JP2013147946A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2013147946A
JP2013147946A JP2012007141A JP2012007141A JP2013147946A JP 2013147946 A JP2013147946 A JP 2013147946A JP 2012007141 A JP2012007141 A JP 2012007141A JP 2012007141 A JP2012007141 A JP 2012007141A JP 2013147946 A JP2013147946 A JP 2013147946A
Authority
JP
Japan
Prior art keywords
cylinder pressure
value
pressure sensor
combustion
pmax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012007141A
Other languages
English (en)
Other versions
JP5737196B2 (ja
Inventor
Yusuke Suzuki
裕介 鈴木
Akiro Furuishi
明朗 古石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012007141A priority Critical patent/JP5737196B2/ja
Publication of JP2013147946A publication Critical patent/JP2013147946A/ja
Application granted granted Critical
Publication of JP5737196B2 publication Critical patent/JP5737196B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】この発明は、広い運転領域で筒内圧センサの故障を精度よく判定しつつ、空燃比制御の実行時にも高い判定精度を実現することを目的とする。
【解決手段】ECU50は、筒内圧センサ44の出力のみに基いて、当該センサの出力感度に影響される最大筒内圧Pmaxと、出力感度に影響されない燃焼タイミング指標Tである燃焼重心CA50とを算出する。そして、燃焼重心CA50に基いて算出した正常時の最大筒内圧であるPmax推定値と、実際に得られた最大筒内圧である検出Pmax値との比率Aに基いて出力感度の異常を検出する。これにより、広い運転領域で筒内圧センサ44の出力のみに基いて感度異常を検出することができる。しかも、燃焼タイミング指標Tが空燃比制御により一定値に保持される現象を回避し、空燃比制御の実行時にも高い検出精度を実現することができる。
【選択図】図5

Description

本発明は、内燃機関の制御装置に係り、特に、筒内圧センサの故障判定機能を備えた内燃機関の制御装置に関する。
従来技術として、例えば特許文献1(特開平7−310585号公報)に開示されているように、筒内圧センサの故障判定機能を備えた内燃機関の制御装置が知られている。従来技術では、筒内圧センサにより検出した筒内圧を所定の積分区間で積分し、筒内圧積分値を算出する。また、基本燃料噴射量に基いて、正常な燃焼状態に対応する基準の筒内圧積分値(基本積分値)を算出し、実際に得られた筒内圧積分値と基本積分値とを比較することにより、筒内圧センサの故障を判定するようにしている。
特開平7−310585号公報 特開平7−332152号公報 特開平7−318458号公報 特開2010−133329号公報 特開2005−248703号公報
ところで、上述した従来技術では、基本積分値のデータ(データマップ等)を予め用意した一定の運転領域で故障判定を実行する必要があり、故障判定が可能な運転領域が制限されるという問題がある。また、全ての運転領域で故障判定を実行しようとすると、全運転領域における多数の基本積分値のデータが必要となり、データの適合工数が増加するという問題がある。
これらの問題を回避する方法としては、例えば筒内センサの出力感度(感度の誤差)の影響を受ける第1のパラメータと、出力感度の影響を受けない第2のパラメータとを比較することで、センサの故障(感度異常)を判定する方法が考えられる。ここで、第1のパラメータとしては、例えば筒内圧P、筒内容積V及び比熱比κに基いて算出される発熱量PVκや、1サイクル中における筒内圧と筒内容積との乗算値の最大値PVmaxから非燃焼時の乗算値PV0を減算して得られるパラメータΔPVmaxが挙げられる。また、第2のパラメータとしては、筒内圧Pを含む2つの指標の比率(例えばTDC前後の図示トルク比や、前記ΔPVmax,PV0の比率)が挙げられる。しかし、排気空燃比を理論空燃比の近傍に制御する空燃比制御を実行した状態では、上記2つの指標の比率がほぼ一定となるので、第1,第2のパラメータを比較しても、故障の判定が難しいという問題がある。
