JP2013142610A - Low temperature tensile testing machine - Google Patents

Low temperature tensile testing machine Download PDF

Info

Publication number
JP2013142610A
JP2013142610A JP2012002954A JP2012002954A JP2013142610A JP 2013142610 A JP2013142610 A JP 2013142610A JP 2012002954 A JP2012002954 A JP 2012002954A JP 2012002954 A JP2012002954 A JP 2012002954A JP 2013142610 A JP2013142610 A JP 2013142610A
Authority
JP
Japan
Prior art keywords
test piece
housing
fixed
gripping tool
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012002954A
Other languages
Japanese (ja)
Inventor
Takahiro Umeno
高裕 梅野
Yoshiaki Suzuki
佳明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2012002954A priority Critical patent/JP2013142610A/en
Publication of JP2013142610A publication Critical patent/JP2013142610A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low temperature tensile testing machine provided with a structure which is capable of excluding an initial load occurring when vacuuming the inside of a case as much as possible.SOLUTION: On the side of a case inside part in a tension axis 31 which goes through the case 11 in the airtight state, there is a load cell 36 for detecting a tension load or a compression load applied to a test piece 12. The tension axis goes through a ring slide member 38 provided on the side of the case inside part of elastic bellows 37 covering an opening 30 formed on one side wall of the case airtight in the airtight and heat insulation state, is adhered to a lid member 37c covering the case outer part side of the bellows airtight via the load cell, and joins the case outside part side of the lid member to drive means 32 which applies the tension load or the compression load to the test piece.

Description

本発明は、低温引張試験機に関し、詳しくは、各種材料の試験片を超低温に冷却した状態で引張試験を行う低温引張試験機に関する。   The present invention relates to a low-temperature tensile tester, and more particularly to a low-temperature tensile tester that performs a tensile test in a state where test pieces of various materials are cooled to an ultra-low temperature.

低温引張試験機として、試験片をそれぞれ把持する可動側把持具と固定側把持具とを真空断熱筐体の内部に収容し、両把持具を輻射シールドにて覆うとともに、2段式機械式冷凍機の第1段冷却ヘッドで両把持具を覆う輻射シールドを冷却し、第2段冷却ヘッドで前記固定把持具及び前記可動把持具を冷却するとともに、前記試験片の軸線方向に配置されて前記輻射シールドの一側方を貫通し、更に前記筐体の一側壁を気密状態で貫通する引張軸と、前記筐体の外部側で前記引張軸を介して前記試験片に引張荷重又は圧縮荷重を与える駆動手段と、筐体の前記一側壁の内面から前記試験片の軸線方向に対して平行に筐体の他側壁の方向に向かって設けられた複数の支持軸と、筐体の前記他側壁から離れた位置で前記支持軸に保持された固定板と、該固定板に前記固定把持具を固定する固定把持具支持用ネジ部材と、前記2段式機械式冷凍機の第1段冷却ヘッドの冷熱を前記固定板に伝達する第3伝熱手段と、前記2段式機械式冷凍機の第2段冷却ヘッドに設けられたヒータとを備えたものが知られている(例えば、特許文献1参照。)。   As a low-temperature tensile tester, a movable side gripping tool and a fixed side gripping tool each holding a test piece are housed in a vacuum heat insulating housing, and both gripping tools are covered with a radiation shield and a two-stage mechanical refrigeration The first stage cooling head of the machine cools the radiation shield that covers both gripping tools, the second stage cooling head cools the fixed gripping tool and the movable gripping tool, and is arranged in the axial direction of the test piece. A tensile shaft that penetrates one side of the radiation shield and further penetrates one side wall of the housing in an airtight state, and a tensile load or a compressive load is applied to the test piece via the tensile shaft on the outer side of the housing. A driving means for providing, a plurality of support shafts provided in parallel to the axial direction of the test piece from the inner surface of the one side wall of the casing toward the other side wall of the casing, and the other side wall of the casing Fixed plate held by the support shaft at a position away from A fixed holding tool supporting screw member for fixing the fixed holding tool to the fixed plate, and third heat transfer means for transmitting the cold heat of the first stage cooling head of the two-stage mechanical refrigerator to the fixed plate. And a heater provided in a second stage cooling head of the two-stage mechanical refrigerator is known (for example, see Patent Document 1).

特開2010−286479号公報JP 2010-286479 A

前記特許文献1に記載された低温引張試験機は、試験片を約5Kまで冷却可能な機械式冷凍機を用いた無冷媒の引張試験機であり、極低温における各種材料の中性子回折による残留応力測定、強度・変形特性解析や機械部分の内部の応力状態測定を行うことができる。この低温引張試験機には、引張試験片の弾性領域における負荷・除荷過程を測定するためのロードセルが設置されているが、このロードセルには、真空断熱筐体の内部を真空引きした際に初期の段階で大気圧分の荷重が加わり、この荷重が試験片にも加わる状態となっていた。   The low-temperature tensile tester described in Patent Document 1 is a refrigerant-free tensile tester using a mechanical refrigerator that can cool a specimen to about 5K, and residual stress due to neutron diffraction of various materials at cryogenic temperatures. Measurement, strength / deformation characteristic analysis and internal stress state measurement of the machine part can be performed. This low-temperature tensile testing machine is equipped with a load cell for measuring the loading / unloading process in the elastic region of the tensile test piece. A load corresponding to atmospheric pressure was applied at the initial stage, and this load was also applied to the test piece.

そこで本発明は、筐体内を真空引きした際にロードセルに発生する初期荷重を極力排除することができる構造を備えた低温引張試験機を提供することを目的としている。   Therefore, an object of the present invention is to provide a low-temperature tensile testing machine having a structure that can eliminate as much as possible the initial load generated in the load cell when the inside of the casing is evacuated.

上記目的を達成するため、本発明の低温引張試験機は、試験片の一端を把持する固定把持具及び前記試験片の他端を把持する可動把持具と、両把持具を覆う輻射シールドと、把持具を覆った状態の輻射シールドを収容する真空断熱筐体と、該筐体内に冷却ヘッド部を挿入した2段式機械式冷凍機と、該2段式機械式冷凍機の第1段冷却ヘッドの冷熱を前記輻射シールドに伝達する第1伝熱手段と、前記2段式機械式冷凍機の第2段冷却ヘッドの冷熱を前記固定把持具及び前記可動把持具に伝達する第2伝熱手段と、前記試験片の軸線方向に配置されて前記輻射シールドの一側方を貫通し、更に前記筐体の一側壁を気密状態で貫通する引張軸と、前記筐体の外部側で前記引張軸を介して前記試験片に引張荷重又は圧縮荷重を与える駆動手段と、筐体の前記一側壁の内面から前記試験片の軸線方向に対して平行に筐体の他側壁の方向に向かって設けられた複数の支持軸と、筐体の前記他側壁から離れた位置で前記支持軸に保持された固定板と、該固定板に前記固定把持具を固定する固定把持具支持用ネジ部材と、前記2段式機械式冷凍機の第1段冷却ヘッドの冷熱を前記固定板に伝達する第3伝熱手段と、前記2段式機械式冷凍機の第2段冷却ヘッドに設けられたヒータとを備えた低温引張試験機において、前記引張軸における前記筐体の内部側に、前記試験片に与えられた引張荷重又は圧縮荷重を検出するロードセルを設けたことを特徴としている。   To achieve the above object, the low-temperature tensile tester of the present invention includes a fixed gripping tool that grips one end of a test piece, a movable gripping tool that grips the other end of the test piece, a radiation shield that covers both gripping tools, A vacuum heat insulating housing that houses a radiation shield in a state of covering the gripping tool, a two-stage mechanical refrigerator having a cooling head portion inserted into the housing, and a first-stage cooling of the two-stage mechanical refrigerator First heat transfer means for transferring the cold heat of the head to the radiation shield, and second heat transfer for transferring the cold heat of the second stage cooling head of the two-stage mechanical refrigerator to the fixed gripper and the movable gripper Means, a tension shaft disposed in the axial direction of the test piece and penetrating one side of the radiation shield, and further penetrating one side wall of the casing in an airtight state, and the tension on the outer side of the casing Driving means for applying a tensile load or a compressive load to the test piece via a shaft; A plurality of support shafts provided from the inner surface of the one side wall of the body in the direction of the other side wall of the housing in parallel to the axial direction of the test piece, and at positions away from the other side wall of the housing A fixed plate held by a support shaft, a fixed gripping tool supporting screw member that fixes the fixed gripping tool to the fixed plate, and the cooling heat of the first stage cooling head of the two-stage mechanical refrigerator. In a low-temperature tensile testing machine comprising a third heat transfer means for transmitting to a heater and a heater provided in the second stage cooling head of the two-stage mechanical refrigerator, on the inner side of the casing on the tension shaft A load cell for detecting a tensile load or a compressive load applied to the test piece is provided.

さらに、本発明の低温引張試験機は、前記引張軸が、前記筐体の一側壁に形成された開口を気密に覆う伸縮可能なベローズの筐体外部側を気密に覆う蓋部材に前記ロードセルを介して固着され、該蓋部材の筐体外部側が前記駆動手段に連結されていることを特徴としている。   Furthermore, in the low temperature tensile tester of the present invention, the load cell is attached to a lid member that airtightly covers the exterior side of the extendable bellows in which the tensile shaft airtightly covers an opening formed on one side wall of the housing. And the outside of the casing of the lid member is connected to the driving means.

本発明の低温引張試験機によれば、荷重を検出するロードセルを筐体内部側に配置したので、筐体内を真空引きした際にベローズの収縮によってロードセルに生じていた大気圧分の荷重による影響を極力排除することができ、負荷過程と除荷過程との間で荷重差が発生しない高精度の測定が可能となる。また、ベローズの蓋部材側にロードセルを配置することにより、常温用のロードセルを使用することが可能となり、低温用の高価なロードセルを使用する必要がなくなる。   According to the low-temperature tensile testing machine of the present invention, the load cell for detecting the load is arranged on the inside of the housing, and therefore, when the inside of the housing is evacuated, the influence due to the load corresponding to the atmospheric pressure generated in the load cell due to the contraction of the bellows. Can be eliminated as much as possible, and high-precision measurement can be performed with no load difference between the loading process and the unloading process. Further, by arranging the load cell on the lid member side of the bellows, it becomes possible to use a load cell for room temperature, and it becomes unnecessary to use an expensive load cell for low temperature.

本発明の低温引張試験機の一形態例を示す断面正面図である。It is a section front view showing an example of one form of the low-temperature tensile testing machine of the present invention. 筐体の断面側面図である。It is a cross-sectional side view of a housing | casing. 低温引張試験機の側面図である。It is a side view of a low temperature tensile testing machine.

本形態例は、中性子回折測定用の低温引張試験機の一形態例を示すもので、図1に示すように、低温引張試験機は、天板11a、底板11b、前面板11c、後面板11d、左側面板11e及び右側面板11fの6枚を気密に接合した六面体形状の真空断熱筐体11と、試験片12の両端をそれぞれ把持する固定把持具13及び可動把持具14と、両把持具13,14を覆うように配設した輻射シールド15と、前記固定把持具13を真空断熱筐体11の内部の所定位置に固定するための固定板16及び複数の支持軸17と、可動把持具14を試験片12の軸線方向(引張方向)に移動させるための駆動手段18と、前記真空断熱筐体11内の各部材を冷却するための2段式機械式冷凍機19とを備えている。   This embodiment shows one embodiment of a low-temperature tensile tester for neutron diffraction measurement. As shown in FIG. 1, the low-temperature tensile tester includes a top plate 11a, a bottom plate 11b, a front plate 11c, and a rear plate 11d. , A hexahedron-shaped vacuum heat insulating casing 11 in which six pieces of the left side plate 11e and the right side plate 11f are airtightly joined, a fixed holding tool 13 and a movable holding tool 14 for holding both ends of the test piece 12, respectively, and both holding tools 13 , 14, a radiation shield 15, a fixed plate 16 and a plurality of support shafts 17 for fixing the fixed gripping tool 13 at a predetermined position inside the vacuum heat insulating housing 11, and a movable gripping tool 14. Drive means 18 for moving the test piece 12 in the axial direction (tensile direction) of the test piece 12 and a two-stage mechanical refrigerator 19 for cooling each member in the vacuum heat insulating casing 11.

前面板11c及び後面板11dには、試験片12の位置に対応した位置に中性子を照射・測定するための測定窓20が形成されるとともに、該測定窓20を外部から覆うようにして中性子透過板21が設けられている。この中性子透過板21は、中性子を透過可能な材料で形成されており、照射・測定用の中性子が透過する部分には、測定窓20に対応するようにして薄肉部21aが設けられている。   A measurement window 20 for irradiating and measuring neutrons is formed at a position corresponding to the position of the test piece 12 on the front plate 11c and the rear plate 11d, and neutron transmission is performed so as to cover the measurement window 20 from the outside. A plate 21 is provided. The neutron transmission plate 21 is formed of a material that can transmit neutrons, and a thin portion 21 a is provided in a portion through which neutrons for irradiation and measurement are transmitted so as to correspond to the measurement window 20.

前記2段式機械式冷凍機19は、ヘリウムを利用して超低温を得るものであって、第1段冷却ヘッド19aと、該第1段冷却ヘッド19aより低温になる第2段冷却ヘッド19bとを有している。この2段式機械式冷凍機19は、真空断熱筐体11の天板11aに開口した冷凍機取付口22に冷凍機取付筒23を介して気密に取り付けられており、第2段冷却ヘッド19bは、前記冷凍機取付口22及び輻射シールド15の上面板15aに設けた冷却ヘッド挿入口24を通って両把持具13,14の近傍まで挿入されている。さらに、第2段冷却ヘッド19bには、該第2段冷却ヘッド19bの温度調節を行うためのヒータ25が設けられている。   The two-stage mechanical refrigerator 19 uses helium to obtain an ultra-low temperature, and includes a first-stage cooling head 19a, a second-stage cooling head 19b that has a lower temperature than the first-stage cooling head 19a, have. The two-stage mechanical refrigerator 19 is airtightly attached to a refrigerator attachment port 22 opened in the top plate 11a of the vacuum heat insulating housing 11 via a refrigerator attachment cylinder 23, and a second-stage cooling head 19b. Is inserted to the vicinity of both grippers 13 and 14 through the cooling head insertion port 24 and the cooling head insertion port 24 provided in the upper surface plate 15 a of the radiation shield 15. Further, the second stage cooling head 19b is provided with a heater 25 for adjusting the temperature of the second stage cooling head 19b.

輻射シールド15は、上面板15a、底面板15b、前後一対の側面板15c及び左右一対の端面板15dを直方体状に組み合わせたものであって、上面板15aには前記冷却ヘッド挿入口24が設けられ、両端面板15dには、固定把持具13及び可動把持具14を保持する部材が貫通する部材貫通口26がそれぞれ設けられている。また、側面板15cは、ビスなどの固定手段によって他の面板に対して着脱可能に形成されている。   The radiation shield 15 is a combination of a top plate 15a, a bottom plate 15b, a pair of front and rear side plates 15c, and a pair of left and right end plate 15d. The top plate 15a is provided with the cooling head insertion port 24. Each end plate 15d is provided with a member through-hole 26 through which a member holding the fixed gripping tool 13 and the movable gripping tool 14 passes. Further, the side plate 15c is formed so as to be detachable from other face plates by fixing means such as screws.

この輻射シールド15は、2段式機械式冷凍機19の前記第1段冷却ヘッド19aと前記冷却ヘッド挿入口24の開口縁とを連結する筒状連結部材27により、2段式機械式冷凍機19に吊り下げられた状態で真空断熱筐体11の内部に配置されている。また、筒状連結部材27は、第1段冷却ヘッド19aの冷熱を上面板15aを介して輻射シールド15に伝達するための伝熱部材(第1伝熱手段)を兼ねている。   The radiation shield 15 is a two-stage mechanical refrigerator by a cylindrical connecting member 27 that connects the first-stage cooling head 19 a of the two-stage mechanical refrigerator 19 and the opening edge of the cooling head insertion port 24. It is arranged inside the vacuum heat insulating housing 11 in a state of being suspended by 19. The cylindrical connecting member 27 also serves as a heat transfer member (first heat transfer means) for transmitting the cold heat of the first stage cooling head 19a to the radiation shield 15 via the upper surface plate 15a.

固定把持具13は、固定把持具支持用ネジ部材28を介して前記固定板16に固定され、固定板16は、4本の前記支持軸17により、固定板16の設置位置から最も遠く離れた位置にある筐体11の一側壁(本形態例では左側壁11e)に固定されている。   The fixed grip 13 is fixed to the fixed plate 16 via a fixed grip support screw member 28. The fixed plate 16 is farthest from the installation position of the fixed plate 16 by the four support shafts 17. It is fixed to one side wall (left side wall 11e in the present embodiment) of the housing 11 at the position.

左側壁11eの内面側の4箇所には、支持軸17の一端部(左側壁11e側の端部)に形成された雄ねじ17aが螺合する雌ねじ穴が非貫通状態で形成されており、支持軸17は、雄ねじ17aを雌ねじ穴に螺着することにより、試験片12の軸線方向に対して平行な方向に植設された状態となる。   At four locations on the inner surface side of the left side wall 11e, female screw holes into which a male screw 17a formed on one end portion (the end portion on the left side wall 11e side) of the support shaft 17 is screwed are formed in a non-penetrating state. The shaft 17 is implanted in a direction parallel to the axial direction of the test piece 12 by screwing the male screw 17a into the female screw hole.

固定板16の四隅部には、支持軸17の他端部(右側壁11f側の端部)に形成された雄ねじ17bが貫通する通孔がそれぞれ形成されており、各通孔を貫通した雄ねじ17bの先端部にナット17cをそれぞれ螺着することにより、試験片12の軸線方向に対して垂直な方向に固定板16が固定された状態となる。このとき、固定板16と輻射シールド15とは非接触状態になるように、固定板16と輻射シールド15との間には、数mm乃至十数mmの間隔が設けられる。   At the four corners of the fixing plate 16 are formed through holes through which the male screw 17b formed at the other end of the support shaft 17 (the end on the right side wall 11f side) passes, and the male screw that passes through each through hole. The fixing plate 16 is fixed in a direction perpendicular to the axial direction of the test piece 12 by screwing the nuts 17c to the tip portions of the 17b. At this time, an interval of several millimeters to several tens of millimeters is provided between the stationary plate 16 and the radiation shield 15 so that the stationary plate 16 and the radiation shield 15 are not in contact with each other.

さらに、固定板16の中央部には、前記固定把持具支持用ネジ部材28の基端部が貫通する通孔が形成されており、輻射シールド15の前記部材貫通口26を貫通し、更に固定板16の通孔を貫通した固定把持具支持用ネジ部材28を、固定板16の両側から一対のナット29,29で締め付けることにより、固定把持具支持用ネジ部材28が固定板16に対して垂直に固定され、ナット29,29を緩めることによって固定把持具支持用ネジ部材28を軸線方向に位置調整することができるように形成されている。固定把持具13は、該固定把持具13の基部側に形成した雌ねじ部を固定把持具支持用ネジ部材28の先端部に螺着し、固定ナット28aで締め付けることにより固定されており、試験片12に対応した把持部13aを有する固定把持具13が着脱交換可能な状態に形成されている。   Further, a through hole through which the base end portion of the fixed gripping tool supporting screw member 28 passes is formed in the center portion of the fixing plate 16 and passes through the member through hole 26 of the radiation shield 15 to be further fixed. The fixed gripping tool supporting screw member 28 penetrating the through hole of the plate 16 is tightened with a pair of nuts 29, 29 from both sides of the fixing plate 16, so that the fixed gripping tool supporting screw member 28 is fixed to the fixed plate 16. The screw member 28 for supporting the fixed gripper can be adjusted in the axial direction by being fixed vertically and loosening the nuts 29 and 29. The fixed gripping tool 13 is fixed by screwing a female thread portion formed on the base side of the fixed gripping tool 13 to the distal end portion of the fixed gripping tool supporting screw member 28 and tightening with a fixing nut 28a. The fixed gripping tool 13 having a gripping portion 13a corresponding to 12 is formed so as to be attachable / detachable.

前記可動把持具14の駆動手段18は、前記試験片12の軸線方向に配置されて、前記輻射シールド15の部材貫通口26及び筐体11の左側面板11eに設けた開口30を通って筐体内外に貫通する引張軸31と、前記筐体11の外部に配置された駆動装置32とを備えている。引張軸31は、先端に可動把持具14が取り付けられる可動把持具取付軸33と、駆動装置32の雌ねじ部材34に螺合するネジ軸35と、引張軸31の中間部に設けられたロードセル36とを備えている。   The driving means 18 of the movable gripping tool 14 is disposed in the axial direction of the test piece 12 and passes through the member through-hole 26 of the radiation shield 15 and the opening 30 provided in the left side plate 11e of the housing 11. A tension shaft 31 penetrating inward and outward and a drive device 32 arranged outside the housing 11 are provided. The tension shaft 31 includes a movable gripping tool mounting shaft 33 to which the movable gripping tool 14 is mounted at the tip, a screw shaft 35 that is screwed into the female screw member 34 of the driving device 32, and a load cell 36 provided at an intermediate portion of the tensioning shaft 31. And.

可動把持具14は、該可動把持具14の基部側に形成した雌ねじ部を可動把持具取付軸33の先端部に形成された雄ねじ部33aに螺着し、固定ナット33bで締め付けることにより固定されており、試験片12に対応した把持部14aを有する可動把持具14が着脱交換可能な状態に形成されている。   The movable gripping tool 14 is fixed by screwing a female thread portion formed on the base side of the movable gripping tool 14 to a male screw portion 33a formed at the distal end portion of the movable gripping tool mounting shaft 33 and tightening with a fixing nut 33b. The movable gripping tool 14 having the gripping portion 14a corresponding to the test piece 12 is formed in a state where it can be attached and detached.

前記開口30には、該開口30を気密に覆うとともに、引張軸31の軸線方向の移動を許容し、かつ、荷重変動に全く影響を与えないベローズ37が設けられている。このベローズ37の筐体内部側に配置された筒状部37aの端部には、前記可動把持具取付軸33を支持するとともに、軸線方向に移動可能に貫通するリング状摺動部材38が配設されている。また、ベローズ37の筐体外部側にはフランジ37bを介してベローズ37の筐体外部側を気密に覆う蓋部材37cが装着されている。この蓋部材37cには、前記ネジ軸35の一端が固着されており、蓋部材37cの筐体内部側に前記ロードセル36が配置されている。   The opening 30 is provided with a bellows 37 that covers the opening 30 in an airtight manner, allows the movement of the tension shaft 31 in the axial direction, and does not affect the load fluctuation at all. A ring-shaped sliding member 38 that supports the movable gripper attachment shaft 33 and penetrates in an axial direction is arranged at the end of the cylindrical portion 37a disposed on the inside of the housing of the bellows 37. It is installed. Further, a lid member 37c that covers the outside of the bellows 37 in an airtight manner is attached to the outside of the bellows 37 via a flange 37b. One end of the screw shaft 35 is fixed to the lid member 37c, and the load cell 36 is disposed inside the housing of the lid member 37c.

前記駆動装置32は、2本の駆動装置支持軸39及び駆動装置装着板40を介して筐体11の左側壁11eに固定されている。左側壁11eの外面側の2箇所には、駆動装置支持軸39の基端に形成された雄ねじ39aを螺着する雌ねじ穴が非貫通状態でそれぞれ形成されており、両雌ねじ穴に雄ねじ39aを螺着することにより、駆動装置支持軸39は、前記試験片12の軸線方向に対して平行な状態で左側壁11eに固定されている。駆動装置装着板40の2箇所には、駆動装置支持軸39の先端に形成された雄ねじ39bが貫通する通孔が形成されており、該通孔を貫通した雄ねじ39bにナット39cを螺着することにより、駆動装置装着板40が前記試験片12の軸線方向に対して垂直な方向に固定されている。駆動装置装着板40には、軸受部材40aにより回転可能に保持された前記雌ねじ部材34の外周に設けられたウオームホイール34aに螺合するウオームギア41と、該ウオームギア41を継手42を介して回転駆動するモータ43とが設けられている。   The driving device 32 is fixed to the left side wall 11 e of the housing 11 through two driving device support shafts 39 and a driving device mounting plate 40. Female screw holes for screwing male screws 39a formed at the base end of the drive device support shaft 39 are formed in two positions on the outer surface side of the left side wall 11e in a non-penetrating manner, and the male screws 39a are formed in both female screw holes. By screwing, the drive device support shaft 39 is fixed to the left side wall 11e in a state parallel to the axial direction of the test piece 12. A through hole through which a male screw 39b formed at the tip of the drive device support shaft 39 passes is formed at two locations on the drive device mounting plate 40, and a nut 39c is screwed onto the male screw 39b that passes through the through hole. Thus, the drive device mounting plate 40 is fixed in a direction perpendicular to the axial direction of the test piece 12. The drive device mounting plate 40 has a worm gear 41 screwed to a worm wheel 34a provided on the outer periphery of the female screw member 34 rotatably held by a bearing member 40a, and the worm gear 41 is rotationally driven via a joint 42. A motor 43 is provided.

前記2段式機械式冷凍機19の第1段冷却ヘッド19aと前記固定板16との間には、第1段冷却ヘッド19aの冷熱を固定板16に伝達するための伝熱部材(第3伝熱手段)44が伝熱部材取付具44a、44bを介して取り付けられている。さらに、第1段冷却ヘッド19aと前記可動把持具取付軸33との間には、第1段冷却ヘッド19aの冷熱を可動把持具取付軸33に伝達するための伝熱部材45が伝熱部材取付具45a、45bを介して取り付けられている。   Between the first-stage cooling head 19 a of the two-stage mechanical refrigerator 19 and the fixed plate 16, a heat transfer member for transmitting the cold heat of the first-stage cooling head 19 a to the fixed plate 16 (third (Heat transfer means) 44 is attached via heat transfer member fittings 44a and 44b. Further, between the first stage cooling head 19a and the movable gripper mounting shaft 33, a heat transfer member 45 for transmitting the cold heat of the first stage cooling head 19a to the movable gripper mounting shaft 33 is a heat transfer member. It is attached via fixtures 45a and 45b.

また、2段式機械式冷凍機19の第2段冷却ヘッド19bと固定把持具13及び可動把持具14との間には、第2段冷却ヘッド19bの冷熱を固定把持具13及び可動把持具14にそれぞれ伝達するための伝熱部材(第2伝熱手段)46が伝熱部材取付具46a、46bを介して取り付けられるとともに、第2段冷却ヘッド19bと固定把持具13とには、温度センサ(図示せず)がそれぞれ取り付けられている。なお、伝熱部材45は、可動把持具取付軸33と同時に輻射シールド15の端面板15dを冷却するように形成することができる。   Further, between the second stage cooling head 19b of the two-stage mechanical refrigerator 19 and the fixed gripping tool 13 and the movable gripping tool 14, the cold heat of the second stage cooling head 19b is transferred to the fixed gripping tool 13 and the movable gripping tool. Heat transfer members (second heat transfer means) 46 for transmitting to each of 14 are attached via heat transfer member attachments 46a and 46b, and the second stage cooling head 19b and the fixed gripper 13 have a temperature Each sensor (not shown) is attached. The heat transfer member 45 can be formed so as to cool the end face plate 15 d of the radiation shield 15 simultaneously with the movable gripper mounting shaft 33.

さらに、真空断熱筐体11の外部には、前記温度センサにより測定した第2段冷却ヘッド19bの温度及び固定把持具13の温度に基づいて、2段式機械式冷凍機19の運転状態を制御したり、前記ヒータ25の発熱量を制御したりするための温度制御を行ったり、前記ロードセル36の測定荷重に基づいて駆動手段18のモータ43を制御したりするための制御手段(図示せず)が設けられている。また、本形態例に示す低温引張試験機では、駆動装置32に、可動把持具14を手動で移動させることができる手動操作部47が設けられている。さらに、真空断熱筐体11の上部には、低温引張試験機を吊り上げる際に用いるアイボルト48が設けられている。   Further, outside of the vacuum heat insulating casing 11, the operating state of the two-stage mechanical refrigerator 19 is controlled based on the temperature of the second-stage cooling head 19b and the temperature of the fixed gripper 13 measured by the temperature sensor. Control means (not shown) for performing temperature control for controlling the amount of heat generated by the heater 25, or for controlling the motor 43 of the drive means 18 based on the measured load of the load cell 36. ) Is provided. In the low-temperature tensile testing machine shown in this embodiment, the driving device 32 is provided with a manual operation unit 47 that can manually move the movable gripping tool 14. Furthermore, an eyebolt 48 used when lifting the low temperature tensile tester is provided on the upper part of the vacuum heat insulating casing 11.

なお、固定把持具13及び可動把持具14は、ステンレス鋼で形成することもできるが、熱伝導性が良好な銅で形成することによって試験片12を効果的に冷却することができ、輻射シールド15や固定板16も熱伝導性が良好な金属、例えばアルミニウム(合金を含む、以下同じ。)で形成することにより、輻射シールド効果を高めることができる。同様に、筒状連結部材27や各伝熱部材44,45,46も熱伝導性が良好な金属で形成することが好ましく、特に伝熱部材44,45,46は、取付状態を考慮すると、複数の導線を束ねたものを用いることが好ましい。また、中性子透過板21は、中性子を透過し易いアルミニウムで形成することが好ましく、薄肉部21aを設けることによって中性子の透過性を向上させることができる。他の構成部材は、一般的なステンレス鋼にて形成することができ、真空断熱筐体11の断熱構造は、真空断熱構造に他の断熱構造を組み合わせることができる。   Note that the fixed gripping tool 13 and the movable gripping tool 14 can be formed of stainless steel, but the test piece 12 can be effectively cooled by being formed of copper having good thermal conductivity. 15 and the fixing plate 16 can also be made of a metal having good thermal conductivity, for example, aluminum (including an alloy, the same shall apply hereinafter) to enhance the radiation shielding effect. Similarly, it is preferable that the cylindrical connecting member 27 and the heat transfer members 44, 45, and 46 are also formed of a metal having good thermal conductivity. In particular, the heat transfer members 44, 45, and 46 take into account the mounting state. It is preferable to use a bundle of a plurality of conducting wires. Further, the neutron transmission plate 21 is preferably formed of aluminum that easily transmits neutrons, and the neutron permeability can be improved by providing the thin portion 21a. Other structural members can be formed of general stainless steel, and the heat insulating structure of the vacuum heat insulating casing 11 can be combined with other heat insulating structures.

また、2段式機械式冷凍機19は、所望の低温を得ることができれば任意の形式冷凍機を使用することが可能であり、2段式機械式冷凍機19を複数台設置することもできる。さらに、ヒータ25の構造は、第2段冷却ヘッド19bを過熱することができれば、任意のものを用いることができ、ヒータ発熱量の制御も任意の制御手段で行うことが可能である。   The two-stage mechanical refrigerator 19 can use any type of refrigerator as long as a desired low temperature can be obtained, and a plurality of two-stage mechanical refrigerators 19 can be installed. . Furthermore, the structure of the heater 25 can be any structure as long as the second-stage cooling head 19b can be overheated, and the heater heat generation amount can be controlled by any control means.

次に、本形態例に示す低温引張試験機を使用して試験片12の中性子回折測定を行う手順を説明する。まず、真空断熱筐体11内が常温、常圧状態において、真空断熱筐体11の前面板11cを取り外して筐体11の前面を開放し、さらに、輻射シールド15の前面側の側面板15cを取り外して固定把持具13及び可動把持具14を露出させ、必要に応じて固定把持具13及び可動把持具14を試験片12に対応したものに交換する。   Next, a procedure for performing neutron diffraction measurement of the test piece 12 using the low temperature tensile tester shown in this embodiment will be described. First, when the inside of the vacuum heat insulating housing 11 is at room temperature and normal pressure, the front plate 11c of the vacuum heat insulating housing 11 is removed to open the front surface of the housing 11, and the side plate 15c on the front side of the radiation shield 15 is further opened. The fixed gripping tool 13 and the movable gripping tool 14 are exposed by being removed, and the fixed gripping tool 13 and the movable gripping tool 14 are exchanged for one corresponding to the test piece 12 as necessary.

次に、固定把持具支持用ネジ部材28のナット29を操作して固定把持具支持用ネジ部材28を適宜軸方向に移動させ、試験片12の長さに応じた位置に固定把持具13を固定する。さらに、駆動手段18のモータ43を作動させたり、手動操作部47を操作して可動把持具14を適当な位置に移動させながら、固定把持具13及び可動把持具14の把持部13a,14aに試験片12の両端を把持させる。なお、把持部がねじ込み形式の場合には、試験片12の両端をねじ込んで固定把持具13及び可動把持具14で試験片12を保持する。また、必要に応じて試験片12に歪みゲージや伸び計を装着しておくこともできる。   Next, the nut 29 of the fixed gripping tool supporting screw member 28 is operated to move the fixed gripping tool supporting screw member 28 in an appropriate axial direction, and the fixed gripping tool 13 is moved to a position corresponding to the length of the test piece 12. Fix it. Further, while the motor 43 of the driving means 18 is operated or the manual operation unit 47 is operated to move the movable gripping tool 14 to an appropriate position, the fixed gripping tool 13 and the gripping portions 13a and 14a of the movable gripping tool 14 are moved. Grip both ends of the test piece 12. When the gripping part is a screw-in type, both ends of the test piece 12 are screwed and the test piece 12 is held by the fixed gripping tool 13 and the movable gripping tool 14. Further, a strain gauge or an extensometer can be attached to the test piece 12 as necessary.

固定把持具13及び可動把持具14に試験片12をセットした後、側面板15cを取り付けて輻射シールド15を試験片12や把持具13,14を覆う状態に戻した後、前面板11cを取り付けて真空断熱筐体11を気密に密閉された状態とする。このとき、必要に応じて中性子透過板21を試験片12に応じたものに交換することができる。なお、真空断熱筐体11や輻射シールド15は、操作性を考慮して前後両面を開放することもできる。   After setting the test piece 12 to the fixed gripping tool 13 and the movable gripping tool 14, the side plate 15c is attached, the radiation shield 15 is returned to the state covering the test piece 12 and the gripping tools 13, 14, and then the front plate 11c is attached. Thus, the vacuum heat insulating casing 11 is hermetically sealed. At this time, the neutron transmission plate 21 can be replaced with one corresponding to the test piece 12 as necessary. In addition, the vacuum heat insulation housing | casing 11 and the radiation shield 15 can also open | release both front and rear surfaces in consideration of operativity.

次に、図示しない真空ポンプを作動させて真空断熱筐体11内の真空引きを開始し、真空断熱筐体11内があらかじめ設定された真空度に達し、ロードセル36に荷重変動がないことを確認した後、2段式機械式冷凍機の運転を開始して真空断熱筐体11内の各部を冷却する。各部の温度、特に、試験片12の温度は、第2段冷却ヘッド19b及び固定把持具13に設けた温度センサからの信号に基づいて制御され、あらかじめ設定された測定温度を保持するように制御手段がヒータ25の発熱量を制御する。例えば、第2段冷却ヘッド19bから伝熱部材46及び把持具13,14を介して冷却される試験片12の温度を5Kにする場合、第1段冷却ヘッドから筒状連結部材27を介して冷却される輻射シールド15の温度や、伝熱部材44,45を介して冷却される固定板16や可動把持具取付軸33の温度は約70Kに保持される。   Next, a vacuum pump (not shown) is operated to start evacuation in the vacuum heat insulating casing 11, and the inside of the vacuum heat insulating casing 11 reaches a preset vacuum degree, and it is confirmed that there is no load fluctuation in the load cell 36. After that, the operation of the two-stage mechanical refrigerator is started to cool each part in the vacuum heat insulating casing 11. The temperature of each part, in particular, the temperature of the test piece 12 is controlled based on signals from temperature sensors provided in the second stage cooling head 19b and the fixed gripper 13, and is controlled so as to maintain a preset measurement temperature. The means controls the amount of heat generated by the heater 25. For example, when the temperature of the test piece 12 cooled from the second stage cooling head 19b through the heat transfer member 46 and the gripping tools 13 and 14 is set to 5K, the first stage cooling head through the cylindrical connecting member 27 is used. The temperature of the radiation shield 15 to be cooled and the temperature of the fixed plate 16 and the movable gripper mounting shaft 33 to be cooled via the heat transfer members 44 and 45 are maintained at about 70K.

この冷却状態において、固定把持具支持用ネジ部材28は、伝熱部材44を介して冷却されている固定板16に取り付けられており、固定板16は、支持軸17によって固定板16から離れた真空断熱筐体11の左側面板11eに取り付けられているので、外部から真空断熱筐体11を介して固定把持具支持用ネジ部材28への熱浸入を極力排除することができ、固定把持具13を超低温に冷却した状態で保持することができる。同様に、可動把持具取付軸33を伝熱部材45を介して冷却することにより、可動把持具取付軸33から固定把持具13への熱浸入を極力排除することができる。   In this cooled state, the fixed gripping tool supporting screw member 28 is attached to the fixed plate 16 cooled via the heat transfer member 44, and the fixed plate 16 is separated from the fixed plate 16 by the support shaft 17. Since it is attached to the left side plate 11e of the vacuum heat insulating housing 11, it is possible to eliminate heat penetration from the outside into the fixed gripping tool supporting screw member 28 via the vacuum heat insulating housing 11 as much as possible. Can be held in a state of being cooled to ultra-low temperature. Similarly, by cooling the movable gripper attachment shaft 33 via the heat transfer member 45, it is possible to eliminate heat penetration from the movable gripper attachment shaft 33 into the fixed gripper 13 as much as possible.

試験片12が設定温度になった後、制御装置によってモータ43を作動させ、引張軸31を介して可動把持具14を軸線方向に移動させることにより、試験片12に引張荷重又は圧縮荷重を与える。試験片12に与えられた引張荷重又は圧縮荷重は、ロードセル36によって検出され、ロードセル36で測定した値は、制御手段に送信されて随時記録される。   After the test piece 12 reaches the set temperature, the motor 43 is operated by the control device, and the movable gripping tool 14 is moved in the axial direction via the tension shaft 31, thereby applying a tensile load or a compressive load to the test piece 12. . The tensile load or the compressive load applied to the test piece 12 is detected by the load cell 36, and the value measured by the load cell 36 is transmitted to the control means and recorded at any time.

中性子の照射は、原子炉等の中性子発生源から連続的又はパルス状に発生する熱中性子を中性子導管、モノクロメーター結晶を利用し、中性子透過板21を介して試験片12に導くことで行われる。中性子の照射は、試験片12からの信号が十分積算されるまで行われる。なお、単位時間当たりの照射量は、中性子発生源の能力に依存する。中性子の照射量の測定は、単色中性子を利用する場合、試験片12からの回折中性子は、試験片12の回折角近傍に設置した中性子検出器によって回折角に対する中性子強度のスペクトルを観測することで測定する。また、白色光のパルス中性子を利用する場合は、対面する中性子検出器群により、中性子飛行時間と中性子強度のスペクトルとして測定する。   Irradiation of neutrons is performed by introducing thermal neutrons generated continuously or in a pulse form from a neutron generation source such as a nuclear reactor to the test piece 12 through a neutron transmission plate 21 using a neutron conduit and a monochromator crystal. . Neutron irradiation is performed until signals from the test piece 12 are sufficiently integrated. The dose per unit time depends on the ability of the neutron generation source. The measurement of the amount of neutron irradiation uses monochromatic neutrons. The diffracted neutrons from the test piece 12 are obtained by observing the spectrum of the neutron intensity with respect to the diffraction angle by a neutron detector installed near the diffraction angle of the test piece 12. taking measurement. Moreover, when using pulsed neutrons of white light, the neutron flight time and neutron intensity spectra are measured by a group of neutron detectors facing each other.

ロードセル36の測定値と試験片12の断面積とによって試験片12に加わる応力を測定し、任意の荷重における中性子回折により、試験片12を構成する結晶の格子面間隔を、中性子の回折現象を利用して測定することができる。また、非晶質試験片の場合には、中性子回折現象によるハローパターンを測定することができる。さらに、求められた格子面間隔等から歪み量を算出することにより、応力−ひずみ線図から試験片12の弾性定数を求めることもできる。さらに、歪みゲージや伸び計を試験片12に装着しておくことにより、試験片全体の変形情報を中性子回折と同時に測定することができる。   The stress applied to the test piece 12 is measured by the measured value of the load cell 36 and the cross-sectional area of the test piece 12, and the lattice spacing of the crystals constituting the test piece 12 is determined by neutron diffraction at an arbitrary load, and the neutron diffraction phenomenon is measured. It can be measured using. In the case of an amorphous test piece, a halo pattern due to a neutron diffraction phenomenon can be measured. Furthermore, the elastic constant of the test piece 12 can also be obtained from the stress-strain diagram by calculating the strain amount from the obtained lattice spacing. Further, by attaching a strain gauge or extensometer to the test piece 12, deformation information of the entire test piece can be measured simultaneously with neutron diffraction.

このようにして測定を行う際に、固定板16と輻射シールド15とを非接触状態に配置しておくことにより、筒状連結部材27の熱伸縮によって輻射シールド15が試験片12の軸線方向に対して直角方向に移動することによる影響を無くすことができ、試験片12に荷重をかける工程である負荷過程における測定値と、試験片12にかけた荷重を徐々に減じる工程である除荷過程における測定値との誤差の発生を防止できる。これにより、超低温下における高精度の測定が可能となる。   When the measurement is performed in this manner, the fixing plate 16 and the radiation shield 15 are arranged in a non-contact state, so that the radiation shield 15 is moved in the axial direction of the test piece 12 due to the thermal expansion and contraction of the cylindrical connecting member 27. It is possible to eliminate the influence of moving in the direction perpendicular to the measured value. In the unloading process, which is a process of gradually reducing the load applied to the test piece 12, the measured value in the loading process, which is a process of applying a load to the test piece 12. It is possible to prevent an error from occurring with the measured value. As a result, high-accuracy measurement at ultra-low temperatures is possible.

さらに、前記ロードセル36をベローズ37の筐体内部側に配置したことにより、筐体11の内部を真空引きしたときに、ベローズ37の収縮によってロードセル36に生じていた大気圧分の荷重による影響を極力排除することができ、試験片12の負荷過程と除荷過程との間で荷重差が発生しない高精度の測定が可能となる。また、室温側に配置されているベローズ37内の蓋部材37c近傍側にロードセル36を配置することにより、筐体11内が極低温に冷却されてもロードセル36の温度低下を僅かとすることができる。これにより、常温用のロードセルを使用することが可能となり、低温用の高価なロードセルを使用する必要がなくなる。   Furthermore, by arranging the load cell 36 on the inside of the housing of the bellows 37, when the inside of the housing 11 is evacuated, the influence due to the load corresponding to the atmospheric pressure generated in the load cell 36 due to the contraction of the bellows 37 is prevented. It is possible to eliminate as much as possible, and it is possible to perform highly accurate measurement without causing a load difference between the loading process and the unloading process of the test piece 12. Further, by arranging the load cell 36 near the lid member 37c in the bellows 37 arranged on the room temperature side, even if the inside of the housing 11 is cooled to an extremely low temperature, the temperature drop of the load cell 36 may be made slight. it can. Thereby, it becomes possible to use a load cell for room temperature, and it becomes unnecessary to use an expensive load cell for low temperature.

このように、本発明の低温引張試験機は、各種材料の中性子回折による残留応力(引っ張り・圧縮・曲げ・熱処理等の外力に対して物体内部に生じ、外力を除いたあとにも保留される応力)を、5K以下の超低温状態において測定することで、材料内部の残留応力分布や歪み等の状態を知ることができ、鉄鋼・金属、自動車・部品、重工・機械、電力・ガス、建設・土木などの各種材料の強化や安全性確保等の目的に利用することができ、様々な産業利用分野に活用できる。   As described above, the low-temperature tensile testing machine of the present invention generates residual stress (external force such as tension, compression, bending, heat treatment, etc.) due to neutron diffraction of various materials, and is retained even after the external force is removed. By measuring the stress) in an ultra-low temperature state of 5K or less, it is possible to know the residual stress distribution inside the material and the state of distortion, etc. Steel, metal, automobiles / parts, heavy industry / machinery, power / gas, construction / It can be used for the purpose of strengthening various materials such as civil engineering and ensuring safety, and can be used in various industrial fields.

11…真空断熱筐体、11a…天板、11b…底板、11c…前面板、11d…後面板、11e…左側面板、11f…右側面板、12…試験片、13…固定把持具、13a…把持部、14…可動把持具、14a…把持部、15…輻射シールド、15a…上面板、15b…底面板、15c…側面板、15d…端面板、16…固定板、17…支持軸、17a…雄ねじ、17b…雄ねじ、17c…ナット、18…駆動手段、19…2段式機械式冷凍機、19a…第1段冷却ヘッド、19b…第2段冷却ヘッド、20…測定窓、21…中性子透過板、21a…薄肉部、22…冷凍機取付口、23…冷凍機取付筒、24…冷却ヘッド挿入口、25…ヒータ、26…部材貫通口、27…筒状連結部材(第1伝熱手段)、28…固定把持具支持用ネジ部材、28a…固定ナット、29…ナット、30…開口、31…引張軸、32…駆動装置、33…可動把持具取付軸、33a…雄ねじ部、33b…固定ナット、34…雌ねじ部材、34a…ウオームホイール、35…ネジ軸、36…ロードセル、37…ベローズ、37a…筒状部、37b…フランジ、37c…蓋部材、38…リング状摺動部材、39…駆動装置支持軸、39a…雄ねじ、39b…雄ねじ、39c…ナット、40…駆動装置装着板、40a…軸受部材、41…ウオームギア、42…継手、43…モータ、44…伝熱部材(第3伝熱手段)、44a、44b…伝熱部材取付具、45…伝熱部材、45a、45b…伝熱部材取付具、46…伝熱部材(第2伝熱手段)、46a、46b…伝熱部材取付具、47…手動操作部、48…アイボルト   DESCRIPTION OF SYMBOLS 11 ... Vacuum insulation housing, 11a ... Top plate, 11b ... Bottom plate, 11c ... Front plate, 11d ... Rear surface plate, 11e ... Left side plate, 11f ... Right side plate, 12 ... Test piece, 13 ... Fixed gripping tool, 13a ... Grip 14, movable gripping tool, 14 a, gripping portion, 15, radiation shield, 15 a, top plate, 15 b, bottom plate, 15 c, side plate, 15 d, end plate, 16, fixed plate, 17, support shaft, 17 a,. Male screw, 17b ... Male screw, 17c ... Nut, 18 ... Driving means, 19 ... Two-stage mechanical refrigerator, 19a ... First stage cooling head, 19b ... Second stage cooling head, 20 ... Measurement window, 21 ... Neutron transmission Plate, 21a ... Thin wall part, 22 ... Refrigerator attachment port, 23 ... Refrigerator attachment tube, 24 ... Cooling head insertion port, 25 ... Heater, 26 ... Member through-hole, 27 ... Cylindrical connecting member (first heat transfer means) ) 28... Screw member for supporting the fixed gripping tool, 8a ... fixed nut, 29 ... nut, 30 ... opening, 31 ... tension shaft, 32 ... drive device, 33 ... movable gripper mounting shaft, 33a ... male screw portion, 33b ... fixed nut, 34 ... female screw member, 34a ... worm wheel 35 ... Screw shaft, 36 ... Load cell, 37 ... Bellows, 37a ... Cylindrical part, 37b ... Flange, 37c ... Lid member, 38 ... Ring-shaped sliding member, 39 ... Drive support shaft, 39a ... Male screw, 39b ... Male screw, 39c ... nut, 40 ... drive device mounting plate, 40a ... bearing member, 41 ... worm gear, 42 ... joint, 43 ... motor, 44 ... heat transfer member (third heat transfer means), 44a, 44b ... heat transfer member 45, heat transfer member, 45a, 45b ... heat transfer member mount, 46 ... heat transfer member (second heat transfer means), 46a, 46b ... heat transfer member mount, 47 ... manual operation unit, 48 ... Aibo Door

Claims (2)

試験片の一端を把持する固定把持具及び前記試験片の他端を把持する可動把持具と、両把持具を覆う輻射シールドと、把持具を覆った状態の輻射シールドを収容する真空断熱筐体と、該筐体内に冷却ヘッド部を挿入した2段式機械式冷凍機と、該2段式機械式冷凍機の第1段冷却ヘッドの冷熱を前記輻射シールドに伝達する第1伝熱手段と、前記2段式機械式冷凍機の第2段冷却ヘッドの冷熱を前記固定把持具及び前記可動把持具に伝達する第2伝熱手段と、前記試験片の軸線方向に配置されて前記輻射シールドの一側方を貫通し、更に前記筐体の一側壁を気密状態で貫通する引張軸と、前記筐体の外部側で前記引張軸を介して前記試験片に引張荷重又は圧縮荷重を与える駆動手段と、筐体の前記一側壁の内面から前記試験片の軸線方向に対して平行に筐体の他側壁の方向に向かって設けられた複数の支持軸と、筐体の前記他側壁から離れた位置で前記支持軸に保持された固定板と、該固定板に前記固定把持具を固定する固定把持具支持用ネジ部材と、前記2段式機械式冷凍機の第1段冷却ヘッドの冷熱を前記固定板に伝達する第3伝熱手段と、前記2段式機械式冷凍機の第2段冷却ヘッドに設けられたヒータとを備えた低温引張試験機において、前記引張軸における前記筐体の内部側に、前記試験片に与えられた引張荷重又は圧縮荷重を検出するロードセルを設けたことを特徴とする低温引張試験機。   A vacuum-insulated housing that houses a fixed gripping tool that grips one end of the test piece, a movable gripping tool that grips the other end of the test piece, a radiation shield that covers both gripping tools, and a radiation shield that covers the gripping tool. And a two-stage mechanical refrigerator having a cooling head portion inserted into the housing, and first heat transfer means for transmitting the cold heat of the first-stage cooling head of the two-stage mechanical refrigerator to the radiation shield. A second heat transfer means for transmitting the cold heat of the second stage cooling head of the two-stage mechanical refrigerator to the fixed gripper and the movable gripper, and the radiation shield disposed in the axial direction of the test piece A tension shaft that penetrates one side of the housing and further penetrates one side wall of the housing in an airtight state, and a drive that applies a tensile load or a compressive load to the test piece via the tension shaft on the outside of the housing Means and an axial direction of the test piece from the inner surface of the one side wall of the casing. A plurality of support shafts provided in parallel toward the other side wall of the housing, a fixed plate held by the support shaft at a position away from the other side wall of the housing, and the fixing to the fixed plate. A fixed gripping tool supporting screw member for fixing the gripping tool, third heat transfer means for transmitting cold heat of the first stage cooling head of the two-stage mechanical refrigerator to the fixed plate, and the two-stage mechanical type In a low-temperature tensile testing machine provided with a heater provided in a second stage cooling head of a refrigerator, a tensile load or a compressive load applied to the test piece is detected on the inner side of the casing on the tensile shaft. A low-temperature tensile testing machine characterized by a load cell. 前記引張軸は、前記筐体の一側壁に形成された開口を気密に覆う伸縮可能なベローズの筐体外部側を気密に覆う蓋部材に前記ロードセルを介して固着され、該蓋部材の筐体外部側が前記駆動手段に連結されていることを特徴とする請求項1記載の低温引張試験機。   The tension shaft is fixed to the lid member that airtightly covers the exterior side of the expandable bellows that airtightly covers the opening formed on one side wall of the housing via the load cell, and the housing of the lid member 2. The low temperature tensile testing machine according to claim 1, wherein an external side is connected to the driving means.
JP2012002954A 2012-01-11 2012-01-11 Low temperature tensile testing machine Pending JP2013142610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002954A JP2013142610A (en) 2012-01-11 2012-01-11 Low temperature tensile testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002954A JP2013142610A (en) 2012-01-11 2012-01-11 Low temperature tensile testing machine

Publications (1)

Publication Number Publication Date
JP2013142610A true JP2013142610A (en) 2013-07-22

Family

ID=49039242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002954A Pending JP2013142610A (en) 2012-01-11 2012-01-11 Low temperature tensile testing machine

Country Status (1)

Country Link
JP (1) JP2013142610A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063872A (en) * 2017-06-02 2017-08-18 中国工程物理研究院核物理与化学研究所 It is a kind of to be used for the room temperature mechanical loading unit of metallic beryllium in neutron scattering experiment
CN107703166A (en) * 2017-09-11 2018-02-16 中国工程物理研究院核物理与化学研究所 A kind of annular seal space for the experiment of neutron Static pressure
CN109030232A (en) * 2018-08-14 2018-12-18 兰州大学 Neutron scattering cryogenic tensile Dewar
KR20180136595A (en) * 2017-06-14 2018-12-26 주식회사 포스코 Corrosion test apparatus
CN109307626A (en) * 2018-09-07 2019-02-05 河南检亿科技有限公司 A kind of cryogenic tensile tester for wire and cable dumbbell plate
CN110567818A (en) * 2019-08-27 2019-12-13 中国地质大学(武汉) Material strength strain test system and test method
KR20200097159A (en) * 2019-02-07 2020-08-18 한국기초과학지원연구원 Apparatus for testing tension
CN112255111A (en) * 2020-09-14 2021-01-22 中国航发北京航空材料研究院 Miniature loading device for DVC method test under ultralow temperature condition
CN113720702A (en) * 2021-08-08 2021-11-30 中国飞机强度研究所 Material external field low-temperature test response equivalence method based on equivalence theory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510898A (en) * 1990-10-09 1993-01-19 Imago Machine observing characteristic of substance generating phase transformation
JPH06138010A (en) * 1992-10-23 1994-05-20 Insutoron Japan Kk Accurate load measuring device in super high vacuum
JP2001165879A (en) * 1999-12-14 2001-06-22 Yonekura Seisakusho:Kk Stress-application observation device
JP2010286479A (en) * 2009-05-12 2010-12-24 Taiyo Nippon Sanso Corp Low temperature tension tester

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510898A (en) * 1990-10-09 1993-01-19 Imago Machine observing characteristic of substance generating phase transformation
JPH06138010A (en) * 1992-10-23 1994-05-20 Insutoron Japan Kk Accurate load measuring device in super high vacuum
JP2001165879A (en) * 1999-12-14 2001-06-22 Yonekura Seisakusho:Kk Stress-application observation device
JP2010286479A (en) * 2009-05-12 2010-12-24 Taiyo Nippon Sanso Corp Low temperature tension tester

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063872A (en) * 2017-06-02 2017-08-18 中国工程物理研究院核物理与化学研究所 It is a kind of to be used for the room temperature mechanical loading unit of metallic beryllium in neutron scattering experiment
KR20180136595A (en) * 2017-06-14 2018-12-26 주식회사 포스코 Corrosion test apparatus
KR101949021B1 (en) 2017-06-14 2019-02-18 주식회사 포스코 Corrosion test apparatus
CN107703166B (en) * 2017-09-11 2024-01-12 中国工程物理研究院核物理与化学研究所 Sealing cavity for neutron static high-pressure experiment
CN107703166A (en) * 2017-09-11 2018-02-16 中国工程物理研究院核物理与化学研究所 A kind of annular seal space for the experiment of neutron Static pressure
CN109030232A (en) * 2018-08-14 2018-12-18 兰州大学 Neutron scattering cryogenic tensile Dewar
CN109307626A (en) * 2018-09-07 2019-02-05 河南检亿科技有限公司 A kind of cryogenic tensile tester for wire and cable dumbbell plate
KR20200097159A (en) * 2019-02-07 2020-08-18 한국기초과학지원연구원 Apparatus for testing tension
KR102174619B1 (en) 2019-02-07 2020-11-05 한국기초과학지원연구원 Apparatus for testing tension
CN110567818A (en) * 2019-08-27 2019-12-13 中国地质大学(武汉) Material strength strain test system and test method
CN112255111A (en) * 2020-09-14 2021-01-22 中国航发北京航空材料研究院 Miniature loading device for DVC method test under ultralow temperature condition
CN113720702A (en) * 2021-08-08 2021-11-30 中国飞机强度研究所 Material external field low-temperature test response equivalence method based on equivalence theory
CN113720702B (en) * 2021-08-08 2023-08-04 中国飞机强度研究所 Equivalent method for material outfield low-temperature test response based on equivalence theory

Similar Documents

Publication Publication Date Title
JP5065439B2 (en) Low temperature tensile testing machine
JP2013142610A (en) Low temperature tensile testing machine
WO2021047145A1 (en) Instrument and method for in-situ testing of mechanical properties of material under complex high-temperature mechanical load
CN107607390B (en) Variable-temperature tension-torsion composite load material mechanical property in-situ test device and method
CN104913981A (en) High-temperature in situ tension-fatigue test system and test method thereof
CN109520857B (en) High-flux small sample creep and creep crack propagation test device and using method thereof
CN102175536B (en) Test device for high-temperature tensile strength of nonmetal material
US20180238784A1 (en) Planar test system
CN204718898U (en) High-temp in-situ stretching-fatigue test system
KR101842048B1 (en) Axial force and friction torque measurement apparatus and method for identify the coefficient of friction of screw using the same
KR101710054B1 (en) Apparatus and method for deformation by the contact-measurement at high temperature
CN215985471U (en) In-situ mechanics research system suitable for X-ray microscope
WO2022022115A1 (en) Multi-physical field measurement device for metal solidification process and housing thereof, and measurement method
CN113281158A (en) In-situ mechanics research system suitable for X-ray microscope
CN115774033A (en) Multifunctional sample bin system suitable for electron microscope and simulation method
JP2004340920A (en) Mechanical characteristic test apparatus
CN105158542B (en) Metal fever potential detecting instrument
US20200241061A1 (en) Portable thermoelectric potential detector
JP6114938B2 (en) X-ray diffractometer integrated atmosphere control glove box device and method for manufacturing the same
CN210665328U (en) High-temperature ultrasonic fatigue in-situ test instrument
CN217638780U (en) High-temperature mechanical platform based on X-ray
CN204405471U (en) Carbon protective valve determined by a kind of cementing furnace steel foil
Zhao et al. Development of a variable temperature mechanical loading device for in situ neutron scattering measurements
CN115078118A (en) Material high-temperature tensile and fatigue testing machine and method based on synchrotron radiation and neutrons
Oliver et al. Novel testing chamber for neutron scattering measurements of internal stresses in engineering materials at cryogenic temperatures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160112