abnormality detection device 20 is configured by connecting an abnormal cell determination unit 11 that determines a battery cell abnormality using a predetermined statistical process to the control unit 6 of the internal resistance calculation device 10 of the first embodiment.

(二次電池の異常を検出するための処理手順)
図11は、異常検出装置20を用いて二次電池の異常を検出する処理手順を示すフローチャートである。
(Processing procedure for detecting secondary battery abnormality)
FIG. 11 is a flowchart showing a processing procedure for detecting an abnormality of the secondary battery using the abnormality detection device 20.

まず、組電池2内の各電池セル1に対して内部抵抗の算出を行なうため、電圧測定部3および電流測定部4、温度測定部5により、各電池セル1の電圧値と充放電電流値、電池温度を一定周期毎に測定する(ステップS201)。制御部6は、測定した計測データに時刻情報を付与して記録部7に記録する(ステップS202)。   First, in order to calculate the internal resistance for each battery cell 1 in the assembled battery 2, the voltage value and the charge / discharge current value of each battery cell 1 are measured by the voltage measuring unit 3, the current measuring unit 4, and the temperature measuring unit 5. The battery temperature is measured at regular intervals (step S201). The control unit 6 adds time information to the measured measurement data and records it in the recording unit 7 (step S202).

次に、制御部6は、電池のSOC(State Of Charge:充放電状態)を充放電電流の積算から算出する(ステップS203)。電池SOCは、充放電電流の積算だけでなく、電池の開回路電圧から算出することも考えられる。   Next, the control unit 6 calculates the SOC (State Of Charge) of the battery from the integration of the charge / discharge current (step S203). It is conceivable that the battery SOC is calculated from the open circuit voltage of the battery as well as the integration of the charge / discharge current.

さらに、内部抵抗を算出するためのサンプリングデータを収集するため、一定期間、セル電圧、充放電電流、温度の計測、及び電池SOCの算出を繰り返す(ステップS204)。内部抵抗の算出に必要なサンプリング数を満たす一定期間に達した場合(ステップS204のYes)、次のステップに進む。一方、未達の場合(ステップS204のNo)は、ステップS201から処理を繰り返す。   Furthermore, in order to collect sampling data for calculating the internal resistance, measurement of the cell voltage, charge / discharge current, temperature, and calculation of the battery SOC are repeated for a certain period (step S204). When a certain period satisfying the sampling number necessary for calculating the internal resistance is reached (Yes in step S204), the process proceeds to the next step. On the other hand, if it has not been reached (No in step S204), the process is repeated from step S201.

次に、制御部6は、サンプリングデータの測定期間内で、温度測定部5で計測された電池温度、及び制御部6で算出された電池SOCの変化量が規定範囲内に収まっていることを確認する(ステップS205)。変化量が規定範囲を超えた場合(ステップS205のNo)は、この測定期間の間に内部抵抗値が大きく変化しているものと見なし、算出された内部抵抗値を電池セルの異常検出に使用しない。   Next, the control unit 6 confirms that the battery temperature measured by the temperature measurement unit 5 and the change amount of the battery SOC calculated by the control unit 6 are within the specified range within the measurement period of the sampling data. Confirmation (step S205). If the amount of change exceeds the specified range (No in step S205), it is assumed that the internal resistance value has changed significantly during this measurement period, and the calculated internal resistance value is used for battery cell abnormality detection. do not do.

一方、変化量が規定範囲内に収まっている場合(ステップS205のYes)は、演算部8は、レベルj=1において、測定した充放電電流値と各電池セルの電圧値のデータ列をウェーブレット変換し、ウェーブレット係数を算出する(ステップS206)。   On the other hand, when the amount of change is within the specified range (Yes in step S205), the calculation unit 8 uses the wavelet to calculate the data string of the measured charge / discharge current value and the voltage value of each battery cell at level j = 1. The wavelet coefficient is calculated by conversion (step S206).

次に、演算部8は、レベルjにおける式(15)および式(16)で算出された電流およびセル電圧のウェーブレット係数の関係を直線近似し、その時の決定係数Rを算出する(ステップS207)。さらに、直線近似の傾きからレベルjにおける内部抵抗値を算出する(ステップS208)。続いて、スケーリング関数による近似のレベルjを1増やし(ステップS209)、さらにレベルjが式(17)の条件を満たすか否かを判定(ステップS210)し、満たしている場合(ステップS210のYes)、次のステップに進む。一方、未達の場合(ステップS210のNo)は、ステップS206から処理を繰り返す。 Next, the arithmetic unit 8, and the linear approximation the relation of the wavelet coefficients of the formula (15) and the current and the cell voltage calculated by the equation (16) at level j, and calculates a determination coefficient R 2 at that time (step S207 ). Further, the internal resistance value at level j is calculated from the slope of the linear approximation (step S208). Subsequently, the level j approximated by the scaling function is increased by 1 (step S209), and it is further determined whether or not the level j satisfies the condition of expression (17) (step S210). ), Go to the next step. On the other hand, if it has not been reached (No in step S210), the process is repeated from step S206.

続いて、制御部6は、電流とセル電圧の計測時における電池温度、電池SOC、及び、ステップS207及びステップS208でレベル別に算出された内部抵抗値の中で、ある一定以上の決定係数をもつ内部抵抗値を記録部7に記録する(ステップS211)。次に、制御部6は、定周期(例えば、1日単位など)で全電池セル1の内部抵抗の算出までの処理(ステップS201〜ステップS211)を一定期間繰り返す(ステップS212)。内部抵抗の比較に充分な算出データが取得できた場合(ステップS212のYes)、次に説明する統計処理を用いた電池セル1の異常検出手法を実施する(ステップS213)。   Subsequently, the control unit 6 has a certain coefficient of determination more than a certain value among the battery temperature at the time of measuring the current and the cell voltage, the battery SOC, and the internal resistance value calculated for each level in steps S207 and S208. The internal resistance value is recorded in the recording unit 7 (step S211). Next, the control part 6 repeats the process (step S201-step S211) until calculation of the internal resistance of all the battery cells 1 for a fixed period (step S212) by a fixed period (for example, 1 day unit). When calculation data sufficient for comparison of internal resistance can be acquired (Yes in step S212), an abnormality detection method for the battery cell 1 using statistical processing described below is performed (step S213).

このステップでは、まず、演算部8が上記の同一測定条件(電池温度、電池SOC)において、電池セル1の内部抵抗値を一定周期毎に算出し、充放電サイクルや経過時間に対する内部抵抗値の上昇率を算出する。これを内部抵抗上昇率X(ΔR/Δt、i:セル番号)と定義する。 In this step, first, under the same measurement conditions (battery temperature, battery SOC), the calculation unit 8 calculates the internal resistance value of the battery cell 1 at regular intervals, and calculates the internal resistance value with respect to the charge / discharge cycle and the elapsed time. Calculate the rate of increase. This is defined as an internal resistance increase rate X i (ΔR / Δt, i: cell number).

次に、異常セル判定部11は、電池セル1毎の内部抵抗上昇率に対して棄却検定を用いた統計的処理を行なうことにより、特に大きな上昇率を示す電池セルが異常なセルかどうかの判定を行なう。棄却検定方法の一つとして、Smirnov−Grubbs検定が知られており、以下の手順で棄却検定を行なうことができる。   Next, the abnormal cell determination unit 11 performs statistical processing using a rejection test on the internal resistance increase rate for each battery cell 1 to determine whether or not the battery cell exhibiting a particularly large increase rate is an abnormal cell. Make a decision. As one of the rejection test methods, the Smirnov-Grubbs test is known, and the rejection test can be performed by the following procedure.

(1)標本の数をn、標本データ(ここでは、内部抵抗上昇率)をX,X,・・・Xとする。
(2)標本平均をX’、不偏分散をUとする。
(3)最大の測定値Xについて式(18)によるTiを算出する。

Figure 2013195232
(4)上記Tiと、有意水準αの有意点Tn(α)を比較することによって、棄却検定を行なう。
Ti<Tn(α)の時、Tiは棄却されない。
Ti≧Tn(α)の時、Tiは棄却される。
Tn(α)は、tα/nを自由度n−2のt分布の上側100α/n(%)とした時、式(19)により求められる。
Figure 2013195232
(1) the number of samples n, (in this case, the internal resistance increase rate) sample data X 1, X 2, and · · · X n.
(2) Let X ′ be the sample mean and U be the unbiased variance.
(3) for the maximum measured value X i to calculate the Ti according to equation (18).
Figure 2013195232
(4) A rejection test is performed by comparing the Ti with the significance point Tn (α) of the significance level α.
When Ti <Tn (α), Ti is not rejected.
When Ti ≧ Tn (α), Ti is rejected.
Tn (α) is obtained by Expression (19), where t α / n is 100 α / n (%) above the t distribution with n−2 degrees of freedom.
Figure 2013195232

以上説明した手法により、特に大きな内部抵抗の上昇率を示す電池セル1が異常なセルかどうかの判定を行なうことができる。   With the method described above, it is possible to determine whether or not the battery cell 1 that exhibits a particularly large rate of increase in internal resistance is an abnormal cell.

