JP2013142791A - 光ファイバの加工方法、光ファイバの加工装置、光ファイバ、及び光ファイバ入出力構造 - Google Patents

光ファイバの加工方法、光ファイバの加工装置、光ファイバ、及び光ファイバ入出力構造 Download PDF

Info

Publication number
JP2013142791A
JP2013142791A JP2012003207A JP2012003207A JP2013142791A JP 2013142791 A JP2013142791 A JP 2013142791A JP 2012003207 A JP2012003207 A JP 2012003207A JP 2012003207 A JP2012003207 A JP 2012003207A JP 2013142791 A JP2013142791 A JP 2013142791A
Authority
JP
Japan
Prior art keywords
optical fiber
core
diameter
tip
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012003207A
Other languages
English (en)
Inventor
Masao Tachikura
正男 立蔵
Hei Yo
兵 姚
Kazumasa Osono
和正 大薗
Manabu Kako
学 加古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2012003207A priority Critical patent/JP2013142791A/ja
Publication of JP2013142791A publication Critical patent/JP2013142791A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】第1に、マルチコア光ファイバに接続する光ファイバ入出力構造を精度良く且つ容易に製作することができる光ファイバの加工方法、光ファイバの加工装置、光ファイバの提供し、第2に、製作が容易で且つ精度が良い光ファイバ入出力構造の提供する。
【解決手段】光ファイバは、マルチコア光ファイバに接続される接続面を有する直線状の先端部と、該先端部よりも径が太い直線状の基部と、前記先端部と前記基部との間に形成された曲り部と、を含む単一のコアを有する光ファイバであって、前記基部と前記先端部とは、互いに平行で且つ所定の軸ずれがある。
【選択図】図1

