JP2013148247A - Geothermal air conditioning device and construction method of the same - Google Patents

Geothermal air conditioning device and construction method of the same Download PDF

Info

Publication number
JP2013148247A
JP2013148247A JP2012007432A JP2012007432A JP2013148247A JP 2013148247 A JP2013148247 A JP 2013148247A JP 2012007432 A JP2012007432 A JP 2012007432A JP 2012007432 A JP2012007432 A JP 2012007432A JP 2013148247 A JP2013148247 A JP 2013148247A
Authority
JP
Japan
Prior art keywords
heat
underground
insulating material
heat insulating
underground heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012007432A
Other languages
Japanese (ja)
Inventor
Soji Tadokoro
創史 田所
Hiroshi Nakagawa
中川  浩
Kazunori Nishio
和典 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Homes Co Ltd
Original Assignee
Panahome Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panahome Corp filed Critical Panahome Corp
Priority to JP2012007432A priority Critical patent/JP2013148247A/en
Publication of JP2013148247A publication Critical patent/JP2013148247A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal

Abstract

PROBLEM TO BE SOLVED: To efficiently perform heat exchange between outside air and geothermal air.SOLUTION: A geothermal air conditioning device 1 supplies outside air a into a building after heat exchange of the outside air a with geothermal air. The air conditioning device 1 includes: a pipe-like underground heat exchange part 1A buried in the ground and performing the heat exchange of the outside air with the geothermal air; and heat insulating material 1B buried under the ground and disposed above or a side of the underground heat exchange part 1A.

Description

本発明は、地中熱利用の空調装置に関し、詳しくは外気と地中熱とを効率的に熱交換しうる地中熱利用の空調装置及びその施工方法に関する。   The present invention relates to an air-conditioning apparatus using geothermal heat, and more particularly to an air-conditioning apparatus using geothermal heat that can efficiently exchange heat between the outside air and geothermal heat, and a construction method thereof.

近年の省エネルギー化の要請により、地中熱を利用した空調装置が提案されている(例えば下記特許文献1参照)。この種の代表的な空調装置としては、地中に埋設された地中熱交換部に、外気を経由させて建物内部に供給する所謂クールチューブと称されるものが知られている。   In recent years, due to demands for energy saving, an air conditioner using geothermal heat has been proposed (see, for example, Patent Document 1 below). As this type of typical air conditioner, what is called a so-called cool tube is known that supplies the underground heat exchange section buried in the ground to the inside of the building via the outside air.

このような空調装置は、夏では、高温の外気を、地中熱交換部を通して冷却して建物内部に供給できるとともに、冬では、冷たい外気を地中熱交換部で暖めて建物内部に供給できる利点がある。   Such an air conditioner can cool high-temperature outside air through the underground heat exchanger in summer and supply it to the inside of the building, and in winter, can cool cold outside air at the underground heat exchanger and supply it to the inside of the building. There are advantages.

特開2010−223511号公報JP 2010-223511 A

しかしながら、上記のような空調装置を低コストで施工する場合、地中熱交換部が地上から比較的浅い位置に埋設されることが多い。このような場合、外気温や日射等の影響により、地中熱交換部付近の地中温度が不安定になりやすく、外気と地中熱とを効率的に熱交換できないという問題があった。   However, when constructing the air conditioner as described above at a low cost, the underground heat exchange section is often buried at a relatively shallow position from the ground. In such a case, the underground temperature near the underground heat exchanging portion is likely to be unstable due to the influence of the outside air temperature, solar radiation, and the like, and there is a problem that the outside air and the underground heat cannot be efficiently exchanged.

本発明は、以上のような実状に鑑み案出されたもので、地中熱交換部の上方又は側方に断熱材を配置することを基本として、外気と地中熱とを効率的に熱交換しうる地中熱利用の空調装置及びその施工方法を提供することを主たる目的としている。   The present invention has been devised in view of the actual situation as described above, and efficiently heats the outside air and the underground heat based on the arrangement of the heat insulating material above or on the side of the underground heat exchange section. The main purpose is to provide a replaceable geothermal air conditioner and its construction method.

本発明のうち請求項1記載の発明は、外気を地中熱で熱交換して建物内部に供給する地中熱利用の空調装置であって、地中に埋設されかつ外気を地中熱で熱交換するパイプ状の地中熱交換部と、地中の内部に埋設され、かつ前記地中熱交換部の上方又は側方に配された断熱材とを含むことを特徴とする。   The invention according to claim 1 of the present invention is an air conditioner using geothermal heat for exchanging heat from the outside air with underground heat and supplying it to the inside of the building. It includes a pipe-shaped underground heat exchanging section for exchanging heat, and a heat insulating material embedded in the underground and disposed above or on the side of the underground heat exchanging section.

また、請求項2記載の発明は、前記断熱材は、前記地中熱交換部の上方に配された上方断熱材を含む請求項1に記載の地中熱利用の空調装置である。   The invention according to claim 2 is the air conditioner using geothermal heat according to claim 1, wherein the heat insulating material includes an upper heat insulating material disposed above the underground heat exchanging portion.

また、請求項3記載の発明は、前記断熱材は、前記地中熱交換部の側方に配された側方断熱材を含む請求項1又は2に記載の地中熱利用の空調装置である。   Moreover, invention of Claim 3 is an air conditioner of the underground heat utilization of Claim 1 or 2 with which the said heat insulating material contains the side heat insulating material distribute | arranged to the side of the said underground heat exchange part. is there.

また、請求項4記載の発明は、前記側方断熱材は、前記地中熱交換部の周囲を囲む板状の断熱片からなり、該断熱片と、この断熱片の前記地中熱交換部側への倒れを防ぐ枠材とで土留手段を構成する請求項3に記載の地中熱利用の空調装置。   In the invention according to claim 4, the side heat insulating material is composed of a plate-shaped heat insulating piece surrounding the ground heat exchanging portion, and the heat insulating piece and the underground heat exchanging portion of the heat insulating piece. The air conditioner using geothermal heat according to claim 3, wherein the earth retaining means is constituted by a frame material that prevents the body from falling to the side.

また、請求項5記載の発明は、前記地中熱交換部の下方には、前記地中熱交換部よりも深い位置の地中熱を、前記地中熱交換部側へと移動させる地中熱吸上げ部が設けられる請求項1乃至4のいずれかに記載の地中熱利用の空調装置である。   In the invention according to claim 5, the underground heat that is deeper than the underground heat exchanging portion is moved below the underground heat exchanging portion to the underground heat exchanging portion side. It is an air-conditioning apparatus using geothermal heat according to any one of claims 1 to 4, wherein a heat suction part is provided.

また、請求項6記載の発明は、前記地中熱吸上げ部は、良熱伝導性を有する複数の棒状体からなる請求項5記載の地中熱利用の空調装置である。   The invention according to claim 6 is the ground heat utilization air conditioner according to claim 5, wherein the underground heat absorption part is composed of a plurality of rod-shaped bodies having good thermal conductivity.

また、請求項7記載の発明は、請求項1乃至6のいずれかに記載の地中熱利用の空調装置の施工方法であって、地面を掘削して穴を形成する掘削工程と、前記穴の掘削周囲面に、断熱材を用いて土留する土留め工程と、前記断熱材で囲まれた空間に、前記地中熱交換部を配置する配置工程と、前記空間を土で埋める埋設工程とを含むことを特徴とする。   The invention according to claim 7 is the construction method of the geothermal air-conditioning apparatus according to any one of claims 1 to 6, wherein an excavation step of excavating the ground to form a hole, and the hole A soil retaining step using a heat insulating material, a placement step of arranging the underground heat exchanging portion in a space surrounded by the heat insulating material, and a burying step of filling the space with soil. It is characterized by including.

本発明の地中熱利用の空調装置は、外気を地中熱で熱交換して建物内部に供給する。このような空調装置は、夏において、高温の外気を地中熱交換部で冷却して、建物内に供給できる。また、冬においては、冷たい外気を地中熱交換部で暖めて、建物内に供給できる。これにより、空調装置は、例えば、エアコンのような大きなエネルギーを使用することなく、室内を空調することができ、省エネルギー性を向上しうる。   The air conditioner using geothermal heat of the present invention exchanges the outside air with geothermal heat and supplies it to the inside of the building. Such an air conditioner can supply high-temperature outside air to the building in the summer by cooling it in the underground heat exchanger. In winter, cold outdoor air can be warmed by the underground heat exchanger and supplied into the building. Thereby, the air conditioner can air-condition the room without using large energy such as an air conditioner, and can improve energy saving.

また、空調装置は、地中に埋設されかつ外気を地中熱で熱交換するパイプ状の地中熱交換部と、地中の内部に埋設され、かつ地中熱交換部の上方又は側方に配された断熱材とを含む。   In addition, the air conditioner has a pipe-shaped underground heat exchanging part buried in the ground and exchanging heat of the outside air with underground heat, and an upper or side of the underground heat exchanging part buried in the underground. And a heat insulating material disposed on the surface.

このような空調装置は、地中熱交換部の上方又は側方が断熱されるため、比較的浅い場所に埋設された場合でも、外気温や日射等の影響を遮断して、該地中熱交換部付近の地中温度が不安定なるのを抑制でき、外気と地中熱との熱交換を効率的に行いうる。   Since such an air conditioner is insulated at the top or side of the underground heat exchanging section, even when buried in a relatively shallow place, the influence of outside air temperature, solar radiation, etc. is blocked, and the underground heat It is possible to suppress instability of the underground temperature in the vicinity of the exchange unit, and heat exchange between the outside air and underground heat can be performed efficiently.

本実施形態の地中熱利用の空調装置を概念的に示す断面図である。It is sectional drawing which shows notionally the air-conditioning apparatus using geothermal heat of this embodiment. 地中熱交換部を示す斜視図である。It is a perspective view which shows an underground heat exchange part. (a)は第1縦パイプの部分断面図、(b)は第2縦パイプの部分断面図である。(A) is the fragmentary sectional view of the 1st vertical pipe, (b) is the fragmentary sectional view of the 2nd vertical pipe. 他の実施形態の地中熱利用の空調装置を概念的に示す断面図である。It is sectional drawing which shows notionally the air-conditioning apparatus using geothermal heat of other embodiment. 側方断熱材及び土留手段を示す斜視図である。It is a perspective view which shows a side heat insulating material and a soil retaining means. 地中熱吸上げ部を概念的に示す断面図である。It is sectional drawing which shows a geothermal heat suction part notionally. (a)は掘削工程を説明する断面図、(b)は棒状体埋設工程を説明する断面図である。(A) is sectional drawing explaining an excavation process, (b) is sectional drawing explaining a rod-shaped body embedding process. (a)は土留め工程を説明する断面図、(b)は第1配置工程を説明する断面図である。(A) is sectional drawing explaining the earth retaining process, (b) is sectional drawing explaining a 1st arrangement | positioning process. (a)は第2配置工程を説明する断面図、(b)は第3配置工程を説明する断面図である。(A) is sectional drawing explaining a 2nd arrangement | positioning process, (b) is sectional drawing explaining a 3rd arrangement | positioning process. (a)、(b)は、埋設工程を説明する断面図である。(A), (b) is sectional drawing explaining an embedding process. (a)は比較例の地中温度を示すグラフ、(b)は実施例1の地中温度を示すグラフ、(c)は実施例2の地中温度を示すグラフである。(A) is a graph which shows the underground temperature of a comparative example, (b) is a graph which shows the underground temperature of Example 1, (c) is a graph which shows the underground temperature of Example 2. FIG.

以下、本発明の実施の一形態が図面に基づき説明される。
図1に示されるように、本実施形態の地中熱利用の空調装置(以下、単に「空調装置」ということがある)1は、例えば、一般的な住宅やビル等の建物Hの空調装置として用いられる。この空調装置1は、外気Aを地中熱で熱交換して建物Hの内部(床下空間7)に供給し、床部に設けられた開口10a、10bから、建物Hの内部に形成される空気流路を通って、各居室Lへと供給される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, an air conditioner (hereinafter sometimes simply referred to as “air conditioner”) 1 according to the present embodiment is an air conditioner for a building H such as a general house or building. Used as The air conditioner 1 is formed in the building H from the openings 10a and 10b provided in the floor portion by exchanging heat of the outside air A with the underground heat and supplying the inside of the building H (under the floor space 7). It is supplied to each living room L through the air flow path.

このような空調装置1は、夏において、高温の外気Aを地中熱交換部1Aで冷却して建物Hの内部に供給でき、また、冬においては、冷たい外気Aを地中熱交換部1Aで暖めて建物内部に供給できる。従って、空調装置1は、例えば、エアコンのような大きなエネルギーを使用することなく、建物Hの内部を空調することができ、省エネルギー性を向上しうる。   Such an air conditioner 1 can cool high temperature outside air A in the ground heat exchanger 1A in summer and supply it to the inside of the building H. In winter, the cold outside air A can be supplied to the ground heat exchanger 1A. It can be heated and supplied into the building. Therefore, the air conditioner 1 can air-condition the inside of the building H without using large energy such as an air conditioner, and can improve energy saving.

本実施形態の空調装置1は、建物Hに隣接して設けられる。この空調装置1は、例えば、庭等の地中Gに埋設され、かつ外気Aを地中熱で熱交換するパイプ状の地中熱交換部1Aと、地中Gの内部に埋設された断熱材1Bとを含む。   The air conditioner 1 of this embodiment is provided adjacent to the building H. The air conditioner 1 is, for example, a pipe-shaped underground heat exchange unit 1A that is embedded in the underground G such as a garden and exchanges heat of the outside air A with underground heat, and a heat insulating embedded in the underground G. Material 1B.

図1及び図2に示されるように、本実施形態の地中熱交換部1Aは、例えば、屈曲自在な可撓管2、該可撓管2に外気を導入する導入部3、該可撓管2で熱交換された外気Aを建物Hの内部(本実施形態では、床下空間7)に供給する供給部4、該可撓管2と該導入部3との間を中継する第1縦パイプ5、及び該可撓管2と該供給部4とを中継する第2縦パイプ6を含んで構成される。   As shown in FIGS. 1 and 2, the underground heat exchanging portion 1 </ b> A of the present embodiment includes, for example, a flexible tube 2 that can be bent, an introduction portion 3 that introduces outside air into the flexible tube 2, and the flexible tube 2. A supply unit 4 that supplies outside air A heat-exchanged by the pipe 2 to the inside of the building H (in this embodiment, the underfloor space 7), and a first vertical relay that relays between the flexible pipe 2 and the introduction part 3. The pipe 5 is configured to include a second vertical pipe 6 that relays between the flexible tube 2 and the supply unit 4.

本実施形態の可撓管2は、例えば、地表から1〜4m程度の深さで埋設され、螺旋の軸2sが上下方向である縦螺旋状にのびる。このように、可撓管2は、比較的浅い位置に埋設されるため、空調装置1の施工コストを低減しうる。   The flexible tube 2 of the present embodiment is embedded, for example, at a depth of about 1 to 4 m from the ground surface, and extends in a vertical spiral shape in which the spiral axis 2s is in the vertical direction. Thus, since the flexible tube 2 is embedded at a relatively shallow position, the construction cost of the air conditioner 1 can be reduced.

また、前記可撓管2は、長手方向の任意の位置で、曲げ変形可能なフレキシブルパイプからなる。このような可撓管2は、柔軟性に優れるため、土圧や、地震発生時に大きな荷重が作用しても、それらに追従して柔軟に変形することができ、耐久性を向上しうる。   The flexible tube 2 is a flexible pipe that can be bent and deformed at an arbitrary position in the longitudinal direction. Since such a flexible tube 2 is excellent in flexibility, even if a large load is applied when earth pressure or an earthquake occurs, the flexible tube 2 can be flexibly deformed following the above, and durability can be improved.

さらに、可撓管2は、その一端2iが、第1縦パイプ5を介して導入部3と連通するとともに、その他端2oが、第2縦パイプ6を介して供給部4と連通して配置され、一端2iと他端2oとの間で、上下方向に略二周分巻回されている。   Further, the flexible tube 2 is arranged such that one end 2 i thereof communicates with the introduction part 3 via the first vertical pipe 5 and the other end 2 o communicates with the supply part 4 via the second vertical pipe 6. It is wound approximately twice in the vertical direction between the one end 2i and the other end 2o.

これにより、可撓管2は、縦螺旋状にのびるため、外気Aを熱交換する空間の体積を維持しつつ、占有する土地面積を小さくすることができる。従って、地中熱交換部1Aは、省スペース性及び汎用性に優れる。   Thereby, since the flexible tube 2 extends in a vertical spiral shape, it is possible to reduce the land area occupied while maintaining the volume of the space for heat exchange of the outside air A. Therefore, the underground heat exchange part 1A is excellent in space saving and versatility.

本実施形態の地中熱交換部1Aは、縦螺旋にのびる1本又は数本の可撓管2を含んで構成される。このため、地中熱交換部1Aは、従来の地中熱交換部に比べて、管と管とを連結するジョイント箇所を大幅に少なくすることができる。これにより、地中熱交換部1Aは、施工性及び低コスト性を高めうるとともに、ジョイント箇所で生じがちな損傷を、効果的に抑制できる。   The underground heat exchanging portion 1A of the present embodiment is configured to include one or several flexible tubes 2 extending in a vertical spiral. For this reason, the underground heat exchanging part 1A can significantly reduce the number of joints connecting the pipes to each other as compared with the conventional underground heat exchanging part. Thereby, 1 A of underground heat exchange parts can suppress the damage which tends to arise in a joint location while being able to improve workability and low cost property effectively.

さらに、可撓管2は、その一端2i側から他端2o側に向かって、下方に傾斜する排水勾配α1を有する。これにより、可撓管2は、その内部で発生した結露を、傾斜に沿って他端2o側へ円滑に排水でき、結露が滞留することに起因するカビや異臭の発生を、効果的に抑制しうる。この可撓管2の排水勾配α1は、1/80〜1/120程度が望ましい。   Furthermore, the flexible tube 2 has a drainage gradient α1 inclined downward from the one end 2i side to the other end 2o side. As a result, the flexible tube 2 can smoothly drain the dew condensation that has occurred therein to the other end 2o along the inclination, and effectively suppress the generation of mold and off-flavors caused by the dew condensation. Yes. The drainage gradient α1 of the flexible tube 2 is desirably about 1/80 to 1/120.

また、地中熱との熱交換を効果的に発揮させるために、可撓管2の内径D1が、例えば100〜300mm程度に設定されるのが望ましく、また、上下に重なる可撓管2の間隔W2が、300〜500mmに設定されるのが望ましい。さらに、可撓管2としては、特に限定されないが、例えば、合成樹脂、又は金属等からなるのが望ましい。   In order to effectively exhibit heat exchange with the underground heat, it is desirable that the inner diameter D1 of the flexible tube 2 is set to about 100 to 300 mm, for example. The interval W2 is desirably set to 300 to 500 mm. Furthermore, although it does not specifically limit as the flexible tube 2, For example, it is desirable to consist of a synthetic resin or a metal.

なお、本実施形態では、可撓管2が縦螺旋状にのびるものが例示されたが、これに限定されるわけではなく、例えば、鉛直方向にジグザグ状にのびるものでもよい。このような可撓管2も、外気Aを熱交換するのに必要な空間を維持しつつ、占有する土地面積を小さくすることができる。   In the present embodiment, the flexible tube 2 extends in a vertical spiral shape, but is not limited thereto. For example, the flexible tube 2 may extend in a zigzag shape in the vertical direction. Such a flexible tube 2 can also occupy a small land area while maintaining a space necessary for heat exchange of the outside air A.

図1に示されるように、前記導入部3は、第1縦パイプ5から地面に向かって傾斜してのびる傾斜部3Aと、該傾斜部3Aの端部から地上にのびる外気導入部3Bとを含む。   As shown in FIG. 1, the introduction part 3 includes an inclined part 3A extending from the first vertical pipe 5 toward the ground, and an outside air introduction part 3B extending from the end of the inclined part 3A to the ground. Including.

また、本実施形態では、傾斜部3Aと外気導入部3Bとがなす角度α2aが、鈍角(例えば、120〜150度程度)に設定される。これにより、導入部3は、傾斜部3Aと外気導入部3Bとの間の空気抵抗を小さくでき、外気Aをスムーズに案内しうる。   In the present embodiment, the angle α2a formed by the inclined portion 3A and the outside air introduction portion 3B is set to an obtuse angle (for example, about 120 to 150 degrees). Thereby, the introduction part 3 can reduce the air resistance between the inclined part 3A and the outside air introduction part 3B, and can smoothly guide the outside air A.

前記外気導入部3Bの一端3Biには、地上に露出するとともに、約180度湾曲して下向きに開口する開口部11が接続される。このような開口部11は、外気導入部3Bに雨水等が進入するのを防止できる。また、開口部11には、虫や異物の進入を防ぐフィルター(図示省略)が配されるのが望ましい。   One end 3Bi of the outside air introduction portion 3B is connected to an opening 11 that is exposed to the ground and that is curved downward by about 180 degrees and opens downward. Such an opening part 11 can prevent rainwater or the like from entering the outside air introduction part 3B. Further, it is desirable that a filter (not shown) for preventing insects and foreign substances from entering is arranged in the opening 11.

前記供給部4は、第2縦パイプ6から地面に向かって傾斜してのびる傾斜部4Aと、該傾斜部4Aの端部から上方にのび、かつ建物Hの床下空間7で開口する外気供給部4Bとを含む。   The supply section 4 includes an inclined section 4A extending from the second vertical pipe 6 toward the ground, and an outside air supply section extending upward from the end of the inclined section 4A and opening in the underfloor space 7 of the building H. 4B.

また、本実施形態では、傾斜部4Aと外気供給部4Bとがなす角度α2bが、導入部3の前記角度α2aと同一範囲に設定される。これにより、供給部4は、傾斜部4Aと外気供給部4Bとの間の空気抵抗を小さくでき、外気Aをスムーズに案内しうる。   In the present embodiment, the angle α2b formed by the inclined portion 4A and the outside air supply portion 4B is set in the same range as the angle α2a of the introduction portion 3. Thereby, the supply part 4 can make small the air resistance between 4 A of inclination parts, and the external air supply part 4B, and can guide the external air A smoothly.

前記外気供給部4Bには、その一端4Biに設けられる開口部12に、空気を強制的に吸い上げる吸気用ファン41が接続される。このような吸気用ファン41は、地中熱交換部1A、導入部3及び供給部4の内部を負圧にして、外気Aを強制的に通過させることができ、空調効率を高めうる。   An intake fan 41 that forcibly sucks air is connected to the outside air supply unit 4B at an opening 12 provided at one end 4Bi thereof. Such an intake fan 41 can make the inside of the underground heat exchanging section 1A, the introduction section 3 and the supply section 4 have a negative pressure and forcibly allow the outside air A to pass through, thereby improving the air conditioning efficiency.

図2及び図3(a)に示されるように、前記第1縦パイプ5は、上下方向にのびる複数のパイプ部21と、上下で隣り合う一対のパイプ部21を連結する分岐部22が設けられる。   As shown in FIGS. 2 and 3A, the first vertical pipe 5 is provided with a plurality of pipe parts 21 extending in the vertical direction and a branch part 22 for connecting a pair of pipe parts 21 adjacent in the vertical direction. It is done.

前記分岐部22は、可撓管2の一端2iを連結する第1分岐部22Aと、該第1分岐部22Aよりも上部に設けられ、かつ導入部3の傾斜部3Aを連結する第2分岐部22Bとを含む。これらの第1、第2分岐部22A、22Bは、上下にのびる縦パイプ部25と、該縦パイプ部25から分岐して側方に突出した枝パイプ部26とを有する。   The branch portion 22 includes a first branch portion 22A that connects one end 2i of the flexible tube 2 and a second branch that is provided above the first branch portion 22A and connects the inclined portion 3A of the introduction portion 3. Part 22B. Each of the first and second branch portions 22A and 22B has a vertical pipe portion 25 extending vertically and a branch pipe portion 26 branched from the vertical pipe portion 25 and projecting sideways.

前記縦パイプ部25は、その上下端に、前記パイプ部21の端部21tを密に挿入可能な一対の拡径部25t、25tが設けられる。   The vertical pipe portion 25 is provided at its upper and lower ends with a pair of enlarged diameter portions 25t and 25t into which the end portion 21t of the pipe portion 21 can be inserted densely.

また、第1、第2分岐部22A、22Bの各枝パイプ部26は、可撓管2の一端2i、又は導入部3の傾斜部3Aを密に連通可能な拡径部26tがそれぞれ形成される。   In addition, each branch pipe portion 26 of the first and second branch portions 22A and 22B is formed with an enlarged diameter portion 26t capable of closely communicating one end 2i of the flexible tube 2 or the inclined portion 3A of the introduction portion 3. The

さらに、第1分岐部22Aの枝パイプ部26は、縦パイプ部25から拡径部26tに向かって下方へ傾斜してのびる一方、第2分岐部22Bは、上方へ傾斜してのびる。このような第1、第2分岐部22A、22Bは、導入部3から導入された外気Aを、鈍角に曲げて可撓管2に案内することができ、空気抵抗を小さくできる。   Further, the branch pipe portion 26 of the first branch portion 22A extends downward from the vertical pipe portion 25 toward the enlarged diameter portion 26t, while the second branch portion 22B extends upward. Such 1st, 2nd branch part 22A, 22B can bend the outside air A introduce | transduced from the introduction part 3 at an obtuse angle, and can guide it to the flexible tube 2, and can make air resistance small.

図2及び図3(b)に示されるように、前記第2縦パイプ6は、第1縦パイプ5と同様に、上下方向にのびる複数のパイプ部21と、隣り合う一対のパイプ部21を連結する分岐部22とを有する。   As shown in FIGS. 2 and 3B, the second vertical pipe 6 includes a plurality of pipe portions 21 extending in the vertical direction and a pair of adjacent pipe portions 21 in the same manner as the first vertical pipe 5. And a branch portion 22 to be connected.

この分岐部22は、可撓管2の他端2oを連結する第3分岐部22Cと、該第3分岐部22Cよりも上部に設けられ、かつ供給部4の傾斜部4Aを連結する第4分岐部22Dとを含む。これらの第3、第4分岐部22C、22Dも、上下にのびる縦パイプ部25と、該縦パイプ部25から分岐して側方に突出した枝パイプ部26とを有する。   The branch portion 22 is provided at a position higher than the third branch portion 22C for connecting the other end 2o of the flexible tube 2 and the third branch portion 22C, and is connected to the inclined portion 4A of the supply portion 4. Branch part 22D. These third and fourth branch portions 22C and 22D also have a vertical pipe portion 25 extending vertically and a branch pipe portion 26 branched from the vertical pipe portion 25 and projecting sideways.

前記第3分岐部22Cの枝パイプ部26は、縦パイプ部25から上方に向かって傾斜してのび、可撓管2の他端2oを密に連通可能な拡径部26tが形成される。これにより第3分岐部22Cは、可撓管2内の排水30を、第2縦パイプ6の底部6bに案内する傾斜が形成されるため、該可撓管2内に水分が滞留することによるカビや異臭の発生を効果的に抑制しうる。   The branch pipe portion 26 of the third branch portion 22C is inclined upward from the vertical pipe portion 25 to form an enlarged diameter portion 26t capable of closely communicating the other end 2o of the flexible tube 2. As a result, the third branch portion 22C is inclined to guide the drainage 30 in the flexible tube 2 to the bottom portion 6b of the second vertical pipe 6, so that moisture is retained in the flexible tube 2. Generation of mold and off-flavors can be effectively suppressed.

一方、第4分岐部22Dの枝パイプ部26は、縦パイプ部25から上方に向かって傾斜してのび、かつ供給部4の傾斜部4Aを密に連通可能な拡径部26tが形成される。これにより、第4分岐部22Dは、第2縦パイプ6から導入された外気Aを、鈍角に曲げて供給部4へと案内でき、空気抵抗を小さくすることができる。   On the other hand, the branch pipe portion 26 of the fourth branch portion 22D is inclined upward from the vertical pipe portion 25, and a diameter-expanded portion 26t capable of closely communicating the inclined portion 4A of the supply portion 4 is formed. . Thereby, 4th branch part 22D can bend the outside air A introduced from the 2nd vertical pipe 6 to the supply part 4 by bending at an obtuse angle, and can make air resistance small.

図1に示されるように、本実施形態の断熱材1Bは、地中熱交換部1Aの上方に配された上方断熱材16を含む。   As FIG. 1 shows, the heat insulating material 1B of this embodiment contains the upper heat insulating material 16 distribute | arranged above the underground heat exchange part 1A.

本実施形態の上方断熱材16は、例えば、板状に形成された複数の断熱片18からなり、地表から0.3〜1.0m程度の深さに埋設される。また、上方断熱材16は、地上にのびる導入部3、供給部4、第1縦パイプ5、及び第2縦パイプ6の一部を除き、地中熱交換部1Aの上方全体を覆って配置される。   The upper heat insulating material 16 of the present embodiment includes, for example, a plurality of heat insulating pieces 18 formed in a plate shape, and is embedded at a depth of about 0.3 to 1.0 m from the ground surface. Moreover, the upper heat insulating material 16 covers the whole upper part of the underground heat exchange part 1A except for the introduction part 3, the supply part 4, the first vertical pipe 5, and a part of the second vertical pipe 6 extending on the ground. Is done.

このような断熱材1Bは、地中熱交換部1Aの上方を断熱することができるため、該地中熱交換部1Aが、比較的浅い場所に埋設された場合でも、外気温や日射等の影響を効果的に遮断することができる。従って、断熱材1Bは、地中熱交換部1A付近の地中温度が不安定なるのを抑制でき、外気Aと地中熱との熱交換を効率的に行いうる。   Since such a heat insulating material 1B can insulate the upper part of the underground heat exchanging portion 1A, even when the underground heat exchanging portion 1A is buried in a relatively shallow place, the outside air temperature, solar radiation, etc. It is possible to effectively block the influence. Therefore, the heat insulating material 1B can suppress the underground temperature in the vicinity of the underground heat exchanging portion 1A from becoming unstable, and can efficiently perform heat exchange between the outside air A and the underground heat.

また、断熱材1Bとしては、特に限定されないが、例えば、発泡プラスチック系断熱材(ポリスチレン等)、繊維系断熱材、天然素材系断熱材、ALC板等を適宜採用することができるが、とりわけ高い断熱性を有する発泡プラスチック系断熱材(ポリスチレン)が望ましい。また、断熱材1Bの熱抵抗は、3〜5m2K/W程度が望ましい。さらに、断熱片18の厚さW4は、50〜200mm程度が望ましい。 Further, the heat insulating material 1B is not particularly limited. For example, a foamed plastic heat insulating material (polystyrene or the like), a fiber heat insulating material, a natural material heat insulating material, an ALC plate, or the like can be used as appropriate. A foamed plastic heat insulating material (polystyrene) having heat insulating properties is desirable. Moreover, as for the heat resistance of the heat insulating material 1B, about 3-5 m < 2 > K / W is desirable. Furthermore, the thickness W4 of the heat insulating piece 18 is desirably about 50 to 200 mm.

図4及び図5には、本発明の他の実施形態の断熱材1Bが示される。この実施形態の断熱材1Bは、前記上方断熱材16と、地中熱交換部1Aの側方に配された側方断熱材17とを含む。   4 and 5 show a heat insulating material 1B according to another embodiment of the present invention. The heat insulating material 1B of this embodiment includes the upper heat insulating material 16 and the side heat insulating material 17 disposed on the side of the underground heat exchange part 1A.

本実施形態の側方断熱材17は、板状の複数の前記断熱片18を、地中熱交換部1Aの側方に、隙間なく並べて形成される。また、各断熱片18は、上方断熱材16の下面16dから下方に鉛直状にのびる。さらに、本実施形態では、側方断熱材17の下端17dが、可撓管2の下面2dよりも下方で終端している。   The side heat insulating material 17 of the present embodiment is formed by arranging a plurality of plate-like heat insulating pieces 18 on the side of the underground heat exchanging portion 1A without gaps. Each heat insulating piece 18 extends vertically downward from the lower surface 16 d of the upper heat insulating material 16. Further, in the present embodiment, the lower end 17 d of the side heat insulating material 17 is terminated below the lower surface 2 d of the flexible tube 2.

このような断熱材1Bは、地中熱交換部1Aの上方から側方に亘って断熱することができるため、外気温や日射等の影響を、より効果的に遮断することができる。従って、断熱材1Bは、地中熱交換部1A付近の地中温度が不安定なるのを抑制でき、外気Aと地中熱との熱交換を効率的に行いうる。   Since such a heat insulating material 1B can insulate from the upper side to the side of the underground heat exchanging portion 1A, it is possible to more effectively block the influence of outside air temperature, solar radiation, and the like. Therefore, the heat insulating material 1B can suppress the underground temperature in the vicinity of the underground heat exchanging portion 1A from becoming unstable, and can efficiently perform heat exchange between the outside air A and the underground heat.

上記作用を効果的に発揮させるために、側方断熱材17の下端17dが、可撓管2の下面2dよりも下方で終端するのが望ましい。これにより、側方断熱材17は、外気温や日射等の影響を、より効果的に遮断しうる。   In order to effectively exhibit the above action, it is desirable that the lower end 17d of the side heat insulating material 17 is terminated below the lower surface 2d of the flexible tube 2. Thereby, the side heat insulating material 17 can interrupt | block the influence of external temperature, solar radiation, etc. more effectively.

また、側方断熱材17の前記断熱片18と、この断熱片18の前記地中熱交換部1A側への倒れを防ぐ枠材とで土留手段31が構成される。   Moreover, the earth retaining means 31 is comprised by the said heat insulation piece 18 of the side heat insulating material 17, and the frame material which prevents the heat insulation piece 18 from falling to the said underground heat exchange part 1A side.

前記枠材は、側方断熱材17の地中熱交換部1A側において、該側方断熱材17の下端17d側に配される下枠32と、該側方断熱材17の上端17u側に配される上枠33、及び下枠32と上枠33との間を上下方向に継ぐ縦材34を含む。   The frame material is arranged on the side of the underground heat exchange portion 1A of the side heat insulating material 17 and on the lower frame 32 disposed on the lower end 17d side of the side heat insulating material 17 and on the upper end 17u side of the side heat insulating material 17. The upper frame 33 is disposed, and a vertical member 34 that connects the lower frame 32 and the upper frame 33 in the vertical direction is included.

前記下枠32は、例えば、地中熱交換部1Aを挟んで互いに向き合う一対の第1枠材32a、32aと、該第1枠材32a、32aの両端を継ぐ一対の第2枠材32b、32bとを含み、矩形枠として構成される。   The lower frame 32 includes, for example, a pair of first frame members 32a and 32a that face each other across the underground heat exchange part 1A, and a pair of second frame members 32b that connect both ends of the first frame members 32a and 32a. 32b and configured as a rectangular frame.

前記上枠33は、下枠32と同様に、一対の第1枠材33a、33aと、該第1枠材33a、33aの両端を継ぐ一対の第2枠材33b、33bとを含み、矩形枠として構成される。   Like the lower frame 32, the upper frame 33 includes a pair of first frame members 33a and 33a and a pair of second frame members 33b and 33b that connect both ends of the first frame members 33a and 33a. Configured as a frame.

前記縦材34は、下枠32及び上枠33の間を上下にのびる複数本の枠材34aからなる。この枠材34aは、下枠32及び上枠33の長手方向に沿って隔設される。これにより、枠材34aは、下枠32と上枠33とを強固に連結しうる。   The vertical member 34 includes a plurality of frame members 34 a extending vertically between the lower frame 32 and the upper frame 33. The frame member 34 a is spaced along the longitudinal direction of the lower frame 32 and the upper frame 33. Thereby, the frame member 34 a can firmly connect the lower frame 32 and the upper frame 33.

このような土留手段31は、土圧や地震に大きな荷重が作用しても、該側方断熱材17が地中熱交換部1A側へ倒れるのを防ぐことができる。従って、土留手段31は、側方断熱材17の位置ずれによる断熱性能の低下を防ぐとともに、地中熱交換部1Aへの外力の作用を最小限に抑え、破損等を効果的に防ぎうる。   Such earth retaining means 31 can prevent the side heat insulating material 17 from falling to the underground heat exchanging portion 1A side even if a large load acts on earth pressure or earthquake. Therefore, the earth retaining means 31 can prevent deterioration of the heat insulation performance due to the displacement of the side heat insulating material 17 and can minimize the action of external force on the underground heat exchanging portion 1A to effectively prevent breakage and the like.

また、本実施形態の上枠33には、一対の第1枠材33a、33a間をのびる補強枠材35が設けられるのが望ましい。この補強枠材35は、一対の第1枠材33a、33a間をのびる基部35aと、該基部35aの両端を鍔状にのびる一対のフランジ35b、35bとを含む。このような補強枠材35は、上枠33の強度を、下枠32の強度に比べて相対的に大きくすることができ、側方断熱材17が地中熱交換部1Aに倒れるのを効果的に抑制しうる。   Moreover, it is desirable that the upper frame 33 of the present embodiment is provided with a reinforcing frame member 35 extending between the pair of first frame members 33a and 33a. The reinforcing frame member 35 includes a base portion 35a extending between the pair of first frame members 33a and 33a, and a pair of flanges 35b and 35b extending in a hook shape at both ends of the base portion 35a. Such a reinforcing frame member 35 can make the strength of the upper frame 33 relatively larger than the strength of the lower frame 32, and it is effective for the side heat insulating material 17 to fall to the underground heat exchange part 1A. Can be suppressed.

また、一対のフランジ35b、35bは、基部35aから上下方向に伸び、かつ第1枠材33aの上端及び下端をはみ出して突出している。   The pair of flanges 35b and 35b extends in the vertical direction from the base portion 35a, and protrudes from the upper end and the lower end of the first frame member 33a.

図6に示されるように、地中熱交換部1Aの下方には、該地中熱交換部1Aよりも深い位置の地中熱を、地中熱交換部1A側へと移動させる地中熱吸上げ部13が設けられるのが望ましい。   As shown in FIG. 6, below the underground heat exchange section 1A, underground heat that moves the underground heat at a position deeper than the underground heat exchange section 1A to the underground heat exchange section 1A side. It is desirable that a suction part 13 is provided.

本実施形態の地中熱吸上げ部13は、良熱伝導性を有する複数の棒状体13Aからなり、棒状体13Aは上下方向に巻回された可撓管2が囲む中央部に均等に分散して配され、上端が上下方向に巻回された可撓管2の鉛直方向の中心付近から下方にのびている。 The underground heat suction part 13 of the present embodiment is composed of a plurality of rod-like bodies 13A having good thermal conductivity, and the rod-like bodies 13A are evenly distributed in the central part surrounded by the flexible tube 2 wound in the vertical direction. The upper end of the flexible tube 2 wound in the vertical direction extends downward from the vicinity of the center in the vertical direction.

このような地中熱吸上げ部13は、地中熱交換部1A付近の地中温度よりも安定した深い位置の地中熱を、地中熱交換部1A側へと移動させることができるため、外気Aを効率的に熱交換することができる。   Such a ground heat suction part 13 can move the ground heat at a deep position, which is more stable than the ground temperature near the ground heat exchange part 1A, to the ground heat exchange part 1A side. The outside air A can be efficiently heat-exchanged.

特に、前記棒状体13Aは、可撓管2が囲む中央部に均等に分散して配されることによって、前記中央部に効率的に熱を供給し、可撓管2での効率的な熱交換に寄与しうる。   In particular, the rod-like body 13A is distributed evenly in the central portion surrounded by the flexible tube 2 to efficiently supply heat to the central portion, so that the efficient heat in the flexible tube 2 can be obtained. Can contribute to the exchange.

また、棒状体13Aは、その直径D3が30〜50mm程度が望ましく、また、上下方向の長さL3が1000〜3000mm程度が望ましい。さらに、棒状体13Aとしては、良熱伝導性を有するものであれば特に限定されないが、例えば、アルミニウムや銅等の金属から形成されるのが望ましい。   The rod-like body 13A preferably has a diameter D3 of about 30 to 50 mm, and a vertical length L3 of about 1000 to 3000 mm. Furthermore, the rod-shaped body 13A is not particularly limited as long as it has good thermal conductivity, but for example, it is preferably formed from a metal such as aluminum or copper.

次に、本発明の空調装置1の施工方法の一例について説明する。
この施工方法では、地面Gsを掘削して穴42を形成する掘削工程と、穴42を断熱材を用いて土留する土留め工程と、断熱材1Bで囲まれた空間Sに、地中熱交換部1Aを配置する配置工程と、空間Sを土で埋める埋設工程とを含む。
Next, an example of the construction method of the air conditioner 1 of the present invention will be described.
In this construction method, excavation process of excavating the ground Gs to form the hole 42, earth retaining process of retaining the hole 42 using a heat insulating material, and underground heat exchange in the space S surrounded by the heat insulating material 1B. It includes a placement step of placing the part 1A and a burying step of filling the space S with soil.

図7(a)に示されるように、前記掘削工程では、建物Hに近接する庭等の地面Gsを掘削して、前記穴42を形成する。この穴42は、例えば、長さL5が4〜6m程度、幅(図示省略)が2〜3m程度、深さD5が1.5〜2.5m程度に設定され、本実施形態では4つの掘削周囲面42a〜42d(図5に示す)と、底面42eとを有した上解放の直方体状空間である。   As shown in FIG. 7A, in the excavation step, the hole 42 is formed by excavating a ground Gs such as a garden close to the building H. For example, the hole 42 is set to have a length L5 of about 4 to 6 m, a width (not shown) of about 2 to 3 m, and a depth D5 of about 1.5 to 2.5 m. It is a rectangular parallelepiped space with an upper release having peripheral surfaces 42a to 42d (shown in FIG. 5) and a bottom surface 42e.

また、図7(b)に示されるように、前記棒状体13A(図6に示す)を埋設する場合には、前記穴42を形成後、前記棒状体13Aを、該穴42の底面42eから地中Gに埋設する棒状体埋設工程が行われる。この工程では、穴42の底面42eから地中Gへのびる細穴43を複数形成し、その細穴43に、棒状体13Aを挿入して埋設する。   Further, as shown in FIG. 7B, when the rod-like body 13A (shown in FIG. 6) is embedded, the rod-like body 13A is moved from the bottom surface 42e of the hole 42 after the hole 42 is formed. A rod-like body burying step for burying in the underground G is performed. In this step, a plurality of fine holes 43 extending from the bottom surface 42e of the hole 42 to the ground G are formed, and the rod-shaped body 13A is inserted and embedded in the fine holes 43.

また、棒状体13Aを埋設後、棒状体13Aの上端13Auは、穴42の底面42eから突出させても良いし、底面42eよりも下方に埋設しても良い。   Further, after embedding the rod-shaped body 13A, the upper end 13Au of the rod-shaped body 13A may be protruded from the bottom surface 42e of the hole 42, or may be embedded below the bottom surface 42e.

図8(a)に示されるように、前記土留め工程では、掘削周囲面42a〜42dに沿って前記断熱片18からなる側方断熱材17を配置する第1土留め工程と、該側方断熱材17に下枠32、上枠33等を配置する第2土留め工程とが含まれる。   As shown in FIG. 8 (a), in the earth retaining step, the first earth retaining step in which the side heat insulating material 17 composed of the heat insulating piece 18 is disposed along the excavation peripheral surfaces 42a to 42d, and the lateral side. A second earth retaining step in which the lower frame 32, the upper frame 33, and the like are disposed on the heat insulating material 17 is included.

前記第1土留め工程では、側方断熱材17を構成する複数の断熱片18を、ほぼ鉛直な掘削周囲面42a〜42dに沿って隙間なく配置する。   In the first earth retaining step, the plurality of heat insulating pieces 18 constituting the side heat insulating material 17 are arranged without gaps along the substantially vertical excavation peripheral surfaces 42a to 42d.

前記第2土留め工程では、側方断熱材17の倒れを防ぐべく、側方断熱材17の内周面に枠材(例えば、下枠32の第1、第2枠材32a、32b、縦材34の枠材34a、及び上枠33の第1、第2枠材33a、33b)を順次配置する。このような枠材と前記断熱片18とによって、土留手段31が形成される。なお、上枠33には、第1枠材33a間に、補強枠材35(図5に示す)を配置される。   In the second earth retaining step, in order to prevent the side heat insulating material 17 from collapsing, a frame material (for example, first and second frame materials 32a and 32b of the lower frame 32, vertical The frame material 34a of the material 34 and the first and second frame materials 33a and 33b) of the upper frame 33 are sequentially arranged. The earth retaining means 31 is formed by such a frame member and the heat insulating piece 18. In the upper frame 33, a reinforcing frame member 35 (shown in FIG. 5) is disposed between the first frame members 33a.

このような土留手段31は、周囲の土砂の崩落を防ぐことができ、施工の安全性を向上しうる。また、本工程では、側方断熱材17を土留手段31の一部として利用できるため、施工コストや施工期間が増大を抑制しうる。   Such earth retaining means 31 can prevent the surrounding earth and sand from collapsing, and can improve the safety of construction. Moreover, in this process, since the side heat insulating material 17 can be used as a part of the earth retaining means 31, the construction cost and the construction period can be suppressed from increasing.

前記配置工程では、側方断熱材17で囲まれた空間Sに、第1縦パイプ5と第2縦パイプ6とを配置する第1配置工程、導入部3と供給部4とを配置する第2配置工程、可撓管2を配置する第3配置工程を含む。   In the arrangement step, the first arrangement step of arranging the first vertical pipe 5 and the second vertical pipe 6 in the space S surrounded by the side heat insulating material 17, the first arrangement of arranging the introduction unit 3 and the supply unit 4. 2 arrangement | positioning processes and the 3rd arrangement | positioning process which arrange | positions the flexible tube 2 are included.

図8(b)に示されるように、前記第1配置工程では、図3(a)に示されるパイプ部21と第1分岐部22Aと第2分岐部22Bとを連結して、第1縦パイプ5を形成するとともに、図3(b)に示されるパイプ部21と第3分岐部22Cと第4分岐部22Dとを連結して、第2縦パイプ6を形成する。しかる後、第1縦パイプ5及び第2縦パイプ6の各下端を、穴42の底面42eに埋設して、該空間Sに立設させる。   As shown in FIG. 8B, in the first arrangement step, the pipe portion 21, the first branch portion 22A, and the second branch portion 22B shown in FIG. While forming the pipe 5, the pipe part 21, the 3rd branch part 22C, and the 4th branch part 22D which are shown by FIG.3 (b) are connected, and the 2nd vertical pipe 6 is formed. Thereafter, the lower ends of the first vertical pipe 5 and the second vertical pipe 6 are embedded in the bottom surface 42 e of the hole 42 and are erected in the space S.

図9(a)に示されるように、前記第2配置工程では、導入部3の傾斜部3Aの一端3Aiを、第1縦パイプ5の第2分岐部22B(図2に示す)に接続する。さらに、供給部4の傾斜部4Aの一端4Aiを、第2縦パイプ6の第4分岐部22D(図2に示す)に接続するとともに、外気供給部4Bの一端4Biを、建物Hの床下空間7の開口部12となる場所に配置する。この供給部4は、側方断熱材17に設けられた孔部17hを介して、建物Hに接続される。また、床下空間7の開口部12に、吸気用ファン41を接続する。   As shown in FIG. 9A, in the second arrangement step, one end 3Ai of the inclined portion 3A of the introducing portion 3 is connected to the second branch portion 22B (shown in FIG. 2) of the first vertical pipe 5. . Furthermore, one end 4Ai of the inclined portion 4A of the supply unit 4 is connected to the fourth branch portion 22D (shown in FIG. 2) of the second vertical pipe 6, and one end 4Bi of the outside air supply unit 4B is connected to the underfloor space of the building H. 7 is arranged at a place to be the opening 12. The supply unit 4 is connected to the building H through a hole 17 h provided in the side heat insulating material 17. An intake fan 41 is connected to the opening 12 in the underfloor space 7.

図9(b)に示されるように、前記第3配置工程では、可撓管2の一端2iを、第1縦パイプ5の第1分岐部22A(図2に示す)に接続した後に、縦螺旋状に略二周分巻回し、可撓管2の他端2oを、第2縦パイプ6の第3分岐部22C(図2に示す)に接続する。なお、可撓管2の排水勾配α1、及び上下で隣り合う可撓管2の離隔を確実に保持して埋設するために、該可撓管2を支持する支持治具(図示省略)が設けられてもよい。   As shown in FIG. 9 (b), in the third arrangement step, after one end 2i of the flexible tube 2 is connected to the first branch portion 22A (shown in FIG. 2) of the first vertical pipe 5, The spiral tube is wound approximately twice, and the other end 2o of the flexible tube 2 is connected to the third branch portion 22C (shown in FIG. 2) of the second vertical pipe 6. A support jig (not shown) for supporting the flexible tube 2 is provided in order to securely hold and bury the drainage gradient α1 of the flexible tube 2 and the separation between the flexible tubes 2 adjacent in the vertical direction. May be.

図10(a)に示されるように、前記埋設工程では、掘削した土を空間Sに戻して、地中熱交換部1Aを埋設する。このとき、地中熱交換部1A付近の土の密度を均一にするために、十分に締め固めするのが望ましい。   As shown in FIG. 10A, in the burying step, the excavated soil is returned to the space S, and the underground heat exchanging portion 1A is buried. At this time, in order to make the density of the soil in the vicinity of the underground heat exchanging portion 1A uniform, it is desirable to sufficiently compact.

また、本実施形態では、側方断熱材17の上端17u付近まで埋設した後に、地中熱交換部1Aの上方に上方断熱材16を配置する。この上方断熱材16は、地上にのびる外気導入部3B、外気供給部4B、第1縦パイプ5、及び第2縦パイプ6の一部を除き、地中熱交換部1Aの全体を覆って配置される。   Moreover, in this embodiment, after burying to the upper end 17u vicinity of the side heat insulating material 17, the upper heat insulating material 16 is arrange | positioned above the underground heat exchange part 1A. The upper heat insulating material 16 is disposed so as to cover the entire underground heat exchanging portion 1A except for a part of the outside air introduction portion 3B, the outside air supply portion 4B, the first vertical pipe 5 and the second vertical pipe 6 extending on the ground. Is done.

図10(b)に示されるように、上方断熱材16を埋設し、かつ外気導入部3Bの一端3Biに、開口部11を接続することにより、本実施形態の空調装置1が形成される。   As shown in FIG. 10B, the air conditioner 1 of the present embodiment is formed by embedding the upper heat insulating material 16 and connecting the opening 11 to one end 3Bi of the outside air introduction portion 3B.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図1に示す基本構造をなし、ALC板からなる上方断熱材を有する場合(実施例1)、及び発泡プラスチック系断熱材(ポリスチレン)からなる上方断熱材を有する場合(実施例2)の地中温度を、コンピュータを用いてシミュレーションし、それらの効果が評価された。また、比較のために、上方断熱材を有さない場合(比較例)についても、同様に評価された。なお、共通仕様は次のとおりである。   In the case of having the basic structure shown in FIG. 1 and having an upper heat insulating material made of an ALC plate (Example 1), and having an upper heat insulating material made of a foamed plastic-based heat insulating material (polystyrene) (Example 2) Temperatures were simulated using a computer and their effects were evaluated. Further, for comparison, the case where the upper heat insulating material was not provided (comparative example) was also evaluated in the same manner. The common specifications are as follows.

土の熱伝導率:1.0W/mK
上方断熱材:
地表からの埋設深さ:50cm
厚さW4:100mm
ALC板:
熱伝導率:0.15W/mK
熱抵抗 :0.67m2K/W
ポリスチレン:
熱伝導率:0.028W/mK
熱抵抗 :3.57m2K/W
シミュレーション方法は、次の通りである。
Thermal conductivity of soil: 1.0 W / mK
Upper insulation:
Burial depth from the ground surface: 50cm
Thickness W4: 100mm
ALC board:
Thermal conductivity: 0.15 W / mK
Thermal resistance: 0.67m 2 K / W
polystyrene:
Thermal conductivity: 0.028 W / mK
Thermal resistance: 3.57m 2 K / W
The simulation method is as follows.

下記条件での7〜9月において、実施例1、2及び比較例での地中の温度がシミュレーションされた。シミュレーションの条件は次のとおりである。
気象条件(平均気温):
年平均気温16.3℃
年最高気温36.5℃
年最低気温−2.6℃
7月の平均気温26.8℃
8月の平均気温28.7℃
9月の平均気温24.6℃
比較例の結果を図11(a)に、実施例1の結果を図11(b)に、実施例2の結果を図11(c)に示す。
In July to September under the following conditions, the underground temperatures in Examples 1 and 2 and the comparative example were simulated. The simulation conditions are as follows.
Weather conditions (average temperature):
Annual average temperature 16.3 ℃
Maximum annual temperature 36.5 ℃
Annual minimum temperature -2.6 ℃
Average temperature in July 26.8 ℃
Average temperature in August 28.7 ℃
September average temperature of 24.6 ° C
FIG. 11A shows the result of the comparative example, FIG. 11B shows the result of Example 1, and FIG. 11C shows the result of Example 2.

シミュレーションの結果、実施例1(上方断熱材がALC板)の深さ2mの地中温度は、上方断熱材を有さない比較例の深さ3mの地中温度に相当することが確認できた。また、実施例2(上方断熱材がポリスチレン)の深さ2mの地中温度は、比較例の深さ4mの地中温度に相当することが確認できた。   As a result of the simulation, it was confirmed that the underground temperature at a depth of 2 m in Example 1 (the upper insulating material is an ALC plate) corresponds to the underground temperature at a depth of 3 m in the comparative example having no upper insulating material. . Moreover, it has confirmed that the underground temperature of the depth 2m of Example 2 (upper heat insulating material is a polystyrene) corresponded to the underground temperature of the depth 4m of a comparative example.

このように、実施例1及び2では、上方断熱材を配することで、地上から比較的浅い位置(例えば、深さ2m)の土中温度においても、外気温や日射等の影響を低減することが確認できた。   As described above, in Examples 1 and 2, by providing the upper heat insulating material, the influence of the outside air temperature, solar radiation, and the like is reduced even in the soil temperature at a relatively shallow position (for example, 2 m in depth) from the ground. I was able to confirm.

1 空調装置
1A 地中熱交換部
1B 断熱材
1 Air Conditioner 1A Ground Heat Exchanger 1B Heat Insulating Material

Claims (7)

外気を地中熱で熱交換して建物内部に供給する地中熱利用の空調装置であって、
地中に埋設されかつ外気を地中熱で熱交換するパイプ状の地中熱交換部と、
地中の内部に埋設され、かつ前記地中熱交換部の上方又は側方に配された断熱材とを含むことを特徴とする地中熱利用の空調装置。
It is an air conditioner using geothermal heat that exchanges outside air with geothermal heat and supplies it to the inside of the building,
A pipe-shaped underground heat exchanging section buried in the ground and exchanging heat of the outside air with underground heat;
An air conditioner using geothermal heat, comprising a heat insulating material embedded in the ground and disposed above or on the side of the underground heat exchange section.
前記断熱材は、前記地中熱交換部の上方に配された上方断熱材を含む請求項1に記載の地中熱利用の空調装置。   The said heat insulating material is an air conditioner using geothermal heat of Claim 1 containing the upper heat insulating material distribute | arranged above the said underground heat exchange part. 前記断熱材は、前記地中熱交換部の側方に配された側方断熱材を含む請求項1又は2に記載の地中熱利用の空調装置。   The said heat insulating material is an air-conditioning apparatus of the underground heat utilization of Claim 1 or 2 containing the side heat insulating material distribute | arranged to the side of the said underground heat exchange part. 前記側方断熱材は、前記地中熱交換部の周囲を囲む板状の断熱片からなり、該断熱片と、この断熱片の前記地中熱交換部側への倒れを防ぐ枠材とで土留手段を構成する請求項3に記載の地中熱利用の空調装置。   The side heat insulating material is composed of a plate-shaped heat insulating piece surrounding the ground heat exchanging portion, and the heat insulating piece and a frame material that prevents the heat insulating piece from falling to the ground heat exchanging portion side. The air conditioner using geothermal heat according to claim 3 constituting earth retaining means. 前記地中熱交換部の下方には、前記地中熱交換部よりも深い位置の地中熱を、前記地中熱交換部側へと移動させる地中熱吸上げ部が設けられる請求項1乃至4のいずれかに記載の地中熱利用の空調装置。   The ground heat suction part which moves the underground heat of a deeper position than the underground heat exchange part to the underground heat exchange part side is provided below the underground heat exchange part. An air conditioner using geothermal heat as described in any one of 1 to 4. 前記地中熱吸上げ部は、良熱伝導性を有する複数の棒状体からなる請求項5記載の地中熱利用の空調装置。   The air-conditioning apparatus using geothermal heat according to claim 5, wherein the underground heat suction part is composed of a plurality of rod-shaped bodies having good thermal conductivity. 請求項1乃至6のいずれかに記載の地中熱利用の空調装置の施工方法であって、
地面を掘削して穴を形成する掘削工程と、
前記穴の掘削周囲面に、断熱材を用いて土留する土留め工程と、
前記断熱材で囲まれた空間に、前記地中熱交換部を配置する配置工程と、
前記空間を土で埋める埋設工程とを含むことを特徴とする地中熱利用の空調装置の施工方法。
It is a construction method of the underground heat utilization air conditioner according to any one of claims 1 to 6,
An excavation process for excavating the ground to form a hole;
The earth retaining step of retaining the earth using a heat insulating material on the drilling peripheral surface of the hole,
An arrangement step of arranging the underground heat exchange part in the space surrounded by the heat insulating material,
A method for constructing an air conditioner using geothermal heat, comprising a burying step of filling the space with soil.
JP2012007432A 2012-01-17 2012-01-17 Geothermal air conditioning device and construction method of the same Pending JP2013148247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007432A JP2013148247A (en) 2012-01-17 2012-01-17 Geothermal air conditioning device and construction method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007432A JP2013148247A (en) 2012-01-17 2012-01-17 Geothermal air conditioning device and construction method of the same

Publications (1)

Publication Number Publication Date
JP2013148247A true JP2013148247A (en) 2013-08-01

Family

ID=49045906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007432A Pending JP2013148247A (en) 2012-01-17 2012-01-17 Geothermal air conditioning device and construction method of the same

Country Status (1)

Country Link
JP (1) JP2013148247A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094486A (en) * 2013-11-11 2015-05-18 エコエネルギーシステムズ株式会社 Underground heat exchange system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240268A (en) * 1978-10-13 1980-12-23 Yuan Shao W Ground cold storage and utilization
JPS6110442U (en) * 1984-06-22 1986-01-22 株式会社大林組 underground duct
JP2005024208A (en) * 2003-06-30 2005-01-27 Zen Sogo Kikaku:Kk Air conditioner utilizing convection of geothermal heat
JP2008032182A (en) * 2006-07-31 2008-02-14 Nippon Steel Engineering Co Ltd Pipe installation method
JP2010019502A (en) * 2008-07-11 2010-01-28 Toru Hayashi Air conditioning system using underground heat
JP2011149690A (en) * 2011-02-18 2011-08-04 Nakamura Bussan Kk Underground heat exchanger burying structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4240268A (en) * 1978-10-13 1980-12-23 Yuan Shao W Ground cold storage and utilization
JPS6110442U (en) * 1984-06-22 1986-01-22 株式会社大林組 underground duct
JP2005024208A (en) * 2003-06-30 2005-01-27 Zen Sogo Kikaku:Kk Air conditioner utilizing convection of geothermal heat
JP2008032182A (en) * 2006-07-31 2008-02-14 Nippon Steel Engineering Co Ltd Pipe installation method
JP2010019502A (en) * 2008-07-11 2010-01-28 Toru Hayashi Air conditioning system using underground heat
JP2011149690A (en) * 2011-02-18 2011-08-04 Nakamura Bussan Kk Underground heat exchanger burying structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094486A (en) * 2013-11-11 2015-05-18 エコエネルギーシステムズ株式会社 Underground heat exchange system

Similar Documents

Publication Publication Date Title
JP4785098B2 (en) Underground heat exchanger buried structure
JP5897902B2 (en) Refrigerant piping unit and refrigerant piping construction method
JP4318516B2 (en) Geothermal exchange device
JP5912924B2 (en) Basic insulation structure
JP2013148247A (en) Geothermal air conditioning device and construction method of the same
JP6674335B2 (en) Heat pipe type air conditioner utilizing underground heat, unit for its configuration, and air conditioning method
US20120291988A1 (en) Perimeter Temperature Controlled Heating and Cooling System
JP3148898U (en) Geothermal building
JP5969851B2 (en) Building structure
KR101457388B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures
JP2014034848A (en) Building
JP2007139236A (en) Underfloor air-conditioning device and method
JP2011179738A (en) Air conditioner and air conditioning panel
JP5904759B2 (en) Cooling system
JP6434342B2 (en) Geothermal heat utilization system for base-isolated structures
JP2013134035A (en) Air conditioning device using geothermal heat
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure
JP2006052924A (en) Method for artificially preparing constant temperature layer in underground shallow part
CN204531556U (en) RC circular pipe house
JP6196542B2 (en) Thermal storage structure and housing using the same
JP4902622B2 (en) Air conditioning system
JP5898754B1 (en) Floor support and building air conditioning system
JP5922380B2 (en) Underfloor structure of building
CN217054161U (en) Composite floor heat-insulating layer structure
JP2013134036A (en) Air conditioning device using geo-heat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160202