(効果)
(1)本実施形態によれば、電池セル1毎の内部抵抗を継続監視し、算出された個々のセル内部抵抗値を統計処理することにより、二次電池の異常を検出することができる。これにより、二次電池を用いた蓄電池システムにおいて、電池製造時には検出できないような経年劣化などによる二次電池の異常を早期に検出することができる。
(effect)
(1) According to this embodiment, it is possible to detect abnormality of the secondary battery by continuously monitoring the internal resistance of each battery cell 1 and statistically processing the calculated individual cell internal resistance values. Thereby, in the storage battery system using a secondary battery, the abnormality of a secondary battery by the secular deterioration etc. which cannot be detected at the time of battery manufacture can be detected at an early stage.

(2)特異な内部抵抗を示す電池セル1を検出することで、電池の劣化傾向の把握や充放電電力予測が可能となる。これにより、二次電池の効率的な運用、メンテナンスやリユース、リサイクルの方針を決めることが可能となる。 (2) By detecting the battery cell 1 exhibiting a specific internal resistance, it is possible to grasp the tendency of battery deterioration and predict charge / discharge power. This makes it possible to decide on a policy for efficient operation, maintenance, reuse, and recycling of the secondary battery.

(3)通信インターフェイス9を用いて二次電池の内部抵抗や異常情報を上位の監視装置に通知することにより、蓄電池システムの異常や性能低下などを監視することができる。 (3) By using the communication interface 9 to notify the higher-order monitoring device of the internal resistance and abnormality information of the secondary battery, it is possible to monitor abnormality or performance degradation of the storage battery system.

[第3の実施形態]
以下に、第1の実施形態で説明した内部抵抗値の算出方法を用いた、第3の実施形態に係る二次電池の劣化推定装置について説明する。
[Third Embodiment]
The secondary battery deterioration estimation apparatus according to the third embodiment using the internal resistance value calculation method described in the first embodiment will be described below.

(二次電池の劣化推定装置の構成)
図12に、本発明の第3の実施形態に係る二次電池の劣化推定装置の構成を示す。なお、第1の実施形態と同一部分については同一符号を付して説明を省略する。
(Configuration of secondary battery deterioration estimation device)
FIG. 12 shows the configuration of a secondary battery deterioration estimation apparatus according to the third embodiment of the present invention. Note that the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

本実施形態の劣化推定装置30は、第1の実施形態の内部抵抗演算装置10の制御部6に、二次電池の内部抵抗の測定結果と予め記録させた内部抵抗値とを比較して劣化度合を推定する劣化推定部21を接続したものである。   The degradation estimation apparatus 30 of the present embodiment compares the measurement result of the internal resistance of the secondary battery with the internal resistance value recorded in advance in the control unit 6 of the internal resistance calculation apparatus 10 of the first embodiment. A deterioration estimation unit 21 that estimates the degree is connected.

図13に示すように、BOL(Begin Of Life:寿命初期)の二次電池(通常電池)と劣化した二次電池とではその内部抵抗値が異なり、また周波数(レベル)によってその差も変わる。このため、本実施形態では、基準となる電池温度やSOC(充電状態)において予め劣化度合が分かっている二次電池を用いて周波数に応じた内部抵抗を測定しておき、記録部7に劣化度・周波数別に内部抵抗値テーブルとして記録しておく。   As shown in FIG. 13, a BOL (Begin Of Life) secondary battery (normal battery) and a deteriorated secondary battery have different internal resistance values, and the difference also varies depending on the frequency (level). For this reason, in this embodiment, the internal resistance according to the frequency is measured using a secondary battery whose degree of deterioration is known in advance at the reference battery temperature and SOC (charged state), and the recording unit 7 is deteriorated. Record as an internal resistance value table for each degree and frequency.

次に、第1の実施形態による二次電池の内部抵抗算出方法により個々の電池セル1の内部抵抗を演算部8が周波数毎に算出し、この算出結果を劣化推定部21が記録部7に記録された内部抵抗値テーブルと比較する。   Next, the calculation unit 8 calculates the internal resistance of each battery cell 1 for each frequency by the secondary battery internal resistance calculation method according to the first embodiment, and the deterioration estimation unit 21 stores the calculation result in the recording unit 7. Compare with the recorded internal resistance value table.