Description

本発明は、マルチコア光ファイバに接続する複数本の光ファイバからなる光ファイバ入出力構造に関するものであって、特に、該光ファイバ入出力構造を製作する上で使用する光ファイバの端部に特徴があり、光ファイバの加工方法、光ファイバの加工装置、光ファイバ、及び光ファイバ入出力構造に関する。
近年、大容量光通信用に、1本の光ファイバに複数のコアを形成した構造のマルチコア光ファイバが検討されている。代表的構造は7つのコアを形成したものである。図13はその断面構造である。図13に示すマルチコア光ファイバ100は、7つのコア100−1の各々の隣接間隔が均等になるように、三角格子状に配置されている。
マルチコア光ファイバ100は、一般の光ファイバ同様に、コア100−1の部分にドーパントを加えることにより、周りのクラッド100−2よりも屈折率を高くすることで光を閉じ込め、光ファイバの長手方向に光を伝搬させるようにしている。また、シングルモード伝送用に小さな径のコアを形成したもの、多モード伝送用に大きな径のコアを形成したものがある。多モード伝送用の大きな径のコアの場合は、屈折率分布を工夫したグレーデッドインデックス型のコアにするのが高速伝送のためには好ましい。
マルチコア光ファイバは、「1本で一般の光ファイバの複数本分の機能を持つので高速伝送に有利であること」、「各コアの長さが均等になるためにパラレル伝送に適すること」、「複数本の一般の光ファイバを束ねたときよりも外径を小さくできること」という利点がある。ただし、そもそも、マルチコア光ファイバには、「各コアに個別に信号光を入れること」、「各コアから個別の信号光を取り出すこと」に技術的課題があり、そのための入出力デバイスの検討が進められている。入出力デバイスの代表的なものには、レンズによる空間光学系を用いたものと、マルチコア光ファイバと複数本の光ファイバとを直接接続したものとがある。
マルチコア光ファイバと複数本の光ファイバとを直接接続する方法における原理を図14に示す。マルチコア光ファイバ100のコア100−1と同数の入出力用の光ファイバ101を束ね(バンドル化)、束ねられた光ファイバ101の端部(接続面)、すなわち、光ファイバ入出力構造をマルチコア光ファイバ100の端部(接続面)に突き合わせて接続する。図14では、光の進行方向を矢印で示し、入出力用の光ファイバ101からマルチコア光ファイバ100に光(信号光)を入れるように表示しているが、逆に、マルチコア光ファイバ100から入出力用の光ファイバ101へと光を出す用途にも利用することもできる。
ただし、マルチコア光ファイバ100と複数本の光ファイバ101とを直接接続する方法では、マルチコア光ファイバ100のコア100−1の配列と、束ねられた複数本の光ファイバ101のコア101−1の配列とを一致させることが必要であり、そこに技術的課題があった。
そもそも、上述したマルチコア光ファイバの利点の一つである「複数本の一般の光ファイバを束ねたときよりも外径を小さくできること」という利点を活かすとなると、複数本の光ファイバ101における束ねた後の外径、すなわち、光ファイバ入出力構造の外径の方をマルチコア光ファイバ100の外径に合わす必要があるが、例えば、束ねる複数本の
光ファイバ101の各々の外径を小さく加工することで、光ファイバ入出力構造の外径を小さくする方法がある。この方法だと、光ファイバ101の各々が一般的な光ファイバに比べて細くなるため、光ファイバの曲げ剛性が外径の4乗に比例することを考えると、束ねる光ファイバ101の各々の曲げ剛性の著しい低下が考えられる。これでは、光ファイバ入出力構造を製作するべく、複数本の光ファイバ101を束ねる際、光ファイバ101の各々に対する取り扱いが難しくなるため、結果として、光ファイバ入出力構造において、コア101−1の配列を精度良く、製作することが難しかった。なお、石英ガラスを素材とする光ファイバの一般的な外径は125μmであり、次によく使用される光ファイバの外径は80μmである。
そこで考えたのが、マルチコア光ファイバと接続する光ファイバの端部のみを細く加工してバンドル化して、光ファイバ入出力構造を製作する方法である。
特許文献1では、ファイバレーザから出射されるレーザ光を集光するという異なる目的ではあるが、光ファイバの端部を細くする加工方法に関するアイデアが記述されている。特許文献1の加工方法としては、光ファイバのクラッド部を所定範囲で研削し、前記複数の光ファイバの研削された前記クラッド部の研削面を互いに密着させて配列する方法と、バンドル化した光ファイバの中間部を加熱しながら引き伸ばして細くし、引き伸ばされた前記中間部の中央で切断する方法とが記述されている。
また、特許文献2では、液相化学エッチングを用い、光ファイバの端部をエッチング液に浸漬してクラッド外表面を溶かすことにより小径化し、複数の前記光ファイバの小径に加工された端部を束ねてアレイ化する技術が記載されている。
特開平11−23867号公報 特開2004−101989号公報
特許文献1、2などに記載された技術を用いて、マルチコア光ファイバと接続する光ファイバ入出力構造に使用する光ファイバの端部を形成することは可能であるが、現実的には以下の問題があった。
複数本の光ファイバの端部を加工し束ねることで、光ファイバ入出力構造を製作する方法では、光コネクタフェルールのような接続部材に設けられた一つの貫通孔に、光ファイバの各々を挿入する手法が一般的であるが、この手法だと、該挿入の際、加工した光ファイバの端部が弾性変形する可能性が高い。これでは、該挿入において、光ファイバの端部と貫通孔の内面との間で摩擦が大きくなり、光ファイバの損傷の原因となる。光ファイバの損傷は、光学的に損失となる可能性もあり、問題である。つまり、精度良く、光ファイバ入出力構造を製作することが難しいという問題があった。
更に、加工した光ファイバの端部は、細く、曲げ剛性が極端に小さくなっているので、座屈しやすく、これにより、光ファイバの端部を貫通孔に挿入し難く、その結果、光ファイバ入出力構造が製作し難いという問題があった。
そこで、上記問題を解消するべく、複数本の光ファイバの端部を加工し束ね、さらに、該束ねた光ファイバの端部を加熱溶融し一体化することで、光ファイバ入出力構造を製作するという方法もあるが、該方法をもってしても、以下の問題があった。
それは、そもそも、光ファイバの端部に対して、精度良く加工することが難しいことから、最終的に一体化された光ファイバ入出力構造において、製作毎で外径の均一性がなく、また、一体化された部分における真直性及びコア間隔などの加工精度が悪いという問題があった。つまり、精度良く、光ファイバ入出力構造を製作することが難しいという問題があった。
そこで、本発明は、上記事情に鑑みなされたもので、第1の目的として、マルチコア光ファイバに接続する光ファイバ入出力構造を精度良く且つ容易に製作することができる光ファイバの加工方法、光ファイバの加工装置、光ファイバの提供を目的とし、第2の目的として、製作が容易で且つ精度が良い光ファイバ入出力構造の提供を目的とする。
本発明の第1の態様は、マルチコア光ファイバに接続する光ファイバ入出力構造に使用される光ファイバの加工方法において、前記光ファイバの2箇所を所定の軸ずれを有する状態で固定する光ファイバ固定工程と、前記光ファイバ固定工程後に、固定した2箇所の間に位置する前記光ファイバを加熱し溶融することにより、前記光ファイバに前記軸ずれに対応した曲り部を形成する曲り部形成工程と、前記曲り部形成工程後に、形成された前記曲り部よりも前記マルチコア光ファイバとの接続側に位置する前記光ファイバの部分において、該光ファイバの外径を細径化することにより、細径部を形成する細径部形成工程と、前記細径部形成工程後に、形成された前記細径部の領域内で前記光ファイバを切断することにより、前記マルチコア光ファイバに接続される接続面を有する先端部を形成する先端部形成工程と、を有することを特徴とする光ファイバの加工方法である。
本発明の第2の態様は、第1の態様に記載の光ファイバの加工方法において、前記細径部形成工程は、前記曲り部形成工程における前記加熱を、前記曲り部よりも前記マルチコア光ファイバとの接続側に位置する前記光ファイバの部分に、連続的に移動し前記光ファイバを引き伸ばすことにより、前記光ファイバを細径化することを特徴とする光ファイバの加工方法である。
本発明の第3の態様は、第1の態様に記載の光ファイバの加工方法において、前記光ファイバは、コアの周囲のクラッドに複数の空孔を有するホーリーファイバであり、前記細径部形成工程は、加熱し溶融することで前記ホーリーファイバの前記複数の空孔を消滅させることにより、前記光ファイバを細径化することを特徴とする光ファイバの加工方法である。
本発明の第4の態様は、第2または第3の態様のいずれかに記載の光ファイバの加工方法において、前記曲り部形成工程においては、前記光ファイバへの加熱を次第に強くし、前記細径部形成工程においては、前記光ファイバへの加熱を一定にすることを特徴とする光ファイバの加工方法である。
本発明の第5の態様は、第2〜第4の態様のいずれかに記載の光ファイバの加工方法において、前記細径部をエッチング液に浸して、前記細径部を更に細径化することを特徴とする光ファイバの加工方法である。
本発明の第6の態様は、第1〜第4の態様のいずれかに記載の光ファイバの加工方法を実施する光ファイバの加工装置であって、前記光ファイバの2箇所を所定の軸ずれを有する状態で固定する光ファイバ固定手段と、固定した2箇所の間に位置する前記光ファイバを加熱する加熱手段と、前記光ファイバ固定手段によって固定した2箇所の間に位置する前記光ファイバの部分に対し、前記加熱手段を移動させると共に前記加熱手段による加熱
の強さを時間的に制御する制御手段と、を備えたことを特徴とする光ファイバの加工装置である。
本発明の第7の態様は、第6の態様に記載の光ファイバの加工装置において、前記加熱手段による加熱中に、前記光ファイバ固定手段によって固定した2箇所のうち一方を固定した状態のまま、他方を移動させることにより、前記光ファイバを引き伸ばす光ファイバ延伸手段を備えたことを特徴とする光ファイバの加工装置である。
本発明の第8の態様は、マルチコア光ファイバに接続される接続面を有する直線状の先端部と、該先端部よりも径が太い直線状の基部と、前記先端部と前記基部との間に形成された曲り部と、を含む単一のコアを有する光ファイバであって、前記基部と前記先端部とは、互いに平行で且つ所定の軸ずれがあることを特徴とする光ファイバである。
本発明の第9の態様は、マルチコア光ファイバに接続される接続面を有する直線状の先端部と、該先端部よりも径が太い直線状の基部と、前記先端部と前記基部との間に形成された曲り部と、を含む単一のコアを有する光ファイバであって、前記先端部の軸は、その先端側に向かうにつれて前記基部の軸の延長線から次第に離れる方向に傾斜していることを特徴とする光ファイバである。
本発明の第10の態様は、第8または第9の態様に記載の光ファイバにおいて、前記光ファイバは、コアの周囲のクラッドに複数の空孔を有するホーリーファイバであり、前記先端部では前記複数の空孔が消滅して細径となっていることを特徴とする光ファイバである。
本発明の第11の態様は、第8〜第10の態様のいずれかに記載の前記光ファイバを複数本束ねた、マルチコア光ファイバと接続する光ファイバ入出力構造であって、前記光ファイバの前記基部を束ねることにより、複数の前記光ファイバの前記先端部の接続面の各コアが、前記マルチコア光ファイバの接続面の各コアに対向する配置となっていることを特徴とする光ファイバ入出力構造である。
本発明によれば、第1の効果として、マルチコア光ファイバに接続する光ファイバ入出力構造を精度良く且つ容易に製作することができる光ファイバの加工方法、光ファイバの加工装置、光ファイバの提供をすることができ、第2の効果として、製作が容易で且つ精度が良い光ファイバ入出力構造の提供をすることができる。
本発明の実施形態に係る光ファイバの縦断面図である。 本発明の光ファイバに使用するホーリーファイバの代表例の横断面図である。 ホーリーファイバの空孔消滅による外径の細径化の計算結果を示すグラフである。 本発明の光ファイバを束ねて構成した光ファイバ入出力構造の一実施形態を示すもので、(a)は光ファイバ被覆部の横断面図、(b)は全体の縦断面図である。 本発明の第一の実施形態に係る光ファイバの加工装置の概略構造を示すもので、(a)は平面図、(b)は正面図である。 図5の光ファイバの加工装置を用いた本発明の第一の実施形態に係る光ファイバの加工方法を説明する説明図である。 第一の実施形態の光ファイバの加工方法に関わるファイバ引張り速度と細径化部の外径の関係を求めるための計算モデルである。 光ファイバ引張り速度Vと細径部外径dとの理論的な関係を示すグラフである。 本発明に係る光ファイバ入出力構造の他の実施形態を示すもので、(a)は光ファイバ被覆部の横断面図、(b)は全体の縦断面図である。 本発明の第二の実施形態に関わる光ファイバの加工装置の概略構造を示し、(a)は平面図、(b)は正面図である。 本発明の第三の実施形態に関わる光ファイバの加工装置の概略構造を示し、(a)は平面図、(b)は正面図である。 本発明の光ファイバの加工方法の第三の実施形態におけるファイバ引張り速度と細径化部外径の関係を求めるための計算モデルである。 マルチコア光ファイバの代表的構造の断面図である。 マルチコア光ファイバに直接接続する従来の入出力デバイスの構造を示す概念図である。 シングルモードファイバにおけるコア径とモードフィールド径との関係の一例を示すグラフである。
以下に、本発明に係る光ファイバ、光ファイバの加工方法および光ファイバの加工装置、並びに光ファイバ入出力構造の実施形態を説明する。
(光ファイバ)
図1(a)〜(c)に、本発明の実施形態に係る光ファイバの形状をそれぞれ示す。図1(a)、(c)は一般的なシングルモードファイバまたは多モードファイバを加工したもの、図1(b)はホーリーファイバを加工したものである。光ファイバは、マルチコア光ファイバと接続する光ファイバ入出力構造を構成するものである。
光ファイバ1の円形断面の中央には単一のコア1−1があり、その周りの部分がクラッド1−2である。光ファイバ1は石英ガラスからなり、例えばコア100−1の部分に屈折率を高くするドーパントが添加されている。図1(b)のホーリーファイバにおいては、さらにクラッド1−2にはコア1−1の周囲を取り囲むように複数の空孔1−3が形成されている。図1(a)〜(c)には、被覆(図示せず)を除去した光ファイバ1が示されている。
被覆を除去した光ファイバ1は、マルチコア光ファイバに接続される接続面を有する直線状の先端部1cと、この先端部1cよりも径が太い直線状の基部1aと、基部1aと先端部1cとの間に形成された曲り部1bとを有する。先端部1cの端面は、マルチコア光ファイバに対向して接続される接続面である。先端部1cから遠ざかる位置(図に示されていない更に左側の位置)の基部1aの外周には、被覆が施されている。曲り部1bは、基部1aから先端部1cへと緩やかに曲がって形成されている。ここで、曲り部1bの形状は、光ファイバ1を加工して形成した加工端部に起因する通信光の伝搬損失が0.5d
B以下、より好ましくは0.3dB以下となるように緩やかに曲がった形状にされる。ま
た、曲り部1bの外径は、光ファイバ加工前の元の基部1aの外径Dから細径加工された先端部1cの外径dへと緩やかにテーパー状に縮径して形成されている(D>d)。先端部1cは、後述する光ファイバの加工方法の細径部形成工程において、細径化される細径部であり、先端部1cの外径dは、先端部1cの全長にわたって略均一である。
基部1aと先端部1cとは、ともに真直(真っ直ぐ)である。図1(a)、(b)の光ファイバ加工端部では、基部1aと先端部1cとは、互いに平行で且つ所定量、軸(中心軸)がずれている。Sが基部1aの中心軸、Sが先端部1cの中心軸であり、両軸はΔxだけずれている。軸ずれ量Δxは、例えば図4に示すように、複数本の光ファイバの
光ファイバ被覆部5を束ねたときに、束ねられた光ファイバ1の先端部1cが隙間なく密接した状態となるように設定されている。また、密接状態の複数本の先端部1cの各コアが、マルチコア光ファイバ100の各コアに対向して配置されるように、先端部1cの外径および先端部1cのコアの径が設定されている。
また、ホーリーファイバを加工した、図1(b)の光ファイバでは、曲り部1bにおいて、空孔1−3は次第に縮小し、曲り部1bの途中で空孔1−3が消滅して細径化されている。
図1(c)の光ファイバにおいても、基部1aと先端部1cは真直であるが、先端部1cは、その先端側に向かうにつれて、基部1aの中心軸S(その延長線を含む)から次第に離れる方向に傾斜(図中、右下がりに傾斜)している。基部1aの中心軸Sと平行な軸(中心軸)Sに対して、先端部1cの軸(中心軸)Sは所定の傾斜角Δθで傾斜している。このような傾斜を先端部1cに付与することで、上述したように、図4に示すように複数本の光ファイバの光ファイバ被覆部5を束ねたときに、束ねられた光ファイバ1の先端部1cが、図1(a)、(b)の光ファイバの場合よりも更に密接・密着した状態となる。
上記実施形態の光ファイバでは、先端部1cは、光ファイバ1の基部1aを縮径した細径部となっており、先端部1cのコアとマルチコア光ファイバのコアとの接続関係を、シングルモードファイバ、多モードファイバ、ホーリーファイバについて、次に考察する。
シングルモードファイバの場合は、そのモードフィールド径は、接続対象のマルチコア光ファイバの各コアのモードフィールド径と同等にすることが低接続損失を確保するために望ましい。後述する本発明の実施形態に係る光ファイバの加工方法では、光ファイバを加熱し溶融させて延伸させることにより外径を細く加工しており、この光ファイバ外径加工に伴ってコアも小さくなるが、ある程度コアを小さくしていくと、モードフィールド径が逆に大きくなる特性があることから、光ファイバとマルチコア光ファイバとのモードフィールド径の整合が可能である。
図15には、シングルモードファイバの場合に、コア径とモードフィールド径との関係の一例を示す。この関係は伝送する光の波長やコアの屈折率分布で変化する。図15は、伝送する光の波長が1.55μmの場合であり、コア径が10μmのときと6μmのとき
で、モードフィールド径がほぼ同じである。したがって、この場合には、マルチコア光ファイバのコア径が10μm(または6μm)のときに、このマルチコアファイバに接続する光ファイバにおける細径ファイバ、すなわち、上記の先端部1cのコア径を6μm(または10μm)にすれば低損失に接続できることになる。
また、多モードファイバの場合には、細径の先端部1cの端面(接続面)でのコア径を接続対象のマルチコア光ファイバの各コアのコア径と同等にすることが望ましい。ただし、光の伝搬方向が一方向に決まっているときには、光を受ける受け側のファイバのコア径が大きくなるようにしてもよい。
図2は、上記図1(b)で用いられるホーリーファイバ(光ファイバ)1の代表例の断面構造図である。このホーリーファイバ1は、石英ガラスを素材とし、中心にあるコア1−1には例えばゲルマニウムが添加され、コア1−1の屈折率はクラッド1−2の屈折率よりも高くなっている。コア1−1の周囲のクラッド1−2には、6つの同径の空孔1−3の中心が、コア1−1を中心とする同一の円周上に等間隔に配置されている。これまでに開発されたホーリーファイバは、従来の空孔を有しない光ファイバに対して光学特性面での違い(たとえば曲げ損失の低減)を持つことを特徴とし、曲げ損失を低減したホーリーファイバはHAF(hole-assisted fiber)と呼ばれる。HAFは、コアに近接して空
孔を設ける必要がある。しかし、本実施形態で有用とするホーリーファイバは、単に空孔の総断面積が大きいものであって、HAFとは異なり、コア1−1に近接して空孔1−3を設ける必要はない。図2の構造では、空孔1−3を大きくするために、空孔1−3をコア1−1に近接せずに離れるように配置しているので、空孔1−3は光学特性に影響しにくい。
もちろん、本発明の光ファイバで使用するホーリーファイバは図2の構造にかぎらない。例えば、空孔を2重リング状に配置(コアの周囲の2つの同心円上にそれぞれ空孔を配置)するなど、コアに近接して空孔を配置して、HAFの機能を持たせるようにしてもよい。コアに近接して空孔を配置した方が、本発明の光ファイバは曲り部を含むため、曲げ損失が生じにくい利点がある。また、一般的なHAFは、通常、空孔の総断面積は小さいので外径縮小の効果は落ちるが、そのようなHAFでも本発明に適用することができる。
また、HAFのコアは通常シングルモード仕様であるが、本発明の光ファイバは、マルチコア光ファイバの種類に合わせて、コア径や屈折率を大きくしたマルチモード伝送用のコア仕様であってもよい。
図2に示す空孔の総断面積が大きい特別仕様のホーリーファイバ1を用いる場合、ファイバを細径に加工したときに、コアの縮小率を軽減できる利点と、空孔の総断面積を調整することでコア縮小率を調整できる利点がある。
ホーリーファイバ1の外径をD、空孔の直径をd、空孔の数をnとすれば、空孔を消滅だけさせたときの外径D´は次式で求まる。
Figure 2013142791
図3は式(1)を用いて計算した結果を示すグラフであり、空孔が6つで外径D=80μmの場合である。たとえば空孔径dを20μmにした場合、単に全空孔を消滅させるだけでも、コア径を保ったまま外径を約63μmにできることになる。後述するように、さらに延伸処理により、あるいはフッ酸でのエッチング処理(この場合、コア径が変化しない)により、任意の外径にまで細くすることができる。またシングルモード伝送用のマルチコア光ファイバの場合、空孔の配置を工夫して曲げ損失が生じにくいホーリーファイバを用いれば、損失の小さな光ファイバをコンパクトに実現できる利点もある。
(光ファイバ入出力構造)
図4は、上記図1(a)〜(c)の光ファイバを複数本用いた、マルチコア光ファイバと接続する光ファイバ入出力構造(マルチコア光ファイバ接続用インターフェース)の構造図である。接続対象であるマルチコア光ファイバ100は、図13に示すような7つのコア100−1が三角格子状に配列された構造のものである。図4(a)は、被覆(心線被覆)2がされた光ファイバ被覆部5を束ねた部分の横断面を表わし、図4(b)は、図4(a)のB−B断面であって光ファイバの全体形状を表わしている。上述したように、適正な軸ずれ量Δxとなるように光ファイバを形成することにより、光ファイバ被覆部5を稠密に束ねることによって、細径の先端部1cも自動的に密接した状態で配列される。更に、先端部1cはそれぞれ真直になっていることから、束ねるための単一の貫通孔(フェルールの貫通孔など)に容易に挿入することができ、挿入時に座屈などが発生し難い。なお、図4の光ファイバ入出力構造の中心部の光ファイバ1は、その外周の6本の光ファイバ1とは異なり、曲り部1bがなく真っ直ぐで先端部が細径となっている(細径の先端部と、この先端部よりも太径の基部とからなる。)。
光ファイバ被覆部5の外径を250μmとすれば、7つの光ファイバ被覆部5を稠密に束ねた部分に外接する外接円の直径は750μmである。また光ファイバ1の先端部1cの外径を125μmの1/3の41.7μm程度に加工すれば、先端部1cを束ねた部分
に外接する外接円の直径は125μmとなる。これらの寸法は、被覆部外径0.9mm、
光ファイバの外径125μmに対応したもっとも一般的な光コネクタフェルールで十分対応できることになる。マルチコア光ファイバも、コア配置と外径を、この光ファイバ入出力構造の光ファイバのバンドル部に整合させた構造にすると、実用面での利点が大きい。光ファイバ外径が不整合の場合には、フェルール内のファイバガイド孔の寸法を別に設計すればよい。
束ねた光ファイバをフェルール内に挿入して接着剤で固定し、先端を研磨すれば、光ファイバのフェルールと、同じコア配置のマルチコア光ファイバが挿入され先端が研磨されたマルチコア光ファイバのフェルールとの接続が可能になる。コア位置が合うように精密な回転調整が必要であるが、光コネクタのスリーブ内でフェルール研磨面同士を接合させて回転調整し、接着剤で固定すれば安定な接続部が形成できる。回転調整は、たとえば、本発明の光ファイバの基部側の一端から光を入れ、マルチコア光ファイバの基部側の他端から出射する光の光量をモニタして、光量が最大になる回転位置にすることで実現できる。
また、光コネクタにはフェルールの回転止めが加工されているものが多いが、その寸法精度を高めて接続時の回転角の変動を防止すれば、着脱可能な光コネクタ接続も可能である。
なお、マルチコア光ファイバと接続する本発明の光ファイバ入出力構造は、図4に示した光ファイバ入出力構造に限定されるものではない。例えば、マルチコア光ファイバの接続面のコア配置が図14に示すような1重のリング状配置であり、そのリング状配置のコア数が6より大きい場合であっても、図4に示した中央の光ファイバ(曲り部がなく真っ直ぐな光ファイバ)の寸法を、被覆部の外径とクラッド径の比率を保ったまま大きくすることにより、それをリング状に取り巻く光ファイバの数を、マルチコア光ファイバに整合させて増やすことで対応できる。なお、マルチコア光ファイバのコアがリング状配置の場合には、光ファイバ入出力構造の中央の光ファイバは、必須なものではなく、例えばコアがないガラスファイバなどを用いてもよい。また、マルチコア光ファイバのコア配置が2重リング状であっても、軸ずれ量Δxが異なる2種類の光ファイバを用意すれば対応できる。
また、マルチコア光ファイバのコア配置が、例えば正方格子配置などであっても、本発明の光ファイバ入出力部は対応できる。具体的には、図9に示すように、正方形の4つの頂点位置にコア100−1が配置されているマルチコア光ファイバ100に対しては、4本の光ファイバの曲り部1bによる軸ずれ量Δxを特定量に設定し、4本の光ファイバ被覆部5を正方格子状に束ねることによって、4本の光ファイバ1の先端部1cが正方格子状に密接した状態で配列されるようにすればよい。
(第一の実施形態に係る光ファイバの加工装置および光ファイバの加工方法)
〈光ファイバの加工装置〉
図5(a)、(b)は本発明の実施形態に係る光ファイバの加工装置の概略構造を示すもので、図1の光ファイバを製作するための装置である。ここで、図5(a)は上方から眺めた平面図、図5(b)は水平方向から眺めた正面図である。図5(b)では、放電電極15の図示を省略している。
V溝部品10の両端部にはV溝台12があり、光ファイバ1を取り付けるV溝11が形成されている。V溝台12、12間には、光ファイバ1の加熱作業を行うための間隙部(
空隙部)13がある。このような構造のV溝部品10は、市販の光ファイバ融着接続機のV溝部品に類似するが、両側のV溝11、11の高さを変えて所定量Δxだけ上下にずらしていることが大きな違いである。これは、光ファイバ1を所定の形状に曲げるための工夫である。
図5に示したように、光ファイバ1は、光ファイバ被覆部5を移動台17上にクランプ14−3で固定するとともに、被覆2が除去された裸部分の光ファイバ1をV溝台12、12のV溝11、11に固定する。このV溝11への固定用に、クランプ14−1、14−2を備える。なお、移動台(光ファイバ延伸手段)17は、光ファイバ1を引き伸ばす方向(光ファイバ1の軸方向)に移動できるようになっている。この移動台17は、光ファイバ1を細く加工するためのものであり、光ファイバ1の放電加熱時に移動させながら光ファイバ1の一端を引っ張って光ファイバ1を延伸させることで細くするのである。なお、移動台17側のV溝台12のV溝11に設置された光ファイバ1を固定するクランプ14−2は、光ファイバ1をV溝11へ押さえつけて位置決めするものであるが、その押圧力は小さくしてあるため、移動台17の動作によって、光ファイバ1はこのV溝11を滑って動くことができる。クランプ14−1、14−3は、移動台17の動作によって光ファイバ1がV溝11を滑って動かないような押圧力で固定している。また、放電加熱のため、加工装置には、間隙部13に1対の放電電極(加熱手段)15,15を配置してある。放電電極15,15間には放電プラズマ領域16が形成され、放電プラズマ領域16にある部分の光ファイバ1が加熱される。放電電極15,15には、市販の光ファイバ融着接続機と同様の放電電源回路(制御手段)が接続されており、これにより、加熱の強さと加熱手段の移動とを時間的に制御することができる。
〈光ファイバの加工方法〉
次に、この光ファイバの加工装置の使用による第一の実施形態に係る光ファイバの加工方法について述べる。
まず、光ファイバ(ホーリーファイバも含む)1の被覆2を除去し、被覆2が除去された光ファイバ1の2箇所を、V溝部品10のV溝台12、12のV溝11、11上に設置すると共に、光ファイバ被覆部5を移動台17上に設置する。そして、V溝11、11上に設置した光ファイバ1の2箇所をクランプ(固定手段)14−1,14−2でそれぞれ固定すると共に、移動台17上の光ファイバ被覆部5をクランプ14−3で固定する(光ファイバ固定工程)。
次に、固定された光ファイバ1に対して、(1)曲げ工程(曲り部形成工程)と、(2)細径化工程(細径部形成工程)の順に連続して加工を行う。図6は、これら加工工程の説明図である。
放電電極15による加熱前の光ファイバ1は、軸をずらしてV溝部品10に固定したために、応力が加わっている(なお、図6(a)は曲げ工程および細径化工程後の光ファイバ1の状態である)。したがって、固定した2箇所の間(V溝台12、12間)に位置する光ファイバ1の一部を放電加熱して軟化させると、その部分で応力を緩和させるように、曲がり変形が生じる。ただし、加熱領域が狭いとその曲がりがきつくなって大きな光損失が生じてしまうので、本実施形態では、図6(c)に示すように、放電電極15の移動とともに放電電流Iを徐々に増加させる(加熱温度を徐々に高くする)ことにより、加熱開始時の光ファイバ1の加熱箇所の粘度は高く、その後次第に粘度が小さくなるようにする。このことで、曲げ変形部分(曲り部1b)を拡大することができ、急な曲がりが生じない。曲がり形状がほぼ形成された時点から、図6(b)に示すように、放電電極15による放電を持続させながら光ファイバ1を引張り方向に、すなわち移動台17をマルチコア光ファイバと接続される側方向(光ファイバ1の基部(光ファイバ被覆部5)から離れ
る方向)に移動させる。これにより、光ファイバ1の先端側(マルチコア光ファイバとの接続側に位置する光ファイバ1の部分)が引き伸ばされて細径化され、細径部1dが形成される。
なお、この細径化工程においては、図1(a)、(b)の光ファイバを形成する場合には、光ファイバ1の温度を十分上げて溶融させ、光ファイバ1に張力が加わらないようにする。
もし光ファイバ1の粘度が高い状態で引っ張ると、加熱箇所の左側の光ファイバ1部分に曲げモーメントが働いた状態が維持されるため、加工後にその曲げモーメントが解消された状態では、細径部1d(先端部1c)が右下がりになった形状になってしまう。十分に温度を高めて粘度を小さくすると、引っ張っても表面張力しか作用しないため、上記曲げモーメントは小さくなるので、この変形は無視できるようになる。
上記の曲げモーメントの影響を受ける場合でも、放電電極15による加熱温度や移動台17の移動速度は一定なので(図6(b)、(c))、曲げモーメントは一定であり、光ファイバ1の真直性は保たれる。細径部1d(先端部1c)が右下がりの方が、図4の形状に束ねる際に先端部1cの纏まりが良くなって作業性がよいこともあるので、その場合には、放電電流Iを低めにしたり、移動台17の速度を早くしたりするなどの調整で光ファイバ1に張力を加えて、最適な形状となるように工夫することができる。このようにして製作できるのが、上記図1(c)の光ファイバである。
移動台17の動作には、作動時と停止時に速度変化の時間域が生じるが、図6(b)に示したように、放電停止と同時もしくは放電が止む前に移動台17が停止するようにするのが好ましい。また、曲り部1bが完全に形成される前に、移動台17が動きだしても問題はない。むしろ移動開始時の速度変化の時間域を拡げ、曲り部1bに外径の遷移域を形成する方が、コア径変化に伴う光損失の発生を抑制できるので好ましい。
なお、図5に示したように、放電電極15の高さ位置は、光ファイバ先端側(図中、右端側)のV溝11に固定された光ファイバ1の高さ位置に合わせてある。これは、細径化時の真直度を保つために、光ファイバ1周囲の温度を均等化したいためである。上記放電電極15の高さ位置の設定では、曲り部形成工程開始時には、光ファイバに対して放電プラズマは下方にずれているので、光ファイバ1の断面では温度は不均一であるが、曲げる場合には問題ではない。またその際、光ファイバ1の温度も低くなるが、これは、放電電極15の放電電流Iを下げた場合と同様であるから、図6(c)のグラフのように放電電流Iを変化させるのと同じ効果がある。ただし、これは軸ずれ量Δxによって効果に違いがあり、Δxが大きいほど加熱温度変化の効果が生じるので、放電電流Iの時間変化の波形はΔxに応じて調整することが望ましい。なお、図6(c)の放電電流Iは時間とともに直線的に変化させているが、これを曲線的な変化にして、光ファイバ1の曲げ形状をより好ましい形状(曲げ部での光損失がより小さくなるような形状)になるようにしてもよい。その最適な放電電流変化条件はΔxの大きさ、放電電極15,15間の間隔(放電プラズマ領域16の大きさに関係する)に応じて違ってくるものである。
この加工により、光ファイバ1は図6(a)のような形状となり、クランプ14−1周辺部には、非加工の光ファイバ部分1eが残る。破線で示した、細径部1dの領域内に位置するカット位置Cでカットすることにより、この非加工の光ファイバ部分1eを除去して、マルチコア光ファイバに接続される接続面を有する先端部1cを得るようにすれば、図1に示した上記実施形態の光ファイバが得られる(先端部形成工程)。
本発明の光ファイバの加工方法の特徴は、上記実施形態で述べたように、まず曲り部1bを形成してから、細径加工を実施する点にある。
1本の光ファイバ1を2箇所で固定する際に、V溝部品10などの固定治具の精度や光ファイバ1などに付着するゴミ・異物のために、光ファイバ1を真直に固定することは難しい。従って、光ファイバ1を2箇所で固定して、先に延伸加工による細径化を実施してから曲り部を形成すると、固定治具の精度などに起因して、この延伸加工による細径部分に微小曲り部が形成されてしまうおそれがある。そのために、真直部分(細径化部分)が、この微小曲り部を含んでしまうおそれがある。このような光ファイバを複数本まとめて、光コネククフェルールの孔に挿入しようとしても微小曲り部の影響で挿入し難いという問題や、マルチコア光ファイバのコア配置に対応するように、光ファイバを所望どおりに配置できなく(光軸がずれる)、光損失が大きくなってしまうという問題が発生する。
本発明の光ファイバの加工方法は、軸ずれが生じるように光ファイバ1を固定して、先に曲り部1bを形成することにより、固定治具の精度などの影響を排除することができる。そして、曲り部1bが形成された光ファイバ1には、応力が働かないので、曲り部1b以外の場所で真直部分が得られ、この真直部分を細径部分に採用することにより、上記のような問題を解決している。すなわち、本発明の光ファイバの加工方法によれば、精度が良い光ファイバを容易に製作することができ、このようにして製作された光ファイバを束ねるだけで、精度が良い光ファイバ入出力構造を容易に製作することができる。
次に、ファイバ引張速度と溶融封止部(細径部)の外径の関係を述べる。
図7は、ファイバ引張速度Vと溶融封止部(細径部)の外径dの関係を求めるための計算モデルである。ホーリーファイバの溶融封止部の外径が定常状態にあるとしたとき、図7(a)をある時刻tの状態とすれば、Δt秒後の状態は図7(b)となる。溶融時の石英ガラスの蒸発は無視し、体積が変化しないとすれば、図中に矢印で示した範囲(体積計算の対象とした領域)を考えることにより次式が成り立つ。
Figure 2013142791
左辺が図7(a)の状態での体積、右辺が図7(b)の状態での体積である。
ここで、Aは加工前の空孔を有するホーリーファイバの石英ガラス部分の断面積、Aは細径化後の溶融封止部(細径部)の断面積である。また、Vはファイバ引張速度、Vは放電電極の移動速度である。
式(2)を整理すると、次の関係式が求まる。
Figure 2013142791
同一径の空孔を複数設けたホーリーファイバの場合を考え、その外径をD、空孔の直径をd、空孔の数をn、細径部の外径をdとすれば、
Figure 2013142791
であるから、これらを式(3)に代入して整理すると、細径部の外径dが次式で求まる。
Figure 2013142791
空孔の無い通常の光ファイバの場合であれば、式d=0とすることにより、
Figure 2013142791
と求まる。
図8は、式(5)を用いて計算した光ファイバ引張速度Vと細径外径dとの関係である。これはn=6、D=80μm、Ve=0.1mm/sとし、空孔径dをパラメータ
にして計算した結果である。
この図からわかるように、放電電極の移動速度Veと光ファイバ引張速度Vの比を設定することにより、目的とする外径への細径化ができることがわかる。
なお、空孔のない光ファイバの場合は、コア径の縮小率εは光ファイバ外径の縮小率d/Dに等しいが、ホーリーファイバの場合には次式となる。
Figure 2013142791
したがって、単にコア径の縮小率を下げるのではなく、空孔の総断面積を調整することで、コア径の縮小率をファイバ外径の縮小率とは独立に設計できることになる。
これは、シングルモード伝送用コアの場合、コア径自体は変化しても加工後のモードフィールド径が変化しないようにホーリーファイバを設計できることを意味するので、標準外径の125μmや80μmの光ファイバであっても入出力部での低損失接続を実現しやすくなる。
多モード伝送のコアの場合には、マルチコア光ファイバの接続部でのコア径を一致させるのが基本であるが、加工前の入出力用光ファイバ(ホーリーファイバの場合も含む)の外径Dとコア径、空孔の総断面積((π/4)nd で決まる)を調整することで実現しやすくなる。
さらに加工前の入出力用光ファイバの外径をより大きくできるよう、加工後の細径部(先端部)をエッチング液、例えば入出力用光ファイバがガラス製の場合にはフッ酸(HF)に浸してエッチングすることによりさらに細径化する工程を加えてもよい。このエッチング工程は、空孔の無い光ファイバの場合には、特に有効な手段になる。このエッチング工程は、図6に示したカット位置Cで切断する切断処理の前でも後でもよい。
上記第一の実施形態に係る光ファイバの加工方法では、細径化工程(細径部形成工程)において、引張り加工(移動台17の移動動作)を行ったが、第一の実施形態の変形例として、引張り加工を行わない光ファイバの加工方法もある。すなわち、ホーリーファイバの場合、細径化工程の際に引張り動作を行わずとも、空孔の消滅によって細径になるからであり、また、必要に応じてHFなどによるエッチング工程を追加することにしてもよい。この場合、コア径を変化させないですむ利点がある。また、空孔を有しない光ファイバの場合にも、引張り加工を行わずに、エッチング処理で先端部(細径部)を細径化するようにしてもよい。
(第二の実施形態に係る光ファイバの加工装置および光ファイバの加工方法)
図10は、本発明の第二の実施形態となる光ファイバの加工装置の概略構造を示す。図5の第一の実施形態と同様、図10(a)は上方から眺めた平面図、図10(b)は水平方向から眺めた正面図である。
上記の第一の実施形態との違いは、被覆を除去した裸の光ファイバ1部分の固定箇所を先端側の一箇所としたことである。上記図5における基部側のクランプ14−2を働かせると、光ファイバ1がV溝11に接触するため、その部分で光ファイバ1が損傷を受ける可能性がある。クランプ14−2は緩く押さえればよいので、この部分での損傷による強度劣化は小さいものの、全く接触しない方が強度信頼性の点では好ましい。また、第一の実施形態では、電極が移動できる範囲が、間隙部13によって制限される。この第二の実施形態ではこの制限が無くなるため、曲り部の曲げ形状をより緩やかにできるとか、より大きな軸ずれ量Δxに対応できるなど、多様な加工形状が実現しやすい利点がある。
一方、欠点としては、光ファイバ被覆部5の柔らかい被覆2の上からクランプ14−3で押さえるので、軸ずれ量Δxの設定精度が低くなることがある。ただし、上記の図4のような光ファイバ入出力構造を形成する場合には、被覆2を介して束ねる構造なので、1μmレベルの厳しい精度は要しないため、本実施形態の構造でもほとんど対応可能である。
また、本実施形態の光ファイバの加工装置で行う光ファイバの加工方法の手順や条件は、クランプ14−2の操作を省くこと以外は、前述の第一の実施形態の加工方法の場合と同じである。
また、これによって製作される光ファイバもほぼ同じであるが、クランプ14−2を省いたことにより、基部側の光ファイバ真直部を短くできるところに違いがある。
(第三の実施形態に係る光ファイバの加工装置および光ファイバの加工方法)
上記第一、第二の実施形態では、加工時の放電電極の移動方向と、ファイバ引張りのための移動台17の移動方向(光ファイバの延伸方向)は逆であった。この方向を一致させた場合が第三の実施形態であり、以下に説明する。
図11は、第三の実施形態に関わる光ファイバの加工装置の概略構造を示し、図11(a)は平面図、図11(b)は正面図である。
第一の実施形態と同様に、曲り部形成工程と細径化工程を連続して行うことにより、目的とする光ファイバを得ることができる。第三の実施形態の光ファイバの加工装置では、移動台17を光ファイバ1の先端側に配置し、光ファイバ1の先端側を移動台17上にクランプ14−4で固定する。一方、光ファイバ1の基端側の光ファイバ被覆部5を固定台18上にクランプ14−3で固定して動かさない。細径化工程の際には、移動台17を放電電極の移動方向と同一方向に動かして光ファイバ1を引っ張る。なお、光ファイバ1をV溝11中で滑らす第一の実施形態とは、クランプ14−1、14−2の配置が逆であって、クランプ14−2は、押圧力を小さくして光ファイバ1がV溝11中で軸方向に滑れるようになっており、クランプ14−1は、光ファイバ1が動かないように固定している。
この移動台17の移動速度Vと、得られる光ファイバ細径部の外径dとの関係は、第一の実施形態とは異なったものになる。以下、その関係を導出する。
図12は、第一の実施形態での計算モデル(図7)に相当する計算モデルである。体積不変を前提にして、式(8)を得る。
Figure 2013142791
左辺が時刻t、右辺が時刻t+Δtの光ファイバの計算対象の領域での体積を表わす。
これから、式(9)の関係が得られる。
Figure 2013142791
これに、式(4)の関係を適用することにより、式(10)を得る。
Figure 2013142791
空孔の無い通常の光ファイバの場合であれば、式d=0とすることにより、
Figure 2013142791
と求まる。
この実施形態の場合には、式(10)(11)からわかるように、移動台の移動速度Vは電極の移動速度Vよりも小さい領域で設定しなければならないという制約がある。ただし電極の移動速度Vを十分速くすればいいので、実施上の問題にはならない。
また、第二の実施形態と同様に、クランプ14−2の箇所を省いて、光ファイバ1の強度信頼性を高めたり、曲げ形状や軸ずれ量Δxの適用性を拡大したりすることも可能である。具体的には、V溝部品10の2つのV溝台12、12のいずれか、あるいは両方(すなわちV溝部品全体)を省くことができる。
なお、上記の実施形態の全てにおいて、光ファイバ1の加熱に放電を使う場合を述べたが、放電以外にも、これまで融着接続に利用されたようにカーボンヒータや炭酸ガスレーザを熱源として使用することができる。
また、上述したように、図4に示す光ファイバ入出力構造では、中心の光ファイバ1は、曲り部1bがなく真っ直ぐで先端側が細径の光ファイバとなっている。この真直な光ファイバの製作方法を次に述べる。
石英ガラスの光ファイバの先端部をフッ酸(HF)でエッチングして細径化する方法、細径ファイバと太径ファイバとを融着接続する方法、太径ファイバをHFでエッチングしたものを細径ファイバとして、この細径ファイバと太径ファイバとを融着接続する方法などがある。
また、例えば、第一の実施形態の光ファイバの加工方法において、図6(a)の右側の非加工の光ファイバ部分1e側にも被覆を残した状態で加工を行い、カットにより得られた、曲り部がなく真っ直ぐな光ファイバ部分1e側を利用する方法がある。この場合、曲り部を有する光ファイバ加工端部と、曲り部がない光ファイバ加工端部とを一度に作製できる。あるいは、第一の実施形態の光ファイバの加工方法において、V溝台12、12間の光ファイバ1の先端側を加熱溶融して曲り部を形成した後、放電電極15を光ファイバ基部側(光ファイバ被覆部5側)に移動させると共に、光ファイバ1を引張り方向に移動させて細径部を形成し、その後、光ファイバ先端側の曲り部をカットして除去する方法もある。この場合には、V溝台12、12のV溝11、11間の高さは同じでもよい。
1 光ファイバ(ホーリーファイバ)
1a 基部
1b 曲り部
1c 先端部
1−1 コア
1−2 クラッド
1−3 空孔
2 被覆(心線被覆)
5 光ファイバ被覆部
10 V溝部品
11 V溝
12 V溝台
13 間隙部
14−1、14−2、14−3、14−4 クランプ
15 放電電極(加熱手段)
16 放電プラズマ領域
17 移動台(光ファイバ延伸手段)
18 固定台
100 マルチコア光ファイバ
100−1コア
100−2クラッド
C カット位置

Claims (11)

  1. マルチコア光ファイバに接続する光ファイバ入出力構造に使用される光ファイバの加工方法において、
    前記光ファイバの2箇所を所定の軸ずれを有する状態で固定する光ファイバ固定工程と、
    前記光ファイバ固定工程後に、固定した2箇所の間に位置する前記光ファイバを加熱し溶融することにより、前記光ファイバに前記軸ずれに対応した曲り部を形成する曲り部形成工程と、
    前記曲り部形成工程後に、形成された前記曲り部よりも前記マルチコア光ファイバとの接続側に位置する前記光ファイバの部分において、該光ファイバの外径を細径化することにより、細径部を形成する細径部形成工程と、
    前記細径部形成工程後に、形成された前記細径部の領域内で前記光ファイバを切断することにより、前記マルチコア光ファイバに接続される接続面を有する先端部を形成する先端部形成工程と、
    を有することを特徴とする光ファイバの加工方法。
  2. 請求項1に記載の光ファイバの加工方法において、
    前記細径部形成工程は、前記曲り部形成工程における前記加熱を、前記曲り部よりも前記マルチコア光ファイバとの接続側に位置する前記光ファイバの部分に、連続的に移動し前記光ファイバを引き伸ばすことにより、前記光ファイバを細径化すること
    を特徴とする光ファイバの加工方法。
  3. 請求項1に記載の光ファイバの加工方法において、
    前記光ファイバは、コアの周囲のクラッドに複数の空孔を有するホーリーファイバであり、
    前記細径部形成工程は、加熱し溶融することで前記ホーリーファイバの前記複数の空孔を消滅させることにより、前記光ファイバを細径化すること
    を特徴とする光ファイバの加工方法。
  4. 請求項2または3のいずれかに記載の光ファイバの加工方法において、
    前記曲り部形成工程においては、前記光ファイバへの加熱を次第に強くし、
    前記細径部形成工程においては、前記光ファイバへの加熱を一定にすること
    を特徴とする光ファイバの加工方法。
  5. 請求項2〜4のいずれかに記載の光ファイバの加工方法において、
    前記細径部をエッチング液に浸して、前記細径部を更に細径化すること
    を特徴とする光ファイバの加工方法。
  6. 請求項1〜4のいずれかに記載の光ファイバの加工方法を実施する光ファイバの加工装置であって、
    前記光ファイバの2箇所を所定の軸ずれを有する状態で固定する光ファイバ固定手段と、
    固定した2箇所の間に位置する前記光ファイバを加熱する加熱手段と、
    前記光ファイバ固定手段によって固定した2箇所の間に位置する前記光ファイバの部分に対し、前記加熱手段を移動させると共に前記加熱手段による加熱の強さを時間的に制御する制御手段と、
    を備えたこと
    を特徴とする光ファイバの加工装置。
  7. 請求項6に記載の光ファイバの加工装置において、
    前記加熱手段による加熱中に、前記光ファイバ固定手段によって固定した2箇所のうち一方を固定した状態のまま、他方を移動させることにより、前記光ファイバを引き伸ばす光ファイバ延伸手段を備えたこと
    を特徴とする光ファイバの加工装置。
  8. マルチコア光ファイバに接続される接続面を有する直線状の先端部と、
    該先端部よりも径が太い直線状の基部と、
    前記先端部と前記基部との間に形成された曲り部と、
    を含む単一のコアを有する光ファイバであって、
    前記基部と前記先端部とは、互いに平行で且つ所定の軸ずれがあること
    を特徴とする光ファイバ。
  9. マルチコア光ファイバに接続される接続面を有する直線状の先端部と、
    該先端部よりも径が太い直線状の基部と、
    前記先端部と前記基部との間に形成された曲り部と、
    を含む単一のコアを有する光ファイバであって、
    前記先端部の軸は、その先端側に向かうにつれて前記基部の軸の延長線から次第に離れる方向に傾斜していること
    を特徴とする光ファイバ。
  10. 請求項8または9に記載の光ファイバにおいて、
    前記光ファイバは、コアの周囲のクラッドに複数の空孔を有するホーリーファイバであり、前記先端部では前記複数の空孔が消滅して細径となっていること
    を特徴とする光ファイバ。
  11. 請求項8〜10のいずれかに記載の前記光ファイバを複数本束ねた、マルチコア光ファイバと接続する光ファイバ入出力構造であって、
    前記光ファイバの前記基部を束ねることにより、複数の前記光ファイバの前記先端部の接続面の各コアが、前記マルチコア光ファイバの接続面の各コアに対向する配置となっていること
    を特徴とする光ファイバ入出力構造。
JP2012003207A 2012-01-11 2012-01-11 光ファイバの加工方法、光ファイバの加工装置、光ファイバ、及び光ファイバ入出力構造 Pending JP2013142791A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012003207A JP2013142791A (ja) 2012-01-11 2012-01-11 光ファイバの加工方法、光ファイバの加工装置、光ファイバ、及び光ファイバ入出力構造

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003207A JP2013142791A (ja) 2012-01-11 2012-01-11 光ファイバの加工方法、光ファイバの加工装置、光ファイバ、及び光ファイバ入出力構造

Publications (1)

Publication Number Publication Date
JP2013142791A true JP2013142791A (ja) 2013-07-22

Family

ID=49039374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003207A Pending JP2013142791A (ja) 2012-01-11 2012-01-11 光ファイバの加工方法、光ファイバの加工装置、光ファイバ、及び光ファイバ入出力構造

Country Status (1)

Country Link
JP (1) JP2013142791A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152871A (ja) * 2014-02-18 2015-08-24 三菱電線工業株式会社 光ファイバデバイス
JP2017504053A (ja) * 2013-12-15 2017-02-02 インフォテック エスピー.オー.オー.Inphotech Sp. O. O. 微細構造マルチコア光ファイバ(mmof)、及び微細構造マルチコア光ファイバのコアを個別に指定するための装置、及びこの装置の製造方法
WO2017130426A1 (ja) * 2016-01-28 2017-08-03 株式会社フジクラ 光デバイス

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504053A (ja) * 2013-12-15 2017-02-02 インフォテック エスピー.オー.オー.Inphotech Sp. O. O. 微細構造マルチコア光ファイバ(mmof)、及び微細構造マルチコア光ファイバのコアを個別に指定するための装置、及びこの装置の製造方法
JP2015152871A (ja) * 2014-02-18 2015-08-24 三菱電線工業株式会社 光ファイバデバイス
WO2017130426A1 (ja) * 2016-01-28 2017-08-03 株式会社フジクラ 光デバイス
CN108496100A (zh) * 2016-01-28 2018-09-04 株式会社藤仓 光设备

Similar Documents

Publication Publication Date Title
US8490435B2 (en) Optical fiber end processing method and optical fiber end processing apparatus
US9784930B2 (en) Optical interface device having a curved waveguide using laser writing and methods of forming
US8132971B2 (en) Methods for centering optical fibers inside a connector ferrule and optical fiber connector
JP4368844B2 (ja) エッチングによる先細型光ファイバ束、およびその製法
US10209446B2 (en) Optical fiber assemblies and methods for forming same
JP2013142792A (ja) 光ファイバの加工方法、光ファイバの加工装置、光ファイバ及び光ファイバ入出力構造
US9733424B2 (en) Multicore fiber and method of manufacturing the same
JP2014059479A (ja) 光コネクタの製造方法及び光コネクタ
JP6287164B2 (ja) マルチコア光ファイバ、及び光モジュール
US20040156585A1 (en) Lensed fiber for optical interconnections
JP2013142791A (ja) 光ファイバの加工方法、光ファイバの加工装置、光ファイバ、及び光ファイバ入出力構造
US8915100B2 (en) Optical fiber end processing method and optical fiber end processing apparatus
JP2016033642A (ja) 光ファイバ接続構造
JP5725176B2 (ja) 導光装置及び導光方法
US11698495B2 (en) Method for manufacturing fan-in fan-out device and fan-in fan-out device
JP5416721B2 (ja) 光ファイバ端部加工方法および光ファイバ端部加工装置
JP2005024849A (ja) 光ファイバ用コネクタ
JP5952854B2 (ja) マルチコアファイバの接続方法及びこれを用いたマルチコアファイバ接続体
JP2013152309A (ja) 長周期ファイバグレーティングの加工方法および長周期ファイバグレーティング
JP4019428B2 (ja) ガラス毛細管の製造方法
JP2003315598A (ja) 放電による一括融着接続方法および一括融着接続装置
JP2000338340A (ja) 光ファイバのコア径拡大方法
JPH05155642A (ja) 拡大ビーム領域形成単一モードファイバの製造方法
JP2011253870A (ja) 光ファイバカプラの製造方法
JPH06242353A (ja) 光ファイバアレイとその製造方法

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140829