JP2013134035A - Air conditioning device using geothermal heat - Google Patents

Air conditioning device using geothermal heat Download PDF

Info

Publication number
JP2013134035A
JP2013134035A JP2011286349A JP2011286349A JP2013134035A JP 2013134035 A JP2013134035 A JP 2013134035A JP 2011286349 A JP2011286349 A JP 2011286349A JP 2011286349 A JP2011286349 A JP 2011286349A JP 2013134035 A JP2013134035 A JP 2013134035A
Authority
JP
Japan
Prior art keywords
pipe
flexible tube
branch
air conditioner
geothermal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011286349A
Other languages
Japanese (ja)
Inventor
Soji Tadokoro
創史 田所
Hiroshi Nakagawa
中川  浩
Kazunori Nishio
和典 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Homes Co Ltd
Original Assignee
Panahome Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panahome Corp filed Critical Panahome Corp
Priority to JP2011286349A priority Critical patent/JP2013134035A/en
Publication of JP2013134035A publication Critical patent/JP2013134035A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve durability, and also achieve superior space-saving properties, low-cost properties and versatility.SOLUTION: An air conditioning device 1 using geothermal heat exchanges heat of external air 6 with geothermal heat and supplies the air to the inside of a building. The air conditioning device 1 using geothermal heat includes a pipe-like geothermal heat exchanging part 2, which is buried in the ground G and exchanges heat of external air 6 with geothermal heat. At least a portion of the geothermal heat exchanging part 2 comprises a flexible pipe 11 that can freely flex. The flexible pipe 11 has superior flexibility, so that the pipe can follow and flexibly deform, even if a ground pressure or a load during an earthquake acts on the pipe.

Description

本発明は、地中熱利用の空調装置に関し、詳しくは地中に埋設される地中熱交換部の破損を防いで、耐久性を向上しうるとともに、省スペース性、低コスト性及び汎用性に優れる地中熱利用の空調装置に関する。   The present invention relates to an air conditioner using geothermal heat, and in particular, can prevent damage to a geothermal heat exchanging portion embedded in the ground, improve durability, and save space, low cost, and versatility. The present invention relates to an air conditioner using geothermal heat that is superior to the above.

近年の省エネルギー化の要請により、地中熱を利用した空調装置が提案されている(例えば下記特許文献1参照)。この種の代表的な空調装置としては、地中に埋設された地中熱交換部に、外気を経由させて建物内部に供給する所謂クールチューブと称されるものが知られている。   In recent years, due to demands for energy saving, an air conditioner using geothermal heat has been proposed (see, for example, Patent Document 1 below). As this type of typical air conditioner, what is called a so-called cool tube is known that supplies the underground heat exchange section buried in the ground to the inside of the building via the outside air.

一般的に地中温度は、外気温度と比較して、夏は低温、冬は高温となる。従って、上記空調装置は、夏では、高温の外気を地中熱交換部を通して冷却して建物内部に供給できるとともに、冬では、冷たい外気を地中熱交換部で暖めて建物内部に供給できる利点がある。   In general, the underground temperature is lower in summer and higher in winter than the outside air temperature. Therefore, in the summer, the air conditioner can cool high-temperature outside air through the underground heat exchange unit and supply it to the inside of the building, and in winter, the cold outside air can be heated by the underground heat exchange unit and supplied to the inside of the building. There is.

特開2010−223511号公報JP 2010-223511 A

しかしながら、従来の地中熱交換部は、屈曲不能な塩ビ管等のパイプからなるため、土圧や、地震発生時の荷重に追従して変形することができない。このため、上記のような空調装置では、地中熱交換部の破損を十分に防ぐことができず、耐久性のさらなる向上が求められていた。また、地中熱交換部は、施工場所に応じて、柔軟に屈曲させて配置することができないため、省スペース性、低コスト性及び汎用性が低下しやすいという問題もあった。   However, since the conventional underground heat exchange part consists of pipes, such as a PVC pipe which cannot be bent, it cannot change according to earth pressure or the load at the time of the occurrence of an earthquake. For this reason, in the above air conditioners, damage to the underground heat exchange part could not be sufficiently prevented, and further improvement in durability was demanded. In addition, since the underground heat exchange section cannot be flexibly arranged depending on the construction site, there is a problem that space saving, low cost, and versatility are likely to be deteriorated.

本発明は、以上のような実状に鑑み案出されたもので、地中熱交換部の少なくとも一部を、屈曲自在な可撓管で形成することを基本として、耐久性を向上しうるとともに、省スペース性、低コスト性及び汎用性に優れる地中熱利用の空調装置を提供することを主たる目的としている。   The present invention has been devised in view of the actual situation as described above, and can improve durability on the basis of forming at least a part of the underground heat exchange portion with a flexible tube that can be bent. The main purpose is to provide an air conditioner using geothermal heat that is excellent in space saving, low cost and versatility.

本発明のうち請求項1記載の発明は、外気を地中熱で熱交換して建物内部に供給する地中熱利用の空調装置であって、地中に埋設されかつ外気を地中熱で熱交換するパイプ状の地中熱交換部を含み、前記地中熱交換部の少なくとも一部は、屈曲自在な可撓管からなることを特徴とする。   The invention according to claim 1 of the present invention is an air conditioner using geothermal heat for exchanging heat from the outside air with underground heat and supplying it to the inside of the building. It includes a pipe-shaped underground heat exchanging portion for exchanging heat, and at least a part of the underground heat exchanging portion is made of a flexible tube that can be bent.

また、請求項2記載の発明は、前記可撓管は、螺旋の軸が上下方向である縦螺旋状にのびている請求項1に記載の地中熱利用の空調装置である。   The invention according to claim 2 is the air conditioner using geothermal heat according to claim 1, wherein the flexible tube extends in a vertical spiral shape in which the axis of the spiral is the vertical direction.

また、請求項3記載の発明は、前記可撓管は、鉛直方向にジグザグ状にのびる請求項1に記載の地中熱利用の空調装置である。   The invention according to claim 3 is the air conditioner using geothermal heat according to claim 1, wherein the flexible tube extends in a zigzag shape in the vertical direction.

また、請求項4記載の発明は、前記地中熱交換部は、前記可撓管に外気を導入する導入部と、前記可撓管で熱交換された外気を建物内部に供給する供給部とを含み、前記可撓管の一端が前記導入部に、かつ前記可撓管の他端が供給部にそれぞれ接続され、前記可撓管は、前記一端から前記他端に向かって下方に傾斜する排水勾配を有する請求項1乃至3のいずれかに記載の地中熱利用の空調装置である。   According to a fourth aspect of the present invention, the underground heat exchanging unit includes an introduction unit that introduces outside air into the flexible tube, and a supply unit that supplies the outside air heat-exchanged by the flexible tube into the building. One end of the flexible tube is connected to the introduction portion, and the other end of the flexible tube is connected to the supply portion, and the flexible tube is inclined downward from the one end toward the other end. It is an air conditioner using geothermal heat according to any one of claims 1 to 3 having a drainage gradient.