本発明は、上述のような課題を解決するためになされたもので、本発明の目的は、広い運転領域で筒内圧センサの故障を精度よく判定しつつ、空燃比制御の実行時にも高い判定精度を実現することが可能な内燃機関の制御装置を提供することにある。
第1の発明は、筒内圧に対応する信号を出力する筒内圧センサと、
前記筒内圧センサの出力に基いて、1サイクル中における筒内圧の最大値である最大筒内圧を算出するPmax算出手段と、
筒内ガスの燃焼タイミングに応じて変化するパラメータであって、前記最大筒内圧と相関があり、かつ、前記筒内圧センサの出力感度に影響されないパラメータである燃焼タイミング指標を、前記筒内圧センサの出力に基いて算出する指標算出手段と、
前記最大筒内圧と前記燃焼タイミング指標とに基いて前記筒内圧センサの出力感度の異常を検出する異常検出手段と、
を備えることを特徴とする。
第2の発明は、筒内圧、筒内容積及び比熱比に基いて発熱量PVκを算出し、燃焼開始クランク角での発熱量PVκと燃焼終了クランク角での発熱量PVκとに基いて任意のクランク角における燃焼質量割合を算出するMFB算出手段を備え、
前記燃焼タイミング指標は、前記燃焼質量割合が所定の基準値に達した時点のクランク角である構成としている。
第3の発明によると、前記燃焼タイミング指標は、前記筒内圧センサにより検出される筒内圧が前記最大筒内圧に達した時点のクランク角である構成としている。
第4の発明は、前記筒内圧センサの出力感度が正常な場合の最大筒内圧であるPmax推定値を、前記燃焼タイミング指標に基いて算出する正常判定値算出手段を備え、
前記異常検出手段は、前記筒内圧センサにより実際に検出された前記最大筒内圧と、前記Pmax推定値との比率が所定の正常範囲から外れている場合に、前記出力感度を異常と判定する構成としている。
第5の発明は、内燃機関の負荷状態に基いて前記Pmax推定値を補正する正常判定値補正手段を備える。
第6の発明によると、前記異常検出手段は、内燃機関の運転領域が全開領域である場合にのみ、前記出力感度の異常判定処理を実行する構成としている。
第1の発明によれば、筒内圧センサの出力から得られる最大筒内圧及び燃焼タイミング指標に基いて、筒内圧センサの出力感度の異常を検出することができる。これにより、他のセンサ出力等を補助的に利用しなくても、筒内圧センサの出力のみに基いて感度異常を検出することができ、システムを簡略化することができる。また、他のセンサの出力誤差等に影響されずに、異常検出を精度よく行うことができる。さらに、多数の判定用データ等を用意しなくても、広い運転条件(運転領域)において異常検出を実行することができ、判定用データの量やデータの適合工数を抑制することができる。しかも、燃焼タイミング指標は、空燃比制御により理論空燃比が維持されていても、筒内ガスの燃焼タイミングに応じて変化するパラメータである。このため、燃焼タイミング指標及びこれから導出されるパラメータが空燃比制御により一定値に保持される現象を回避することができ、空燃比制御の実行時にも、高い検出精度を実現することができる。
第2の発明によれば、燃焼タイミング指標として、燃焼質量割合が所定の基準値に達した時点のクランク角を用いることができる。これにより、空燃比制御の実行時にも、筒内圧センサの出力感度の異常を精度よく検出することができる。
第3の発明によれば、燃焼タイミング指標として、筒内圧センサにより検出される筒内圧が最大筒内圧に達した時点のクランク角を用いることができる。これにより、空燃比制御の実行時にも、筒内圧センサの出力感度の異常を精度よく検出することができ、また、制御装置の演算負荷を軽減することができる。
第4の発明によれば、燃焼タイミング指標に基いて算出したPmax推定値と、筒内圧センサにより実際に検出された最大筒内圧との比率が所定の正常範囲から外れている場合に、出力感度を異常と判定することができる。これにより、筒内圧センサの出力から得られる2つのパラメータの比率に基いて、感度異常を容易に検出することができる。
第5の発明によれば、正常判定値補正手段は、内燃機関の負荷状態(充填効率)に応じて最大筒内圧と燃焼タイミング指標との関係が変化しても、この変化がキャンセルされるようにPmax推定値を適切に補正することができる。これにより、充填効率を一定に保持しなくても、筒内圧センサの異常検出を実行することができる。従って、異常検出が可能な運転領域を拡大し、異常検出の機会を増やして信頼性を向上させることができる。
第6の発明によれば、異常検出手段は、内燃機関の運転領域が全開領域である場合にのみ、筒内圧センサの異常検出を実行することができる。これにより、一定の運転条件下で高い検出精度を実現することができる。
本発明の実施の形態1のシステム構成を説明するための構成図である。 燃焼開始のタイミングと最大筒内圧Pmaxとの関係を示す特性線図である。 燃焼タイミング指標の一例として、燃焼重心CA50を説明するための説明図である。 筒内圧センサの出力感度が正常な場合と異常な場合のそれぞれについて、最大筒内圧Pmaxと燃焼重心CA50との関係を示す特性線図である。 本発明の実施の形態1において、ECUにより実行される制御のフローチャートである。 本発明の実施の形態2において、ECUにより実行される制御のフローチャートである。
実施の形態1.
