JP2013154892A - Silo, and operating method of the same - Google Patents

Silo, and operating method of the same Download PDF

Info

Publication number
JP2013154892A
JP2013154892A JP2012014720A JP2012014720A JP2013154892A JP 2013154892 A JP2013154892 A JP 2013154892A JP 2012014720 A JP2012014720 A JP 2012014720A JP 2012014720 A JP2012014720 A JP 2012014720A JP 2013154892 A JP2013154892 A JP 2013154892A
Authority
JP
Japan
Prior art keywords
storage
discharge
storage tank
circulation
silo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012014720A
Other languages
Japanese (ja)
Inventor
Yukihiro Tamura
幸宏 田村
Ryo Umeda
亮 梅田
Katsuya Takami
勝也 高見
Tadashi Yano
正 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2012014720A priority Critical patent/JP2013154892A/en
Publication of JP2013154892A publication Critical patent/JP2013154892A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silo which can avoid occurrence of the fixation and bridging of a stored article to the internal wall of the storage tank at storage over a long period of time, and can suppress the variation in characteristics of the stored article.SOLUTION: A silo 10 includes: a storage tank 11; a throwing-in mechanism 13 which throws an article A to be stored into the storage tank 11; a discharging mechanism 20 which discharges the stored article from the storage tank 11; and a circulating mechanism 24 in which the stored article A is discharged from the storage tank 11, and thrown into the storage tank 11 again. The circulating mechanism 24 includes: the throwing-in mechanism 13; the discharging mechanism 20; and a circulating-carrying path 25 which carries the stored article A discharged from the discharging mechanism 20 to the throwing-in mechanism 13. The discharging mechanism 20 includes a path-switching mechanism 23 which switches whether the stored article A discharged from the storage tank 11 is carried to a discharging path 22 on the outside of the system or is carried to the circulating-carrying path 25.

Description

本発明は、貯留槽と、前記貯留槽に貯留物を投入する投入機構と、前記貯留槽から貯留物を排出する排出機構とを備えているサイロ及びサイロの運転方法に関する。   The present invention relates to a silo including a storage tank, an input mechanism that inputs a storage material into the storage tank, and a discharge mechanism that discharges the storage material from the storage tank, and a silo operating method.

特許文献1には、汚泥等の粉粒体を貯留対象物としたサイロが開示されている。
図3に示すように、当該サイロは、最上部に投入口11が設けられ、底面に排出口12が形成された円筒状の貯留槽1を備えている。
Patent Document 1 discloses a silo that uses a granular material such as sludge as a storage object.
As shown in FIG. 3, the silo includes a cylindrical storage tank 1 in which a loading port 11 is provided at the top and a discharge port 12 is formed on the bottom surface.

貯留物2となる汚泥は、ポンプpによって圧送されて投入口11から貯留槽1に投入される。貯留後に排出口12から落出した貯留物2は、排出口12に連続するシュート12a及びスクリュー式排出装置4を経由して外部に排出される。   The sludge that becomes the stored material 2 is pumped by the pump p and is input to the storage tank 1 from the input port 11. The storage 2 that has fallen from the discharge port 12 after storage is discharged to the outside via the chute 12a and the screw type discharge device 4 that are continuous with the discharge port 12.

そして、貯留槽1の底面上には、貯留物2を掻き寄せて排出口12に送り込む回転可能な羽根部31を有する掻き寄せ装置3が配置されている。   On the bottom surface of the storage tank 1, a scraping device 3 having a rotatable blade 31 that scrapes the stored material 2 and sends it to the discharge port 12 is disposed.

上述したサイロでは、円筒状の貯留槽1の平坦な底部に排出口12が形成されているが、筒状の貯留槽の下端部が先窄まりに形成され、その先端に排出口が形成されたサイロ等、貯留槽1の形状は区々である。   In the silo described above, the discharge port 12 is formed at the flat bottom of the cylindrical storage tank 1, but the lower end portion of the cylindrical storage tank is formed to be tapered, and the discharge port is formed at the tip thereof. The shape of the storage tank 1, such as a silo, varies.

特許文献2に開示されているように、多くの貯留槽やホッパでは、その側面にバイブレータ等の振動装置やエアノッカー等の打撃装置が付設され、貯留槽に振動を与えることによって、貯留物に形成されるブリッジを破壊し、或いは壁面等へ固着した貯留物の除去といった不都合な事態の発生が回避されていた。   As disclosed in Patent Document 2, in many storage tanks and hoppers, a vibration device such as a vibrator or a striking device such as an air knocker is attached to a side surface thereof, and the storage tank is vibrated to form a storage. Occurrence of an inconvenient situation such as the destruction of the bridge to be removed or the removal of the deposit fixed to the wall surface has been avoided.

特許第3874349号公報Japanese Patent No. 3874349 特開2002‐308445号公報JP 2002-308445 A

しかし、上述した振動装置やエアノッカー等の打撃装置では、数十日や数ヶ月の長期に亘り貯留槽に粉粒体を貯留するような場合に、貯留物に形成されるブリッジの破壊や壁面等に固着した貯留物の除去が適正に行なえないという問題があった。さらには、貯留物の性状に変動を来たし、適正な状態で貯留することができなくなる虞もあった。   However, in the above-described striking device such as a vibration device or an air knocker, when a granular material is stored in a storage tank for a long period of several tens of days or several months, a bridge breakage or a wall surface formed in the storage There was a problem that the removal of the fixed substance on the surface could not be performed properly. Furthermore, there has been a risk that the properties of the stored product will vary, and it will not be possible to store the stored product in an appropriate state.

例えば、貯留槽の下層部の粉粒体は長時間に亘って圧密化される結果、互いに強固に結合して打撃装置で容易に破壊できない事態が発生したり、貯留槽の上層部と下層部で温度等が異なる結果、含水率に変動を来たし或いは貯留物からガスが発生したり等、打撃装置では対処できない事態が発生する虞があった。   For example, the powder particles in the lower layer of the storage tank are consolidated for a long time, resulting in a situation where they are firmly bonded to each other and cannot be easily broken by the striking device, or the upper and lower layers of the storage tank As a result, the water content may fluctuate or gas may be generated from the storage, resulting in a situation that cannot be dealt with by the striking device.

本発明の目的は、上述した問題点に鑑み、長期に亘る貯留時に貯留槽の内壁への貯留物の固着やブリッジの発生を回避するとともに、貯留物の性状の変動を抑制可能なサイロ及びサイロの運転方法を提供する点にある。   In view of the above-described problems, an object of the present invention is a silo and a silo capable of avoiding the sticking of the stored matter to the inner wall of the storage tank and the occurrence of a bridge during storage for a long period of time and suppressing the fluctuation of the properties of the stored matter. Is to provide a driving method.

上述の目的を達成するため、本発明によるサイロの第一特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、貯留槽と、前記貯留槽に貯留物を投入する投入機構と、前記貯留槽から貯留物を排出する排出機構とを備えているサイロであって、前記貯留槽から貯留物を排出して再度前記貯留槽に投入する循環機構と、前記貯留槽内の貯留物の性状の変動をモニタする監視機構を備え、前記循環機構は前記監視機構でモニタされた貯留物の性状に基づいて作動するように構成されている点にある。   In order to achieve the above-described object, the first characteristic configuration of the silo according to the present invention includes a storage tank, and a charging mechanism for charging the storage tank, as described in claim 1 of the claims. A silo having a discharge mechanism for discharging the stored material from the storage tank, and a circulation mechanism for discharging the stored material from the storage tank and throwing it into the storage tank again, and the stored material in the storage tank And a circulation mechanism that is configured to operate based on the property of the reservoir monitored by the monitoring mechanism.

貯留物を長期間貯留する場合であっても、循環機構によって貯留物を貯留槽から排出して再度貯留槽に投入するように循環することで、貯留槽の内部で貯留物を流動させることができるようになる。その結果、貯留物の流動性を保持しつつ、その性状変動を抑制して均質に維持することができるようになり、さらに打撃装置を設けなくとも貯留槽の内壁への貯留物の固着やブリッジの発生を回避することができるようになる。   Even when storing the stored matter for a long period of time, it is possible to cause the stored matter to flow inside the storage tank by circulating it so that the stored matter is discharged from the storage tank and re-entered into the storage tank by the circulation mechanism. become able to. As a result, while maintaining the fluidity of the stored matter, it becomes possible to maintain its homogeneity by suppressing fluctuations in its properties, and further, the adhering of the stored matter to the inner wall of the storage tank and the bridge without providing a striking device Can be avoided.

温度、湿度、季節、貯留期間等、様々な条件によって貯留物の性状の変動の程度にばらつきがある。一方で常時貯留物を循環させると却って性状の変動を促進する虞もある。そこで、監視機構で貯留物の性状をモニタし、その結果に基づいて循環機構を作動させる時期を判定すれば、適切に貯留物の性状の変動を抑制することができ、循環のために要するエネルギーコストも低減させることができる。   There are variations in the degree of fluctuations in the properties of the stored matter due to various conditions such as temperature, humidity, season, and storage period. On the other hand, there is a risk of promoting property fluctuations when the stored matter is circulated constantly. Therefore, if the property of the storage is monitored by the monitoring mechanism and it is determined when to activate the circulation mechanism based on the result, the fluctuation of the property of the storage can be appropriately suppressed, and the energy required for circulation Cost can also be reduced.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記循環機構は、前記排出機構から排出された貯留物を前記投入機構を介して前記貯留槽に搬送する搬送機構を備えた循環搬送経路を備えるとともに、前記排出機構から排出された貯留物を系外への排出経路に搬送するか、前記循環搬送経路に搬送するかを切り替える経路切替機構を備えている点にある。   In the second characteristic configuration, as described in the second aspect, in addition to the first characteristic configuration described above, the circulation mechanism stores the storage discharged from the discharge mechanism via the input mechanism. A path switching mechanism that includes a circulation conveyance path having a conveyance mechanism for conveying to a tank and that switches whether the storage discharged from the discharge mechanism is conveyed to a discharge path to the outside of the system or to the circulation conveyance path. It is in the point equipped with.

前記排出機構から排出された貯留物を前記投入機構を介して前記貯留槽に搬送するように構成されるので、貯留槽に別途の循環用の排出機構や投入機構を設ける必要がなく、設備費を抑制することができる。また、排出機構から経路切替機構に到る経路を循環搬送経路の一部として共用できるため、同様に設備費を抑制することができる。さらに、排出機構を介して圧密化され易い貯留槽の底部から貯留物を排出し、投入機構を介して再度貯留槽に投入できるようになるので、貯留物の投入経路から排出経路にいたる経路での貯留物の固着等の不都合な事態の発生が効果的に回避できるようになる。   Since the storage discharged from the discharge mechanism is configured to be conveyed to the storage tank via the input mechanism, there is no need to provide a separate discharge mechanism or input mechanism for circulation in the storage tank, and the equipment cost Can be suppressed. Further, since the route from the discharge mechanism to the route switching mechanism can be shared as a part of the circulation transport route, the equipment cost can be similarly reduced. Furthermore, since the storage can be discharged from the bottom of the storage tank that is easily consolidated through the discharge mechanism and can be input again into the storage tank through the input mechanism, the storage path can be changed from the storage path to the discharge path. It is possible to effectively avoid the occurrence of an unfavorable situation such as sticking of the reservoir.

同第三の特徴構成は、同請求項3に記載した通り、上述の第二特徴構成に加えて、前記循環搬送経路への貯留物の単位時間当たりの排出量を、前記排出経路への貯留物の単位時間当たりの排出量よりも少なくする排出量調整機構を備える点にある。   In the third feature configuration, as described in claim 3, in addition to the second feature configuration described above, the discharge amount per unit time of the storage material to the circulation conveyance path is stored in the discharge path. It is in the point provided with the discharge amount adjustment mechanism which makes it less than the discharge amount per unit time.

貯留槽から貯留物を系外に排出するときに排出機構は、系外に設置された処理設備の処理能力等に応じた単位時間当たりの排出量を確保できるように構成される必要がある。しかし、循環機構によって貯留物を循環させるときに、貯留物の系外への排出時よりも単位時間当たりの排出量を少なくできれば、循環機構を介して貯留物を循環搬送するために要するエネルギーコストを軽減できるばかりでなく、循環機構を大型化する必要がなくなり設備コストも低減できる。しかも、単位時間当たりの循環搬送量が少なくなれば、貯留槽内の貯留物が擬似的に静的な状態で循環させることができ、貯留物の急激な性状変動を招くこともない。   When discharging the stored matter from the storage tank to the outside of the system, the discharging mechanism needs to be configured to ensure a discharge amount per unit time according to the processing capability of the processing equipment installed outside the system. However, if the amount of discharge per unit time can be reduced when circulating the stored matter through the circulation mechanism compared to when the stored matter is discharged out of the system, the energy cost required for circulating and transferring the stored matter through the circulation mechanism As well as the cost of equipment can be reduced because there is no need to increase the size of the circulation mechanism. In addition, if the amount of circulated transport per unit time is reduced, the stored material in the storage tank can be circulated in a quasi-static state, and sudden property fluctuations of the stored material are not caused.

同第四の特徴構成は、同請求項4に記載した通り、上述の第二または第三の特徴構成に加えて、前記貯留槽が複数並設され、前記循環搬送経路が各排出機構から排出された貯留物を循環搬送するように共用されるとともに、前記循環搬送経路から各貯留槽の投入機構へ貯留物を搬送する水平搬送経路が連接され、前記水平搬送経路の終端に貯留物を落下させるシュートが形成されている点にある。   In the fourth feature configuration, as described in claim 4, in addition to the second or third feature configuration described above, a plurality of the storage tanks are arranged in parallel, and the circulation conveyance path is discharged from each discharge mechanism. In addition to being shared so as to circulate and transport the stored storage, a horizontal transport path for transporting the stored material from the circulating transport path to the storage mechanism of each storage tank is connected, and the stored material falls to the end of the horizontal transport path It is in the point where the chute to be formed is formed.

貯留槽が複数並設される場合には、各排出機構から排出された貯留物を循環搬送するように循環搬送経路を共用することができるので、設備費を抑制することができるようになる。そして、水平搬送経路に沿って各貯留槽の投入機構へ貯留物を搬送する場合に、水平搬送経路の終端に貯留物が残留固化して経路が閉塞する虞があるが、当該経路の終端に貯留物を落下させるシュートが形成されているので、経路の終端に貯留物が滞留することがなく、経路が閉塞するようなことがない。   In the case where a plurality of storage tanks are arranged in parallel, the circulation transport path can be shared so as to circulate and transport the storage material discharged from each discharge mechanism, so that the facility cost can be suppressed. And when transporting the stored material to the input mechanism of each storage tank along the horizontal transport path, there is a risk that the remaining material will solidify at the end of the horizontal transport path and block the path, but at the end of the path Since the chute for dropping the storage is formed, the storage does not stay at the end of the path, and the path is not blocked.

本発明によるサイロの運転方法の第一特徴構成は、同請求項5に記載した通り、貯留槽と、前記貯留槽に貯留物を投入する投入機構と、前記貯留槽から貯留物を排出する排出機構と、前記貯留槽から貯留物を排出して再度前記貯留槽に投入する循環機構とを備えているサイロの運転方法であって、前記投入機構から前記貯留槽に貯留物が投入された後に、前記排出機構を作動させて貯留物を系外に排出する排出ステップと、前記貯留槽に投入された貯留物の性状を検出する性状検出ステップと、前記性状検出ステップで検出された貯留物の性状の変動状態に基づいて前記循環機構を作動させて貯留物を循環させる循環ステップと、を実行する点にある。   The first characteristic configuration of the silo operation method according to the present invention is, as described in claim 5, a storage tank, a charging mechanism for charging a storage tank, and a discharge for discharging the storage tank from the storage tank. A silo operation method comprising a mechanism and a circulation mechanism that discharges the stored material from the storage tank and inputs the storage material into the storage tank again, after the stored material is input into the storage tank from the input mechanism A discharge step of operating the discharge mechanism to discharge the storage out of the system, a property detection step of detecting a property of the storage charged in the storage tank, and a storage of the storage detected in the property detection step And a circulation step in which the circulating mechanism is operated based on the property fluctuation state to circulate the storage.

貯留槽に貯留物が充填された後、排出ステップが実行される前に性状検出ステップが実行される。性状検出ステップで検出された貯留物の性状の変動状態に基づいて、例えば、水分分布や温度分布にばらつきが発生したり、局所的に高温部位が検出されたり、ガスが発生するといったような貯留物の性状の変動が見られると循環ステップが実行される。その結果、貯留物の性状が均質に安定した状態で継続的に貯留することができ、排出ステップでの貯留物の流動性も良好に保持されるようになる。さらに別途の打撃装置を設けなくとも貯留槽の内壁への貯留物の固着やブリッジの発生を回避することも可能になる。例えば一定のインタバルで性状検出ステップを実行することができる。循環ステップでは、貯留された貯留物を連続的または間歇的に循環させることができる。また、循環ステップでは、貯留槽に充填された貯留物の全量が循環されることが好ましいが、一部が循環されるものであってもよい。   After the storage tank is filled with the storage, the property detection step is executed before the discharge step is executed. Based on the fluctuation state of the property of the storage detected in the property detection step, for example, storage such as variation in moisture distribution or temperature distribution, local detection of a high temperature region, or generation of gas. When a change in the properties of the object is observed, a circulation step is executed. As a result, the storage can be continuously stored in a uniform and stable state, and the fluidity of the storage in the discharge step can be maintained well. Further, it is possible to avoid the adhesion of the stored matter to the inner wall of the storage tank and the occurrence of a bridge without providing a separate striking device. For example, the property detection step can be executed at a certain interval. In the circulation step, the stored storage can be circulated continuously or intermittently. Moreover, in the circulation step, it is preferable that the entire amount of the storage material filled in the storage tank is circulated, but a part thereof may be circulated.

同第二の特徴構成は、同請求項6に記載した通り、上述した第一特徴構成に加えて、前記循環ステップの実行時の前記排出機構による貯留物の単位時間当たりの排出量が、前記排出ステップの実行時の前記排出機構による貯留物の単位時間当たりの排出量よりも少ない点にある。   In the second feature configuration, in addition to the first feature configuration described above, the discharge amount per unit time of the storage by the discharge mechanism at the time of execution of the circulation step is It is in a point smaller than the discharge amount per unit time of the stored matter by the discharge mechanism when the discharge step is executed.

貯留槽から貯留物を系外に排出するときに排出機構は、系外に設置された処理設備の処理能力等に応じた単位時間当たりの排出量を確保できるように構成される必要がある。しかし、循環機構によって貯留物を循環させるときに、貯留物の系外への排出時よりも単位時間当たりの排出量を少なくできれば、循環機構を介して貯留物を循環搬送するために要するエネルギーコストを軽減できるばかりでなく、循環機構を大型化する必要がなくなり設備コストも低減できる。しかも、単位時間当たりの循環搬送量が少なくなれば、貯留槽内の貯留物が擬似的に静的な状態で循環させることができ、貯留物の急激な性状変動を招くこともない。   When discharging the stored matter from the storage tank to the outside of the system, the discharging mechanism needs to be configured to ensure a discharge amount per unit time according to the processing capability of the processing equipment installed outside the system. However, if the amount of discharge per unit time can be reduced when circulating the stored matter through the circulation mechanism compared to when the stored matter is discharged out of the system, the energy cost required for circulating and transferring the stored matter through the circulation mechanism As well as the cost of equipment can be reduced because there is no need to increase the size of the circulation mechanism. In addition, if the amount of circulated transport per unit time is reduced, the stored material in the storage tank can be circulated in a quasi-static state, and sudden property fluctuations of the stored material are not caused.

同第三の特徴構成は、同請求項7に記載した通り、上述した第一または第二特徴構成に加えて、前記貯留槽の底部に堆積した貯留物を前記排出口に掻き寄せる掻寄機構を備えて前記サイロが構成され、少なくとも前記循環ステップの実行時に、前記掻寄機構を作動させる点にある。   In addition to the first or second characteristic configuration described above, the third characteristic configuration is a scraping mechanism that scrapes the accumulated matter accumulated at the bottom of the storage tank to the discharge port as described in claim 7. And the silo is configured to operate the scraping mechanism at least when the circulation step is executed.

循環ステップの実行時に掻寄機構を作動させると、仮に貯留槽内で一部の貯留物が塊状に固まるようなことがあっても、排出口から貯留物を円滑に自然落出させることができる。   If the scraping mechanism is activated during the execution of the circulation step, even if a part of the storage is solidified in the storage tank, the storage can smoothly fall out from the outlet. .

同四の特徴構成は、同請求項8に記載した通り、上述した第一から第三の何れかの特徴構成に加えて、循環ステップは、前記性状検出ステップで検出された貯留物の性状が所定の閾値を超えて変動したときに実行される点にある。   In the fourth feature configuration, as described in claim 8, in addition to any of the first to third feature configurations described above, the circulation step has a property of the reservoir detected in the property detection step. It is executed when it fluctuates beyond a predetermined threshold.

貯留物の性状が所定の閾値を超えて変動したときに循環して均質化することにより、貯留槽に充填された貯留物の品質が許容される範囲に維持できるようになる。   By circulating and homogenizing when the property of the stored material exceeds a predetermined threshold value, the quality of the stored material filled in the storage tank can be maintained within an allowable range.

以上説明した通り、本発明によれば、サイロ内部での固着発生による排出量の低減、さらには貯留に伴う性状変動等を防止できることにより、貯留物の長期安定した貯留が可能なサイロ及びサイロの運転方法を提供することができるようになった。   As described above, according to the present invention, it is possible to reduce the amount of discharge due to the occurrence of sticking inside the silo, and further to prevent fluctuations in properties accompanying storage, etc. A driving method can be provided.

処理設備の説明図Illustration of processing equipment 制御部の説明図Illustration of the control unit 従来のサイロの説明図Illustration of a conventional silo

以下、本発明によるサイロ及びサイロの運転方法を説明する。   Hereinafter, the silo and the silo operation method according to the present invention will be described.

図1に示すように、汚泥の処理設備1には、貯留物Aを一時的に貯留するためのサイロ10(10A,10B)が2台備えられている。   As shown in FIG. 1, the sludge treatment facility 1 is provided with two silos 10 (10A, 10B) for temporarily storing the storage A.

本実施形態では、貯留物Aが、下水処理場で発生し脱水処理された汚泥であって、加熱された廃油等で乾燥され含水率が数%となった高カロリーの粒状の汚泥である場合について説明する。   In the present embodiment, the stored matter A is sludge generated at a sewage treatment plant and dehydrated, and is high-calorie granular sludge dried with heated waste oil or the like and having a water content of several percent. Will be described.

このような汚泥は燃料として再利用するために、一旦貯留槽11に貯留され、その間に成分分析が行なわれる。その結果、成分が一定の許容範囲に入っていれば燃料として利用するべく、貯留槽11から排出されて需要先に搬出される。   In order to reuse such sludge as fuel, the sludge is once stored in the storage tank 11, and component analysis is performed during that time. As a result, if the component is within a certain allowable range, the component is discharged from the storage tank 11 and carried out to a demand destination in order to be used as fuel.

分析結果が出るまでに1ヶ月程度の期間を要するため、この期間、貯留物Aがサイロ10に一時的に貯留される。つまり、汚泥の品質は、サイロ10毎にロット管理されている。   Since a period of about one month is required until an analysis result is obtained, the storage A is temporarily stored in the silo 10 during this period. That is, the quality of the sludge is lot-managed for each silo 10.

サイロ10(10A,10B)は、一対の貯留槽11(11A,11B)と、各貯留槽11(11A,11B)に貯留物Aである汚泥を投入する投入機構13(13A,13B)と、貯留槽11(11A,11B)から貯留物Aを排出する排出機構20とを備えている。尚、図では、サイロ10Aの排出機構にのみ符号を付しているが、サイロ10Bの排出機構も同じ構成である。   The silo 10 (10A, 10B) includes a pair of storage tanks 11 (11A, 11B), and an input mechanism 13 (13A, 13B) that inputs the sludge that is the storage A into each storage tank 11 (11A, 11B). And a discharge mechanism 20 that discharges the stored material A from the storage tank 11 (11A, 11B). In the drawing, only the discharge mechanism of the silo 10A is provided with a reference numeral, but the discharge mechanism of the silo 10B has the same configuration.

処理設備1にトラック2で搬入された汚泥は、受入ホッパ3に受け入れられ、受入ホッパ3内の汚泥はスクリュー式搬送機構4で一定量ずつ投入経路5へ搬送され、さらにその後段に備えた水平搬送経路6に搬送される。   The sludge carried into the treatment facility 1 by the truck 2 is received by the receiving hopper 3, and the sludge in the receiving hopper 3 is conveyed to the charging path 5 by a fixed amount by the screw type conveying mechanism 4 and further provided in the horizontal stage provided at the subsequent stage. It is conveyed to the conveyance path 6.

尚、投入経路5及び水平搬送経路6には、モータMで駆動されるチェーン機構で連結された複数枚の板状体によって経路内で粉粒体である汚泥を搬送するケースコンベア等でなる搬送機構を備えている。   The feeding path 5 and the horizontal transport path 6 are transported by a case conveyor or the like that transports sludge, which is granular material, in the path by a plurality of plates connected by a chain mechanism driven by a motor M. It has a mechanism.

水平搬送経路6に搬送された汚泥は、投入機構13A,13Bを介して各貯留槽11A,11Bに投入されて貯留される。以下の説明では、サイロ10Aとサイロ10Bを区別して説明する必要の無い箇所については、単にサイロ10と記載し、サイロ10の各部の構成も同様である。   The sludge transported to the horizontal transport path 6 is input and stored in the storage tanks 11A and 11B via the input mechanisms 13A and 13B. In the following description, a part that does not need to be described separately between the silo 10A and the silo 10B is simply referred to as a silo 10, and the configuration of each part of the silo 10 is the same.

各投入機構13A,13Bには夫々電動ダンパが設けられ、当該電動ダンパの開閉制御によって、水平搬送経路6を搬送された汚泥が貯留槽11A,貯留槽11Bに選択的に投入される。   Each charging mechanism 13A, 13B is provided with an electric damper, and the sludge transferred through the horizontal transfer path 6 is selectively charged into the storage tank 11A and the storage tank 11B by opening / closing control of the electric damper.

投入機構13(13A,13B)に汚泥を搬送する水平搬送経路6を共用して設備費を抑制している。また、水平搬送経路6の終端にシュート7が形成され、貯留槽11A,11Bの何れの投入機構13A,13Bからも投入されなかった汚泥が当該シュート7から下方の搬送経路21へ落下するように構成されている。搬送された汚泥が水平搬送経路6の終端で残留固化することによる経路の閉塞を回避するためである。   The horizontal transport path 6 for transporting sludge to the input mechanism 13 (13A, 13B) is shared to reduce the equipment cost. Further, a chute 7 is formed at the end of the horizontal transfer path 6 so that sludge that has not been input from any of the input mechanisms 13A, 13B of the storage tanks 11A, 11B falls from the chute 7 to the lower transfer path 21. It is configured. This is in order to avoid clogging of the path due to the residual sludge conveyed and solidified at the end of the horizontal transport path 6.

排出機構20には、排出口14と、掻寄機構15と、スクリュー式の排出搬送機構16(以下、単に「スクリュー式搬送機構16」と記す。)と、排出ゲート18と、搬送経路21を備えている。排出口14、スクリュー式搬送機構16、及び排出ゲート18はそれぞれ一対設けられている。   The discharge mechanism 20 includes a discharge port 14, a scraping mechanism 15, a screw-type discharge conveyance mechanism 16 (hereinafter simply referred to as “screw-type conveyance mechanism 16”), a discharge gate 18, and a conveyance path 21. I have. A pair of the discharge port 14, the screw type transport mechanism 16, and the discharge gate 18 are provided.

排出口14は貯留槽11の底面11aに形成され、貯留槽11の底面11aに堆積した貯留物Aが掻寄機構15によって排出口14に掻き寄せられる。掻寄機構15は、油圧モータまたは電動モータで駆動されるロータ15aと、ロータ15aの回転軸心周りに径方向に延出配置された一対の掻寄羽根15bを備えている。尚、掻寄羽根15bは、2枚である構成に限らず1枚であってもよく、3枚以上の複数枚で構成されてもよい。   The discharge port 14 is formed on the bottom surface 11 a of the storage tank 11, and the storage A deposited on the bottom surface 11 a of the storage tank 11 is scraped to the discharge port 14 by the scraping mechanism 15. The scraping mechanism 15 includes a rotor 15a that is driven by a hydraulic motor or an electric motor, and a pair of scraping blades 15b that extend in the radial direction around the rotation axis of the rotor 15a. The scraping blades 15b are not limited to two but may be one or may be composed of a plurality of three or more.

後述する制御部30が、ロータ15aを駆動制御すると、一対の掻寄羽根15bが排出口14を横切るように貯留槽11の底面11aに沿って回転軸心P周りに回転し、貯留槽11の底部に堆積した貯留物Aは排出口14に掻き寄せられ排出口14から自然落出する。   When a control unit 30 to be described later drives and controls the rotor 15a, the pair of scraping blades 15b rotate around the rotation axis P along the bottom surface 11a of the storage tank 11 so as to cross the discharge port 14, and the storage tank 11 The stored material A deposited on the bottom is scraped to the discharge port 14 and falls naturally from the discharge port 14.

貯留物の排出時に、貯留槽11内の貯留物Aは自重で排出口14から自然落出する。このときに掻寄機構15を作動させて貯留槽11の底部に堆積した貯留物Aを排出口14に掻き寄せるようにすれば、仮に貯留物11にブリッジが発生しても容易に破壊でき、貯留槽11内に貯留物14が滞留して局所的に固化する等の不都合な事態が発生するようなことも未然に回避できるようになる。   At the time of discharging the stored material, the stored material A in the storage tank 11 naturally falls out of the discharge port 14 by its own weight. At this time, if the scraping mechanism 15 is operated to scrape the deposit A accumulated on the bottom of the storage tank 11 to the discharge port 14, even if a bridge occurs in the reservoir 11, it can be easily destroyed. It is possible to avoid inconveniences such as occurrence of an undesired situation in which the stored matter 14 stays in the storage tank 11 and locally solidifies.

尚、排出口14は必ずしも貯留槽11の底面11aに形成されていなくてもよく、例えば、サイロを構成する側壁下端部等、貯留物Aがその自重で自然落出するようにサイロの底部側に形成されていればよい。また、貯留槽11内の貯留物Aの排出を終了するまでの間、掻寄機構15を連続的に駆動すれば、貯留槽11内で架橋が発生してもそれを崩して貯留物Aを掻き寄せることができる。掻寄機構15を間歇的に駆動すれば消費電力を低減しつつ貯留物Aを掻き寄せることができる。   In addition, the discharge port 14 does not necessarily need to be formed in the bottom surface 11a of the storage tank 11, for example, the bottom side of the silo so that the storage A naturally falls out by its own weight, such as the lower end of the side wall constituting the silo. What is necessary is just to be formed. Further, if the scraping mechanism 15 is continuously driven until the discharge of the storage A in the storage tank 11 is completed, even if cross-linking occurs in the storage tank 11, the storage A is destroyed. Can be raked. If the scraping mechanism 15 is intermittently driven, the storage A can be scraped down while reducing power consumption.

排出口14から自然落出した貯留物Aは、スクリュー式搬送機構16によって定量搬送され、スクリュー式搬送機構16から搬送経路21への経路中に設置された排出ゲート18を介して搬送経路21に落下する。   The storage A that naturally falls out from the discharge port 14 is quantitatively transported by the screw-type transport mechanism 16 and is transferred to the transport path 21 via the discharge gate 18 installed in the path from the screw-type transport mechanism 16 to the transport path 21. Fall.

排出ゲート18には電動ダンパが設けられ、制御部によって当該電動ダンパを開閉制御することで貯留槽11からの貯留物Aの排出、停止を切り替えるように構成されている。   The discharge gate 18 is provided with an electric damper, and is configured to switch the discharge and stop of the storage A from the storage tank 11 by opening and closing the electric damper by the control unit.

各サイロ10A,10Bで共用される搬送経路21にも、モータMで駆動されるチェーン機構で連結された複数枚の板状体によって経路内で粉粒体である汚泥を搬送するケースコンベア等でなる搬送機構を備えている。   Also in the conveyance path 21 shared by the silos 10A and 10B, a case conveyor or the like that conveys sludge that is granular material in the path by a plurality of plate-like bodies connected by a chain mechanism driven by a motor M. A transport mechanism is provided.

搬送経路21には、各排出機構20から排出された貯留物Aまたはシュート7から落下した汚泥を、系外への排出経路22へ搬送する経路切替機構23を備えている。経路切替機構23については後に詳述する。   The transport path 21 includes a path switching mechanism 23 that transports the storage A discharged from each discharge mechanism 20 or the sludge dropped from the chute 7 to the discharge path 22 outside the system. The route switching mechanism 23 will be described in detail later.

貯留槽11と投入機構13とが可撓性の継ぎ手で接続され、排出ゲート18と排出経路17とが同じく可撓性の継ぎ手で接続されている。また、排出シュート14aを介して貯留槽11とスクリュー式搬送機構16とが接続され、スクリュー式搬送機構16の終端が排出ゲート18に接続されている。   The storage tank 11 and the input mechanism 13 are connected by a flexible joint, and the discharge gate 18 and the discharge path 17 are similarly connected by a flexible joint. Further, the storage tank 11 and the screw type transport mechanism 16 are connected via the discharge chute 14 a, and the terminal end of the screw type transport mechanism 16 is connected to the discharge gate 18.

貯留槽11の底部には、重量計19が設置されている。当該重量計19によって、貯留槽11、掻寄機構15、排出シュート14a、スクリュー式搬送機構16、排出ゲート18、これらに貯留されている貯留物Aの総重量が計測される。   A weighing scale 19 is installed at the bottom of the storage tank 11. The total weight of the storage tank 11, the scraping mechanism 15, the discharge chute 14 a, the screw-type transport mechanism 16, the discharge gate 18, and the storage A stored in these is measured by the weight scale 19.

重量計19で計測された総重量から既知の貯留槽11、掻寄機構15、排出シュート14a、スクリュー式搬送機構16、及び排出ゲート18の各重量を減算することにより、貯留槽11に貯留されている貯留物Aの重量が算出できる。   By subtracting the respective weights of the known storage tank 11, scraping mechanism 15, discharge chute 14 a, screw type transport mechanism 16, and discharge gate 18 from the total weight measured by the weigh scale 19, the weight is stored in the storage tank 11. The weight of the stored A can be calculated.

制御部は、貯留槽11に貯留されている貯留物Aの貯留量を把握しつつ、投入機構13や排出機構20或いは掻寄機構15の制御を適切に行なう。   The control unit appropriately controls the input mechanism 13, the discharge mechanism 20, or the scraping mechanism 15 while grasping the storage amount of the storage material A stored in the storage tank 11.

数十日や数ヶ月の長期に亘り貯留槽11に貯留物Aを貯留するような場合に、貯留槽11内部で貯留物Aが固化してブリッジが形成されたり、貯留物Aが壁面等に固着したり、さらには含水率の分布や温度分布が変化したり、化学変化に伴うガスの発生等、貯留物Aの性状に様々な変動を来たし、適正な状態で貯留することが困難になる虞がある。   When the storage A is stored in the storage tank 11 for a long period of several tens of days or several months, the storage A solidifies inside the storage tank 11 to form a bridge, or the storage A becomes a wall surface or the like. There are various fluctuations in the properties of the stored matter A, such as sticking, moisture content distribution and temperature distribution, and gas generation accompanying chemical changes, making it difficult to store in an appropriate state. There is a fear.

そこで、このような問題の発生を回避するために、処理設備1には、さらに、貯留槽11(11A,11B)から貯留物を排出して再度貯留槽11(11A,11B)に投入する循環機構24を備えている。   Therefore, in order to avoid the occurrence of such a problem, the processing facility 1 is further circulated to discharge the storage material from the storage tank 11 (11A, 11B) and input it again into the storage tank 11 (11A, 11B). A mechanism 24 is provided.

循環機構24は、排出機構20から排出された貯留物を投入機構13を介して貯留槽11に搬送する搬送機構を備えた循環搬送経路25を備えるとともに、排出機構20から排出された貯留物Aを系外への排出経路22に搬送するか、循環搬送経路25に搬送するかを切り替える経路切替機構23を備えている。   The circulation mechanism 24 includes a circulation conveyance path 25 including a conveyance mechanism that conveys the storage discharged from the discharge mechanism 20 to the storage tank 11 via the input mechanism 13, and the storage A discharged from the discharge mechanism 20. Is switched to the discharge path 22 to the outside of the system or to the circulation transport path 25.

経路切替機構23は、電動ダンパで構成されている。制御部によって当該電動ダンパ23が開制御されると搬送経路21上の貯留物Aは排出経路22から排出され、電動ダンパ23が閉制御されると搬送経路21上の貯留物Aは循環搬送経路25に搬送される。   The path switching mechanism 23 is configured by an electric damper. When the electric damper 23 is controlled to be opened by the control unit, the storage A on the conveyance path 21 is discharged from the discharge path 22, and when the electric damper 23 is controlled to be closed, the storage A on the conveyance path 21 is circulated and conveyed. It is conveyed to 25.

つまり、循環搬送経路25は、既述した搬送経路21、投入経路5、水平搬送経路6によって構成され、それぞれに上述したケースコンベア等でなる搬送機構、つまり循環搬送機構が設けられている。   That is, the circulation conveyance path 25 is configured by the conveyance path 21, the input path 5, and the horizontal conveyance path 6 described above, and is provided with a conveyance mechanism including the above-described case conveyor, that is, a circulation conveyance mechanism.

このような循環機構24によれば、排出機構20から排出された貯留物を投入機構13を介して記貯留槽11に搬送するように構成されているので、貯留槽11に別途の循環用の排出機構や投入機構を設ける必要がなく、設備費を抑制することができる。また、経路切替機構23に到る搬送経路21を循環搬送経路25として共用できるため、同様に設備費を抑制することができる。   According to such a circulation mechanism 24, the storage discharged from the discharge mechanism 20 is configured to be conveyed to the storage tank 11 via the input mechanism 13. There is no need to provide a discharge mechanism or a charging mechanism, and the equipment cost can be reduced. Moreover, since the conveyance path 21 reaching the path switching mechanism 23 can be shared as the circulation conveyance path 25, the equipment cost can be similarly reduced.

本実施形態では、貯留物Aが粉粒体であり、その自重で排出口14から円滑に自然落出するように排出口14を形成してあるため、貯留物Aを排出するために別途の吸引ポンプ等を備える必要もない。   In the present embodiment, the storage A is a granular material, and the discharge port 14 is formed so as to smoothly fall out of the discharge port 14 by its own weight. There is no need to provide a suction pump or the like.

さらに、排出機構20を介して貯留槽11の底部で圧密化された貯留物Aが排出され、投入機構13を介して再度貯留槽11に投入されるので、貯留物Aの投入経路から排出経路に到る各経路で貯留物Aが解されて固着等の不都合な事態の発生が効果的に回避できるようになる。   Further, since the storage A consolidated at the bottom of the storage tank 11 is discharged via the discharge mechanism 20 and is again input to the storage tank 11 via the input mechanism 13, the discharge path from the supply path of the storage A is discharged. It is possible to effectively avoid the occurrence of an inconvenient situation such as sticking by the storage A being unraveled in each of the routes leading to.

経路切替機構23は、電動ダンパで構成されている。制御部30が、当該電動ダンパを開制御すると搬送経路21上の貯留物Aは排出経路22から排出され、前記電動ダンパを閉制御すると搬送経路21上の貯留物Aは循環搬送経路25に搬送される。   The path switching mechanism 23 is configured by an electric damper. When the control unit 30 controls to open the electric damper, the storage A on the conveyance path 21 is discharged from the discharge path 22, and when the electric damper is controlled to close, the storage A on the conveyance path 21 is conveyed to the circulation conveyance path 25. Is done.

貯留槽11A,11Bは並設され、各排出機構20から排出された貯留物Aを循環搬送するように搬送経路21、循環搬送経路25を共用することができるので、設備費を抑制することができるようになる。   The storage tanks 11A and 11B are juxtaposed, and the transport path 21 and the circulation transport path 25 can be shared so as to circulate and transport the stored matter A discharged from each discharge mechanism 20, so that the equipment cost can be suppressed. become able to.

さらに、サイロ10には、貯留槽11内の貯留物Aの性状の変動をモニタする監視機構26が設けられている。   Further, the silo 10 is provided with a monitoring mechanism 26 that monitors fluctuations in the properties of the stored matter A in the storage tank 11.

貯留物Aの組成や貯留量、温度、湿度、季節、貯留期間等、様々な条件によって貯留物Aの性状は変動する。また、温度、湿度、季節、貯留期間等、様々な条件によって貯留物の性状の変動の程度にばらつきがある。特に貯留槽11の底部に貯留されている汚泥は圧密化されているため、貯留槽11の上部の汚泥との間で湿度差や温度差が大きくなると局部的に性状が変動しやすい傾向もある。一方で常時貯留物を循環させると却って性状の変動が促進される虞もある。   The properties of the storage A vary depending on various conditions such as the composition, storage amount, temperature, humidity, season, and storage period of the storage A. In addition, there are variations in the degree of fluctuations in the properties of the stored matter depending on various conditions such as temperature, humidity, season, and storage period. In particular, since the sludge stored at the bottom of the storage tank 11 is consolidated, if the humidity difference or temperature difference between the sludge on the top of the storage tank 11 increases, the property tends to fluctuate locally. . On the other hand, if the stored matter is circulated at all times, the change in properties may be promoted.

そこで、監視機構26は、貯留槽11の槽内またはその近傍に配置した複数の温度センサ、湿度センサ、ガスセンサ等の出力に基づいて、貯留槽11に貯留された貯留物Aの性状の変動をモニタするように構成されている。   Therefore, the monitoring mechanism 26 changes the property of the stored matter A stored in the storage tank 11 based on outputs of a plurality of temperature sensors, humidity sensors, gas sensors, and the like arranged in or near the storage tank 11. It is configured to monitor.

例えば、貯留物Aの温度が、予め設定した閾値以上に上昇すると貯留物A内で何らかの発熱反応が発生していると判断でき、メタンや一酸化炭素等のガス濃度が予め設定した閾値以上になると有機物の消化反応が発生していると判断できる。さらに、湿度分布のばらつきが検出されると、架橋が発生し易い状態であると判断できる。このように監視機構26によって貯留物Aの性状の変動の兆候が検出される。   For example, when the temperature of the storage A rises above a preset threshold, it can be determined that some exothermic reaction has occurred in the storage A, and the gas concentration of methane, carbon monoxide, or the like exceeds the preset threshold. Then, it can be judged that digestion reaction of organic matter has occurred. Furthermore, when a variation in humidity distribution is detected, it can be determined that crosslinking is likely to occur. In this way, the monitoring mechanism 26 detects signs of fluctuations in the properties of the stored matter A.

監視機構26で貯留物Aの性状をモニタし、貯留物Aの性状が大きく変動する虞が強いと推測される時期等に、上述した循環機構24を介して貯留槽11内の貯留物Aを槽外に排出して再度槽内に投入することで、貯留物Aの性状の均質化を図り、性状の大きな変動を回避するとともに流動性を保持することができる。さらに打撃装置を設けなくとも貯留槽11の内壁への貯留物の固着やブリッジの発生を回避することができるようにもなる。また、貯留物の流動性が保持できることで、掻寄機構を使用しないでも貯留槽から貯留物が落出することが維持でき、例えば貯留物の排出時に掻寄機構を使用する頻度が減り省エネにもなる。   The property of the storage A is monitored by the monitoring mechanism 26, and the storage A in the storage tank 11 is removed via the circulation mechanism 24 described above at a time when it is estimated that the property of the storage A is likely to fluctuate greatly. By discharging to the outside of the tank and throwing it back into the tank, the properties of the stored matter A can be homogenized, and large fluctuations in properties can be avoided and fluidity can be maintained. Furthermore, it becomes possible to avoid the sticking of the stored matter to the inner wall of the storage tank 11 and the occurrence of a bridge without providing a striking device. In addition, since the fluidity of the stored material can be maintained, it is possible to maintain the stored material falling out of the storage tank without using the scraping mechanism.For example, the frequency of using the scraping mechanism when discharging the stored material is reduced, which saves energy. Also become.

図2に基づいて、上述の処理設備1の各部を制御する制御部を説明する。
制御部30は、マイクロコンピュータやマイクロコンピュータで実行されるプログラム等を記憶したメモリ等を備えて構成され、投入制御部31と排出制御部32と入力部33と時間を計測する計時部34等の機能ブロックを備えている。
Based on FIG. 2, the control part which controls each part of the above-mentioned processing equipment 1 is demonstrated.
The control unit 30 includes a microcomputer, a memory that stores a program executed by the microcomputer, and the like. The control unit 30 includes an input control unit 31, a discharge control unit 32, an input unit 33, and a time measuring unit 34 that measures time. Has functional blocks.

投入制御部31は、受入ホッパ3に汚泥が投入されたことを検知すると、スクリュー式搬送機構4を駆動するとともに、投入経路5及び水平搬送経路6の各搬送機構を駆動して、空の貯留槽11に対応する投入機構13の電動ダンパを開いて、貯留槽11への貯留物Aの投入制御を実行する。重量計の計測値に基づいて汚泥の充填が完了したと判断すると、投入機構13の電動ダンパを閉じるとともに各搬送機構を停止する。尚、初期に一対の貯留槽11の何れもが空である場合には、一方の貯留槽11への汚泥の充填が終了すると、他方の貯留槽11への充填を行なう。   When detecting that the sludge has been input to the receiving hopper 3, the input control unit 31 drives the screw-type transfer mechanism 4 and drives the transfer mechanisms of the input path 5 and the horizontal transfer path 6 to store the empty space. The electric damper of the charging mechanism 13 corresponding to the tank 11 is opened, and charging control of the stored material A to the storage tank 11 is executed. When it is determined that the sludge filling is completed based on the measurement value of the weigh scale, the electric damper of the charging mechanism 13 is closed and each transport mechanism is stopped. In addition, when both of the pair of storage tanks 11 are initially empty, when the filling of the sludge into one storage tank 11 is completed, the other storage tank 11 is filled.

排出制御部32は、図示していない排出起動スイッチが操作されたことを検知すると、スクリュー式搬送機構16を駆動し、排出ゲート18の電動ダンパを開放し、さらに搬送経路21の搬送機構を駆動するとともに、排出経路22から貯留物が排出されるように経路切替機構23の電動ダンパを切り替える。重量計の計測値に基づいて貯留物が全て排出されたと判断すると、排出ゲート18の電動ダンパを閉じて各搬送機構を停止する。   When the discharge controller 32 detects that a discharge start switch (not shown) has been operated, the screw transport mechanism 16 is driven, the electric damper of the discharge gate 18 is opened, and the transport mechanism of the transport path 21 is further driven. In addition, the electric damper of the path switching mechanism 23 is switched so that the stored matter is discharged from the discharge path 22. When it is determined that all of the stored matter has been discharged based on the measurement value of the weigh scale, the electric damper of the discharge gate 18 is closed and each transport mechanism is stopped.

入力部33には、重量計19の計測値や、監視機構26からのモニタ信号が入力されるとともに、入力部33は入力された各信号値に基づいて、投入制御部31及び排出制御部32に制御信号を出力する。   The input unit 33 receives the measurement value of the weighing scale 19 and the monitor signal from the monitoring mechanism 26, and the input unit 33 inputs the input control unit 31 and the discharge control unit 32 based on the input signal values. Output a control signal.

貯留槽11に汚泥が充填された後に、監視機構26が作動して貯留槽11内の貯留物Aの性状の変動がモニタされる。投入制御部31及び排出制御部32は、監視機構26でモニタされた貯留物Aの性状に基づいて、貯留物の性状が所定の閾値を超えて変動したと判断すると、循環機構24を作動させて、貯留物を循環させる。   After the storage tank 11 is filled with sludge, the monitoring mechanism 26 is operated to monitor the change in properties of the stored matter A in the storage tank 11. When the input control unit 31 and the discharge control unit 32 determine that the property of the storage material has changed beyond a predetermined threshold based on the property of the storage material A monitored by the monitoring mechanism 26, the circulation control device 24 is activated. Circulate the reservoir.

具体的に、排出機構20を制御して、貯留槽から貯留物Aを搬送経路21に排出し、搬送経路21の搬送機構を駆動するとともに、搬送経路21を搬送される貯留物Aが循環搬送経路25へと搬送されるように経路切替機構23を切り替えて、さらに投入経路5及び水平搬送経路6を駆動して、投入機構13を開放する。   Specifically, the discharge mechanism 20 is controlled to discharge the storage A from the storage tank to the transport path 21 to drive the transport mechanism of the transport path 21, and the storage A transported through the transport path 21 is circulated and transported The path switching mechanism 23 is switched so as to be transported to the path 25, and the input path 5 and the horizontal transport path 6 are further driven to open the input mechanism 13.

このような貯留物の循環制御は、各貯留槽毎に行なわれ、貯留槽11に充填された貯留物を全量循環するのに要する時間だけ、連続または間歇的に実行される。   Such a circulation control of the storage is performed for each storage tank, and is continuously or intermittently executed only for the time required to circulate the entire storage filled in the storage tank 11.

つまり、貯留槽と、前記貯留槽に貯留物を投入する投入機構と、前記貯留槽から貯留物を排出する排出機構と、前記貯留槽から貯留物を排出して再度前記貯留槽に投入する循環機構とを備えているサイロの運転方法であって、投入機構から貯留槽に貯留物が充填された後に、排出機構を作動させて貯留物を系外に排出する排出ステップと、貯留槽に充填された貯留物の性状を検出する性状検出ステップと、排出ステップを実行するまでの間に、性状検出ステップで検出された貯留物の性状の変動状態に基づいて循環機構を作動させて貯留物を循環させる循環ステップと、を実行するサイロの運転方法が実現されている。   That is, a storage tank, an input mechanism that inputs the storage into the storage tank, a discharge mechanism that discharges the storage from the storage tank, and a circulation that discharges the storage from the storage tank and inputs it again into the storage tank The silo is equipped with a mechanism, and after the storage tank is filled with the storage from the charging mechanism, the discharge step is activated to discharge the storage out of the system, and the storage tank is filled Between the property detection step of detecting the property of the stored reservoir and the discharging step, the circulation mechanism is operated based on the fluctuation state of the property of the reservoir detected in the property detection step. A silo operating method for performing a circulation step to circulate is realized.

また、当該サイロの運転方法は、排出ステップでは、排出機構及び前記経路切替機構を作動させて貯留物を系外への排出経路に排出し、循環ステップでは、排出機構及び経路切替機構を作動させて、貯留物を前記循環搬送経路に搬送して循環させるように構成されている。   The silo is operated in the discharge step by operating the discharge mechanism and the path switching mechanism to discharge the stored material to the discharge path outside the system, and in the circulation step, the discharge mechanism and the path switching mechanism are operated. Thus, the stored material is transported to the circulating transport path and circulated.

循環機構24を作動させて貯留物Aを循環させる時の排出機構20による貯留物Aの単位時間当たりの排出量は、貯留槽Aから系外へ排出するときよりも少ない値に、例えば半分に設定される。   When the circulation mechanism 24 is operated to circulate the storage A, the discharge amount of the storage A per unit time by the discharge mechanism 20 is smaller than that when the storage A is discharged out of the system, for example, half. Is set.

例えば、貯留槽11が50t程度の貯留容量である場合に、排出機構20が90分で貯留物Aの全量を排出できるように設定されているとすると、循環機構24は、180分かけて貯留物Aの全量を循環されるように設定される。   For example, when the storage tank 11 has a storage capacity of about 50 t, if the discharge mechanism 20 is set so as to discharge the entire amount of the storage A in 90 minutes, the circulation mechanism 24 stores 180 minutes. It is set so that the whole amount of the object A is circulated.

循環時は、貯留物Aをゆっくり排出、再投入したほうが、貯留物Aの性状の変動を抑制できる点で好ましい。さらに、排出機構20のスクリュー式搬送機構16を駆動するために要するエネルギーコストも低減させることができる。   During circulation, it is preferable that the storage A is slowly discharged and re-introduced from the viewpoint that fluctuations in the properties of the storage A can be suppressed. Furthermore, the energy cost required to drive the screw type transport mechanism 16 of the discharge mechanism 20 can be reduced.

排出制御部32は、スクリュー式搬送機構16の駆動モータをインバータ制御して、回転数を低下させて搬送量を半分にしたり、二つのスクリュー式搬送機構16を交互に駆動したりして単位時間当たりに貯留槽11から排出される貯留物Aの排出量を調整する。つまり、排出制御部32とスクリュー式搬送機構16により、循環搬送経路25への貯留物Aの単位時間当たりの排出量を、排出経路22への貯留物Aの単位時間当たりの排出量よりも少なくする排出量調整機構が構成される。   The discharge control unit 32 controls the drive motor of the screw-type transport mechanism 16 with an inverter, reduces the rotation speed to halve the transport amount, or alternately drives the two screw-type transport mechanisms 16 to unit time. The discharge amount of the stored matter A discharged from the storage tank 11 is adjusted. That is, the discharge control unit 32 and the screw type transport mechanism 16 reduce the discharge amount per unit time of the storage A to the circulation transfer path 25 less than the discharge amount per unit time of the storage A to the discharge path 22. A discharge amount adjusting mechanism is configured.

即ち、当該サイロの運転方法は、循環ステップの実行時の排出機構による貯留物の単位時間当たりの排出量が、排出ステップの実行時の排出機構による貯留物の単位時間当たりの排出量よりも少ない値に設定されている。   That is, according to the silo operation method, the discharge amount per unit time by the discharge mechanism when the circulation step is executed is smaller than the discharge amount per unit time by the discharge mechanism when the discharge step is executed. Is set to a value.

尚、上述したように経路切替機構23を備え、排出機構20を循環機構の一部に用いる場合のみならず、排出機構20以外に循環用の専用の排出機構を備える場合であっても、同様に循環ステップの実行時の循環用の専用の排出機構による貯留物の単位時間当たりの排出量が、排出ステップの実行時の排出機構20による貯留物の単位時間当たりの排出量よりも少ない値に設定されることが好ましい。   As described above, not only when the path switching mechanism 23 is provided and the discharge mechanism 20 is used as a part of the circulation mechanism, but also when a dedicated discharge mechanism for circulation other than the discharge mechanism 20 is provided. In addition, the discharge amount per unit time by the dedicated discharge mechanism for circulation when the circulation step is executed is smaller than the discharge amount per unit time by the discharge mechanism 20 when the discharge step is executed. It is preferably set.

また、少なくとも循環ステップの実行時に、掻寄機構を作動させるように構成されていることが好ましい。   Further, it is preferable that the scraping mechanism is operated at least when the circulation step is executed.

上述した実施形態では、監視機構26からのモニタ信号に基づいて、貯留物の性状が所定の閾値を超えて変動したと判断されたときに循環ステップが実行される例を説明したが、当該所定の閾値の具体的な値は、貯留物の成分や種々の環境条件に基づいて適宜設定される値であり特に制限される値ではない。また、監視機構26が制御部30と一体に構成されていてもよい。   In the above-described embodiment, the example in which the circulation step is executed when it is determined that the property of the stored material has changed beyond a predetermined threshold based on the monitor signal from the monitoring mechanism 26 has been described. The specific value of the threshold value is a value that is appropriately set based on the components of the stored matter and various environmental conditions, and is not particularly limited. Further, the monitoring mechanism 26 may be configured integrally with the control unit 30.

監視機構26を備えていない場合、運転管理者が貯留槽等に設置された各種のセンサの値を目視計測して、その結果に基づいて循環ステップを実行するか否かを判定する性状検出ステップを実行するものであってもよい。この場合、手動で循環ステップを起動させるための操作スイッチを制御盤に備えていればよい。操作スイッチの状態は制御部30に入力されることは言うまでもない。   When the monitoring mechanism 26 is not provided, a property detection step in which the operation manager visually measures the values of various sensors installed in the storage tank or the like and determines whether or not to execute the circulation step based on the results. May be executed. In this case, the control panel may be provided with an operation switch for manually starting the circulation step. Needless to say, the state of the operation switch is input to the control unit 30.

貯留槽等にセンサが設置されていない場合には、貯留槽11に貯留物Aが充填された後、排出機構20から貯留物Aが排出されるまでの間の所定時期に、循環機構24を作動させて貯留物Aを循環ステップが実行されるように構成すればよい。   When no sensor is installed in the storage tank or the like, the circulation mechanism 24 is turned on at a predetermined time after the storage tank 11 is filled with the storage A until the storage A is discharged from the discharge mechanism 20. What is necessary is just to comprise so that the circulation step may be performed by operating and operating the stored matter A.

例えば、制御部30に備えた計時部34で貯留物の充填後の経過時間を計測し、一定のインタバル、例えば、数日おきに貯留物の全量が一回循環するように連続的または間歇的に循環させてもよい。循環ステップの実行インタバルは貯留物の組成や環境条件等によって、性状が大きく変動しない時間内で適宜設定すればよい。   For example, the timer 34 provided in the control unit 30 measures the elapsed time after filling the storage, and continuously or intermittently so that the entire amount of the storage circulates once every several days, for example, every few days. It may be circulated. The execution interval of the circulation step may be set as appropriate within a time period in which the properties do not vary greatly depending on the composition of the storage, environmental conditions, and the like.

上述した実施形態では、下水処理場で発生した脱水汚泥であって、乾燥され燃料として再利用可能な汚泥を貯留物Aとする例を説明したが、本発明によるサイロの貯留物Aはこのような汚泥に限定されるものではなく、下水処理場で発生した脱水汚泥であって、焼却炉や溶融炉で減容化される前に一時的に貯留される湿潤な汚泥を貯留物Aとしてもよい。   In the embodiment described above, an example in which the sludge dehydrated sludge generated at the sewage treatment plant and dried and reused as fuel is used as the storage A is described. However, the silo storage A according to the present invention is like this. The dewatered sludge generated in the sewage treatment plant is not limited to the sludge, and the wet sludge that is temporarily stored before being reduced in volume in the incinerator or melting furnace is also used as the storage A Good.

焼却炉で焼却する前の湿潤な汚泥、例えば含水率が80%程度の脱水汚泥を貯留槽に貯留すると、貯留槽内で汚泥と水分が分離して、貯留槽内の下部と上部とで含水率に偏りが生じ、水分が貯留槽の下部に集まってしまう。このように、汚泥と水分が分離した状態の貯留物は、含水率に偏りが生じて均質ではないため排出量が安定せず、また、このような貯留物を焼却炉に搬送しても、安定した焼却が行えず処理効率が低下する。   When wet sludge before incineration in an incinerator, for example, dehydrated sludge with a moisture content of about 80%, is stored in the storage tank, the sludge and moisture are separated in the storage tank, and water is contained in the lower and upper parts of the storage tank. The rate is biased and moisture collects at the bottom of the reservoir. In this way, the storage in the state where the sludge and the water are separated is uneven because the moisture content is uneven and the discharge amount is not stable, and even if such storage is transported to an incinerator, Stable incineration cannot be performed and processing efficiency decreases.

そこで、貯留槽から排出された貯留物を、焼却炉に供給する供給ポンプの吐出側の配管に、貯留物の性状としての含水率の変動をモニタする監視機構としての水分計を設置し、該供給ポンプから吐出される汚泥の含水率が所定値より高い場合は、循環機構によって貯留物を貯留槽から排出して再度貯留槽に投入するように循環する。これにより、貯留槽の内部で貯留物を流動させることができ、貯留物の性状変動を抑制して均質に維持することができるようになる。   Therefore, a moisture meter is installed as a monitoring mechanism for monitoring the fluctuation of the moisture content as the property of the stored substance in the piping on the discharge side of the supply pump that supplies the discharged substance from the storage tank to the incinerator. When the moisture content of the sludge discharged from the supply pump is higher than a predetermined value, the circulating material is circulated so that the stored matter is discharged from the storage tank and is put into the storage tank again. Thereby, the stored matter can be flowed inside the storage tank, and the property fluctuation of the stored matter can be suppressed and maintained uniformly.

尚、貯留槽の上部と下部に水分計を備えて、その差分から貯留槽内の脱水汚泥の含水率の偏りを検出し、それに基づいて循環機構を作動して貯留物を循環させるように構成してもよい。   The storage tank is equipped with a moisture meter at the upper and lower parts, and the deviation of the moisture content of the dewatered sludge in the storage tank is detected from the difference between them, and the circulation mechanism is operated based on that to circulate the stored matter. May be.

また、下水処理場で発生した脱水汚泥に限るものでもなく、し尿処理場で発生し、脱水処理された汚泥等を貯留物Aとする場合であってもよい。   Further, the present invention is not limited to the dewatered sludge generated at the sewage treatment plant, but the dewatered sludge generated at the human waste treatment plant and the like may be used as the storage A.

さらに、古紙及びプラスチックのような資源再生用の廃材を破砕機で破砕し、燃料等に再利用可能な粉粒体を貯留物Aとする場合であってもよい。このような貯留物Aは、サイロから切り出されてスクリュー式搬送機構でペレットミルに定量搬送され、加圧処理して塊状の固形燃料であるRPF(Refuse Paper and Plastic Fuel)に加工され、ボイラ等の燃焼機に化石燃料の代替燃料として用いられる。   Further, it may be a case where waste materials for resource recycling such as waste paper and plastic are crushed by a crusher, and a granular material that can be reused for fuel or the like is used as the storage A. Such a storage A is cut out from a silo, quantitatively transported to a pellet mill by a screw-type transport mechanism, pressurized and processed into RPF (Refuse Paper and Plastic Fuel) that is a lump solid fuel, boiler, etc. It is used as an alternative fuel for fossil fuels in combustors.

上述した実施形態は本発明の一態様であり、該記載により本発明が限定されるものではなく、各部の具体的構成や制御態様は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   The above-described embodiment is one aspect of the present invention, and the present invention is not limited by the description. Specific configurations and control aspects of each part can be appropriately changed and designed within the scope of the effects of the present invention. Needless to say.

1:処理設備
2:トラック
3:受入ホッパ
4:スクリュー式搬送機構
5:投入経路
6:水平搬送経路
7:シュート
10(10A,10B):サイロ
11(11A,11B):貯留槽
11a:底面
13(13A,13B):投入機構
14:排出口
14a:排出シュート
15:掻寄機構
15a:ロータ
15b:掻寄羽根
16:スクリュー式搬送機構
17:排出経路
18:排出ゲート
19:重量計
20:排出機構
21:搬送経路
22:排出経路
23:経路切替機構
24:循環機構
25:循環搬送経路
26:監視機構
26a:温度計
26b:ガス検知計
30:制御部
31:投入制御部
32:排出制御部
33:入力部
34:計時部
A:貯留物
1: processing equipment 2: truck 3: receiving hopper 4: screw-type transport mechanism 5: loading path 6: horizontal transport path 7: chute 10 (10A, 10B): silo 11 (11A, 11B): storage tank 11a: bottom surface 13 (13A, 13B): input mechanism 14: discharge port 14a: discharge chute 15: scraping mechanism 15a: rotor 15b: scraping blade 16: screw type transport mechanism 17: discharge path 18: discharge gate 19: weighing scale 20: discharge Mechanism 21: Transport path 22: Discharge path 23: Path switching mechanism 24: Circulation mechanism 25: Circulation transport path 26: Monitoring mechanism 26a: Thermometer 26b: Gas detector 30: Control unit 31: Input control unit 32: Discharge control unit 33: Input unit 34: Timekeeping unit A: Storage

Claims (8)

貯留槽と、前記貯留槽に貯留物を投入する投入機構と、前記貯留槽から貯留物を排出する排出機構とを備えているサイロであって、
前記貯留槽から貯留物を排出して再度前記貯留槽に投入する循環機構と、前記貯留槽内の貯留物の性状の変動をモニタする監視機構を備え、前記循環機構は前記監視機構でモニタされた貯留物の性状に基づいて作動するように構成されているサイロ。
A silo comprising a storage tank, a charging mechanism for charging the storage tank, and a discharge mechanism for discharging the storage from the storage tank,
A circulation mechanism that discharges the stored material from the storage tank and re-enters the storage tank; and a monitoring mechanism that monitors fluctuations in the properties of the storage material in the storage tank, and the circulation mechanism is monitored by the monitoring mechanism. A silo that is configured to operate based on the properties of the stored material.
前記循環機構は、前記排出機構から排出された貯留物を前記投入機構を介して前記貯留槽に搬送する搬送機構を備えた循環搬送経路を備えるとともに、
前記排出機構から排出された貯留物を系外への排出経路に搬送するか、前記循環搬送経路に搬送するかを切り替える経路切替機構を備えている請求項1記載のサイロ。
The circulation mechanism includes a circulation conveyance path including a conveyance mechanism for conveying the storage material discharged from the discharge mechanism to the storage tank via the input mechanism,
The silo according to claim 1, further comprising a path switching mechanism that switches between transferring the stored material discharged from the discharge mechanism to a discharge path to the outside of the system or transferring the stored material to the circulation transfer path.
前記循環搬送経路への貯留物の単位時間当たりの排出量を、前記排出経路への貯留物の単位時間当たりの排出量よりも少なくする排出量調整機構を備える請求項2記載のサイロ。   The silo according to claim 2, further comprising a discharge amount adjusting mechanism for reducing a discharge amount per unit time of the storage material to the circulation conveyance path to be smaller than a discharge amount of the storage material to the discharge route per unit time. 前記貯留槽が複数並設され、前記循環搬送経路が各排出機構から排出された貯留物を循環搬送するように共用されるとともに、前記循環搬送経路から各貯留槽の投入機構へ貯留物を搬送する水平搬送経路が連接され、前記水平搬送経路の終端に貯留物を落下させるシュートが形成されている請求項2または3記載のサイロ。   A plurality of the storage tanks are arranged side by side, and the circulation transport path is shared so as to circulate and transport the storage material discharged from each discharge mechanism, and the storage material is transported from the circulation transport path to the input mechanism of each storage tank. The silo according to claim 2 or 3, wherein a horizontal conveyance path is connected, and a chute for dropping a stored substance is formed at an end of the horizontal conveyance path. 貯留槽と、前記貯留槽に貯留物を投入する投入機構と、前記貯留槽から貯留物を排出する排出機構と、前記貯留槽から貯留物を排出して再度前記貯留槽に投入する循環機構とを備えているサイロの運転方法であって、
前記投入機構から前記貯留槽に貯留物が投入された後に、前記排出機構を作動させて貯留物を系外に排出する排出ステップと、
前記貯留槽に投入された貯留物の性状を検出する性状検出ステップと、
前記性状検出ステップで検出された貯留物の性状の変動状態に基づいて前記循環機構を作動させて貯留物を循環させる循環ステップと、
を実行するサイロの運転方法。
A storage tank, an input mechanism that inputs the storage into the storage tank, a discharge mechanism that discharges the storage from the storage tank, and a circulation mechanism that discharges the storage from the storage tank and inputs it again into the storage tank. A silo driving method comprising:
A discharge step of operating the discharge mechanism to discharge the storage out of the system after the storage is input from the input mechanism to the storage tank;
A property detection step for detecting the property of the stored substance introduced into the storage tank;
A circulation step of operating the circulation mechanism based on the fluctuation state of the property of the storage detected in the property detection step to circulate the storage;
How to run the silo.
前記循環ステップの実行時の前記排出機構による貯留物の単位時間当たりの排出量が、前記排出ステップの実行時の前記排出機構による貯留物の単位時間当たりの排出量よりも少ない請求項5記載のサイロの運転方法。   The amount of discharge per unit time of the storage by the discharge mechanism during execution of the circulation step is smaller than the amount of discharge per unit time of the storage by the discharge mechanism during execution of the discharge step. How to drive the silo. 前記貯留槽の底部に堆積した貯留物を前記排出口に掻き寄せる掻寄機構を備えて前記サイロが構成され、
少なくとも前記循環ステップの実行時に、前記掻寄機構を作動させる請求項5または6記載のサイロの運転方法。
The silo is configured with a scraping mechanism that scrapes the accumulated matter accumulated at the bottom of the storage tank to the discharge port,
The silo operation method according to claim 5 or 6, wherein the scraping mechanism is operated at least when the circulation step is executed.
循環ステップは、前記性状検出ステップで検出された貯留物の性状が所定の閾値を超えて変動したときに実行される請求項5から7の何れかに記載のサイロの運転方法。   The silo operation method according to any one of claims 5 to 7, wherein the circulation step is executed when the property of the storage detected in the property detection step fluctuates beyond a predetermined threshold.
JP2012014720A 2012-01-27 2012-01-27 Silo, and operating method of the same Pending JP2013154892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012014720A JP2013154892A (en) 2012-01-27 2012-01-27 Silo, and operating method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012014720A JP2013154892A (en) 2012-01-27 2012-01-27 Silo, and operating method of the same

Publications (1)

Publication Number Publication Date
JP2013154892A true JP2013154892A (en) 2013-08-15

Family

ID=49050506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012014720A Pending JP2013154892A (en) 2012-01-27 2012-01-27 Silo, and operating method of the same

Country Status (1)

Country Link
JP (1) JP2013154892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019069845A (en) * 2017-10-10 2019-05-09 株式会社神戸製鋼所 Solid fuel discharge system and solid fuel discharge method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125277U (en) * 1976-03-19 1977-09-22
JPS6133985A (en) * 1984-06-15 1986-02-18 川重工事株式会社 Oxygen purging method of large-sized tank
JP2002179251A (en) * 2000-12-19 2002-06-26 Hokko Kakoki Kk First-in first-out device in large storage tank having hopper
JP2002308445A (en) * 2001-04-18 2002-10-23 Komaki Kogyo Kk Quantitative powder and granular material supply device
JP2004035250A (en) * 2002-07-08 2004-02-05 Ngk Insulators Ltd Operating method for silo
JP2008183764A (en) * 2007-01-29 2008-08-14 Sumitomo Heavy Ind Ltd Material charging apparatus and material charging method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125277U (en) * 1976-03-19 1977-09-22
JPS6133985A (en) * 1984-06-15 1986-02-18 川重工事株式会社 Oxygen purging method of large-sized tank
JP2002179251A (en) * 2000-12-19 2002-06-26 Hokko Kakoki Kk First-in first-out device in large storage tank having hopper
JP2002308445A (en) * 2001-04-18 2002-10-23 Komaki Kogyo Kk Quantitative powder and granular material supply device
JP2004035250A (en) * 2002-07-08 2004-02-05 Ngk Insulators Ltd Operating method for silo
JP2008183764A (en) * 2007-01-29 2008-08-14 Sumitomo Heavy Ind Ltd Material charging apparatus and material charging method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019069845A (en) * 2017-10-10 2019-05-09 株式会社神戸製鋼所 Solid fuel discharge system and solid fuel discharge method

Similar Documents

Publication Publication Date Title
JP5968629B2 (en) Silo and silo operation method
US8915679B2 (en) Pneumatic transport with multi vessel discharge
JP2013154892A (en) Silo, and operating method of the same
KR101614759B1 (en) Fodder manufacture system
TWI417235B (en) An apparatus and method for feeding with continuousness and quantity
JP2013049498A (en) Screw conveyor device
JP2005314022A (en) Incinerated fly ash loading system
JP2006275443A (en) Waste material supplying device
JP6869126B2 (en) Sludge treatment method and treatment equipment
JP2015101462A (en) Feeder
RU2548416C1 (en) Transport-processing line of recycled glass scrap in production of glass containers
JP3154175U (en) Mixture of high moisture wood chips and cow dung quantitative scraping machine
BRPI0418689B1 (en) PROCESS FOR PRODUCING A SOLID FUEL FROM FUEL AND FEEDING THE FUEL TO A COMBUSTION INSTALLATION AND INSTALLATION TO PRODUCE A SOLID FUEL FROM FUEL
JP2005029170A (en) Fine fragment discharging apparatus
JP2004249178A (en) Stirring distribution apparatus and recovery device for coolant and sludge
JP6620014B2 (en) Incineration ash treatment system and method
JP2015034658A (en) Fracture material supply device for incinerator
JP3133003U (en) Quantitative cutting device
CN217780791U (en) Continuous quantitative feeding lime bin
JP3073449B2 (en) Powder storage device
US20060180358A1 (en) Controlling feeding of solid matter
CN215665959U (en) Sludge weighing and conveying system
JP4658363B2 (en) Method of reforming processed materials in municipal waste drying facilities
CN109292461B (en) Device and method for conveying a material consisting at least predominantly of solid particles
JP4346503B2 (en) Paper supply equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160816