具体的には、まず、記録部7に、BOL(Begin Of Life:寿命初期)の二次電池の内部抵抗値について、基準となる電池の温度とSOC(充電状態)での特性データを周波数別に内部抵抗値テーブルとして記録しておく。次に、演算部8により演算された内部抵抗値を現在の電池温度とSOC(充電状態)から基準の電池状態(標準温度、標準充電状態)の内部抵抗値に換算(補正)する。さらに、この換算された内部抵抗値と、内部抵抗値テーブルとして記録された寿命初期の内部抵抗値との比率から、二次電池の劣化状態を推定する。   Specifically, first, in the recording unit 7, for the internal resistance value of the BOL (Begin Of Life) secondary battery, the reference battery temperature and SOC (charged state) characteristic data are classified by frequency. Record as an internal resistance value table. Next, the internal resistance value calculated by the calculation unit 8 is converted (corrected) from the current battery temperature and SOC (charged state) to the internal resistance value of the reference battery state (standard temperature, standard charged state). Furthermore, the deterioration state of the secondary battery is estimated from the ratio between the converted internal resistance value and the initial internal resistance value recorded as the internal resistance value table.

(効果)
本実施形態によれば、第1の実施形態による二次電池の内部抵抗算出方法により周波数毎に算出した個々の電池セル1の内部抵抗の結果と、予め劣化度・周波数別に記録部7に記録された内部抵抗値テーブルとを比較することによって、二次電池の劣化状態を精度良く把握することが可能になる。
(effect)
According to the present embodiment, the result of the internal resistance of each battery cell 1 calculated for each frequency by the method for calculating the internal resistance of the secondary battery according to the first embodiment, and recorded in advance in the recording unit 7 for each degree of deterioration and frequency. By comparing with the internal resistance value table thus made, it becomes possible to accurately grasp the deterioration state of the secondary battery.

[他の実施形態]
(1)上記の各実施形態では、二次電池の状態を監視することを目的として、内部抵抗値を外部に送信するための通信インターフェイス9を設けたが、省略することもできる。
[Other Embodiments]
(1) In each of the embodiments described above, the communication interface 9 for transmitting the internal resistance value to the outside is provided for the purpose of monitoring the state of the secondary battery, but may be omitted.

(2)第2の実施形態では、異常セルの検出方法として、電池セル1毎の内部抵抗の上昇率を比較する方法を用いたが、それ以外にも、ある時点での電池セル1同士の内部抵抗値そのものを比較しても良い。 (2) In the second embodiment, as a method for detecting abnormal cells, a method of comparing the rate of increase in internal resistance for each battery cell 1 is used. The internal resistance value itself may be compared.

(3)第3の実施形態では、演算された内部抵抗値を基準の電池状態(標準温度、標準充電状態)に換算(補正)し、内部抵抗値テーブルの値と比較して劣化状態を推定したが、換算(補正)後の内部抵抗値の上昇比率から、二次電池の劣化状態を推定することもできる。 (3) In the third embodiment, the calculated internal resistance value is converted (corrected) into the reference battery state (standard temperature, standard charge state), and compared with the value in the internal resistance value table to estimate the deterioration state. However, the deterioration state of the secondary battery can also be estimated from the increase ratio of the internal resistance value after conversion (correction).

(4)第2の実施形態に係る異常検出装置20と第3の実施形態に係る劣化推定装置30とを組み合わせても良い。この場合は、異常検出装置20の異常セル判定部11と劣化推定装置30の劣化推定部21とを一装置内に共存させることができる。また、異常セル判定部11に劣化推定部21の機能も持たせたり、逆に、劣化推定部21に異常セル判定部11の機能を持たせたりしても良い。 (4) You may combine the abnormality detection apparatus 20 which concerns on 2nd Embodiment, and the degradation estimation apparatus 30 which concerns on 3rd Embodiment. In this case, the abnormal cell determination unit 11 of the abnormality detection device 20 and the deterioration estimation unit 21 of the deterioration estimation device 30 can coexist in one device. The abnormal cell determination unit 11 may have the function of the deterioration estimation unit 21, or conversely, the deterioration estimation unit 21 may have the function of the abnormal cell determination unit 11.

(5)以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 (5) Although several embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

1…電池セル
2…組電池
3…電圧測定部
4…電流測定部
5…温度測定部
6…制御部
7…記録部
8…演算部
9…通信インターフェイス
10…内部抵抗演算装置
11…異常セル判定部
20…異常検出装置
21…劣化推定部
30…劣化推定装置
DESCRIPTION OF SYMBOLS 1 ... Battery cell 2 ... Assembly battery 3 ... Voltage measurement part 4 ... Current measurement part 5 ... Temperature measurement part 6 ... Control part 7 ... Recording part 8 ... Calculation part 9 ... Communication interface 10 ... Internal resistance calculation apparatus 11 ... Abnormal cell determination 20: Abnormality detection device 21 ... Degradation estimation unit 30 ... Degradation estimation device

Claims (12)

二次電池を構成する各電池セルの正極端子と負極端子間に接続され、端子間電圧を測定する電圧測定部と、
電流経路に挿入され、前記電池セルへの充放電電流を測定する電流測定部と、
前記電圧測定部及び前記電流測定部における測定を制御する制御部と、
当該制御部に接続され、前記電圧測定部及び前記電流測定部からの各測定値からウェーブレット変換を行い、周波数毎に電流及び電圧のウェーブレット係数を求め、これらの比率から二次電池の内部抵抗を演算する演算部と、
を備えることを特徴とする二次電池の内部抵抗演算装置。
A voltage measuring unit that is connected between the positive electrode terminal and the negative electrode terminal of each battery cell constituting the secondary battery, and measures a voltage between the terminals;
A current measurement unit that is inserted into a current path and measures a charge / discharge current to the battery cell;
A control unit for controlling measurement in the voltage measurement unit and the current measurement unit;
Connected to the control unit, performs wavelet transform from each measurement value from the voltage measurement unit and the current measurement unit, obtains a wavelet coefficient of current and voltage for each frequency, and calculates the internal resistance of the secondary battery from these ratios A computing unit for computing,
An internal resistance calculation device for a secondary battery, comprising:
前記演算部は、前記電流及び電圧のウェーブレット係数の関係を直線近似した場合の相関の高い周波数を特定し、当該周波数におけるウェーブレット係数の比率から二次電池の内部抵抗を算出することを特徴とする請求項1記載の二次電池の内部抵抗演算装置。   The arithmetic unit specifies a frequency having a high correlation when the relationship between the current and voltage wavelet coefficients is linearly approximated, and calculates the internal resistance of the secondary battery from the ratio of the wavelet coefficients at the frequency. The internal resistance calculation device of the secondary battery according to claim 1. 前記演算部は、前記電圧測定部及び前記電流測定部においてそれぞれ所定のサンプリング時間間隔で計測されたN個の測定値を用い、前記ウェーブレット変換として離散ウェーブレット変換を用いるものであることを特徴とする請求項1又は2記載の二次電池の内部抵抗演算装置。   The calculation unit uses N measurement values measured at predetermined sampling time intervals in the voltage measurement unit and the current measurement unit, respectively, and uses a discrete wavelet transform as the wavelet transform. The internal resistance calculation apparatus of the secondary battery of Claim 1 or 2. 請求項1乃至請求項3のいずれか1項記載の二次電池の内部抵抗演算装置の前記制御部に、前記演算部により演算された二次電池の各内部抵抗値から所定の統計処理を用いて電池セルの異常を判定する異常セル判定部を接続したことを特徴とする二次電池の異常検出装置。   A predetermined statistical process is used for the control unit of the internal resistance calculation device for a secondary battery according to any one of claims 1 to 3 from each internal resistance value of the secondary battery calculated by the calculation unit. An abnormality detection device for a secondary battery, wherein an abnormality cell determination unit for determining abnormality of a battery cell is connected. 前記統計処理として棄却検定を用いたことを特徴とする請求項4記載の二次電池の異常検出装置。   5. The secondary battery abnormality detection device according to claim 4, wherein a rejection test is used as the statistical processing. 前記制御部に、前記異常セル判定部により検出された二次電池の異常情報を外部装置に通知する通信インターフェイスを接続したことを特徴とする請求項4又は5記載の二次電池の異常検出装置。   The secondary battery abnormality detection device according to claim 4 or 5, wherein a communication interface for notifying an external device of abnormality information of the secondary battery detected by the abnormal cell determination unit is connected to the control unit. . 請求項1乃至請求項3のいずれか1項記載の二次電池の内部抵抗演算装置において、前記電池セルの温度を測定する温度測定部を設け、かつ前記制御部に、予め記録された基準となる内部抵抗値と前記演算部により算出された二次電池の内部抵抗の測定結果とを比較して劣化度合を推定する劣化推定部を接続したことを特徴とする二次電池の劣化推定装置。   