JP2013160546A - Method for testing concrete quality management - Google Patents
Method for testing concrete quality management Download PDFInfo
- Publication number
- JP2013160546A JP2013160546A JP2012020593A JP2012020593A JP2013160546A JP 2013160546 A JP2013160546 A JP 2013160546A JP 2012020593 A JP2012020593 A JP 2012020593A JP 2012020593 A JP2012020593 A JP 2012020593A JP 2013160546 A JP2013160546 A JP 2013160546A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- strain
- linear expansion
- expansion coefficient
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本発明はコンクリート品質管理試験方法に係り、コンクリートの強度試験用に利用されている円柱状軽量鋼製型枠にひずみゲージを貼り付け、型枠のひずみを測定し、コンクリート施工現場等において、試験対象であるコンクリートへの膨張材、収縮低減剤の混入の有無の確認と、膨張材の混入量の概略把握が可能とした試験において、コンクリートの線膨張係数と、ひずみゲージの補償線膨張係数とを考慮した温度補正を行い、材齢経過時のひずみ変動を小さくして、上述した各評価の精度を高めるようにしたコンクリート品質管理試験方法に関する。 The present invention relates to a concrete quality control test method, and a strain gauge is attached to a cylindrical lightweight steel mold used for a concrete strength test, and the strain of the mold is measured. In the test that made it possible to confirm the presence or absence of the expansion material and shrinkage reducing agent in the target concrete and to roughly grasp the amount of the expansion material, the concrete linear expansion coefficient and the compensation linear expansion coefficient of the strain gauge The present invention relates to a concrete quality control test method in which the temperature correction is performed in consideration of the above, and the strain fluctuation during the age of the material is reduced to increase the accuracy of each evaluation described above.
出願人は、ひび割れ抑制を目的とした膨張コンクリートや収縮低減剤を混入したコンクリートの品質を、初期段階で把握評価できるコンクリート管理試験方法として、コンクリートの強度試験用に利用されている円柱状の軽量鋼製型枠の高さ方向中央部にひずみゲージを貼り付け、型枠のひずみを測定することで膨張コンクリートの初期膨張ひずみを評価し、品質管理に利用できる試験方法を提案している(特許文献1)。この試験方法により、コンクリート施工現場等において、試験対象であるコンクリートへの膨張材、収縮低減剤の混入の有無の確認と、膨張材の混入量の概略の推定を行えるようになった。 Applicant is a lightweight columnar material used for concrete strength test as a concrete management test method that can grasp and evaluate the quality of expansive concrete and cracking concrete mixed with the purpose of suppressing cracking at an early stage. A strain gauge is attached to the center of the steel mold in the height direction, and the initial expansion strain of expanded concrete is evaluated by measuring the strain of the mold, and a test method that can be used for quality control is proposed (patent) Reference 1). With this test method, it has become possible to confirm the presence or absence of mixing of an expansion material and a shrinkage reducing agent into the concrete to be tested and a rough estimate of the amount of expansion material mixed in the concrete construction site.
図1は、この試験方法における、上述した軽量鋼製の円柱型枠10の表面にひずみゲージを貼付し、そのひずみ量を測定する一態様を示した説明図である。この円柱型枠10としては、一例として円筒形状に加工した板厚0.3mm程度のすずメッキ薄鋼板からなる既製品(商品名:軽量モールドSUMMIT)を用いた。ひずみゲージの貼付位置、方向は、型枠の高さ方向の中心位置、ひずみゲージの長手方向を型枠円周方向に一致させるように貼付した。ひずみゲージ11の表面を覆うようにブチルゴムシート12を貼付して防水処理を行っている。このひずみゲージ11からリード線13(図の簡単化のため、1本の線図で表示している)を測定装置14まで延長し測定装置14により、円柱型枠10内に各水準のコンクリートCが打設された直後から所定材齢までの間の円柱型枠10のひずみ変化を連続的に測定し、コンクリートの膨張性状の把握を行うものである。なお、同図には、型枠外表面に型枠切欠線15が形成されている。この型枠切欠線15で型枠を切り離すことができ、これによりコンクリート試験体の脱型を容易に行える。
FIG. 1 is an explanatory view showing an embodiment in which a strain gauge is affixed to the surface of the above-described lightweight steel
ところで、この品質管理試験方法は、コンクリート施工現場等において、簡易に行えることを想定している。そのため、コンクリートの種類、添加剤の種類に加えて、コンクリート打設場所の環境温度が与える影響を考慮し、その環境温度下で硬化が進行するコンクリートの適正なひずみ量を知ることが必要である。 By the way, it is assumed that this quality control test method can be easily performed at a concrete construction site or the like. Therefore, in addition to the type of concrete and the type of additive, it is necessary to consider the effect of the environmental temperature at the concrete placement site and to know the appropriate strain amount of the concrete that hardens under that environmental temperature. .