[実施の形態1の構成]
以下、図1乃至図5を参照しつつ、本発明の実施の形態1について説明する。図1は、本発明の実施の形態1のシステム構成を説明するための構成図である。本実施の形態のシステムは、多気筒型の内燃機関としてのエンジン10を備えている。なお、図1では、エンジン10の1気筒のみを例示している。また、本発明は、単気筒を含む任意の気筒数のエンジンに適用されるものである。エンジン10の各気筒には、ピストン12により燃焼室14が画成されており、ピストン12はエンジンのクランク軸16に連結されている。
また、エンジン10は、各気筒の燃焼室14内(筒内)に吸入空気を吸込む吸気通路18と、各気筒から排気ガスが排出される排気通路20とを備えている。吸気通路18には、アクセル開度等に基いて吸入空気量を調整する電子制御式のスロットルバルブ22が設けられている。排気通路20には、排気ガスを浄化する三元触媒等の触媒24が設けられている。また、各気筒には、吸気ポートに燃料を噴射する燃料噴射弁26と、筒内の混合気に点火する点火プラグ28と、吸気ポートを筒内に対して開閉する吸気バルブ30と、排気ポートを筒内に対して開閉する排気バルブ32とが設けられている。
また、本実施の形態のシステムは、センサ40〜44を含むセンサ系統と、エンジン10の運転状態を制御するECU(Electronic Control Unit)50とを備えている。クランク角センサ40は、クランク軸16の回転に同期した信号を出力するもので、エアフローセンサ42は吸入空気量を検出する。また、筒内圧センサ44は、例えば圧電素子を有する公知の圧力センサにより構成され、筒内圧Pに対応する信号を出力するもので、気筒毎にそれぞれ設けられている。センサ系統には、この他にも、エンジン制御に必要な各種のセンサ(スロットルバルブ22の開度を検出するスロットルセンサ、エンジン冷却水の温度を検出する水温センサ、排気空燃比を検出する空燃比センサ等)が含まれている。
ECU50は、例えばROM、RAM、不揮発性メモリ等を含む記憶回路を備えた演算処理装置により構成されている。ECU50の入力側には、センサ系統の各センサが接続されており、ECU50の出力側には、スロットルバルブ22、燃料噴射弁26、点火プラグ28等を含む各種のアクチュエータが接続されている。また、ECU50は、クランク角に応じて変化する各種のデータを、当該クランク角と共に時系列データとして記憶する機能を備えている。この時系列データには、筒内圧センサ44の出力値、及び当該出力値に基いて算出される各種のパラメータ等が含まれる。
そして、ECU50は、エンジンの運転情報をセンサ系統により検出しつつ、各アクチュエータを駆動して運転状態を制御する。具体的には、クランク角センサ40の出力に基いてエンジン回転数(機関回転数)とクランク角とを検出し、エアフローセンサ42の出力に基いて吸入空気量を算出する。また、吸入空気量、エンジン回転数等に基いてエンジンの負荷率(充填効率)KLを算出する。そして、クランク角に基いて燃料噴射時期や点火時期を決定し、これらの時期が到来したときには、燃料噴射弁26や点火プラグ28を駆動する。これにより、筒内で混合気を燃焼させ、エンジンを運転する。また、ECU50は、空燃比センサの出力に基いて、排気空燃比を理論空燃比の近傍に制御する公知の空燃比制御を実行する。さらに、筒内圧センサ44の出力に基いて、公知の燃焼制御を実行したり、ノックやプレイグニッション等を検出する。
[実施の形態1の特徴]
筒内圧センサ44の出力感度は、センサの初期不良、経時劣化、故障等により許容範囲から外れることがあるので、出力感度の異常検出を実行するのが好ましい。しかし、従来技術の方法では、異常検出を行う運転領域が限定されたり、この領域を広げるために多量の基準データを用意する必要がある。この問題を解決する方法としては、例えば筒内センサの出力感度の影響を受ける第1のパラメータと、出力感度の影響を受けない第2のパラメータとを比較することで、出力感度の異常を検出する方法が考えられる。
ここで、第1のパラメータとしては、例えば筒内圧P、筒内容積V及び比熱比κに基いて算出される発熱量PVκや、1サイクル中における筒内圧と筒内容積との乗算値の最大値PVmaxから非燃焼時の乗算値PV0を減算して得られるパラメータΔPVmaxが挙げられる。なお、パラメータΔPVmaxは、例えば特開2005−248703号公報に記載された公知のものである。一方、第2のパラメータとしては、筒内圧Pを含む2つの指標の比率(例えばTDC前後の図示トルク比や、前記ΔPVmax,PV0の比率)が挙げられる。しかし、TDC後の図示トルク及びパラメータΔPVmaxは、発熱量やトルク(燃料噴射量)に相関する特性があり、TDC前の図示トルク及び非燃焼時の乗算値PV0は、吸入空気量に相関する特性がある。従って、空燃比制御により理論空燃比を維持した状態では、上述の図示トルク比や比率(ΔPVmax/PV0)が一定となるので、これらの比率と第1のパラメータとを比較することにより出力感度の異常を検出するのは難しい。
そこで、本実施の形態では、空燃比制御の実行時にも筒内圧センサ44の出力感度の状態が正確に反映されるようなパラメータの一例として、最大筒内圧Pmaxと、燃焼タイミング指標Tとを採用し、これらのパラメータに基いて異常検出を実行する。ここで、燃焼タイミング指標Tとは、筒内ガスの燃焼タイミングに応じて変化するパラメータであって、最大筒内圧Pmaxと相関があり、かつ、筒内圧センサ44の出力感度に影響されないパラメータとして定義される。本実施の形態では、燃焼タイミング指標Tの一例として、燃焼重心CA50を採用している。以下、本実施の形態で用いるパラメータと、異常検出の方法について説明する。
(最大筒内圧Pmax)
図2は、燃焼開始のタイミングと最大筒内圧Pmaxとの関係を示す特性線図である。最大筒内圧Pmaxは、1サイクル中における筒内圧Pの最大値として定義されるもので、筒内圧センサ44の出力感度に影響されるパラメータである。燃焼開始のタイミングが早い場合には、燃焼室14の容積が小さい状態でガスが膨張することになるので、筒内圧が大きく上昇する。このため、最大筒内圧Pmaxは、図2に示すように、燃焼開始のタイミングが早いほど、大きくなる特性を有している。
(燃焼重心CA50)
図3は、燃焼タイミング指標Tの一例として、燃焼重心CA50を説明するための説明図である。この図に示す特性線は、燃焼質量割合(MFB:Mass Fraction of Burned fuel)と呼ばれる公知のパラメータであり、下記(1)式により算出される。燃焼質量割合は、図3に示すように、クランク角θが燃焼開始クランク角θsから燃焼終了クランク角θeに変化するときに、0〜100%に変化する。そして、燃焼重心CA50は、燃焼質量割合が50%に達した時点のクランク角として定義される。図3から判るように、燃焼重心CA50は、燃焼開始のタイミングが早いと進角側に移動し、燃焼開始のタイミングが遅いと遅角側に移動するので、筒内ガスの燃焼タイミングに応じて変化する。なお、下記(1)式において、PVκ(θ)、PVκ(θs)及びPVκ(θe)は、それぞれクランク角θ、燃焼開始クランク角θs及び燃焼終了クランク角θeにおける発熱量PVκを示している。
Figure 2013147946
また、燃焼重心CA50は、筒内圧センサ44の出力感度に影響されない特性を有している。詳しく述べると、まず、発熱量Q(=PVκ)は、筒内圧Pを用いて下記(2)式のように表すことができ、その値は筒内圧Pのゲインに比例する。一方、燃焼重心CA50を算出する前記(1)式には、分母・分子の何れの項にも発熱量Q(筒内圧P)が含まれる。このため、筒内圧Pのゲイン(出力感度)が変動したとしても、その影響は前記(1)式の分母・分子間でキャンセルされ、燃焼重心CA50の算出値には反映されない。
Figure 2013147946
次に、図4は、筒内圧センサの出力感度が正常な場合と異常な場合のそれぞれについて、最大筒内圧Pmaxと燃焼重心CA50との関係を示す特性線図である。図4中に実線で示す特性線Lは、センサの出力感度が正常な場合の最大筒内圧Pmaxと燃焼重心CA50との関係を表すもので、そのデータ特性(例えば、特性線Lの勾配α及び切片β)は、ECU50に予め記憶されている。この特性線Lに示すように、筒内圧センサの出力感度が正常な場合には、最大筒内圧Pmaxと燃焼重心CA50との間に一定の関係が成立する。この関係は、図4中の各データ点(○印,□印,△印)に示すように、エンジン回転数やトルクが変動した場合でも、ほぼ一定に保持される。
一方、センサの出力感度が正常な状態(基準の状態)から変化した場合には、前述したように、出力感度の変化が最大筒内圧Pmaxのみに反映され、燃焼重心CA50には反映されない。この結果、例えば出力感度が基準の感度から低下した場合には、図4中に点線で示すように、最大筒内圧Pmaxと燃焼重心CA50との関係が正常な状態から変化する。このため、本実施の形態では、任意の時点における燃焼重心CA50と前記データ特性(定数α,β)とに基いて、出力感度が正常な場合の最大筒内圧であるPmax推定値を算出する。そして、筒内圧センサ44により実際に得られた最大筒内圧である検出Pmax値と、Pmax推定値との比率Aが所定の正常範囲(Amax〜Amin)から外れている場合に、センサの出力感度を異常と判定する。
[実施の形態1を実現するための具体的な処理]
次に、図5を参照して、上述した制御を実現するための具体的な処理について説明する。図5は、本発明の実施の形態1において、ECUにより実行される制御のフローチャートである。この図に示すルーチンは、エンジンの運転中に繰返し実行されるものとする。図5に示すルーチンでは、まず、ステップ100において、エンジンの機能及び部品の異常が無いか否かを判定する。この判定が成立した場合には、ステップ102に移行し、同判定が不成立の場合には、筒内圧センサ44の感度異常を正確に検出することができないので、本ルーチンを終了する。
次に、ステップ102では、感度異常を検出するのに適した運転条件が満たされているか否かを判定する。具体例を挙げると、ステップ102では、エンジン回転数NEが2000rpm以上であり、かつ、負荷状態が全開領域(WOT領域)であるか否かを判定する。この判定が成立した場合には、ステップ104に移行し、同判定が不成立の場合には、異常検出に適した運転状態ではないので、本ルーチンを終了する。なお、全開領域とは、充填効率KLがエンジン回転数に応じて定まる実用上の最大値まで増加する運転領域として定義される。全開領域以外の運転領域では、充填効率KLを一定とした状態で異常検出を安定的に行うのが難しいので、ステップ102の判定処理では、全開領域以外の運転領域を排除するのが好ましい。これにより、一定の運転条件下で筒内圧センサの感度異常を正確に判定することができる。なお、この点については実施の形態2でも後述する。
次に、ステップ104では、筒内圧センサ44の出力に基いて検出Pmax値を算出する。また、ステップ104では、1サイクル中の各クランク角における筒内圧P、筒内容積V及び比熱比κに基いて発熱量PVκを算出し、前記(1)式により燃焼質量割合を算出する。そして、燃焼質量割合が50%に達した時点のクランク角である燃焼重心CA50を、燃焼タイミング指標Tとして算出する。なお、燃焼重心CA50は、本実施の形態における燃焼タイミング指標Tの一例であり、他の燃焼タイミング指標Tについては後述する。
次に、ステップ106では、燃焼タイミング指標T(燃焼重心CA50)に基いて、下記(3)式により正常時のPmax推定値を算出する。なお、下記(3)式中のα及びβは、前述した特性線Lの勾配及び切片に対応する定数である。続いて、ステップ108では、下記(4)式に示すように、検出Pmax値とPmax推定値との比率Aを算出する。
Pmax推定値=α×T+β ・・・(3)
A=検出Pmax値/Pmax推定値 ・・・(4)
次に、ステップ110では、比率Aが所定の正常範囲(Amax〜Amin)に収まっているか否か、即ち、Amax≧A≧Amaxが成立するか否かを判定する。ここで、上記正常範囲の境界値Amax,Amaxは、正常時のPmax推定値に対する検出Pmax値のばらつきの許容度に応じて設定され、ECU50に予め記憶されている。そして、ステップ110の判定が成立した場合には、筒内圧センサ44の出力感度が正常であると判定し、本ルーチンを終了する。一方、ステップ110の判定が不成立の場合には、センサの出力感度が正常範囲から外れている状態、即ち、出力感度が異常に低下した状態(Amin>A)であるか、または出力感度が異常に上昇した状態(A>Amax)であると判断される。そこで、この場合には、ステップ112において、筒内圧センサ44の出力感度を異常と判定する。
以上詳述した通り、本実施の形態によれば、筒内圧センサ44の出力に基いて、最大筒内圧Pmaxと燃焼タイミング指標Tとを算出し、両者の比率Aに基いて出力感度の異常を検出することができる。これにより、例えば吸気圧センサやエアフローセンサ、空燃比センサ等を含む他のセンサ出力等を補助的に利用しなくても、筒内圧センサ44の出力のみに基いて感度異常を検出することができ、システムを簡略化することができる。また、他のセンサの出力誤差等に影響されずに、異常検出を精度よく行うことができる。さらに、多数の判定用データ等を用意しなくても、広い運転条件(運転領域)において異常検出を実行することができ、判定用データの量やデータの適合工数を抑制することができる。
しかも、燃焼タイミング指標T(燃焼重心CA50)は、空燃比制御により理論空燃比が維持されていても、筒内ガスの燃焼タイミングに応じて変化するパラメータであるから、空燃比制御により燃焼タイミング指標T(及び判定用の比率A)が一定値に保持される現象を回避することができる。従って、空燃比制御の実行時にも、高い検出精度を実現することができる。
なお、前記実施の形態1では、図5中のステップ104が請求項1におけるPmax算出手段及び指標算出手段の具体例を示し、ステップ110が異常検出手段の具体例を示している。また、前記(1)式は、請求項2におけるMFB算出手段の具体例を示し、図5中のステップ106は、請求項4における正常判定値算出手段の具体例を示している。
また、実施の形態1では、燃焼タイミング指標Tとして、燃焼質量割合が50%に達した時点のクランク角である燃焼重心CA50を用いるものとした。しかし、本発明はこれに限らず、例えば図3に示すように、燃焼質量割合が所定の基準値x%に達した時点のクランク角CAxを、燃焼タイミング指標Tとして用いてよいものである。このとき、基準値xは、0〜100%のうちの任意の値に設定すればよく、50%に限定されるものではない。
また、本発明の燃焼タイミング指標Tは、燃焼質量割合が所定値に達した時点のクランク角CAxだけに限定されるものではない。即ち、本発明では、例えば筒内圧センサ44により検出される筒内圧Pが最大筒内圧Pmaxに達した時点のクランク角(以下、最大筒内圧クランク角CApmaxと称す)を、燃焼タイミング指標Tとして用いてもよい。詳しく述べると、例えば筒内圧Pが出力感度の誤差により変動したとしても、個々のクランク角における筒内圧Pの相対的な大小関係は大きく変化しない。
即ち、1サイクル中において筒内圧Pのピーク値(最大筒内圧Pmax)が出現するクランク角である最大筒内圧クランク角CApmaxは、筒内ガスの燃焼タイミングに応じて変化するパラメータであって、最大筒内圧Pmaxと相関があり、かつ、筒内圧センサの出力感度に影響されないパラメータとなる。従って、最大筒内圧クランク角CApmaxを燃焼タイミング指標Tとして用いることにより、前記実施の形態1とほぼ同様の作用効果を得ることができ、空燃比制御の実行時にも、高い検出精度を実現することができる。しかも、この場合には、前記(1)式の演算により燃焼質量割合を求める必要がないので、ECU50の演算負荷を軽減し、演算速度を向上させることができる。なお、最大筒内圧クランク角CApmaxを用いる場合の具体的な処理としては、例えば図4中のステップ104において、燃焼タイミング指標Tとして最大筒内圧クランク角CApmaxを算出し、ステップ106において、この燃焼タイミング指標T(最大筒内圧クランク角CApmax)に基いてPmax推定値を算出すればよい。
実施の形態2.
次に、図6を参照して、本発明の実施の形態2について説明する。本実施の形態は、前記実施の形態1において、充填効率KLに基いてPmax推定値を補正することを特徴としている。なお、本実施の形態では、実施の形態1と同一の構成要素に同一の符号を付し、その説明を省略するものとする。
[実施の形態2の特徴]
前記実施の形態1では、最大筒内圧Pmaxと燃焼タイミング指標Tとの関係を利用してセンサの異常検出を実行したが、より厳密に述べると、両者の関係はエンジンの負荷状態(筒内の充填ガス量)に応じて比例的に変化する。このため、実施の形態1では、異常検出を実行する運転領域を、筒内の充填ガス量がほぼ一定の状態となる全開領域に限定し、筒内の充填ガス量が検出精度に与える影響を排除する構成とした。これに対し、本実施の形態では、内燃機関の負荷状態(充填効率KL)に基いてPmax推定値を補正することにより、全開領域以外でもセンサの異常検出を実行することを特徴としている。
具体的に述べると、Pmax推定値は、燃焼タイミング指標Tと、前述の定数α,βと、充填効率KLとに基いて、下記(5)式のように算出される。この式によれば、最大筒内圧Pmax(検出Pmax値)と燃焼タイミング指標Tとの関係が充填効率KLに応じて比例的に変化しても、この変化がキャンセルされるようにPmax推定値を適切に補正することができる。
Pmax推定値=(α×T+β)×KL ・・・(5)
[実施の形態2を実現するための具体的な処理]
次に、図6を参照して、上述した制御を実現するための具体的な処理について説明する。図6は、本発明の実施の形態2において、ECUにより実行される制御のフローチャートである。この図に示すルーチンは、エンジンの運転中に繰返し実行されるものとする。図6に示すルーチンでは、まず、ステップ200において、エンジンの機能及び部品の異常が無いか否かを判定し、ステップ202では、感度異常を検出するのに適した運転条件が満たされているか否かを判定する。
そして、ステップ200,202の両方で判定が成立した場合には、ステップ204に移行し、何れかのステップで判定が不成立の場合には、本ルーチンを終了する。なお、本実施の形態では、充填効率KLに応じた補正を実行するので、感度異常を検出する領域を全開領域に限定する必要がない。このため、ステップ202では、実施の形態1(図5)のステップ102と異なり、エンジン回転数NEが2000rpm以上であるか否かのみを判定する。
次に、ステップ204では、実施の形態1と同様に、検出Pmax値と燃焼タイミング指標Tとを算出する。この場合、燃焼タイミング指標Tとしては、実施の形態1で述べたように、燃焼重心CA50、所定の燃焼質量割合x%に達した時点のクランク角CAx、及び最大筒内圧クランク角CApmaxのうち、何れのパラメータを用いてもよい。次に、ステップ206では、前記(5)式により、充填効率KLに応じて補正されたPmax推定値を算出する。そして、ステップ208〜212では、実施の形態1のステップ108〜112と同様の処理を実行し、筒内圧センサ44の出力感度を判定する。
このように構成される本実施の形態でも、前記実施の形態1と同様の作用効果を得ることができる。しかも、本実施の形態では、充填効率KLに基いてPmax推定値を補正することができるので、充填効率を一定に保持しなくても(全開領域以外でも)、筒内圧センサ44の異常検出を実行することができる。これにより、異常検出が可能な運転領域を拡大し、異常検出の機会を増やして信頼性を向上させることができる。
なお、前記実施の形態2では、図6中のステップ204が請求項1におけるPmax算出手段及び指標算出手段の具体例を示し、ステップ210が異常検出手段の具体例を示している。また、前記(1)式は、請求項2におけるMFB算出手段の具体例を示し、図6中のステップ206は、請求項4における正常判定値算出手段及び請求項5における正常判定値補正手段の具体例を示している。
10 エンジン(内燃機関)
12 ピストン
14 燃焼室
16 クランク軸
18 吸気通路
20 排気通路
22 スロットルバルブ
24 触媒
26 燃料噴射弁
28 点火プラグ
30 吸気バルブ
32 排気バルブ
40 クランク角センサ
42 エアフローセンサ
44 筒内圧センサ
50 ECU
Pmax 最大筒内圧
T 燃焼タイミング指標

Claims (6)

  1. 筒内圧に対応する信号を出力する筒内圧センサと、
    前記筒内圧センサの出力に基いて、1サイクル中における筒内圧の最大値である最大筒内圧を算出するPmax算出手段と、
    筒内ガスの燃焼タイミングに応じて変化するパラメータであって、前記最大筒内圧と相関があり、かつ、前記筒内圧センサの出力感度に影響されないパラメータである燃焼タイミング指標を、前記筒内圧センサの出力に基いて算出する指標算出手段と、
    前記最大筒内圧と前記燃焼タイミング指標とに基いて前記筒内圧センサの出力感度の異常を検出する異常検出手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 筒内圧、筒内容積及び比熱比に基いて発熱量PVκを算出し、燃焼開始クランク角での発熱量PVκと燃焼終了クランク角での発熱量PVκとに基いて任意のクランク角における燃焼質量割合を算出するMFB算出手段を備え、
    前記燃焼タイミング指標は、前記燃焼質量割合が所定の基準値に達した時点のクランク角である請求項1に記載の内燃機関の制御装置。
  3. 前記燃焼タイミング指標は、前記筒内圧センサにより検出される筒内圧が前記最大筒内圧に達した時点のクランク角である請求項1に記載の内燃機関の制御装置。
  4. 前記筒内圧センサの出力感度が正常な場合の最大筒内圧であるPmax推定値を、前記燃焼タイミング指標に基いて算出する正常判定値算出手段を備え、
    前記異常検出手段は、前記筒内圧センサにより実際に検出された前記最大筒内圧と、前記Pmax推定値との比率が所定の正常範囲から外れている場合に、前記出力感度を異常と判定する構成としてなる請求項1乃至3のうち何れか1項に記載の内燃機関の制御装置。
  5. 内燃機関の負荷状態に基いて前記Pmax推定値を補正する正常判定値補正手段を備えてなる請求項4に記載の内燃機関の制御装置。
  6. 前記異常検出手段は、内燃機関の運転領域が全開領域である場合にのみ、前記出力感度の異常判定処理を実行する構成としてなる請求項4に記載の内燃機関の制御装置。
JP2012007141A 2012-01-17 2012-01-17 内燃機関の制御装置 Expired - Fee Related JP5737196B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012007141A JP5737196B2 (ja) 2012-01-17 2012-01-17 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012007141A JP5737196B2 (ja) 2012-01-17 2012-01-17 内燃機関の制御装置

Publications (2)

Publication Number Publication Date
JP2013147946A true JP2013147946A (ja) 2013-08-01
JP5737196B2 JP5737196B2 (ja) 2015-06-17

Family

ID=49045699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012007141A Expired - Fee Related JP5737196B2 (ja) 2012-01-17 2012-01-17 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP5737196B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108367A (ja) * 2013-12-05 2015-06-11 現代自動車株式会社 単気筒燃焼位相情報と角加速度信号を利用したエンジンの燃焼位相予測装置および方法
WO2015105004A1 (ja) * 2014-01-09 2015-07-16 トヨタ自動車株式会社 内燃機関の燃焼状態検出装置
JP2016217302A (ja) * 2015-05-25 2016-12-22 トヨタ自動車株式会社 内燃機関の異常診断装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291959A (ja) * 2006-04-25 2007-11-08 Honda Motor Co Ltd 内燃機関の制御装置
JP2008025406A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 内燃機関の制御装置
JP2010174705A (ja) * 2009-01-28 2010-08-12 Toyota Motor Corp 内燃機関の制御装置
WO2011155054A1 (ja) * 2010-06-11 2011-12-15 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007291959A (ja) * 2006-04-25 2007-11-08 Honda Motor Co Ltd 内燃機関の制御装置
JP2008025406A (ja) * 2006-07-19 2008-02-07 Toyota Motor Corp 内燃機関の制御装置
JP2010174705A (ja) * 2009-01-28 2010-08-12 Toyota Motor Corp 内燃機関の制御装置
WO2011155054A1 (ja) * 2010-06-11 2011-12-15 トヨタ自動車株式会社 内燃機関の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015108367A (ja) * 2013-12-05 2015-06-11 現代自動車株式会社 単気筒燃焼位相情報と角加速度信号を利用したエンジンの燃焼位相予測装置および方法
WO2015105004A1 (ja) * 2014-01-09 2015-07-16 トヨタ自動車株式会社 内燃機関の燃焼状態検出装置
JP2015132175A (ja) * 2014-01-09 2015-07-23 トヨタ自動車株式会社 内燃機関の燃焼状態検出装置
CN105899791A (zh) * 2014-01-09 2016-08-24 丰田自动车株式会社 内燃机的燃烧状态检测装置
CN105899791B (zh) * 2014-01-09 2018-10-26 丰田自动车株式会社 内燃机的燃烧状态检测装置
JP2016217302A (ja) * 2015-05-25 2016-12-22 トヨタ自動車株式会社 内燃機関の異常診断装置

Also Published As

Publication number Publication date
JP5737196B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5397570B2 (ja) 内燃機関の制御装置
JP4581993B2 (ja) 内燃機関の燃焼異常検出装置
JP5758862B2 (ja) 内燃機関の筒内圧検出装置
JP2007120392A (ja) 内燃機関の空燃比制御装置
CN104697800B (zh) 一种检测发动机燃烧阶段的方法及装置
JP6006228B2 (ja) 筒内圧センサの異常診断装置及びこれを備えた筒内圧センサの感度補正装置
JP2017025777A (ja) 内燃機関の制御装置
JP4605060B2 (ja) 内燃機関の制御装置
JP2007231883A (ja) 内燃機関の空燃比制御装置
WO2014061405A1 (ja) 内燃機関の筒内圧検出装置
JP5737196B2 (ja) 内燃機関の制御装置
JP2013147948A (ja) 内燃機関の制御装置
JP2017223138A (ja) 内燃機関の排気温度推定装置
JP2012207656A (ja) 内燃機関の制御装置
JP2007032364A (ja) 吸気系異常検知装置
JP2011157852A (ja) 内燃機関の制御装置
JP2005054753A (ja) 内燃機関の燃料噴射制御装置
JP5742787B2 (ja) 内燃機関の異常燃焼検出装置
JP2012219757A (ja) 内燃機関の制御装置
JP2013104407A (ja) 内燃機関の制御装置
JP5614377B2 (ja) 内燃機関の制御装置
JP5488286B2 (ja) 内燃機関の燃焼状態検出システム
JP5240208B2 (ja) 内燃機関の制御装置
JP6604259B2 (ja) 内燃機関の制御装置
JP2016098733A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R151 Written notification of patent or utility model registration

Ref document number: 5737196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees