JP2004340463A - Air conditioner utilizing geothermal heat - Google Patents

Air conditioner utilizing geothermal heat Download PDF

Info

Publication number
JP2004340463A
JP2004340463A JP2003136676A JP2003136676A JP2004340463A JP 2004340463 A JP2004340463 A JP 2004340463A JP 2003136676 A JP2003136676 A JP 2003136676A JP 2003136676 A JP2003136676 A JP 2003136676A JP 2004340463 A JP2004340463 A JP 2004340463A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
transfer capsule
air
exhaust pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003136676A
Other languages
Japanese (ja)
Inventor
Katsuki Sano
功城 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K & S Japan Kk
Original Assignee
K & S Japan Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K & S Japan Kk filed Critical K & S Japan Kk
Priority to JP2003136676A priority Critical patent/JP2004340463A/en
Publication of JP2004340463A publication Critical patent/JP2004340463A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/03Arrangements for heat transfer optimization
    • F24S2080/05Flow guiding means; Inserts inside conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce construction cost by simplifying the construction. <P>SOLUTION: A heat exchanger 2 composed of a heat transfer capsule 5 longitudinally buried in the ground, and an exhaust pipe freely inserted to be communicated with the heat transfer capsule 5 at its lower part, is mounted in a ventilation passage 1 communicated with indoor and outdoor sides and provided with an air blower 3, the outside air is supplied into the heat transfer capsule 5 for the heat exchange with the geothermal heat, and the air after heat exchange is sent to the indoor side from the exhaust pipe 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、地熱を利用した空調装置に関する。
【0002】
【従来の技術】
従来、地中温度が地表の温度変化に影響されず、年間を通して安定した温度が保たれることを利用して、地中に埋設した通気管に外気を通して地熱と熱交換させて屋内に送り込み、夏期においては、外気温より程よく冷やかにして、冬期においては、外気温より温かくした屋内冷暖房を目的とする空調システムが提供されている。
【0003】
研究開発段階や出願段階で先行技術調査を行っておらず、記載すべき先行技術文献を知りません。
【0004】
【発明が解決しようとする課題】
しかしながら、この上記の様な空調システムでは、地面を深く堀ってそこへ通気管を匍匐状に配置して土を埋め戻すため、その通気管の埋設工事に手間、時間を要し、コストが嵩むという不具合を有していた。
又、通気管を埋設するには広い面積が必要であるため、新築の様に建物基礎下部を埋設箇所として利用できる場合を除き、例えば既設の建物では敷地に通気管を埋設するに十分な余裕がなければならなかった。
【0005】
【課題を解決するための手段】
本発明は、上記課題に鑑み、屋内外に連通すると共に、送風機を装備した通風経路中に、地中に縦長に埋設した伝熱カプセルと、該伝熱カプセル内の下方で連通する様に遊挿した排気管とから成る熱交換器を配設し、外気を伝熱カプセル内に通して地熱と熱交換させ、その熱交換された空気を排気管から屋内へ送り込む空調装置を提供することにより、十分な敷地を要せず、しかも従来に比し簡便に熱交換器を地中に埋設できる様にして上記課題を解決する。
【0006】
【発明の実施の形態】
以下本発明の一実施例を図面に基づいて説明する。
図1は地熱を利用した空調装置の一設置例を示す簡略図であり、この空調装置は、屋内外に連通する通風経路1と、該通風経路1中に配置した熱交換器2とから主に構成されている。
通風経路1は、建物Bの床下に設置した屋外連通路1aと屋内の各室に連通した屋内連通路1bとから成り、該屋内連通路1b中において、熱交換器2の近傍には、送風機3を装備すると共に、各室の送風口1cには図示しないダンパーを取付け、又屋外連通路1a中の外気導入口近傍にはフィルタ装置4を装備している。
尚、図1に示す建物Bには、床下から外気を建物Bの外壁内に自然通気させる通気路Dを設けているが、この通気路Dは必ずしも設ける必要はない。
熱交換器2は、屋外連通路1aに連結すると共に、地中に縦長に埋設した伝熱カプセル5と、屋内連通路1bに連結すると共に、伝熱カプセル5内の下方で連通する様に遊挿した排気管6とから構成されている。
又、熱交換器2は、既設の場合を除いて建物基礎F下部に埋設されるのが望ましく、その埋設箇所に伝熱カプセル5の外径に対応した縦穴をアースオーガ等の掘削機により掘削し、上部が地表より突出する様にして伝熱カプセル5を縦穴に装填し、基礎F上に打設したコンクリートにて伝熱カプセル5上部を固定している。
伝熱カプセル5は、鋼製にして、且つ、内部が空洞な円柱形に形成され、上端開口部周縁に突設したフランジに円板状の蓋体7を接合することにより空洞部を密閉している。
そして、伝熱カプセル5において、基礎F上より突出した上部側面には、屋外連通路1aとの連結管部8を伝熱カプセル5の一直径線の片側に偏倚して突設している。
蓋体7の中心には、伝熱カプセル5と同材質にしてこれより小径な排気管6の上端を挿通固定し、該上端をフレキシブル管9を介して屋内連通路1bに連結し、フレキシブル管9には断熱材10を被覆している。
伝熱カプセル5内に存する排気管6の外周面には、連結管部8から導入した外気を下方へ導く様に、適宜な螺旋軌道上に所定間隔を置いて方形板状の風向制御フィン11を突設しており、該風向制御フィン11の突端は伝熱カプセル5の内周面に当接させている。
尚、風向制御フィン11は螺旋状に連続形成しても良い。
フィルタ装置4は、屋外連通路1aの外気導入口近傍に配設され、不織布、及びセラミックボールとヤシガラ活性炭とを混合したものを内装している。
図1においては、熱交換器2が1つのものを示したが、屋内容積、その他の諸条件に応じ、図4に示す様に、熱交換器2を2つ以上連結する。
この場合、熱交換器2同士は連結管部8と排気管6とをフレキシブル管9を介して連結している。
【0007】
次に本発明に係る空調装置の作用について説明する。
送風機3の作動により、外気連通路1aを流入する空気は、フィルタ装置4を通過する際に埃やその他の不純物が除去され、伝熱カプセル5内に流入する。
この流入する空気は、図3の様に伝熱カプセル5に取付けられた連結管部8から流入するため渦流を生じ、更に伝熱カプセル5内には、風向制御フィン11が螺旋軌道上に配しているため、空気流は旋回しながらゆっくり降下する。
伝熱カプセル5降下中の空気は、伝熱カプセル5と、これに当接している風向制御フィン11と、該風向制御フィン11を介して連続している排気管6に接触して地中温度と熱交換される。
又、複数の熱交換器2を連結した場合では、空気が熱交換器2の個数分通過することにより、地中温度とほぼ完全に熱交換される。
この様に熱交換された空気は伝熱カプセル5内の排気管6を通って屋内連通路1bを経て各室へ通風される。
尚、熱交換された空気は排気管6を上昇してフレキシブル管9を通過するが、このフレキシブル管9は断熱材10にて被覆されているため、外気とは熱交換されることなく、屋内連通路1bへ導入される。
【0008】
【発明の効果】
要するに本発明は、屋内外に連通すると共に、送風機3を装備した通風経路1中に、地中に縦長に埋設した伝熱カプセル5と、該伝熱カプセル5内の下方で連通する様に遊挿した排気管6とから成る熱交換器2を配設したので、送風機3の作動により、伝熱カプセル5内に導入された外気が降下する過程で伝熱カプセル5の外壁を介して温度変動の極めて少ない地中と熱交換させられ、この熱交換された空気、即ち夏期では涼しい空気を、冬期では温かい空気を排気管6から屋内へ送風させることができる。
しかも、熱交換器2は上記構成より成るため、地面に掘削した縦穴に伝熱カプセル5を装填するだけ、容易に地中の奥深くに埋め込むことができる。
従って、本発明によれば、従来に比しその施工費を飛躍的に低減できると共に、従来の様に十分敷地がなくても、熱交換器2を埋設できる。
【0009】
排気管6の外周面の螺旋軌道上に、風向制御フィン11を伝熱カプセル5の内周面に当接する様に突設したので、伝熱カプセル5内に流入した空気を旋回させながらゆっくり降下させられると共に、風向制御フィン11が伝熱カプセル5と当接していることで、地熱が伝熱カプセル5のみならず、風向制御フィン11と排気管6とに伝導して、伝熱面積を増大させられ、伝熱カプセル5内を旋回降下する空気を効率良く地熱と熱交換させることができる。
更に、風向制御フィン11は、排気管6の外周面に突設しているため、伝熱カプセル5の内周面に設ける場合に比しその取付けが容易であり、又伝熱カプセル5内に排気管6を挿入するだけで伝熱カプセル5内における位置決めが容易に成されると共に、伝熱カプセル5を内側から支持して、その強度を向上させられる等その実用的効果甚だ大である。
【図面の簡単な説明】
【図1】空調装置の設置例を示す簡略図である。
【図2】熱交換器と排気管の斜視図である。
【図3】熱交換器を平面方向から見た断面図である。
【図4】複数の熱交換器の連結状態を示す断面図である。
【符号の説明】
1 通風経路
2 熱交換器
3 送風機
5 伝熱カプセル
6 排気管
11 風向制御フィン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner using geothermal energy.
[0002]
[Prior art]
Conventionally, utilizing the fact that the underground temperature is not affected by the temperature change of the surface of the surface and is kept stable throughout the year, the air is buried in the ground and the air is exchanged with the ground heat through the outside air and sent indoors. 2. Description of the Related Art An air-conditioning system for cooling and heating indoors which is moderately cooler than the outside temperature in summer and warmer than the outside temperature in winter is provided.
[0003]
We do not conduct prior art searches at the research and development stage or application stage, and do not know the prior art documents to be included.
[0004]
[Problems to be solved by the invention]
However, in such an air-conditioning system as described above, since the ground is dug deeply and the ventilation pipes are arranged in a creeping manner to backfill the soil, it takes time and effort to bury the ventilation pipes, and the cost is high. There was a problem of being bulky.
In addition, since burying ventilation pipes requires a large area, except for the case where the lower part of the building foundation can be used as a burial point as in new construction, for example, in existing buildings, there is enough room to bury ventilation pipes on the site. Had to be.
[0005]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION In view of the above problems, the present invention is designed to communicate indoors and outdoors with a heat transfer capsule vertically buried in the ground in a ventilation path equipped with a blower so as to communicate below the heat transfer capsule inside the heat transfer capsule. By disposing a heat exchanger consisting of an inserted exhaust pipe, passing outside air through a heat transfer capsule to exchange heat with geothermal heat, and providing an air conditioner that sends the heat exchanged air from the exhaust pipe to the indoor space. In order to solve the above-mentioned problems, a heat exchanger can be buried underground without requiring a sufficient site and more easily than in the past.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a simplified diagram showing an example of installation of an air conditioner using geothermal energy. This air conditioner mainly includes a ventilation path 1 communicating indoors and outdoors and a heat exchanger 2 arranged in the ventilation path 1. Is configured.
The ventilation path 1 includes an outdoor communication path 1a installed under the floor of the building B and an indoor communication path 1b communicating with each indoor room. In the indoor communication path 1b, a blower is provided near the heat exchanger 2. 3, a damper (not shown) is attached to the air outlet 1c of each room, and a filter device 4 is installed near the outside air inlet in the outdoor communication passage 1a.
The building B shown in FIG. 1 is provided with a ventilation path D for allowing outside air to naturally flow from under the floor into the outer wall of the building B, but the ventilation path D is not necessarily provided.
The heat exchanger 2 is connected to the outdoor communication passage 1a and connected to the indoor communication passage 1b with the heat transfer capsule 5 buried vertically in the ground, so that the heat exchanger 2 communicates with the heat transfer capsule 5 below the heat transfer capsule 5. And an exhaust pipe 6 inserted therein.
The heat exchanger 2 is preferably buried in the lower part of the building foundation F except in the case where the heat exchanger 2 is already installed, and a vertical hole corresponding to the outer diameter of the heat transfer capsule 5 is excavated in the buried place by an excavator such as an earth auger. Then, the heat transfer capsule 5 is loaded into the vertical hole so that the upper part protrudes from the surface of the ground, and the upper part of the heat transfer capsule 5 is fixed by concrete cast on the foundation F.
The heat transfer capsule 5 is made of steel, has a hollow cylindrical shape inside, and seals the hollow portion by joining a disk-shaped lid 7 to a flange protruding from the upper edge of the opening. ing.
In the heat transfer capsule 5, a connecting pipe portion 8 for connecting to the outdoor communication path 1 a is provided so as to be biased to one side of one diameter line of the heat transfer capsule 5 on an upper side surface projecting from the base F.
At the center of the lid 7, the upper end of the exhaust pipe 6 made of the same material as the heat transfer capsule 5 and having a smaller diameter is inserted and fixed, and the upper end is connected to the indoor communication path 1b via the flexible pipe 9 to form a flexible pipe. 9 is covered with a heat insulating material 10.
On the outer peripheral surface of the exhaust pipe 6 existing in the heat transfer capsule 5, a rectangular plate-shaped wind direction control fin 11 is provided at a predetermined interval on an appropriate spiral track so as to guide the outside air introduced from the connecting pipe section 8 downward. The end of the wind direction control fin 11 is in contact with the inner peripheral surface of the heat transfer capsule 5.
The wind direction control fins 11 may be formed continuously in a spiral shape.
The filter device 4 is disposed near the outside air inlet of the outdoor communication passage 1a, and contains a nonwoven fabric and a mixture of ceramic balls and coconut shell activated carbon.
Although one heat exchanger 2 is shown in FIG. 1, two or more heat exchangers 2 are connected as shown in FIG. 4 according to the indoor volume and other various conditions.
In this case, the heat exchangers 2 connect the connecting pipe portion 8 and the exhaust pipe 6 via the flexible pipe 9.
[0007]
Next, the operation of the air conditioner according to the present invention will be described.
By the operation of the blower 3, dust and other impurities are removed from the air flowing into the outside air communication passage 1 a when passing through the filter device 4 and flow into the heat transfer capsule 5.
The inflowing air flows from the connecting pipe portion 8 attached to the heat transfer capsule 5 as shown in FIG. 3 to generate a vortex. Further, in the heat transfer capsule 5, wind direction control fins 11 are arranged on a spiral track. Therefore, the air flow slowly descends while turning.
The air during the descent of the heat transfer capsule 5 contacts the heat transfer capsule 5, the wind direction control fins 11 that are in contact with the heat transfer capsule 5, and the exhaust pipe 6 that is continuous through the air flow direction control fins 11, and the underground temperature is reduced. Heat exchanged with.
Further, when a plurality of heat exchangers 2 are connected, the air passes by the number of the heat exchangers 2, so that heat is almost completely exchanged with the underground temperature.
The air thus heat-exchanged is passed through the exhaust pipe 6 in the heat transfer capsule 5 to each room via the indoor communication path 1b.
Note that the heat-exchanged air rises through the exhaust pipe 6 and passes through the flexible pipe 9. However, since the flexible pipe 9 is covered with the heat insulating material 10, the air is not exchanged with the outside air, and the indoor heat is not exchanged. It is introduced into the communication path 1b.
[0008]
【The invention's effect】
In short, the present invention provides a heat transfer capsule 5 buried vertically in the ground in a ventilation path 1 equipped with a blower 3 so that the heat transfer capsule 5 communicates indoors and outdoors with the heat transfer capsule 5 below the heat transfer capsule 5. Since the heat exchanger 2 including the inserted exhaust pipe 6 is provided, the temperature fluctuation is performed through the outer wall of the heat transfer capsule 5 in the process of lowering the outside air introduced into the heat transfer capsule 5 by the operation of the blower 3. Heat is exchanged with the underground where the heat is extremely small, and the heat-exchanged air, that is, cool air in summer and warm air in winter can be sent from the exhaust pipe 6 indoors.
Moreover, since the heat exchanger 2 has the above-described configuration, the heat exchanger 2 can be easily buried deep in the ground only by loading the heat transfer capsule 5 into the vertical hole dug in the ground.
Therefore, according to the present invention, the construction cost can be drastically reduced as compared with the related art, and the heat exchanger 2 can be buried even if there is not enough site as in the related art.
[0009]
Since the wind direction control fins 11 are protruded on the spiral orbit on the outer peripheral surface of the exhaust pipe 6 so as to contact the inner peripheral surface of the heat transfer capsule 5, the air flowing into the heat transfer capsule 5 slowly descends while swirling. At the same time, since the wind direction control fins 11 are in contact with the heat transfer capsules 5, geothermal heat is conducted not only to the heat transfer capsules 5, but also to the wind direction control fins 11 and the exhaust pipe 6, thereby increasing the heat transfer area. The air swirling down in the heat transfer capsule 5 can be efficiently exchanged with geothermal heat.
Further, since the wind direction control fins 11 protrude from the outer peripheral surface of the exhaust pipe 6, the installation is easier than when provided on the inner peripheral surface of the heat transfer capsule 5. The positioning within the heat transfer capsule 5 is easily performed only by inserting the exhaust pipe 6, and the heat transfer capsule 5 is supported from the inside to improve its strength, and the practical effect is extremely large.
[Brief description of the drawings]
FIG. 1 is a simplified diagram showing an installation example of an air conditioner.
FIG. 2 is a perspective view of a heat exchanger and an exhaust pipe.
FIG. 3 is a cross-sectional view of the heat exchanger viewed from a plane direction.
FIG. 4 is a cross-sectional view showing a connection state of a plurality of heat exchangers.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ventilation path 2 Heat exchanger 3 Blower 5 Heat transfer capsule 6 Exhaust pipe 11 Wind direction control fin

Claims (2)

屋内外に連通すると共に、送風機を装備した通風経路中に、地中に縦長に埋設した伝熱カプセルと、該伝熱カプセル内の下方で連通する様に遊挿した排気管とから成る熱交換器を配設したことを特徴とする地熱を利用した空調装置。A heat exchange system comprising a heat transfer capsule vertically buried in the ground in a ventilation path equipped with a blower while communicating indoors and outdoors, and an exhaust pipe loosely inserted so as to communicate below the heat transfer capsule. An air conditioner using geothermal energy, which is equipped with a vessel. 排気管の外周面の螺旋軌道上に、風向制御フィンを伝熱カプセルの内周面に当接する様に突設したことを特徴とする請求項1記載の地熱を利用した空調装置。The air conditioner using geothermal energy according to claim 1, wherein a wind direction control fin is provided on a spiral track on an outer peripheral surface of the exhaust pipe so as to contact an inner peripheral surface of the heat transfer capsule.
JP2003136676A 2003-05-15 2003-05-15 Air conditioner utilizing geothermal heat Pending JP2004340463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003136676A JP2004340463A (en) 2003-05-15 2003-05-15 Air conditioner utilizing geothermal heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136676A JP2004340463A (en) 2003-05-15 2003-05-15 Air conditioner utilizing geothermal heat

Publications (1)

Publication Number Publication Date
JP2004340463A true JP2004340463A (en) 2004-12-02

Family

ID=33526540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136676A Pending JP2004340463A (en) 2003-05-15 2003-05-15 Air conditioner utilizing geothermal heat

Country Status (1)

Country Link
JP (1) JP2004340463A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321383A (en) * 2006-05-31 2007-12-13 Tekken Constr Co Ltd Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
JP2008292107A (en) * 2007-05-28 2008-12-04 Furukawa Electric Co Ltd:The Heat exchanger, heat exchange system, and construction method of heat exchange system
EP2034252A2 (en) * 2007-09-08 2009-03-11 Anton Ledwon Geothermal heat exchanger
JP2009127982A (en) * 2007-11-27 2009-06-11 Sekisui Chem Co Ltd Geothermal heat using system
KR100975201B1 (en) 2009-05-28 2010-08-10 대림산업 주식회사 Integration heating, cooling and ventilation system in energy saving house
JP2011141107A (en) * 2010-01-06 2011-07-21 Norimasa Sasaki Underground heat utilization device
EP2360438A3 (en) * 2010-02-11 2014-08-27 Dynamic Blue Holding GmbH Fluid turbulator for geothermal probe
WO2015044142A1 (en) * 2013-09-24 2015-04-02 Dynamic Blue Holding Gmbh Geothermal probe with mixing elements

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321383A (en) * 2006-05-31 2007-12-13 Tekken Constr Co Ltd Heat-exchange excavated pile and snow-melting equipment utilizing geothermal heat
JP2008292107A (en) * 2007-05-28 2008-12-04 Furukawa Electric Co Ltd:The Heat exchanger, heat exchange system, and construction method of heat exchange system
EP2034252A2 (en) * 2007-09-08 2009-03-11 Anton Ledwon Geothermal heat exchanger
EP2034252A3 (en) * 2007-09-08 2012-12-26 Anton Ledwon Geothermal heat exchanger
EP2957841A1 (en) * 2007-09-08 2015-12-23 Dynamic Blue Holding GmbH Geothermal heat exchanger circuit
JP2009127982A (en) * 2007-11-27 2009-06-11 Sekisui Chem Co Ltd Geothermal heat using system
KR100975201B1 (en) 2009-05-28 2010-08-10 대림산업 주식회사 Integration heating, cooling and ventilation system in energy saving house
JP2011141107A (en) * 2010-01-06 2011-07-21 Norimasa Sasaki Underground heat utilization device
EP2360438A3 (en) * 2010-02-11 2014-08-27 Dynamic Blue Holding GmbH Fluid turbulator for geothermal probe
WO2015044142A1 (en) * 2013-09-24 2015-04-02 Dynamic Blue Holding Gmbh Geothermal probe with mixing elements

Similar Documents

Publication Publication Date Title
JP2009250581A (en) Heating and cooling system using underground heat
JP2010060247A (en) Soil heat exchanger of heat pump system using soil heat
JPS5818087A (en) Structure of heat exchanger pipe used for air conditioning system
JP2004340463A (en) Air conditioner utilizing geothermal heat
JP5103070B2 (en) Support pile system for heat exchange for residential and architectural use using geothermal heat
JP2005061786A (en) Indoor temperature adjusting structure using geotherm
JP2001289518A (en) Outside-air inlet device for building
JP2006207919A (en) Cooling/heating device and method using underground heat
JP4318516B2 (en) Geothermal exchange device
JP4764796B2 (en) Geothermal heat extraction and heating system
JP3827241B2 (en) Detached ventilation system using geothermal heat
JP5351210B2 (en) Thermal storage air conditioning system
JP6674335B2 (en) Heat pipe type air conditioner utilizing underground heat, unit for its configuration, and air conditioning method
JP3148898U (en) Geothermal building
CN211261124U (en) Shallow geothermal heat exchange device
JP3081843B1 (en) District heating and cooling system
US20120291988A1 (en) Perimeter Temperature Controlled Heating and Cooling System
JP2005273235A (en) Building using underground heat
KR101189079B1 (en) Geothermal exchanging pile
JP2009085553A (en) Geothermal system for building
JP2006153304A (en) Geotherm utilizing installation
JPS6152900B2 (en)
JP5898754B1 (en) Floor support and building air conditioning system
JP2007139236A (en) Underfloor air-conditioning device and method
JPS588937A (en) Air conditioner under floor