The internal resistance calculation device for a secondary battery according to any one of claims 1 to 3, further comprising: a temperature measurement unit that measures the temperature of the battery cell; and a reference recorded in advance in the control unit. A deterioration estimation device for a secondary battery, characterized in that a deterioration estimation unit for comparing the internal resistance value and the measurement result of the internal resistance of the secondary battery calculated by the calculation unit to estimate the degree of deterioration is connected. 前記劣化推定部は、寿命初期の二次電池の内部抵抗値について基準となる電池の温度と充電状態での特性データを予め記録した内部抵抗値テーブルの値と、前記演算部により算出された内部抵抗値を基準となる電池状態の内部抵抗値に換算した補正値とを対比し、これらの比率から、二次電池の劣化状態を推定することを特徴とする請求項7記載の二次電池の劣化推定装置。   The deterioration estimation unit includes a value of an internal resistance value table in which characteristic data in a battery temperature and a charging state serving as a reference for an internal resistance value of a secondary battery at an early stage of life, and an internal value calculated by the calculation unit 8. The secondary battery according to claim 7, wherein a resistance value is compared with a correction value converted into an internal resistance value of a battery state as a reference, and a deterioration state of the secondary battery is estimated from these ratios. Degradation estimation device. 前記劣化推定部は、前記演算部により算出された内部抵抗値を基準となる電池状態の内部抵抗値に換算した場合の上昇比率から二次電池の劣化状態を推定することを特徴とする請求項7記載の二次電池の劣化推定装置。   The deterioration estimation unit estimates a deterioration state of a secondary battery from an increase rate when the internal resistance value calculated by the calculation unit is converted into an internal resistance value of a battery state serving as a reference. The deterioration estimation device for a secondary battery according to claim 7. 二次電池の構成する各電池セルにおける電流測定値及び電圧測定値をそれぞれウェーブレット変換し、各周波数において電流及び電圧のウェーブレット係数を求め、前記電流及び電圧のウェーブレット係数の関係を直線近似した場合の相関の高い周波数を特定し、当該周波数におけるウェーブレット係数の比率から二次電池の内部抵抗を算出することを特徴とする二次電池の内部抵抗演算方法。   When the current measurement value and the voltage measurement value in each battery cell constituting the secondary battery are respectively wavelet transformed, the current and voltage wavelet coefficients are obtained at each frequency, and the relationship between the current and voltage wavelet coefficients is linearly approximated A method for calculating an internal resistance of a secondary battery, characterized by specifying a highly correlated frequency and calculating the internal resistance of the secondary battery from a ratio of wavelet coefficients at the frequency. 請求項10記載の二次電池の内部抵抗演算方法により演算された各内部抵抗値から棄却検定を用いて電池セルの異常を判定することを特徴とする二次電池の異常検出方法。   An abnormality detection method for a secondary battery, wherein abnormality of a battery cell is determined from each internal resistance value calculated by the internal resistance calculation method for a secondary battery according to claim 10 using a rejection test. 予め記録された寿命初期段階の二次電池の内部抵抗値と、請求項10記載の二次電池の内部抵抗演算方法により演算された各内部抵抗値とを比較して劣化度合を推定することを特徴とする二次電池の劣化推定方法。   Comparing the internal resistance value of the secondary battery in the initial stage of life recorded in advance with each internal resistance value calculated by the internal resistance calculation method of the secondary battery according to claim 10 to estimate the degree of deterioration. A method for estimating deterioration of a secondary battery.
JP2012062578A 2012-03-19 2012-03-19 Secondary battery internal resistance calculation device and internal resistance calculation method thereof, secondary battery abnormality detection device and abnormality detection method thereof, secondary battery degradation estimation device and degradation estimation method thereof Active JP6026120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012062578A JP6026120B2 (en) 2012-03-19 2012-03-19 Secondary battery internal resistance calculation device and internal resistance calculation method thereof, secondary battery abnormality detection device and abnormality detection method thereof, secondary battery degradation estimation device and degradation estimation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012062578A JP6026120B2 (en) 2012-03-19 2012-03-19 Secondary battery internal resistance calculation device and internal resistance calculation method thereof, secondary battery abnormality detection device and abnormality detection method thereof, secondary battery degradation estimation device and degradation estimation method thereof

Publications (2)

Publication Number Publication Date
JP2013195232A true JP2013195232A (en) 2013-09-30
JP6026120B2 JP6026120B2 (en) 2016-11-16

Family

ID=49394362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012062578A Active JP6026120B2 (en) 2012-03-19 2012-03-19 Secondary battery internal resistance calculation device and internal resistance calculation method thereof, secondary battery abnormality detection device and abnormality detection method thereof, secondary battery degradation estimation device and degradation estimation method thereof

Country Status (1)

Country Link
JP (1) JP6026120B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015224876A (en) * 2014-05-26 2015-12-14 株式会社デンソー Battery internal state estimation device
CN105203846A (en) * 2015-09-11 2015-12-30 国家电网公司 Method for eliminating influences of low temperature on testing of internal resistance of energy storage battery
CN105355945A (en) * 2015-11-18 2016-02-24 沈阳化工大学 Microbiological fuel cell fault diagnosis method based on wavelet-transformation
WO2016135853A1 (en) 2015-02-24 2016-09-01 株式会社東芝 Storage battery management device, method and program
JP2017503177A (en) * 2013-10-02 2017-01-26 エルジー・ケム・リミテッド Battery cell assembly
CN106371018A (en) * 2015-07-21 2017-02-01 上汽通用汽车有限公司 Cell-terminal-voltage-estimation-based fault diagnosis method and equipment for vehicle power battery
CN109428136A (en) * 2017-08-23 2019-03-05 丰田自动车株式会社 The deterioration state presumption method and secondary battery system of secondary cell
US10363835B2 (en) 2014-08-29 2019-07-30 Kabushiki Kaisha Toshiba Railroad system
JP2020034426A (en) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 Secondary battery degradation state estimation method and secondary battery system
JP2020517076A (en) * 2017-10-20 2020-06-11 エルジー・ケム・リミテッド Battery resistance estimating apparatus and method
JP2020169943A (en) * 2019-04-05 2020-10-15 株式会社日立産機システム Storage battery state evaluation system
WO2021111673A1 (en) * 2019-12-06 2021-06-10 東芝インフラシステムズ株式会社 Storage battery device, method, and program
CN113281658A (en) * 2021-04-21 2021-08-20 天津力神电池股份有限公司 Method for judging over-temperature reason of battery in test process
JP7422227B2 (en) 2019-11-20 2024-01-25 デクラ エスエー How to determine the state value of the traction battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253137B2 (en) * 2012-12-18 2017-12-27 株式会社東芝 Battery state estimation device for secondary battery
WO2024003952A2 (en) * 2022-07-01 2024-01-04 Commscope Technologies Llc Techniques for associating a feedback port or electrical conductor resistance with a dc output port of a voltage converter system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131404A (en) * 1998-10-27 2000-05-12 Denso Corp Cell deterioration degree determining apparatus
JP2003330910A (en) * 2002-05-13 2003-11-21 Denso Corp Wavelet transform method and wavelet transform device
JP2004165058A (en) * 2002-11-14 2004-06-10 Nissan Motor Co Ltd Control device of fuel cell system
JP2005221487A (en) * 2004-02-09 2005-08-18 Furukawa Electric Co Ltd:The Method and instrument for measuring internal impedance of secondary battery, device for determining deterioration of secondary battery, and power source system
JP2006098135A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Device for estimating degree of deterioration in battery
JP2006204069A (en) * 2005-01-24 2006-08-03 Kansai Electric Power Co Inc:The Individual operation detecting method and individual operation detecting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000131404A (en) * 1998-10-27 2000-05-12 Denso Corp Cell deterioration degree determining apparatus
JP2003330910A (en) * 2002-05-13 2003-11-21 Denso Corp Wavelet transform method and wavelet transform device
JP2004165058A (en) * 2002-11-14 2004-06-10 Nissan Motor Co Ltd Control device of fuel cell system
JP2005221487A (en) * 2004-02-09 2005-08-18 Furukawa Electric Co Ltd:The Method and instrument for measuring internal impedance of secondary battery, device for determining deterioration of secondary battery, and power source system
JP2006098135A (en) * 2004-09-28 2006-04-13 Fuji Heavy Ind Ltd Device for estimating degree of deterioration in battery
JP2006204069A (en) * 2005-01-24 2006-08-03 Kansai Electric Power Co Inc:The Individual operation detecting method and individual operation detecting device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017503177A (en) * 2013-10-02 2017-01-26 エルジー・ケム・リミテッド Battery cell assembly
JP2015224876A (en) * 2014-05-26 2015-12-14 株式会社デンソー Battery internal state estimation device
US10363835B2 (en) 2014-08-29 2019-07-30 Kabushiki Kaisha Toshiba Railroad system
KR20160112924A (en) 2015-02-24 2016-09-28 가부시끼가이샤 도시바 Storage battery management device, method, and computer program
US10205335B2 (en) 2015-02-24 2019-02-12 Kabushiki Kaisha Toshiba Storage battery management device, method, and computer program product
WO2016135853A1 (en) 2015-02-24 2016-09-01 株式会社東芝 Storage battery management device, method and program
CN106371018A (en) * 2015-07-21 2017-02-01 上汽通用汽车有限公司 Cell-terminal-voltage-estimation-based fault diagnosis method and equipment for vehicle power battery
CN105203846A (en) * 2015-09-11 2015-12-30 国家电网公司 Method for eliminating influences of low temperature on testing of internal resistance of energy storage battery
CN105355945A (en) * 2015-11-18 2016-02-24 沈阳化工大学 Microbiological fuel cell fault diagnosis method based on wavelet-transformation
CN109428136B (en) * 2017-08-23 2021-06-11 丰田自动车株式会社 Method for estimating deterioration state of secondary battery and secondary battery system
JP2019039700A (en) * 2017-08-23 2019-03-14 トヨタ自動車株式会社 Deterioration state estimation method of secondary battery and secondary battery system
CN109428136A (en) * 2017-08-23 2019-03-05 丰田自动车株式会社 The deterioration state presumption method and secondary battery system of secondary cell
US11428745B2 (en) 2017-08-23 2022-08-30 Toyota Jidosha Kabushiki Kaisha Method of estimating deteriorated state of secondary battery and secondary battery system
JP2020517076A (en) * 2017-10-20 2020-06-11 エルジー・ケム・リミテッド Battery resistance estimating apparatus and method
JP2020034426A (en) * 2018-08-30 2020-03-05 トヨタ自動車株式会社 Secondary battery degradation state estimation method and secondary battery system
JP2020169943A (en) * 2019-04-05 2020-10-15 株式会社日立産機システム Storage battery state evaluation system
JP7202958B2 (en) 2019-04-05 2023-01-12 株式会社日立産機システム Storage battery condition evaluation system
JP7422227B2 (en) 2019-11-20 2024-01-25 デクラ エスエー How to determine the state value of the traction battery
WO2021111673A1 (en) * 2019-12-06 2021-06-10 東芝インフラシステムズ株式会社 Storage battery device, method, and program
CN113281658A (en) * 2021-04-21 2021-08-20 天津力神电池股份有限公司 Method for judging over-temperature reason of battery in test process
CN113281658B (en) * 2021-04-21 2023-08-08 力神(青岛)新能源有限公司 Method for judging reason of overtemperature of battery in testing process

Also Published As

Publication number Publication date
JP6026120B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP6026120B2 (en) Secondary battery internal resistance calculation device and internal resistance calculation method thereof, secondary battery abnormality detection device and abnormality detection method thereof, secondary battery degradation estimation device and degradation estimation method thereof
JP6991616B2 (en) Battery diagnostic device and battery diagnostic method by current pulse method
KR101989692B1 (en) Method and System for Diagnosing Battery Aging
CN111448468A (en) Method, device and system for detecting consistency of battery pack
KR102574084B1 (en) Method and apparatus for managing of battery capacity
JP6253137B2 (en) Battery state estimation device for secondary battery
JP2016090346A (en) Battery diagnostic device and battery diagnostic method
WO2021065443A1 (en) Battery state estimation device
JPWO2016059869A1 (en) Secondary battery charge state estimation apparatus and charge state estimation method thereof
CN111551860A (en) Battery internal short circuit diagnosis method based on relaxation voltage characteristics
TWI541523B (en) Method and apparatus of detecting the states of battery
US20230122362A1 (en) Apparatus and methods for testing electrochemical systems
KR102638117B1 (en) System for estimating the state of health(soh) of battery, system and method for deriving parameters therefor
CN104833917B (en) Determination of nominal cell resistance for real-time estimation of state of charge in lithium batteries
JP2010139260A (en) System of estimating remaining life of secondary battery and method for estimating remaining life thereof
JP2018072346A (en) Battery state estimation apparatus of secondary battery
EP3992648A1 (en) Battery diagnosis device and method
Leijen et al. Use of effective capacitance variation as a measure of state-of-health in a series-connected automotive battery pack
JP2012083142A (en) Calculation device for internal resistance of secondary battery
EP4083641A1 (en) Semiconductor device and method of monitoring battery remaining capacity
CN113009363A (en) Method and apparatus for measuring ohmic resistance of battery
Freitas et al. Determining lead-acid battery DC resistance by tremblay battery model
US20210181257A1 (en) Diagnosis of energy storage systems during operation
CN117382415A (en) Management method for battery pack, electronic device and vehicle
CN117741477A (en) Method and device for detecting short circuit fault in battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R151 Written notification of patent or utility model registration

Ref document number: 6026120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151