また、請求項5記載の発明は、前記可撓管を支持することにより地中での前記排水勾配及び/又は上下で隣り合う前記可撓管の離隔を維持する地中内支持治具を含む請求項4記載の地中熱利用の空調装置である。   The invention according to claim 5 includes an underground support jig that supports the flexible pipe to maintain the drainage gradient in the ground and / or the separation of the flexible pipes adjacent in the vertical direction. An air conditioner using geothermal heat according to claim 4.

また、請求項6記載の発明は、前記導入部は、上下方向にのびかつ第1分岐部を介して前記可撓管の前記一端側と連通する第1縦パイプを含み、前記第1分岐部は、前記第1縦パイプ内に導入された外気を鈍角に曲げて前記可撓管に案内する請求項4又は5に記載の地中熱利用の空調装置である。   According to a sixth aspect of the present invention, the introduction portion includes a first vertical pipe extending in the vertical direction and communicating with the one end side of the flexible tube via the first branch portion, and the first branch portion. The air conditioner using geothermal heat according to claim 4 or 5, wherein the outside air introduced into the first vertical pipe is bent at an obtuse angle and guided to the flexible pipe.

また、請求項7記載の発明は、前記導入部は、一端が地上で開口しかつ他端が前記第1縦パイプと第2分岐部を介して連通する導入パイプをさらに含み、前記第2分岐部は、前記第1分岐部よりも上部に設けられ、しかも前記第2分岐部は、前記導入パイプから導入された外気を鈍角に曲げて前記第1分岐部側へと案内する請求項6に記載の地中熱利用の空調装置である。   In the invention according to claim 7, the introduction part further includes an introduction pipe having one end opened on the ground and the other end communicating with the first vertical pipe via the second branch part, and the second branch The portion is provided above the first branch portion, and the second branch portion guides the outside air introduced from the introduction pipe to the first branch portion side by bending it at an obtuse angle. It is an air conditioner using the described geothermal heat.

また、請求項8記載の発明は、前記供給部は、上下方向にのびる第2縦パイプを含み、前記第2縦パイプは、前記可撓管の他端側と連通する第3分岐部を有し、前記第3分岐部は、前記第2縦パイプの底部よりも上部に設けられ、しかも前記第3分岐部は、前記可撓管内の排水を、第2縦パイプの底部に案内する傾斜を有する請求項4乃至7のいずれかに記載の地中熱利用の空調装置である。   According to an eighth aspect of the present invention, the supply unit includes a second vertical pipe extending in the vertical direction, and the second vertical pipe has a third branch portion communicating with the other end side of the flexible tube. The third branch portion is provided above the bottom portion of the second vertical pipe, and the third branch portion is inclined to guide the drainage in the flexible tube to the bottom portion of the second vertical pipe. It is an air conditioner using geothermal heat according to any one of claims 4 to 7.

また、請求項9記載の発明は、前記供給部は、上下方向にのびる第2縦パイプと、一端が前記建物内部で開口しかつ他端が前記第2縦パイプと第4分岐部を介して連通する供給パイプとを含み、前記第4分岐部は、前記第2縦パイプに導入された外気を鈍角に曲げて前記供給パイプへと案内する請求項4乃至7のいずれかに記載の地中熱利用の空調装置である。   According to a ninth aspect of the present invention, the supply unit includes a second vertical pipe extending in the vertical direction, one end opened inside the building, and the other end via the second vertical pipe and the fourth branching unit. 8. The underground according to claim 4, wherein the fourth branch portion guides the outside air introduced into the second vertical pipe to the supply pipe by bending it at an obtuse angle. It is a heat-utilizing air conditioner.

本発明の地中熱利用の空調装置は、外気を地中熱で熱交換して建物内部に供給する。この空調装置には、地中に埋設されかつ外気を地中熱で熱交換するパイプ状の地中熱交換部を含む。   The air conditioner using geothermal heat of the present invention exchanges the outside air with geothermal heat and supplies it to the inside of the building. This air conditioner includes a pipe-shaped underground heat exchanging section that is buried in the ground and exchanges heat of the outside air with underground heat.

このような空調装置は、夏において、高温の外気を地中熱交換部で冷却して、建物内に供給できる。また、冬においては、冷たい外気を地中熱交換部で暖めて、建物内に供給できる。これにより、空調装置は、例えば、エアコンのような大きなエネルギーを使用することなく、室内を空調することができ、省エネルギー性を向上しうる。   Such an air conditioner can supply high-temperature outside air to the building in the summer by cooling it in the underground heat exchanger. In winter, cold outdoor air can be warmed by the underground heat exchanger and supplied into the building. Thereby, the air conditioner can air-condition the room without using large energy such as an air conditioner, and can improve energy saving.

また、地中熱交換部の少なくとも一部は、屈曲自在な可撓管からなる。このような可撓管は、土圧や、地震発生時の荷重に追従して柔軟に変形することができるため、地中熱交換部の破損を防止し、耐久性を向上しうる。さらに、可撓管は、施工場所に応じて、柔軟に屈曲させて配置することができるため、省スペース性、低コスト性及び汎用性を向上しうる。   Further, at least a part of the underground heat exchanging portion is made of a flexible tube that can be bent. Such a flexible tube can be flexibly deformed following the earth pressure or the load at the time of the occurrence of an earthquake, so that the underground heat exchange part can be prevented from being damaged and the durability can be improved. Furthermore, since the flexible tube can be flexibly arranged according to the construction site, space saving performance, low cost, and versatility can be improved.

本実施形態の地中熱利用の空調装置を概念的に示す断面図である。It is sectional drawing which shows notionally the air-conditioning apparatus using geothermal heat of this embodiment. 地中熱交換部を示す斜視図である。It is a perspective view which shows an underground heat exchange part. 可撓管の部分断面図である。It is a fragmentary sectional view of a flexible tube. 地中内支持治具を示す斜視図である。It is a perspective view which shows an underground support jig. 他の実施形態の地中熱交換部を概念的に示す断面図である。It is sectional drawing which shows notionally the underground heat exchange part of other embodiment. 第1分岐部及び第2分岐部を示す断面図である。It is sectional drawing which shows a 1st branch part and a 2nd branch part. 第3分岐部及び第4分岐部を示す断面図である。It is sectional drawing which shows a 3rd branch part and a 4th branch part.

以下、本発明の実施の一形態が図面に基づき説明される。
図1に示されるように、本実施形態の地中熱利用の空調装置(以下、単に「空調装置」ということがある)1は、例えば、一般的な住宅やビル等の建物Hの空調装置として用いられる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, an air conditioner (hereinafter sometimes simply referred to as “air conditioner”) 1 according to the present embodiment is an air conditioner for a building H such as a general house or building. Used as

本実施形態の空調装置1は、建物Hに隣接して設けられる。この空調装置1は、例えば、庭等の地中Gに埋設され、かつ外気6を地中熱で熱交換するパイプ状の地中熱交換部2が設けられる。   The air conditioner 1 of this embodiment is provided adjacent to the building H. The air conditioner 1 is provided with, for example, a pipe-shaped underground heat exchanging section 2 that is embedded in the underground G such as a garden and exchanges heat of the outside air 6 with underground heat.

このような空調装置1は、床下空間7に供給された外気6が、床部に設けられた開口10a、10bから、建物Hの内部に形成される空気流路を通って、各居室Lへと供給される。これにより、空調装置1は、夏において、高温の外気6を地中熱交換部2で冷却して、建物内部に供給でき、また、冬においては、冷たい外気6を地中熱交換部2で暖めて、建物内部に供給できる。従って、空調装置1は、例えば、エアコンのような大きなエネルギーを使用することなく、建物Hの内部を空調することができ、省エネルギー性を向上しうる。   In such an air conditioner 1, the outside air 6 supplied to the underfloor space 7 passes from the openings 10 a and 10 b provided in the floor portion to the living rooms L through the air flow paths formed inside the building H. Supplied with. Thereby, the air conditioner 1 can cool the high temperature outside air 6 in the underground heat exchange unit 2 in summer and supply it to the inside of the building. In winter, the cold outside air 6 can be supplied in the underground heat exchange unit 2. It can be warmed and supplied inside the building. Therefore, the air conditioner 1 can air-condition the inside of the building H without using large energy such as an air conditioner, and can improve energy saving.

図1及び図2に示されるように、本実施形態の地中熱交換部2は、屈曲自在な可撓管11と、該可撓管11に外気を導入する導入部3と、該可撓管11で熱交換された外気6を建物Hの内部(本実施形態では、床下空間7)に供給する供給部4とを含んで構成される。   As shown in FIGS. 1 and 2, the underground heat exchanging unit 2 of the present embodiment includes a flexible tube 11 that can be bent, an introduction unit 3 that introduces outside air into the flexible tube 11, and the flexible tube 11. The supply unit 4 is configured to supply the outside air 6 heat-exchanged by the pipe 11 to the inside of the building H (in the present embodiment, the underfloor space 7).

前記可撓管11は、例えば、地表から1〜4m程度の深さで埋設され、螺旋の軸11sが上下方向である縦螺旋状にのびる。本実施形態では、可撓管11の一端11iが導入部3に接続されるとともに、他端11oが供給部4に接続され、一端11iと他端11oとの間で、上下方向に略二周分巻回されている。   The flexible tube 11 is embedded, for example, at a depth of about 1 to 4 m from the ground surface, and extends in a vertical spiral shape in which a spiral shaft 11s is in the vertical direction. In the present embodiment, one end 11i of the flexible tube 11 is connected to the introduction part 3, and the other end 11o is connected to the supply part 4. Between the one end 11i and the other end 11o, approximately two rounds in the vertical direction. It has been wound around.

図3に示されるように、前記可撓管11は、長手方向に沿った断面において、その側壁面11Wが、長手方向に沿ってのびる基部11Waと、該基部11Waから外側に突出し、かつ長手方向に間隔を空けて隔設される山部11Wbとを含んで形成される。また、前記山部11Wbには、その内側に空洞部18が設けられている。   As shown in FIG. 3, the flexible tube 11 has a base portion 11 </ b> Wa extending in the longitudinal direction and a base portion 11 </ b> Wa extending in the longitudinal direction in a cross section along the longitudinal direction, and projecting outward from the base portion 11 </ b> Wa. And crests 11Wb spaced apart from each other. Further, the peak portion 11Wb is provided with a hollow portion 18 inside thereof.

このような可撓管11は、側壁面11Wの内面を平滑に維持しつつ、長手方向の任意の位置で屈曲でき、柔軟性に優れる。また、山部11Wbには、空洞部18が設けられるため、可撓管部11の強度を保持(円形保持)しつつ、該可撓管部11を軽量化するのに役立つ。なお、可撓管11は、その内径D1が、例えば100〜300mm程度に設定されるのが望ましく、また、例えば、ポリエチレン等の合成樹脂や金属等で形成されるのが望ましい。   Such a flexible tube 11 can be bent at an arbitrary position in the longitudinal direction while keeping the inner surface of the side wall surface 11W smooth, and is excellent in flexibility. In addition, since the hollow portion 18 is provided in the peak portion 11Wb, it helps to reduce the weight of the flexible tube portion 11 while maintaining the strength of the flexible tube portion 11 (circular holding). The flexible tube 11 preferably has an inner diameter D1 of, for example, about 100 to 300 mm, and is preferably formed of a synthetic resin such as polyethylene or a metal.

このように、可撓管11は、柔軟性に優れるため、土圧や、地震発生時の荷重が作用しても、それらに追従して柔軟に変形することができる。従って、可撓管11は、地中熱交換部2の破損を防止でき、耐久性を向上しうる。   Thus, since the flexible tube 11 is excellent in flexibility, even if earth pressure or a load at the time of occurrence of an earthquake acts, the flexible tube 11 can be flexibly deformed following them. Therefore, the flexible tube 11 can prevent the underground heat exchange part 2 from being damaged, and can improve durability.

また、図1及び図2に示されるように、可撓管11が縦螺旋状にのびるため、外気6を熱交換する空間の体積を維持しつつ、占有する土地面積を小さくすることができる。従って、空調装置1は、例えば、土地面積が比較的小さい駐車場スペースのような小さな場所にも、柔軟に屈曲させて設置することができ、省スペース性及び汎用性に優れる。   Further, as shown in FIGS. 1 and 2, since the flexible tube 11 extends in a vertical spiral shape, the occupied land area can be reduced while maintaining the volume of the space for heat exchange of the outside air 6. Therefore, the air conditioner 1 can be flexibly installed in a small place such as a parking lot space having a relatively small land area, and is excellent in space saving and versatility.

しかも、本実施形態の地中熱交換部2は、1本又は数本の可撓管11を含んで構成されるため、従来の地中熱交換部に比べて、管と管とを連結するジョイント箇所を大幅に少なくすることができる。これにより、地中熱交換部2は、施工性及び低コスト性を向上しうるとともに、ジョイント箇所で生じがちな損傷を、効果的に抑制できる。   And since the underground heat exchange part 2 of this embodiment is comprised including the one or several flexible tubes 11, it connects a pipe | tube and a pipe | tube compared with the conventional underground heat exchange part. Joint locations can be greatly reduced. Thereby, the underground heat exchange part 2 can suppress the damage which tends to occur in a joint location while being able to improve workability and low cost property.

また、可撓管11での熱交換率を高めるために、上下に重なる可撓管11の間隔W2は、300〜500mmに設定されるのが望ましい。なお、前記間隔W2が300mm未満であると、上下に重なる可撓管11の間隔が小さくなり、十分に熱交換できないおそれがある。逆に、間隔W2が500mmを超えると、地中深く掘削する必要があり、施工性及び低コスト性が低下するおそれがある。   Further, in order to increase the heat exchange rate in the flexible tube 11, it is desirable that the interval W2 between the flexible tubes 11 that are vertically overlapped is set to 300 to 500 mm. If the interval W2 is less than 300 mm, the interval between the flexible tubes 11 that overlap each other becomes small, and there is a possibility that sufficient heat exchange cannot be performed. On the other hand, when the interval W2 exceeds 500 mm, it is necessary to excavate deeply in the ground, and there is a possibility that the workability and the low cost are lowered.

また、可撓管11は、その一端11i側から他端11o側に向かって、下方に傾斜する排水勾配α1を有するのが望ましい。これにより、可撓管11は、その内部で発生した結露を、傾斜に沿って他端11o側へ円滑に排水でき、結露が滞留することに起因するカビや異臭の発生を、効果的に抑制しうる。このような作用を効果的に発揮させるために、可撓管11の排水勾配α1は、1/80〜1/120程度が望ましい。   Moreover, it is desirable that the flexible tube 11 has a drainage gradient α1 that is inclined downward from the one end 11i side toward the other end 11o side. As a result, the flexible tube 11 can smoothly drain the dew generated inside the tube to the other end 11o along the inclination, and effectively suppress the generation of mold and off-flavor due to the dew condensation. Yes. In order to effectively exhibit such an action, the drainage gradient α1 of the flexible tube 11 is desirably about 1/80 to 1/120.

図4に示されるように、地中での上記排水勾配α1を確実に維持させるために、地中熱交換部2には、可撓管11を支持する地中内支持治具12が設けられてもよい。この地中内支持治具12は、前記螺旋の軸11sを挟んで両側に一対設けられる。   As shown in FIG. 4, in order to reliably maintain the drainage gradient α1 in the ground, the underground heat exchanging section 2 is provided with an underground support jig 12 that supports the flexible tube 11. May be. A pair of the underground support jigs 12 are provided on both sides of the spiral shaft 11s.

前記地中内支持治具12は、可撓管11の長手方向に沿って水平にのびる脚部13と、該脚部13から上方へのびる立上部14と、該脚部13に配置される下側支持部15と、立上部14に配置される上側支持部16とが設けられる。   The underground support jig 12 includes a leg portion 13 extending horizontally along the longitudinal direction of the flexible tube 11, an upright portion 14 extending upward from the leg portion 13, and a lower portion disposed on the leg portion 13. A side support portion 15 and an upper support portion 16 disposed on the upright portion 14 are provided.

前記脚部13は、可撓管11の幅方向に間隙13wを設けて配置される一対の横材13a、13aからなる。このような脚部13は、地中熱交換部2が埋設される前において、可撓管11及び地中内支持治具12の荷重を安定して支持しうる。   The leg portion 13 is composed of a pair of cross members 13 a and 13 a arranged with a gap 13 w in the width direction of the flexible tube 11. Such a leg portion 13 can stably support the loads of the flexible tube 11 and the underground support jig 12 before the underground heat exchanging portion 2 is embedded.

前記立上部14は、脚部13の長手方向に離間して一対設けられる。各立上部14は、一対の横材13a、13aから上方にのびる一対の縦材14a、14aからなる。   A pair of the raised portions 14 are provided apart from each other in the longitudinal direction of the leg portion 13. Each upright portion 14 includes a pair of vertical members 14a and 14a extending upward from the pair of horizontal members 13a and 13a.

前記下側支持部15は、一対の横材13a、13a間を跨ぎ、かつ該横材13aの長手方向に離間して配置される複数個(本実施形態では、4個)の継材15aからなる。これらの継材15aは、横材13aからの高さH3がそれぞれ異なり、可撓管11の前記排水勾配α1(図1に示す)に沿って漸減する。   The lower support portion 15 extends from a plurality (four in this embodiment) of the joint members 15a that straddle between the pair of transverse members 13a and 13a and are spaced apart in the longitudinal direction of the transverse member 13a. Become. These joint members 15a have different heights H3 from the cross member 13a, and gradually decrease along the drainage gradient α1 (shown in FIG. 1) of the flexible tube 11.

前記上側支持部16は、一対の縦材14a、14a間を跨いで配置される一対の継材16aからなる。これらの継材16aは、横材13aからの高さH4が、可撓管11の排水勾配α1(図1に示す)に沿って漸減する。   The upper support portion 16 is composed of a pair of joint members 16a disposed across a pair of longitudinal members 14a, 14a. In these joint members 16a, the height H4 from the cross member 13a gradually decreases along the drainage gradient α1 (shown in FIG. 1) of the flexible tube 11.

このような地中内支持治具12は、下側支持部15の継材15a及び上側支持部16の継材16aに、可撓管11が載置されることにより、各可撓管11が位置決めされる。これにより、地中内支持治具12は、上下で隣り合う前記可撓管11の離隔を維持しつつ安定して支持しうる。また、地中内支持治具12は、下側支持部15、及び上側支持部16の各高さH3、H4が、可撓管11の前記排水勾配α1に沿って漸減するため、可撓管11の前記排水勾配α1を確実に保持できる。   Such an underground support jig 12 is configured such that each flexible tube 11 is mounted on the joint material 15a of the lower support portion 15 and the joint material 16a of the upper support portion 16 by placing the flexible tube 11 thereon. Positioned. Thereby, the underground support jig 12 can be stably supported while maintaining the separation between the flexible tubes 11 adjacent in the vertical direction. The underground support jig 12 has a flexible tube because the heights H3 and H4 of the lower support portion 15 and the upper support portion 16 gradually decrease along the drainage gradient α1 of the flexible tube 11. 11 drainage gradients α1 can be reliably maintained.

従って、地中内支持治具12は、可撓管11を支持したまま埋設されることにより、排水勾配α1及び上下で隣り合う可撓管11の離隔を維持しつつ、該可撓管11を任意の螺旋形状で容易に埋設しうる。しかも、地中内支持治具12は、地中においても、可撓管11を支持できるため、前記排水勾配α1及び可撓管11の離隔を長期に亘って維持しうる。   Therefore, the underground support jig 12 is embedded while supporting the flexible tube 11, thereby maintaining the drainage gradient α <b> 1 and the separation between the adjacent flexible tubes 11 in the upper and lower directions, and the flexible tube 11. It can be easily embedded in any spiral shape. Moreover, since the underground support jig 12 can support the flexible tube 11 even in the ground, the separation of the drainage gradient α1 and the flexible tube 11 can be maintained over a long period of time.

なお、本実施形態では、可撓管11が縦螺旋状にのびるものが例示されたが、これに限定されるわけではない。例えば、図5に示されるように、可撓管11は、鉛直方向にジグザグ状にのびるものでもよい。このような可撓管11も、外気6を熱交換するのに必要な空間を維持しつつ、占有する土地面積を小さくすることができる。   In the present embodiment, the flexible tube 11 extends in a vertical spiral shape, but is not limited thereto. For example, as shown in FIG. 5, the flexible tube 11 may extend in a zigzag shape in the vertical direction. Such a flexible tube 11 can also occupy a small land area while maintaining a space necessary for heat exchange of the outside air 6.

図1に示されるように、前記導入部3は、上下方向にのびる第1縦パイプ3Aと、一端3Biが地上で開口し、かつ他端3Boが該第1縦パイプ3Aに連通する導入パイプ3Bとを含む。   As shown in FIG. 1, the introduction portion 3 includes a first vertical pipe 3A extending in the vertical direction, an introduction pipe 3B having one end 3Bi open on the ground and the other end 3Bo communicating with the first vertical pipe 3A. Including.

図6に示されるように、前記第1縦パイプ3Aは、該第1縦パイプ3Aの軸方向にのびる複数のパイプ部21と、隣り合う一対のパイプ部21を連結する第1分岐部22と、該第1分岐部22よりも上部に設けられ、かつ隣り合う一対のパイプ部21を連結する第2分岐部23とを有する。   As shown in FIG. 6, the first vertical pipe 3 </ b> A includes a plurality of pipe portions 21 extending in the axial direction of the first vertical pipe 3 </ b> A, and a first branching portion 22 that connects a pair of adjacent pipe portions 21. And a second branch portion 23 that is provided above the first branch portion 22 and connects a pair of adjacent pipe portions 21.

前記パイプ部21は、例えば、150〜250mm程度の内径D2でのびるパイプ状に形成される。   The pipe portion 21 is formed in a pipe shape extending with an inner diameter D2 of about 150 to 250 mm, for example.

前記第1分岐部22は、パイプ部21の内径D2と等しい内径で上下にのびる縦パイプ部22aと、該縦パイプ部22aから分岐して側方に突出した枝パイプ部22bとを有する。   The first branch portion 22 includes a vertical pipe portion 22a that extends vertically with an inner diameter equal to the inner diameter D2 of the pipe portion 21, and a branch pipe portion 22b that branches from the vertical pipe portion 22a and protrudes laterally.

前記縦パイプ部22aは、その両端に、前記パイプ部21の端部21tを密に挿入可能な一対の拡径部22atが設けられる。また、枝パイプ部22bは、その端部に、可撓管11の一端11iを密に連通可能な拡径部22btが形成される。さらに、枝パイプ部22bは、縦パイプ部22aから拡径部22btに向かって、下方へ傾斜してのびる。   The vertical pipe portion 22a is provided with a pair of enlarged diameter portions 22at at both ends, into which the end portion 21t of the pipe portion 21 can be inserted densely. Further, the branch pipe portion 22b is formed with an enlarged diameter portion 22bt capable of closely communicating the one end 11i of the flexible tube 11 at the end thereof. Further, the branch pipe portion 22b extends downwardly from the vertical pipe portion 22a toward the enlarged diameter portion 22bt.

このような第1分岐部22は、第1縦パイプ3A内に導入された外気6を鈍角に曲げて、可撓管11に案内することができる。従って、第1分岐部22は、導入パイプ3Bと可撓管11との間の空気抵抗を小さくでき、空調装置1に必要な吹出し風量を容易に確保しうる。このような作用を効果的に発揮させるために、第1分岐部22の縦パイプ部22aと枝パイプ部22bとがなす角度α5aは、120〜150度程度が望ましい。   Such a first branch portion 22 can bend the outside air 6 introduced into the first vertical pipe 3 </ b> A to an obtuse angle and guide it to the flexible tube 11. Therefore, the 1st branch part 22 can make small the air resistance between the introductory pipe 3B and the flexible tube 11, and can ensure the blowing air volume required for the air conditioner 1 easily. In order to effectively exhibit such an action, the angle α5a formed by the vertical pipe portion 22a and the branch pipe portion 22b of the first branch portion 22 is desirably about 120 to 150 degrees.

前記第2分岐部23は、前記第1分岐部22と同様に、縦パイプ部23aと、枝パイプ部23bとを含む。この縦パイプ部23aの両端には、一対の拡径部23atが設けられる。   The second branch part 23 includes a vertical pipe part 23 a and a branch pipe part 23 b, similar to the first branch part 22. A pair of enlarged diameter portions 23at are provided at both ends of the vertical pipe portion 23a.

前記枝パイプ部23bは、第1分岐部22の枝パイプ部22bから鉛直軸回りに180度回転させた位置において、縦パイプ部23aから突出し、かつ上方に向かって傾斜してのびる。また、枝パイプ部23bは、その端部に、導入パイプ3Bの他端3Boを密に連通可能な拡径部23btが設けられる。   The branch pipe part 23b protrudes from the vertical pipe part 23a and extends upwardly at a position rotated 180 degrees around the vertical axis from the branch pipe part 22b of the first branch part 22. Further, the branch pipe portion 23b is provided with an enlarged diameter portion 23bt at the end portion thereof that can communicate with the other end 3Bo of the introduction pipe 3B in close contact with each other.

このような第2分岐部23は、導入パイプ3Bから導入された外気6を鈍角に曲げて、第1分岐部22側に案内することができる。従って、第2分岐部23は、導入パイプ3Bと第1分岐部22との間の空気抵抗を小さくすることができる。この第2分岐部23の縦パイプ部23aと枝パイプ部23bとのなす角度α5bは、第1分岐部22の前記角度α5aと同一範囲が望ましい。   Such a 2nd branch part 23 can bend the outside air 6 introduced from the introduction pipe 3B to an obtuse angle, and can guide it to the 1st branch part 22 side. Therefore, the second branch portion 23 can reduce the air resistance between the introduction pipe 3 </ b> B and the first branch portion 22. The angle α5b formed by the vertical pipe portion 23a and the branch pipe portion 23b of the second branch portion 23 is preferably in the same range as the angle α5a of the first branch portion 22.

図1に示されるように、前記第1縦パイプ3Aには、その上端側で地面から突出して開口する開口部28が設けられるのが望ましい。このような開口部28は、第1縦パイプ3Aの底部3Abに溜まった結露等の水分や異物を取り出すのに役立つ。また、開口部28には、雨水や害虫等の異物が第1縦パイプ3Aに進入するのを防ぐ蓋部29が設けられるのが望ましい。   As shown in FIG. 1, the first vertical pipe 3 </ b> A is preferably provided with an opening 28 that protrudes and opens from the ground at the upper end side thereof. Such an opening 28 is useful for taking out moisture and foreign matters such as condensation accumulated on the bottom 3Ab of the first vertical pipe 3A. The opening 28 is preferably provided with a lid 29 that prevents foreign matter such as rainwater and pests from entering the first vertical pipe 3A.

さらに、第1縦パイプ3Aの底部3Abには、結露等の水分を地中に排出するドレン(図示省略)が設けられてもよい。このようなドレンは、底部3Abに水分が滞留することに起因するカビや異臭の発生を効果的に抑制しうる。   Furthermore, a drain (not shown) that discharges moisture such as condensation into the ground may be provided at the bottom 3Ab of the first vertical pipe 3A. Such a drain can effectively suppress the generation of mold and off-flavor caused by moisture remaining in the bottom 3Ab.

図1及び図6に示されるように、前記導入パイプ3Bは、前記内径D2と等しい内径でのびるパイプ状に形成される。本実施形態の導入パイプ3Bは、第2分岐部23の枝パイプ部23bから地面に向かって傾斜してのびる傾斜部3Baと、該傾斜部3Baの端部から地上にのびる外気導入部3Bbとを含む。   As shown in FIGS. 1 and 6, the introduction pipe 3 </ b> B is formed in a pipe shape extending with an inner diameter equal to the inner diameter D <b> 2. The introduction pipe 3B of the present embodiment includes an inclined portion 3Ba extending from the branch pipe portion 23b of the second branch portion 23 toward the ground, and an outside air introducing portion 3Bb extending from the end of the inclined portion 3Ba to the ground. Including.

前記外気導入部3Bbの一端3Biには、地上に露出するとともに、約180度湾曲して下向きに開口する開口部42が接続される。このような開口部42は、外気導入部3Bbに雨水等の進入を防止することができる。また、開口部42には、虫や異物の進入を防ぐフィルター(図示省略)が配されるのが望ましい。   One end 3Bi of the outside air introduction part 3Bb is connected to an opening 42 that is exposed to the ground and that is curved downward by about 180 degrees and opens downward. Such an opening 42 can prevent rainwater or the like from entering the outside air introduction portion 3Bb. Further, it is desirable that a filter (not shown) for preventing insects and foreign substances from entering is disposed in the opening 42.

また、傾斜部3Baと外気導入部3Bbとがなす角度α5cは、鈍角に設定されるのが望ましい。これにより、導入パイプ3Bは、傾斜部3Baと外気導入部3Bbとの間の空気抵抗を小さくでき、外気6をスムーズに案内しうる。この角度α5cは、前記角度α5a、α5bと同一範囲が望ましい。   Further, it is desirable that the angle α5c formed by the inclined portion 3Ba and the outside air introduction portion 3Bb is set to an obtuse angle. Accordingly, the introduction pipe 3B can reduce the air resistance between the inclined portion 3Ba and the outside air introduction portion 3Bb, and can smoothly guide the outside air 6. The angle α5c is preferably in the same range as the angles α5a and α5b.

図1に示されるように、本実施形態の供給部4は、上下方向にのびる第2縦パイプ4Aと、一端4Biが建物Hの内部で開口し、かつ他端4Boが該第2縦パイプ4Aと連通する供給パイプ4Bを含む。   As shown in FIG. 1, the supply unit 4 of the present embodiment includes a second vertical pipe 4A extending in the vertical direction, one end 4Bi opening inside the building H, and the other end 4Bo being the second vertical pipe 4A. A supply pipe 4B communicating with the vehicle is included.

図7に示されるように、前記第2縦パイプ4Aは、複数のパイプ部31と、第2縦パイプ4Aの底部4Abよりも上部に設けられ、かつ隣り合う一対のパイプ部31を連結する第3分岐部32と、該第3分岐部32よりも上部に設けられ、かつ隣り合う一対のパイプ部31を連結する第4分岐部33とを有する。   As shown in FIG. 7, the second vertical pipe 4A includes a plurality of pipe parts 31 and a second pipe part 31 that is provided above the bottom part 4Ab of the second vertical pipe 4A and connects a pair of adjacent pipe parts 31. It has the 3 branch part 32 and the 4th branch part 33 which is provided above the 3rd branch part 32, and connects a pair of adjacent pipe parts 31. As shown in FIG.

前記パイプ部31は、前記第1縦パイプ3Aのパイプ部21(図6に示す)と同様に、前記内径D2でのびるパイプ状に形成される。   The pipe portion 31 is formed in a pipe shape extending at the inner diameter D2, similarly to the pipe portion 21 (shown in FIG. 6) of the first vertical pipe 3A.

前記第3分岐部32は、前記第1、第2分岐部22、23(図6に示す)と同様に、縦パイプ部32aと、枝パイプ部32bとを含む。   The third branch portion 32 includes a vertical pipe portion 32a and a branch pipe portion 32b, similarly to the first and second branch portions 22 and 23 (shown in FIG. 6).

前記縦パイプ部32aは、その両端に一対の拡径部32atが設けられる。また、枝パイプ部32bは、縦パイプ部32aから上方に向かって傾斜してのびる。さらに、枝パイプ部32bには、可撓管11の他端11oを密に連通可能な拡径部32btを有する。   The vertical pipe portion 32a is provided with a pair of enlarged diameter portions 32at at both ends thereof. Further, the branch pipe portion 32b extends upwardly from the vertical pipe portion 32a. Further, the branch pipe portion 32b has an enlarged diameter portion 32bt capable of closely communicating the other end 11o of the flexible tube 11.

このような第3分岐部32は、枝パイプ部32bが、可撓管11内の排水43を第2縦パイプ4Aの底部4Abに案内する傾斜を有するため、該可撓管11内に水分が滞留することによるカビや異臭の発生を効果的に抑制しうる。このような作用を効果的に発揮させつつ、外気6の空気抵抗の増加を抑制するために、枝パイプ部32bの傾斜α6aは、前記排水勾配α1と同一が望ましい。   The third branch portion 32 has a slope in which the branch pipe portion 32b guides the drainage 43 in the flexible tube 11 to the bottom portion 4Ab of the second vertical pipe 4A. Generation | occurrence | production of the mold and off-flavor by staying can be suppressed effectively. In order to suppress the increase in the air resistance of the outside air 6 while effectively exhibiting such an action, the inclination α6a of the branch pipe portion 32b is desirably the same as the drainage gradient α1.

前記第4分岐部33は、前記第3分岐部32と同様に、縦パイプ部33aと、枝パイプ部33bとを含む。この縦パイプ部33aは、その両端に一対の拡径部33atが設けられる。   The fourth branch part 33 includes a vertical pipe part 33 a and a branch pipe part 33 b, similarly to the third branch part 32. The vertical pipe portion 33a is provided with a pair of enlarged diameter portions 33at at both ends thereof.

また、本実施形態の枝パイプ部33bは、第3分岐部32の枝パイプ部32bから鉛直軸回りに180度回転させた位置において、縦パイプ部33aから突出し、かつ上方に向かって傾斜してのびる。この枝パイプ部33bは、供給パイプ4Bの他端4Boを密に連通可能な拡径部33btを有する。   Further, the branch pipe portion 33b of the present embodiment protrudes from the vertical pipe portion 33a and inclines upward at a position rotated 180 degrees around the vertical axis from the branch pipe portion 32b of the third branch portion 32. Extend. This branch pipe portion 33b has an enlarged diameter portion 33bt capable of closely communicating the other end 4Bo of the supply pipe 4B.

このような第4分岐部33は、可撓管11から第2縦パイプ4Aに導入された外気6を鈍角に曲げて、供給パイプ4Bへと案内でき、空気抵抗を小さくすることができる。なお、第4分岐部33の縦パイプ部33aと枝パイプ部33bとのなす角度α6bは、第1、第2分岐部22、23の前記角度α5a、α5b(図6に示す)と同一範囲が望ましい。   Such a 4th branch part 33 can bend the outside air 6 introduced into the 2nd vertical pipe 4A from the flexible tube 11 at an obtuse angle, can guide it to the supply pipe 4B, and can make air resistance small. The angle α6b formed between the vertical pipe portion 33a and the branch pipe portion 33b of the fourth branch portion 33 has the same range as the angles α5a and α5b (shown in FIG. 6) of the first and second branch portions 22 and 23. desirable.

図1に示されるように、第2縦パイプ4Aには、第1縦パイプ3Aと同様に、その上端で地面から突出して開口する開口部38が設けられるのが望ましい。このような開口部38は、第2縦パイプ4Aの底部4Abに溜まった前記排水を取り出すのに役立つ。また、開口部38には、蓋部39が設けられるのが望ましい。さらに、第2縦パイプ4Aの底部4Abには、水分を地中に排出するドレン(図示省略)が設けられてもよい。   As shown in FIG. 1, it is desirable that the second vertical pipe 4A is provided with an opening 38 that protrudes from the ground and opens at the upper end, similarly to the first vertical pipe 3A. Such an opening 38 serves to take out the drainage accumulated in the bottom 4Ab of the second vertical pipe 4A. The opening 38 is preferably provided with a lid 39. Furthermore, a drain (not shown) for discharging moisture into the ground may be provided at the bottom 4Ab of the second vertical pipe 4A.

図1及び図7に示されるように、前記供給パイプ4Bは、前記内径D2と等しい内径でのびるパイプ状に形成される。また、供給パイプ4Bは、第4分岐部33の枝パイプ部33bから地面に向かって傾斜してのびる傾斜部4Baと、該傾斜部4Baの端部から上方にのび、かつ建物Hの床下空間7で開口する外気供給部4Bbとを含む。   As shown in FIGS. 1 and 7, the supply pipe 4B is formed in a pipe shape extending with an inner diameter equal to the inner diameter D2. The supply pipe 4B includes an inclined portion 4Ba extending from the branch pipe portion 33b of the fourth branch portion 33 toward the ground, an upward portion from the end of the inclined portion 4Ba, and an underfloor space 7 of the building H. And an outside air supply unit 4Bb opened at

前記外気供給部4Bbには、その一端4Biに設けられる開口部45に、空気を強制的に吸い上げる吸気用ファン41が接続される。このような吸気用ファン41は、地中熱交換部2、導入部3及び供給部4の内部を負圧にして、外気6を強制的に通過させることができる。   The outside air supply unit 4Bb is connected to an intake fan 41 that forcibly sucks air into an opening 45 provided at one end 4Bi thereof. Such an intake fan 41 can allow the outside air 6 to pass through by making the inside of the underground heat exchanging unit 2, the introducing unit 3, and the supplying unit 4 negative pressure.

また、供給パイプ4Bは、傾斜部4Baと外気供給部4Bbとがなす角度α6cが、鈍角に設定されるのが好ましく、さらに好ましくは、第4分岐部33の前記角度α6bと同一範囲に設定されるのが望ましい。これにより、供給パイプ4Bは、傾斜部4Baと外気供給部4Bbとの間の空気抵抗を小さくでき、外気6をスムーズに案内しうる。   In the supply pipe 4B, the angle α6c formed by the inclined portion 4Ba and the outside air supply portion 4Bb is preferably set to an obtuse angle, and more preferably set to the same range as the angle α6b of the fourth branch portion 33. Is desirable. Accordingly, the supply pipe 4B can reduce the air resistance between the inclined portion 4Ba and the outside air supply portion 4Bb, and can smoothly guide the outside air 6.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

1 地中熱利用の空調装置
2 地中熱交換部
11 可撓管
DESCRIPTION OF SYMBOLS 1 Air conditioner using geothermal heat 2 Geothermal heat exchange part 11 Flexible tube

Claims (9)

外気を地中熱で熱交換して建物内部に供給する地中熱利用の空調装置であって、
地中に埋設されかつ外気を地中熱で熱交換するパイプ状の地中熱交換部を含み、
前記地中熱交換部の少なくとも一部は、屈曲自在な可撓管からなることを特徴とする地中熱利用の空調装置。
It is an air conditioner using geothermal heat that exchanges outside air with geothermal heat and supplies it to the inside of the building,
Including a pipe-shaped underground heat exchange part buried in the ground and exchanging heat from the outside air with underground heat,
At least a part of the underground heat exchanging portion is made of a flexible tube that can be bent freely.
前記可撓管は、螺旋の軸が上下方向である縦螺旋状にのびている請求項1に記載の地中熱利用の空調装置。   The air conditioner using geothermal heat according to claim 1, wherein the flexible tube extends in a vertical spiral shape in which a spiral axis is an up-down direction. 前記可撓管は、鉛直方向にジグザグ状にのびる請求項1に記載の地中熱利用の空調装置。   The air conditioner using geothermal heat according to claim 1, wherein the flexible tube extends in a zigzag shape in a vertical direction. 前記地中熱交換部は、前記可撓管に外気を導入する導入部と、
前記可撓管で熱交換された外気を建物内部に供給する供給部とを含み、
前記可撓管の一端が前記導入部に、かつ前記可撓管の他端が供給部にそれぞれ接続され、
前記可撓管は、前記一端から前記他端に向かって下方に傾斜する排水勾配を有する請求項1乃至3のいずれかに記載の地中熱利用の空調装置。
The underground heat exchanging section includes an introduction section for introducing outside air into the flexible tube;
A supply unit for supplying outside air heat-exchanged by the flexible tube into the building,
One end of the flexible tube is connected to the introduction unit, and the other end of the flexible tube is connected to the supply unit,
The air conditioner using geothermal heat according to any one of claims 1 to 3, wherein the flexible pipe has a drainage gradient inclined downward from the one end toward the other end.
前記可撓管を支持することにより地中での前記排水勾配及び/又は上下で隣り合う前記可撓管の離隔を維持する地中内支持治具を含む請求項4記載の地中熱利用の空調装置。   5. The use of underground heat according to claim 4, further comprising an underground support jig that supports the flexible pipe to maintain the drainage gradient in the ground and / or the separation of the adjacent flexible pipes above and below. Air conditioner. 前記導入部は、上下方向にのびかつ第1分岐部を介して前記可撓管の前記一端側と連通する第1縦パイプを含み、
前記第1分岐部は、前記第1縦パイプ内に導入された外気を鈍角に曲げて前記可撓管に案内する請求項4又は5に記載の地中熱利用の空調装置。
The introduction portion includes a first vertical pipe extending in the vertical direction and communicating with the one end side of the flexible tube via a first branch portion,
6. The air conditioner using geothermal heat according to claim 4, wherein the first branch portion bends outside air introduced into the first vertical pipe to an obtuse angle and guides it to the flexible tube. 7.
前記導入部は、一端が地上で開口しかつ他端が前記第1縦パイプと第2分岐部を介して連通する導入パイプをさらに含み、
前記第2分岐部は、前記第1分岐部よりも上部に設けられ、
しかも前記第2分岐部は、前記導入パイプから導入された外気を鈍角に曲げて前記第1分岐部側へと案内する請求項6に記載の地中熱利用の空調装置。
The introduction part further includes an introduction pipe having one end opened on the ground and the other end communicated with the first vertical pipe via the second branch part,
The second branch part is provided above the first branch part,
And the said 2nd branch part bends the external air introduce | transduced from the said introductory pipe at an obtuse angle, and guides it to the said 1st branch part side, The air-conditioning apparatus of the underground heat utilization of Claim 6.
前記供給部は、上下方向にのびる第2縦パイプを含み、
前記第2縦パイプは、前記可撓管の他端側と連通する第3分岐部を有し、
前記第3分岐部は、前記第2縦パイプの底部よりも上部に設けられ、
しかも前記第3分岐部は、前記可撓管内の排水を、第2縦パイプの底部に案内する傾斜を有する請求項4乃至7のいずれかに記載の地中熱利用の空調装置。
The supply unit includes a second vertical pipe extending in the vertical direction,
The second vertical pipe has a third branch portion communicating with the other end side of the flexible tube,
The third branch portion is provided above the bottom of the second vertical pipe,
In addition, the third branch portion has a slope that guides the drainage in the flexible pipe to the bottom of the second vertical pipe, and uses an underground heat utilization air conditioner according to any one of claims 4 to 7.
前記供給部は、上下方向にのびる第2縦パイプと、一端が前記建物内部で開口しかつ他端が前記第2縦パイプと第4分岐部を介して連通する供給パイプとを含み、
前記第4分岐部は、前記第2縦パイプに導入された外気を鈍角に曲げて前記供給パイプへと案内する請求項4乃至7のいずれかに記載の地中熱利用の空調装置。
The supply unit includes a second vertical pipe extending in the vertical direction, and a supply pipe having one end opened inside the building and the other end communicated with the second vertical pipe via a fourth branch part,
The air conditioner using geothermal heat according to any one of claims 4 to 7, wherein the fourth branch portion guides the outside air introduced into the second vertical pipe to the supply pipe by bending it at an obtuse angle.
JP2011286349A 2011-12-27 2011-12-27 Air conditioning device using geothermal heat Pending JP2013134035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286349A JP2013134035A (en) 2011-12-27 2011-12-27 Air conditioning device using geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286349A JP2013134035A (en) 2011-12-27 2011-12-27 Air conditioning device using geothermal heat

Publications (1)

Publication Number Publication Date
JP2013134035A true JP2013134035A (en) 2013-07-08

Family

ID=48910846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286349A Pending JP2013134035A (en) 2011-12-27 2011-12-27 Air conditioning device using geothermal heat

Country Status (1)

Country Link
JP (1) JP2013134035A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2581744A (en) * 1949-06-02 1952-01-08 William G Zimmerman Heating and cooling air conditioning system
JPS5654726U (en) * 1979-10-02 1981-05-13
US4538673A (en) * 1984-05-02 1985-09-03 Geo-Systems, Inc. Drilled well series and paralleled heat exchange systems
JPS62130320U (en) * 1986-02-10 1987-08-18
JP2007333360A (en) * 2006-06-19 2007-12-27 Sekisui Chem Co Ltd Air-conditioning system for utilizing geotherm
US20090260776A1 (en) * 2008-04-18 2009-10-22 Calamaro Raymond Stuart Geothermal sleeve for building structures
US20100025008A1 (en) * 2008-07-31 2010-02-04 Walford Technologies, Inc. Geothermal Heating, Ventilating and Cooling System
JP2010068748A (en) * 2008-09-18 2010-04-02 Nobuhiko Sato Temperature controlling device of underground heat exchange system
JP2011017497A (en) * 2009-07-09 2011-01-27 Panahome Corp Air conditioner using underground heat
JP2011133154A (en) * 2009-12-24 2011-07-07 Inoac Housing & Construction Materials Co Ltd Heat exchange pipe unit and method of laying heat exchange pipe

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2581744A (en) * 1949-06-02 1952-01-08 William G Zimmerman Heating and cooling air conditioning system
JPS5654726U (en) * 1979-10-02 1981-05-13
US4538673A (en) * 1984-05-02 1985-09-03 Geo-Systems, Inc. Drilled well series and paralleled heat exchange systems
JPS62130320U (en) * 1986-02-10 1987-08-18
JP2007333360A (en) * 2006-06-19 2007-12-27 Sekisui Chem Co Ltd Air-conditioning system for utilizing geotherm
US20090260776A1 (en) * 2008-04-18 2009-10-22 Calamaro Raymond Stuart Geothermal sleeve for building structures
US20100025008A1 (en) * 2008-07-31 2010-02-04 Walford Technologies, Inc. Geothermal Heating, Ventilating and Cooling System
JP2010068748A (en) * 2008-09-18 2010-04-02 Nobuhiko Sato Temperature controlling device of underground heat exchange system
JP2011017497A (en) * 2009-07-09 2011-01-27 Panahome Corp Air conditioner using underground heat
JP2011133154A (en) * 2009-12-24 2011-07-07 Inoac Housing & Construction Materials Co Ltd Heat exchange pipe unit and method of laying heat exchange pipe

Similar Documents

Publication Publication Date Title
JP4642579B2 (en) Geothermal heat collection system
CN204678778U (en) Condensing unit and refrigerator in refrigerator
JP5103070B2 (en) Support pile system for heat exchange for residential and architectural use using geothermal heat
JP4764796B2 (en) Geothermal heat extraction and heating system
JP2006207919A (en) Cooling/heating device and method using underground heat
JP2013163924A (en) Building
JP2013134035A (en) Air conditioning device using geothermal heat
JP5912924B2 (en) Basic insulation structure
JP2013148247A (en) Geothermal air conditioning device and construction method of the same
JP3148898U (en) Geothermal building
KR101771644B1 (en) Heat Exchanger
JP2013134036A (en) Air conditioning device using geo-heat
KR101815897B1 (en) Cold air and warm air supply device using underground heat
JP2004340463A (en) Air conditioner utilizing geothermal heat
JP2006153304A (en) Geotherm utilizing installation
CN207146867U (en) Drip tray, seat hang indoor set and air conditioner
JP5833064B2 (en) Thermal storage air conditioning system
JP5883685B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP5336929B2 (en) Air conditioner using geothermal heat
JP2009085553A (en) Geothermal system for building
JP2007139236A (en) Underfloor air-conditioning device and method
JP5921889B2 (en) Underfloor heating system
JP2011017497A (en) Air conditioner using underground heat
JP6434342B2 (en) Geothermal heat utilization system for base-isolated structures
JP5028638B1 (en) Geothermal utilization structure and geothermal heat exchanger buried structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160112