例えば、恒温室等の20℃環境下でのコンクリート硬化にひずみの経時変化について、異なる骨材(硬質砂岩砕石、石灰石砕石)を用いたコンクリートについて、コンクリート打設から材齢7日までの材齢と膨張ひずみ(ひずみゲージ測定値)との関係の一例を図2に示す。このように、一定の環境温度下(20℃)では、材齢1日までの間にそのほとんどのひずみ変化が生じ、その後ほぼ横ばいに安定する、概ねバイリニア型の経時変化を示すことが認められている。
For example, for concrete with different aggregates (hard sandstone crushed stone, limestone crushed stone) with respect to time-dependent changes in strain in concrete hardening in a constant temperature room such as a 20 ° C environment, the age from concrete placement to
しかし、実際のコンクリート打設作業を行う現場のような環境下では1日において気温変化がある場合が一般的である。そのような気温変化(日較差)を想定した場合のコンクリートひずみの経時変化を、たとえば図3に示したような温度履歴(最高温度約33℃/日、最低温度約17℃/日)で再現して、打設コンクリートの経時変化(コンクリート打設〜材齢7日)を測定した。その結果、図4に示したように、材齢経過に伴うコンクリートひずみは温度履歴(気温の変動)と連動して変動することが確認された。
However, in an environment such as a site where actual concrete placement work is performed, there is generally a case where there is a temperature change in one day. The time-dependent change in concrete strain assuming such a change in temperature (daily difference) is reproduced with a temperature history (maximum temperature of about 33 ° C./day, minimum temperature of about 17 ° C./day) as shown in FIG. 3, for example. And the time-dependent change (concrete casting-
この温度履歴に基づくコンクリートひずみは、型枠内のコンクリート自体のひずみ変動と、軽量鋼製型枠のひずみ(ひずみゲージ測定値)変動とが複合的に挙動していることが予想される。そのため、線膨張係数の異なるひずみゲージによる測定値においても、コンクリートひずみを適正に示すような測定を行う必要がある。そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、コンクリート試験体の硬化時の材齢経過における環境温度の変化に対して測定ひずみを温度補正することにより、適正なコンクリートひずみを測定できるようにしたコンクリート品質管理試験方法を提供することにある。 It is expected that the concrete strain based on this temperature history behaves in combination with the strain variation of the concrete itself in the mold and the strain (strain gauge measured value) variation of the lightweight steel mold. For this reason, it is necessary to perform measurement that appropriately indicates the concrete strain even in the measurement values obtained by strain gauges having different linear expansion coefficients. Accordingly, the object of the present invention is to solve the above-mentioned problems of the prior art and correct the temperature of the measured strain with respect to the change in the environmental temperature over the age of the concrete specimen when it is cured. The object is to provide a concrete quality control test method capable of measuring strain.
上記目的を達成するために、本発明はコンクリートを打設した薄肉円柱型枠の外側面に貼付したひずみゲージで、前記コンクリートの打設直後から所定材齢までのひずみ量を測定し、該ひずみ量の経時変化から、所定の添加材または添加剤が適正に混入されたコンクリートであるかの評価を行うコンクリートの品質管理試験方法において、前記コンクリートの線膨張係数と前記ひずみゲージの補償線膨張係数との数値差に対して、前記所定材齢までの各測定時でのコンクリート温度を乗じて前記ひずみ量の経時変化を補正し、その補正後のひずみ量の経時変化を用いて前記評価を行うことを特徴とする。また、同様にひずみゲージの補償線膨張係数が既知である場合、所定の温度変化を与えた時のコンクリート温度とひずみとを測定し、前記補正を行うことにより、対象となるコンクリートの線膨張係数を推定することができる。 In order to achieve the above object, the present invention is a strain gauge affixed to the outer surface of a thin-walled cylindrical formwork in which concrete has been placed, and measures the amount of strain from immediately after placing the concrete to a predetermined material age. In a concrete quality control test method for evaluating whether the concrete is a concrete in which a predetermined additive or additive is appropriately mixed from the change over time, the linear expansion coefficient of the concrete and the compensation linear expansion coefficient of the strain gauge The time difference of the strain amount is corrected by multiplying the numerical difference with the concrete temperature at the time of each measurement up to the predetermined age, and the evaluation is performed using the time-dependent change of the strain amount after the correction. It is characterized by that. Similarly, when the compensation linear expansion coefficient of the strain gauge is known, the concrete thermal expansion coefficient of the target concrete is measured by measuring the concrete temperature and strain when given a predetermined temperature change and performing the correction. Can be estimated.
コンクリートを打設した薄肉円柱型枠の外側面に貼付したひずみゲージで、前記コンクリートの打設直後から所定材齢までのひずみ量を測定し、該ひずみ量の経時変化から、所定の添加材または添加剤が適正に混入されたコンクリートであるかの評価を行うコンクリートの品質管理試験方法において、前記コンクリートの線膨張係数と前記ひずみゲージの補償線膨張係数との数値差に対して、前記所定材齢までの各測定時での気温を乗じて前記ひずみ量の経時変化を補正し、その補正後のひずみ量の経時変化を用いて前記評価を行うことを特徴とする。 With a strain gauge affixed to the outer surface of a thin-walled cylindrical formwork in which concrete has been placed, the amount of strain from immediately after placing the concrete to a predetermined age is measured. In a concrete quality control test method for evaluating whether or not the concrete is properly mixed with an additive, the predetermined material is used for a numerical difference between a linear expansion coefficient of the concrete and a compensation linear expansion coefficient of the strain gauge. The change over time of the strain amount is corrected by multiplying the temperature at the time of each measurement until the age, and the evaluation is performed using the change over time in the strain amount after the correction.
前記コンクリートの線膨張係数を、あらかじめコンクリート長さ変化試験により求め、該線膨張係数と数値差の小さい補償線膨張係数のひずみゲージを用いることが好ましい。 The linear expansion coefficient of the concrete is preferably obtained in advance by a concrete length change test, and a strain gauge having a compensated linear expansion coefficient having a small numerical difference from the linear expansion coefficient is preferably used.
前記薄肉円柱型枠として薄鋼板製モールドを使用することが好ましい。 It is preferable to use a thin steel plate mold as the thin cylindrical mold.
以上に述べたように、本発明によれば、コンクリート施工現場等において、試験対象であるコンクリートへの膨張材、収縮低減剤の混入の有無の確認と、膨張材の混入量の概略把握とを行う品質管理試験において、コンクリート種類の線膨張係数に適合した補償線膨張係数を有するひずみゲージを用いて、材齢経過時の温度変化の影響を小さくして、試験精度を高めることができるという効果を奏する。 As described above, according to the present invention, in a concrete construction site or the like, confirmation of the presence or absence of mixing of an expansion material and a shrinkage reducing agent into the concrete to be tested, and a general grasp of the amount of expansion material mixed The effect of using a strain gauge with a compensation linear expansion coefficient that matches the linear expansion coefficient of the concrete type in the quality control test to be performed, reducing the effect of temperature changes during the age of the material, and improving the test accuracy Play.
以下、本発明のコンクリート品質管理試験方法の実施するための形態として、以下の実施例について添付図面を参照して説明する。 Hereinafter, the following examples will be described with reference to the accompanying drawings as modes for carrying out the concrete quality control test method of the present invention.
上述した材齢経過に伴うコンクリートひずみの変動は、コンクリートの線膨張係数と軽量鋼製型枠の線膨張係数が異なるために、環境温度変化に対して複合的な変動を示していると考えられる。そこで、以下の実験を行い、環境温度変化に対するコンクリートの線膨張係数を求め、本発明のコンクリート品質管理試験方法に用いるひずみゲージの補償線膨張係数の違いにより、どの程度の変動幅で推移する状況を設定することとした。 It is thought that the above-mentioned fluctuation of concrete strain with the lapse of age shows a complex fluctuation with respect to environmental temperature change because the linear expansion coefficient of concrete and the linear expansion coefficient of lightweight steel formwork are different. . Therefore, the following experiment was conducted to obtain the coefficient of linear expansion of the concrete with respect to environmental temperature changes, and the extent of fluctuation due to the difference in the compensation linear expansion coefficient of the strain gauge used in the concrete quality control test method of the present invention. It was decided to set.
[コンクリートの線膨張係数を求める試験]
以後の試験において使用する粗骨材(硬質砂岩砕石、石灰岩砕石)を用いた各コンクリートの線膨張係数を、長さ変化試験により求められた各実ひずみから算出する。
(コンクリート種類)
表1に2水準(粗骨材2種類:硬質砂岩砕石、石灰岩砕石)のコンクリートの調合とフレッシュ性状(スランプ値、フロー値、空気量、測定時温度)を示す。
鋼製型枠(供試体寸法=100×100×400(mm))に埋込み型ひずみ計を設置してコンクリートを打込み、線膨張係数の測定を行った。コンクリート打設後は、封緘状態にして図3に示したのと同様の温度履歴を与えて養生した。その後、材齢20日程度で脱型し、アルミ粘着テープを用いて封緘養生を続け、材齢23日頃から図5に示すような温度履歴における養生を行った。
(試験結果)
各コンクリートの埋込み型ひずみ計の実ひずみと温度変化の結果を図6,図7に示す。コンクリート実ひずみおよび温度が一定になった時の測定値を用いて線膨張係数αを算出した(コンクリートの長さ変化試験方法(JIS A1129 )の計算方法に準拠)。この結果、(以下、線膨張係数の表示:α×10-6)としたとき、
硬質砂岩砕石コンクリート:α=11.7
石灰岩砕石コンクリート :α= 8.3
を得た。
[Test to determine the linear expansion coefficient of concrete]
The linear expansion coefficient of each concrete using coarse aggregate (hard sandstone crushed stone, limestone crushed stone) used in the subsequent tests is calculated from each actual strain obtained by the length change test.
(Concrete type)
Table 1 shows the concrete mix and fresh properties (slump value, flow value, air volume, measurement temperature) of two levels (two types of coarse aggregate: hard sandstone crushed stone and limestone crushed stone).
An embedded strain gauge was installed in a steel mold (specimen size = 100 × 100 × 400 (mm)), and concrete was driven in to measure the linear expansion coefficient. After placing the concrete, it was cured in a sealed state with the same temperature history as shown in FIG. Thereafter, the mold was removed at about 20 days of age, and sealing curing was continued using an aluminum adhesive tape, and curing at a temperature history as shown in FIG.
(Test results)
6 and 7 show the actual strain and temperature change results of the embedded strain gauges of each concrete. The linear expansion coefficient α was calculated using the measured values when the actual concrete strain and temperature became constant (based on the calculation method of the concrete length change test method (JIS A1129)). As a result, (hereinafter referred to as linear expansion coefficient display: α × 10 −6 )
Hard sandstone crushed concrete: α = 11.7
Limestone crushed concrete: α = 8.3
Got.
[コンクリート種類とひずみゲージの補償線膨張係数との関係の検証試験]
コンクリートの線膨張係数は、一般にα=6〜11程度となることが知られている。粗骨材種類による線膨張係数の数値差として、石灰岩砕石を使用した場合には小さく、硬質砂岩砕石を使用した場合には、石灰岩砕石の場合に比べて大きくなることが知られており、上記試験結果と合致することが確認された。このとき、上述した出願人の提案している品質管理試験方法の場合、コンクリートの剛性が軽量鋼製型枠に比べて十分大きいため、型枠内部のコンクリートの挙動によってひずみ値が決まってくることから、コンクリートの線膨張係数と異なる補償線膨張係数のひずみゲージを使用した場合に生じる変動を確認することとした。本試験方法での温度変化による影響を小さくすることができることが想定できる。そこで、以下の試験により、その検証を行った。
[Verification test of relationship between concrete type and strain coefficient compensated linear expansion coefficient]
It is known that the linear expansion coefficient of concrete is generally about α = 6 to 11. As a numerical difference of the coefficient of linear expansion due to the type of coarse aggregate, it is known that when limestone crushed stone is used, it is small, and when using hard sandstone crushed stone, it is larger than the case of limestone crushed stone, It was confirmed that it was consistent with the test results. At this time, in the case of the quality control test method proposed by the applicant described above, the rigidity of the concrete is sufficiently larger than that of the lightweight steel formwork, so that the strain value is determined by the behavior of the concrete inside the formwork. Therefore, it was decided to confirm the fluctuations that occur when using a strain gauge with a compensation linear expansion coefficient different from that of concrete. It can be assumed that the effect of temperature changes in this test method can be reduced. Therefore, the verification was performed by the following test.
補償線膨張係数の異なるひずみゲージ(4水準)と線膨張係数の異なるコンクリート(2水準)を用いて、所定の温度履歴での本品質管理試験方法でのひずみ測定を行うこととした。上記試験組み合わせは表2に示したとおりの8種類である。なお、膨張材にはエトリンガイト−石灰複合系膨張材を使用した。コンクリート調合は、表1に示したのと同一である。
図8は、図3に示した温度履歴で養生を行った試験において、硬質砂岩砕石を用いたコンクリート種類に対して表2に示した各補償線膨張係数のひずみゲージを使用してひずみゲージによる経時変化(コンクリート打設直後から材齢7日まで)を示したグラフである。いずれのひずみゲージを用いた場合にも、コンクリート温度変化に対応して所定のひずみ変動が現れる。 FIG. 8 shows a test using a strain gage using a strain gauge having each of the compensation linear expansion coefficients shown in Table 2 for a concrete type using a hard sandstone crushed stone in a test conducted with the temperature history shown in FIG. It is the graph which showed a time-dependent change (from immediately after concrete placement to the age of 7 days). Regardless of which strain gauge is used, a predetermined strain fluctuation appears corresponding to the concrete temperature change.
図9は、図3に示した温度履歴で養生を行った試験において、石灰岩砕石を用いたコンクリート種類に対して表2に示した各補償線膨張係数のひずみゲージを使用してひずみゲージによる経時変化を示したグラフである。この場合にも、図8と同様の理由で、コンクリート温度変化を伴う材齢経過に対応して各補償線膨張係数のひずみゲージごとに異なるひずみ変動が生じる。
[温度変化と材料線膨張係数とを考慮したひずみの評価]
FIG. 9 is a graph showing a time-dependent measurement using a strain gauge having a coefficient of linear expansion as shown in Table 2 for a concrete type using limestone crushed stone in a test conducted with a temperature history shown in FIG. It is the graph which showed the change. Also in this case, for the same reason as in FIG. 8, different strain fluctuations occur for each strain gauge having each compensation linear expansion coefficient corresponding to the age of the concrete accompanying the concrete temperature change.
[Evaluation of strain considering temperature change and material linear expansion coefficient]
図8,図9に示したひずみ変動は、温度履歴下におけるコンクリート温度と、コンクリートの線膨張係数とひずみゲージの補償線膨張係数との数値差の2点に起因して生じることが考えられる。そこで、各材齢における温度および、対象コンクリート、使用ひずみゲージの補償線膨張係数を変数とした補正式を提案することで、ひずみ変動を小さくした補正コンクリートひずみを算出し、コンクリートひずみ評価を行うこととした。 The strain variation shown in FIGS. 8 and 9 may be caused by two points: a concrete temperature under a temperature history, and a numerical difference between the linear expansion coefficient of the concrete and the compensation linear expansion coefficient of the strain gauge. Therefore, by calculating the correction formula using the temperature at each age, the target concrete, and the compensation linear expansion coefficient of the strain gauge used as variables, we can calculate the corrected concrete strain with reduced strain variation and evaluate the concrete strain. It was.
温度変化による補正は、コンクリート温度による補正と、気温(養生温度、槽内温度)による補正のいずれかを変数とすることとした。コンクリート温度を用いるのがその温度変化による補正における基本的な考え方であると言えるが、コンクリート打設を行った現場で、コンクリート温度を経時的に計測するためには、熱電対や温度センサ等の付加的な測定手段を要する。このため、コンクリート温度変化を生じさせるもととなる気温(養生温度、槽内温度)を用いた補正を行うことも好ましい。この場合には、コンクリート温度による補正における問題点を解消することができる。 The correction based on the temperature change uses either the correction based on the concrete temperature or the correction based on the air temperature (curing temperature, tank temperature) as a variable. It can be said that the use of concrete temperature is the basic idea for correction due to temperature changes, but in order to measure concrete temperature over time at the site where the concrete has been placed, a thermocouple, temperature sensor, etc. Additional measuring means are required. For this reason, it is also preferable to perform correction using the air temperature (curing temperature, tank temperature) that causes the concrete temperature change. In this case, it is possible to solve the problem in the correction due to the concrete temperature.
(1)コンクリート温度による補正
コンクリート温度による補正は、以下の式(1)を用いて行うこととした。
また、この式(1)を利用すれば、ひずみゲージの補償線膨張係数が既知である場合、所定の温度変化を与えた時のコンクリート温度とひずみとを測定することによって、コンクリートのおおよその線膨張係数を判定することができる。 Further, if this equation (1) is used, if the compensation linear expansion coefficient of the strain gauge is known, the concrete temperature and strain when a predetermined temperature change is applied are measured, so that an approximate line of the concrete can be obtained. An expansion coefficient can be determined.
(2)気温による補正
気温(養生温度、槽内温度)による補正は、式(2)を用いて行うこととした。
なお、本発明は上述した実施例に限定されるものではなく、各請求項に示した範囲内での種々の変更が可能である。すなわち、請求項に示した範囲内で適宜変更した技術的手段を組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。 In addition, this invention is not limited to the Example mentioned above, A various change within the range shown to each claim is possible. In other words, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.
10 軽量鋼製円柱型枠(円柱型枠)
11 ひずみゲージ
14 測定装置
10 Lightweight steel cylindrical formwork (cylindrical formwork)
11
Claims (5)
前記コンクリートの線膨張係数と前記ひずみゲージの補償線膨張係数との数値差に対して、前記所定材齢までの各測定時でのコンクリート温度を乗じて前記ひずみ量の経時変化を補正し、その補正後のひずみ量の経時変化を用いて前記評価を行うことを特徴とするコンクリート品質管理試験方法。 With a strain gauge affixed to the outer surface of a thin-walled cylindrical formwork in which concrete has been placed, the amount of strain from immediately after placing the concrete to a predetermined age is measured. In the concrete quality control test method for evaluating whether the concrete is properly mixed with additives,
The numerical difference between the linear expansion coefficient of the concrete and the compensation linear expansion coefficient of the strain gauge is multiplied by the concrete temperature at the time of each measurement up to the predetermined age to correct the change over time of the strain amount, A concrete quality control test method, characterized in that the evaluation is performed using a change in strain after correction with time.
前記コンクリートの線膨張係数と前記ひずみゲージの補償線膨張係数との数値差に対して、前記所定材齢までの各測定時での気温を乗じて前記ひずみ量の経時変化を補正し、その補正後のひずみ量の経時変化を用いて前記評価を行うことを特徴とするコンクリート品質管理試験方法。 With a strain gauge affixed to the outer surface of a thin-walled cylindrical formwork in which concrete has been placed, the amount of strain from immediately after placing the concrete to a predetermined age is measured. In the concrete quality control test method for evaluating whether the concrete is properly mixed with additives,
For the numerical difference between the linear expansion coefficient of the concrete and the compensation linear expansion coefficient of the strain gauge, the change over time of the strain amount is corrected by multiplying the temperature at each measurement up to the predetermined age, and the correction A concrete quality control test method, characterized in that the evaluation is performed using a subsequent change in strain amount over time.
補償線膨張係数が既知であるひずみゲージを用い、所定の温度変化を与えた時のコンクリート温度とひずみとを測定し、前記所定材齢までの各測定時でのコンクリート温度を乗じて前記ひずみ量の経時変化を補正し、その補正後のひずみ量の経時変化を用いて対象コンクリートの線膨張係数を推定することを特徴とするコンクリート品質管理試験方法。 With a strain gauge affixed to the outer surface of a thin-walled cylindrical formwork in which concrete has been placed, the amount of strain from immediately after placing the concrete to a predetermined age is measured. In the concrete quality control test method for evaluating whether the concrete is properly mixed with additives,
Using a strain gauge whose compensation linear expansion coefficient is known, measure the concrete temperature and strain when given a predetermined temperature change, and multiply by the concrete temperature at each measurement up to the specified age, the strain amount A concrete quality control test method characterized in that the linear expansion coefficient of the target concrete is estimated using the temporal change in the strain after correction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012020593A JP5822202B2 (en) | 2012-02-02 | 2012-02-02 | Concrete quality control test method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012020593A JP5822202B2 (en) | 2012-02-02 | 2012-02-02 | Concrete quality control test method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013160546A true JP2013160546A (en) | 2013-08-19 |
JP5822202B2 JP5822202B2 (en) | 2015-11-24 |
Family
ID=49172924
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012020593A Active JP5822202B2 (en) | 2012-02-02 | 2012-02-02 | Concrete quality control test method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5822202B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016019727A1 (en) * | 2014-08-04 | 2016-02-11 | 葛洲坝集团试验检测有限公司 | Device utilizing natural vibration frequency of cement-based material to detect setting time thereof |
CN115130179A (en) * | 2022-06-23 | 2022-09-30 | 中冶检测认证有限公司 | Method for determining safety of concrete structure containing steel slag aggregate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0212042A (en) * | 1988-03-30 | 1990-01-17 | Troxler Electron Lab Inc | Method and apparatus for measuring content of hydrogen and asphaly |
JPH08219910A (en) * | 1995-02-14 | 1996-08-30 | Mizushigen Kaihatsu Kodan | Zero stress detector for concrete |
JP2004125570A (en) * | 2002-10-01 | 2004-04-22 | Kajima Corp | Salinity inspection method and device in concrete by electromagnetic wave |
JP2006349535A (en) * | 2005-06-16 | 2006-12-28 | Taiheiyo Cement Corp | Composite sensor module and sensor device |
JP2011095114A (en) * | 2009-10-30 | 2011-05-12 | Denki Kagaku Kogyo Kk | Method of measuring volume change rate and/or length change rate of solid by correcting error due to temperature change |
JP2011169894A (en) * | 2010-01-25 | 2011-09-01 | Shimizu Corp | Quality control testing method for crack-resistant concrete |
-
2012
- 2012-02-02 JP JP2012020593A patent/JP5822202B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0212042A (en) * | 1988-03-30 | 1990-01-17 | Troxler Electron Lab Inc | Method and apparatus for measuring content of hydrogen and asphaly |
JPH08219910A (en) * | 1995-02-14 | 1996-08-30 | Mizushigen Kaihatsu Kodan | Zero stress detector for concrete |
JP2004125570A (en) * | 2002-10-01 | 2004-04-22 | Kajima Corp | Salinity inspection method and device in concrete by electromagnetic wave |
JP2006349535A (en) * | 2005-06-16 | 2006-12-28 | Taiheiyo Cement Corp | Composite sensor module and sensor device |
JP2011095114A (en) * | 2009-10-30 | 2011-05-12 | Denki Kagaku Kogyo Kk | Method of measuring volume change rate and/or length change rate of solid by correcting error due to temperature change |
JP2011169894A (en) * | 2010-01-25 | 2011-09-01 | Shimizu Corp | Quality control testing method for crack-resistant concrete |
Non-Patent Citations (1)
Title |
---|
JPN6013038295; 沢辺 雅二: '「精密加工・計測における環境とその管理」' 精密工学会誌 Vol.74, No. 7, 2008, pp.700-703, 公益社団法人 精密工学会 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016019727A1 (en) * | 2014-08-04 | 2016-02-11 | 葛洲坝集团试验检测有限公司 | Device utilizing natural vibration frequency of cement-based material to detect setting time thereof |
CN115130179A (en) * | 2022-06-23 | 2022-09-30 | 中冶检测认证有限公司 | Method for determining safety of concrete structure containing steel slag aggregate |
CN115130179B (en) * | 2022-06-23 | 2023-06-09 | 中冶检测认证有限公司 | Method for determining safety of concrete structure containing steel slag aggregate |
Also Published As
Publication number | Publication date |
---|---|
JP5822202B2 (en) | 2015-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3677219B2 (en) | Apparatus and method for measuring temperature stress of concrete structure | |
CN101769916A (en) | Method for testing expansion/contraction stress of cement-based material | |
JP2009002721A (en) | Method for determining time of demolding concrete | |
JP5822202B2 (en) | Concrete quality control test method | |
JP2019007842A (en) | Drying shrinkage distortion prediction method of concrete and prediction method of drying shrinkage stress of concrete | |
JP2020034423A (en) | Method for estimating compressive strength of concrete | |
JP5861874B2 (en) | Concrete quality control test method | |
KR20110007502A (en) | Evaluation method of compressive strength for structural concrete | |
CN108548720B (en) | Method for obtaining ductile material J resistance curve by I-type crack elastoplasticity theoretical formula | |
JP6497707B2 (en) | Strength estimation system for concrete demolding | |
JP5811390B2 (en) | Quality control test method for crack-suppressing concrete. | |
JP2011095114A (en) | Method of measuring volume change rate and/or length change rate of solid by correcting error due to temperature change | |
KR20180077812A (en) | Measuring method doe coefficient of thermal expansion of hardening cementitious materials using elastic membrane | |
JP2018200293A (en) | Dry shrinkage distortion measurement device, dry shrinkage distortion measurement method, and dry shrinkage distortion estimation method | |
JP2019020306A (en) | Method for predicting final value of drying shrinkage deformation of concrete | |
JP5769074B2 (en) | Quality control test method for crack-suppressing concrete. | |
JP6279298B2 (en) | Method for evaluating concrete and restraining member used for this evaluation | |
CN109001262B (en) | Dynamic monitoring system and method for cement hydration degree based on resistivity | |
JP2011095115A (en) | Method of measuring volume change rate and/or length change rate | |
JP2018155023A (en) | Prediction method of crack occurrence timing, and early detection method of alkali-silica reaction | |
CN107066728B (en) | A kind of titanium alloy submersible pressurized spherical shell ultimate bearing capacity evaluation method | |
KR101741137B1 (en) | Test Method of Self-healing in Concrete Paste | |
JP2013134165A (en) | Method for measuring material such as concrete whose elastic coefficient is unknown by uci method | |
JP6148527B2 (en) | Method of experimentally collecting calibration curves and estimating elastic modulus and compressive strength of building frames when estimating concrete strength by UCI method | |
CN111811938B (en) | Strain brick and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150326 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150407 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150606 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150928 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5822202 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |