JP2013137124A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2013137124A
JP2013137124A JP2011287252A JP2011287252A JP2013137124A JP 2013137124 A JP2013137124 A JP 2013137124A JP 2011287252 A JP2011287252 A JP 2011287252A JP 2011287252 A JP2011287252 A JP 2011287252A JP 2013137124 A JP2013137124 A JP 2013137124A
Authority
JP
Japan
Prior art keywords
gas
connection pipe
side connection
refrigeration cycle
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011287252A
Other languages
Japanese (ja)
Other versions
JP5677282B2 (en
Inventor
Hiroaki Tsuboe
宏明 坪江
Atsuhiko Yokozeki
敦彦 横関
Susumu Nakayama
進 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011287252A priority Critical patent/JP5677282B2/en
Publication of JP2013137124A publication Critical patent/JP2013137124A/en
Application granted granted Critical
Publication of JP5677282B2 publication Critical patent/JP5677282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compressor (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove moisture and non-condensable gas, particularly, oxygen and carbon dioxide in air mixed during construction work on site, to shorten a construction time by eliminating special work even in particular when a connection pipe is long or there are many use-side heat exchangers to be connected, to stably start a compressor, and to improve reliability and performance of a refrigeration cycle device.SOLUTION: In a refrigeration cycle device which is configured by sequentially connecting the compressor, a heat source-side heat exchanger, a first expansion device, a liquid-side connection pipe, a second expansion device, a use-side heat exchanger, and a gas-side connection pipe, an adsorbent which adsorbs at least oxygen in the non-condensable gas and a drier which adsorbs moisture contained therein are arranged between the first expansion device and the second expansion device, a gas pump is provided is provided through an on-off valve in at least one of the liquid-side connection pipe and the gas-side connection pipe, and the gas pump is operated before a refrigerant is introduced into the liquid-side connection pipe and the gas-side connection pipe.

Description

本発明は、冷凍サイクルを利用した空気調和機、冷凍機などの冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus such as an air conditioner or a refrigerator using a refrigeration cycle.

熱源側熱交換器を含むユニットと利用側熱交換器を含むユニットを接続配管で接続する施工方法では、大気中の水分及び不凝縮ガス(酸素、窒素、炭酸ガスなど)が、接続配管及び利用側熱交換器を含むユニット内、場合によっては熱源側熱交換器を含むユニット内に残留する。そして、水分がユニット内に多量に混入すると、冷媒分子と結合し、低温部で水和物を生成し、キャピラリなどの膨張装置を詰まらせる。そのため冷媒及び冷凍機油の潤滑を妨げ、圧縮機の温度が異常に上昇したり、圧縮機摺動部を潤滑するのに必要な冷凍機油量を確保できなかったりする。   In the construction method of connecting the unit including the heat source side heat exchanger and the unit including the use side heat exchanger with connection piping, moisture and non-condensable gases (oxygen, nitrogen, carbon dioxide, etc.) in the atmosphere are connected and used. It remains in the unit including the side heat exchanger, and possibly in the unit including the heat source side heat exchanger. When a large amount of moisture is mixed into the unit, it binds to the refrigerant molecules, generates a hydrate at the low temperature part, and clogs an expansion device such as a capillary. Therefore, lubrication of the refrigerant and the refrigerating machine oil is hindered, and the temperature of the compressor rises abnormally, or the refrigerating machine oil amount necessary for lubricating the compressor sliding portion cannot be secured.

また、冷凍機油としてエステル油を使用した場合、または冷凍機油中にエステル系添加剤を添加している場合には、それらエステル化合物が加水分解し、酸が生成され、酸素はユニット内に予め封入した冷凍機油を酸化して劣化する。さらに、炭酸ガスは水分と反応し炭酸(酸)を生成する。酸は、圧縮機軸受部の摩耗が増大し、冷凍機油の劣化を促進、あるいは銅配管を腐食し、銅イオンが溶出し、圧縮機軸受部で銅が析出(銅メッキ現象)して圧縮機での異音発生の原因となる。   Also, when ester oil is used as refrigerating machine oil, or when ester additives are added to refrigerating machine oil, these ester compounds are hydrolyzed to produce acid, and oxygen is enclosed in the unit in advance. The refrigeration machine oil is oxidized and deteriorates. Further, carbon dioxide gas reacts with moisture to generate carbonic acid (acid). The acid increases the wear of the compressor bearing, accelerates the deterioration of the refrigerating machine oil, or corrodes the copper pipe, elutes copper ions, and precipitates copper (copper plating phenomenon) at the compressor bearing. This may cause abnormal noise.

そのため、水分及び酸素、炭酸ガスを機外に排出する、あるいは機内に持ち込まないようにすることで、水分及び酸素、炭酸ガスが冷凍サイクル内を循環しないようにする必要があり、現地施工時において、水分及び不凝縮ガスが混入した部位を真空ポンプにて真空引きを実施し、水分及び不凝縮ガスを機外に排出する。   Therefore, it is necessary to prevent moisture, oxygen, and carbon dioxide from circulating through the refrigeration cycle by discharging moisture, oxygen, and carbon dioxide outside the machine or not bringing them into the machine. The portion where moisture and non-condensable gas are mixed is evacuated by a vacuum pump, and the moisture and non-condensable gas are discharged outside the apparatus.

しかし、現地施工時に真空ポンプにて真空引きを行う方法では、配管長が長く、配管に接続する利用側熱交換器を含むユニットが複数台存在するシステムでは、真空引きを実施すべき空間の内容積が大きくなり、真空引きを実施する時間が長くなり、2〜3時間位必要となる。   However, in the method of evacuating with a vacuum pump at the time of on-site construction, the contents of the space to be evacuated in a system where the piping length is long and there are multiple units including the use side heat exchanger connected to the piping The product becomes large, the time for evacuation becomes long, and about 2 to 3 hours are required.

そのため、冷凍サイクル内の水分及び不凝縮ガス、特に酸素と炭酸ガスを効率良く除去すると共に、施工時間を短縮し、さらには信頼性を向上する方法として、乾燥剤を満たした第一のフィルタと反応型非凝縮性ガス除去剤を満たした第二のフィルタという構成を備えた冷凍システムが知られ、例えば特許文献1に記載されている。   Therefore, as a method for efficiently removing moisture and non-condensable gas in the refrigeration cycle, especially oxygen and carbon dioxide, shortening the construction time, and further improving the reliability, the first filter filled with the desiccant A refrigeration system having a configuration of a second filter filled with a reactive non-condensable gas removing agent is known, and is described in Patent Document 1, for example.

特開平4−302967号公報JP-A-4-302967

上記従来技術において特に、接続配管及び利用側熱交換器内に残留する不凝縮ガスは、冷凍サイクル内を相変化することなく、ガスの状態にて循環する。冷媒は凝縮器にて凝縮し、液単相あるいはかわき度の小さい状態に変化するが、不凝縮ガスは凝縮しないので、液管が必ず二相になる。蒸発器入口の絞り装置での開度が一定の場合、混入する不凝縮ガスの量によって、蒸発器入口の絞り装置入口の流体のかわき度が変化することから、絞り装置での圧力損失が変化する。   Particularly in the above-described prior art, the non-condensable gas remaining in the connection pipe and the use side heat exchanger circulates in a gas state without phase change in the refrigeration cycle. The refrigerant condenses in the condenser and changes to a liquid single phase or a state with a small degree of cuteness. However, since the non-condensable gas is not condensed, the liquid pipe always has two phases. When the degree of opening at the throttle device at the evaporator inlet is constant, the degree of pressure of the fluid at the inlet of the evaporator inlet varies depending on the amount of non-condensable gas mixed in, so the pressure loss at the throttle device changes. To do.

特に、不凝縮ガスの混入量が多くなる接続配管長が長い、更には接続される利用側熱交換器の台数が多い場合には蒸発器入口の絞り装置入口の流体のかわき度が著しく大きくなることから、絞り装置での圧力損失は大きくなる。   In particular, when the length of the connection pipe that increases the amount of non-condensable gas is mixed, and when the number of connected use-side heat exchangers is large, the degree of fluidity at the inlet of the expansion device at the evaporator inlet is remarkably increased. For this reason, the pressure loss in the expansion device increases.

更に、圧縮機始動時は、蒸発器入口の絞り装置の開度は、所定の開度であり、不凝縮ガスの混入量が多くなると、蒸発器入口の絞り装置入口の流体のかわき度が著しく大きくなり、絞り装置での圧力損失が大きくなり、圧縮機吸入圧力が0〔MPa(abs)〕となって、圧縮機の信頼性が低下する。そのため、圧縮機を始動することができず、冷凍サイクル装置を運転することができない虞が生じる。   Furthermore, when the compressor is started, the opening degree of the throttle device at the evaporator inlet is a predetermined opening degree, and when the amount of non-condensable gas increases, the degree of fluidity of the inlet of the throttle device at the evaporator inlet becomes remarkably high. As the pressure increases, the pressure loss in the expansion device increases, and the compressor suction pressure becomes 0 [MPa (abs)], which reduces the reliability of the compressor. Therefore, there is a possibility that the compressor cannot be started and the refrigeration cycle apparatus cannot be operated.

本発明の目的は、上記従来技術の課題を解決し、現地施工工事において混入する大気中の水分及び不凝縮ガス、特に酸素と炭酸ガスを効率良く除去すると共に、特に接続配管長が長い、あるいは接続される利用側熱交換器の台数が多い場合においても、特殊な作業をなくし、施工時間を短縮することができる冷凍サイクル装置を提供することにある。   The object of the present invention is to solve the above-mentioned problems of the prior art and efficiently remove moisture and non-condensable gas in the atmosphere and particularly oxygen and carbon dioxide mixed in the field construction work, and particularly, the length of the connecting pipe is long, or An object of the present invention is to provide a refrigeration cycle apparatus capable of eliminating special work and shortening construction time even when the number of connected use side heat exchangers is large.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、冷媒を圧縮する圧縮機、熱源機側熱交換器、第1の膨張装置、液側接続配管、第2の膨張装置、利用側熱交換器、ガス側接続配管が順次連結されることで構成される冷凍サイクル装置において、前記第1の膨張装置と前記第2の膨張装置との間に、不凝縮ガスの内、少なくとも酸素を吸着する吸着材及び水分を吸着するドライヤが配置されると共に、前記液側接続配管又は前記ガス側接続配管の少なくとも一方にガスポンプが接続され、該ガスポンプは、前記液側接続配管又は前記ガス側接続配管の内部に冷媒が導入される前に稼動することにより、これらの接続配管内部の不凝縮ガスを大気に開放する。   In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problems. For example, a compressor that compresses a refrigerant, a heat source device side heat exchanger, a first expansion device, a liquid side connection pipe, a second In a refrigeration cycle apparatus configured by sequentially connecting an expansion device, a use side heat exchanger, and a gas side connection pipe, a non-condensable gas is interposed between the first expansion device and the second expansion device. An adsorbent that adsorbs at least oxygen and a dryer that adsorbs moisture, and a gas pump is connected to at least one of the liquid side connecting pipe or the gas side connecting pipe, and the gas pump is connected to the liquid side connecting pipe Or by operating before a refrigerant | coolant is introduce | transduced into the inside of the said gas side connection piping, the non-condensable gas inside these connection piping is open | released to air | atmosphere.

本発明によれば、現地施工工事において混入する大気中の水分及び不凝縮ガス、特に酸素と炭酸ガスを、ガスポンプにより低減した後に冷凍サイクル内に配置した不凝縮ガス吸着材により吸着するようにしたので、従来の配管作業に対して工程が増えず、冷凍サイクルの詰まりや、冷凍機油の劣化を効率良く抑制することができる。したがって、特に接続配管長が長い、あるいは接続される利用側熱交換器の台数が多い場合においても真空引きを実施することが必要でなくなるため、施工時間を短縮することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, atmospheric moisture and non-condensable gas mixed in the field construction work, particularly oxygen and carbon dioxide gas are reduced by the gas pump and then adsorbed by the non-condensable gas adsorbent disposed in the refrigeration cycle. Therefore, the number of processes does not increase with respect to the conventional piping work, and clogging of the refrigeration cycle and deterioration of refrigeration oil can be efficiently suppressed. Therefore, it is not necessary to perform evacuation even when the length of the connecting pipe is long or the number of use side heat exchangers to be connected is large, so that the construction time can be shortened.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明による一実施の形態を示すサイクル系統図。The cycle system diagram which shows one embodiment by this invention. 本発明による他の実施の形態を示すサイクル系統図。The cycle system diagram which shows other embodiment by this invention. 本発明による更に他の実施の形態を示すサイクル系統図。The cycle system | strain diagram which shows other embodiment by this invention. 冷凍サイクル内の不凝縮ガスの存在量を分析したグラフ。The graph which analyzed the abundance of the non-condensable gas in a refrigerating cycle. 不凝縮ガス量による圧縮機始動後の最低圧縮機吸入側圧力を示したグラフ。The graph which showed the minimum compressor suction side pressure after the compressor start by the amount of non-condensable gas. 内外容積比βと接続配管及び利用側熱交換器の真空度p2の関係を示したグラフ。Graph showing the relation between the vacuum p 2 of the inner and outer volume ratio β and the connection pipe and the utilization-side heat exchanger.

以下本発明の実施の形態について図を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本実施例では、特に接続配管長が長い、あるいは接続される利用側熱交換器の台数が多い場合においても真空引きを実施しなくとも、安定的に圧縮機を始動することができる、冷凍サイクル装置の例を説明する。図1は本実施の形態を示すサイクル系統図を示す。現地施工工事においては、室外機40aと室内機20a、20bを据付後、接続配管7、8を用いて室外機40aと室内機20a、20bとを施工時に接続する。室外機40aは製造時に冷凍機油を封入した状態で真空引きを圧力p1以下まで実施し、冷媒を封入し出荷されている。接続配管7、8と室内機20a、20b内に空気(不凝縮ガス)と、空気中の水分と、が残留している。このときの接続配管7、8と室内機20a、20b内の圧力は大気圧である。 In the present embodiment, the refrigeration cycle that can start the compressor stably without performing evacuation even when the length of the connecting pipe is long or the number of connected use side heat exchangers is large. An example of the apparatus will be described. FIG. 1 is a cycle system diagram showing this embodiment. In the local construction work, after installing the outdoor unit 40a and the indoor units 20a and 20b, the outdoor unit 40a and the indoor units 20a and 20b are connected using the connection pipes 7 and 8 at the time of construction. The outdoor unit 40a is shipped with refrigeration oil sealed at the time of manufacture, vacuumed to a pressure p 1 or less, and filled with a refrigerant. Air (non-condensable gas) and moisture in the air remain in the connection pipes 7 and 8 and the indoor units 20a and 20b. At this time, the pressure in the connection pipes 7 and 8 and the indoor units 20a and 20b is atmospheric pressure.

室外機40aに内蔵したガスポンプ50は、本実施例ではガス側接続配管8のガス阻止弁9の近傍にガスポンプ接続配管52a、開閉弁51aを介して接続されているが、液側接続配管7の液阻止弁6近傍に接続しても良い。開閉弁51aは電動によりガスポンプ50の動作に応じて開閉しても、手動で開閉する弁であっても良い。開閉弁51aの動作は、ガスポンプ50を駆動する前に開閉弁51aを開け、ガスポンプ50を所定時間稼動した後に開閉弁51aを閉止する。   In the present embodiment, the gas pump 50 built in the outdoor unit 40a is connected in the vicinity of the gas blocking valve 9 of the gas side connection pipe 8 via the gas pump connection pipe 52a and the on-off valve 51a. You may connect in the liquid blocking valve 6 vicinity. The on-off valve 51a may be an electric valve that opens and closes according to the operation of the gas pump 50, or a valve that is manually opened and closed. The on-off valve 51a operates by opening the on-off valve 51a before driving the gas pump 50, and closing the on-off valve 51a after operating the gas pump 50 for a predetermined time.

ガスポンプ50を駆動するための電源は室外機40aの基板から取り出し、ガスポンプ50の運転、停止を室外機40aの基板で制御する。また、ガスポンプ50が稼動する際は、第2の膨張装置21a、21bは全開に設定する。このことにより、ガスポンプ50を接続していない側の接続配管内の不凝縮ガスを大気に排出可能である。   The power source for driving the gas pump 50 is taken out from the substrate of the outdoor unit 40a, and the operation and stop of the gas pump 50 are controlled by the substrate of the outdoor unit 40a. Further, when the gas pump 50 is operated, the second expansion devices 21a and 21b are set to be fully open. Thereby, the non-condensable gas in the connection pipe on the side where the gas pump 50 is not connected can be discharged to the atmosphere.

第2の膨張装置21a、21bは全開に設定することができない場合は、図2のように、ガスポンプ50をガス側接続配管8のガス阻止弁9の近傍にガスポンプ接続配管52a、開閉弁51aを介して接続すると共に、液側接続配管7の液阻止弁6近傍にガスポンプ接続配管52b、開閉弁51bを介して接続しても良い。   When the second expansion devices 21a and 21b cannot be set to fully open, as shown in FIG. 2, the gas pump 50 is connected to the gas blocking valve 9 in the vicinity of the gas blocking valve 9 with a gas pump connection pipe 52a and an on-off valve 51a. In addition, the liquid side connection pipe 7 may be connected to the vicinity of the liquid blocking valve 6 via a gas pump connection pipe 52b and an on-off valve 51b.

またガスポンプ50は、接続配管7、8及び室内機20a、20bに冷媒を導入する直前に稼動し、接続配管7、8及び室内機20a、20b内の空気を大気に排出する。ここで、冷媒の充填は、阻止弁6、9を開けて、室外機40aに封入した冷媒のみを接続配管7、8及び室内機20a、20bに冷媒を導入する場合と、冷媒ボンベから接続配管7、8に応じて接続配管7、8及び室内機20a、20bに追加充填する場合がある。   The gas pump 50 operates immediately before introducing the refrigerant into the connection pipes 7 and 8 and the indoor units 20a and 20b, and discharges the air in the connection pipes 7 and 8 and the indoor units 20a and 20b to the atmosphere. Here, the charging of the refrigerant is performed by opening the blocking valves 6 and 9 and introducing only the refrigerant sealed in the outdoor unit 40a into the connection pipes 7 and 8 and the indoor units 20a and 20b, and from the refrigerant cylinder to the connection pipe. In some cases, the connecting pipes 7 and 8 and the indoor units 20a and 20b are additionally filled in accordance with 7 and 8.

ガスポンプ50の稼動時間は、接続配管7、8及び室内機20a、20b内の圧力が、室外機40aの内容積をVh、室外機40a内の油量をVo、液側接続配管7、ガス側接続配管8及び室内機20a、20bの内容積の和をVp、内外容積比をβ(=(Vh−Vo)/Vp)とすると、94.7β+95.5〔kPa(abs)〕未満、望ましくは65.7β+66.5〔kPa(abs)〕以下となるまでである。 The operating time of the gas pump 50 is such that the pressure in the connection pipes 7 and 8 and the indoor units 20a and 20b is V h for the internal volume of the outdoor unit 40a, V o is the amount of oil in the outdoor unit 40a, When the sum of the internal volumes of the gas side connecting pipe 8 and the indoor units 20a and 20b is V p and the internal / external volume ratio is β (= (V h −V o ) / V p ), 94.7β + 95.5 [kPa (abs )], Preferably 65.7β + 66.5 [kPa (abs)] or less.

このとき、接続配管7、8及び室内機20a、20b内の圧力を圧力計により判断しても、接続配管7、8の配管長と及び室内機20a、20bの種類と接続台数から求められる内容積とガスポンプ50の排出速度を元に決定しても良い。   At this time, even if the pressure in the connection pipes 7 and 8 and the indoor units 20a and 20b is determined by a pressure gauge, the content obtained from the pipe length of the connection pipes 7 and 8, the types of the indoor units 20a and 20b, and the number of connected units It may be determined based on the product and the discharge speed of the gas pump 50.

さらに、室外機40aに接続可能な接続配管7、8の最大配管長と室内機20a、20bの種類と最大接続台数から求められる最大内容積とガスポンプ50の排出速度を元にしたガスポンプ50の最大稼動時間を、室外機40aでのガスポンプ50の稼働時間としても良い。   Further, the maximum of the gas pump 50 based on the maximum pipe length of the connection pipes 7 and 8 connectable to the outdoor unit 40a, the type of the indoor units 20a and 20b, the maximum number of connected units, and the discharge speed of the gas pump 50. The operation time may be the operation time of the gas pump 50 in the outdoor unit 40a.

ガスポンプ50により接続配管7、8及び室内機20a、20b内の圧力を94.7β+95.5〔kPa(abs)〕未満、望ましくは65.7β+66.5〔kPa(abs)〕以下として後に、接続配管7、8及び室内機20a、20b内に冷媒を導入し、冷房運転もしくは暖房運転を実施する。   The pressure in the connection pipes 7 and 8 and the indoor units 20a and 20b is reduced to less than 94.7β + 95.5 [kPa (abs)] by the gas pump 50, preferably 65.7β + 66.5 [kPa (abs)] or less. 7, 8 and the indoor units 20a and 20b are introduced with a refrigerant, and a cooling operation or a heating operation is performed.

冷房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は圧縮機1から吐出され、ガス冷媒が四方弁2を経て、熱源機側熱交換器3へと流入し、熱交換して凝縮液化する。凝縮液化した冷媒は全開とされた第1の膨張装置4を通り、図1の主流部配管31とドライヤ32を経て、余剰冷媒(配管長さに応じて冷凍サイクル内に余分に封入される冷媒)はレシーバ5に貯留され、残りが阻止弁6、室内機20a、20bへ送られる。送られた液冷媒は、第2の膨張装置21へ流入し、低圧まで減圧されて低圧二相状態となり、利用側熱交換器22a、22bで空気などの利用側媒体と熱交換して蒸発・ガス化する。その後、ガス冷媒は、阻止弁9、四方弁2、アキュムレータ10を経て圧縮機1へ戻る。   In the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1, and the gas refrigerant flows into the heat source side heat exchanger 3 through the four-way valve 2 to exchange heat. Condensed liquid. The condensed and liquefied refrigerant passes through the fully expanded first expansion device 4, passes through the main flow pipe 31 and the dryer 32 in FIG. ) Is stored in the receiver 5, and the remainder is sent to the blocking valve 6 and the indoor units 20a and 20b. The sent liquid refrigerant flows into the second expansion device 21 and is depressurized to a low pressure to be in a low-pressure two-phase state, and exchanges heat with the use-side medium such as air in the use-side heat exchangers 22a and 22b to evaporate / Gasify. Thereafter, the gas refrigerant returns to the compressor 1 through the blocking valve 9, the four-way valve 2, and the accumulator 10.

暖房運転の場合、圧縮機1で圧縮された高温高圧のガス冷媒は圧縮機1から吐出され、四方弁2、阻止弁9を経て利用側熱交換器22へ流入し、空気など利用側媒体と熱交換して凝縮液化する。凝縮液化した冷媒は、阻止弁6、レシーバ5、主流部配管31とドライヤ32へ流入し、第1の膨張装置4で減圧され熱源機側熱交換器3で空気・水などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四方弁2、アキュムレータ10を経て圧縮機1へ戻る。   In the heating operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 and flows into the use-side heat exchanger 22 through the four-way valve 2 and the blocking valve 9, and the use-side medium such as air and the like. Heat exchange to condense. The condensed and liquefied refrigerant flows into the blocking valve 6, the receiver 5, the main flow pipe 31 and the dryer 32, is decompressed by the first expansion device 4, and is heated by a heat source medium such as air / water and heat in the heat source machine side heat exchanger 3. Replace and evaporate and gasify. The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 10.

上記運転の際に、接続配管7、8と室内機20a、20b内に残留した水分と不凝縮ガスは、冷媒と共に冷凍サイクル内を循環している。
図5に接続配管7、8と室内機20a、20b内に残留した不凝縮ガス量による圧縮機1始動後の最低圧縮機吸入側圧力を測定した実験結果を示す。実験では4馬力の店舗インバータ機を使用した。冷房運転の結果を細実線で示す。冷房運転では不凝縮ガス量が増えても圧縮機1が始動できない事象は発生しなかった。そのため、冷房運転の結果を安定的に起動できる最低圧力とした。暖房運転においては、不凝縮ガスの量がある量以上になると急激に始動後の最低吸入圧力が低下し、不凝縮ガス量1.15〔g/L〕の時に圧縮機1の吸入圧力が0〔KPa(abs)〕となり、圧縮機1を始動することができなかった。
During the above operation, moisture and non-condensable gas remaining in the connection pipes 7 and 8 and the indoor units 20a and 20b circulate in the refrigeration cycle together with the refrigerant.
FIG. 5 shows the experimental results of measuring the minimum compressor suction side pressure after starting the compressor 1 based on the amount of non-condensable gas remaining in the connection pipes 7 and 8 and the indoor units 20a and 20b. In the experiment, a 4 hp store inverter was used. The result of the cooling operation is indicated by a thin solid line. In the cooling operation, there was no event that the compressor 1 could not be started even if the amount of non-condensable gas increased. Therefore, the result of the cooling operation is set to the lowest pressure that can be stably started. In heating operation, when the amount of non-condensable gas exceeds a certain amount, the minimum suction pressure after start-up suddenly decreases, and when the amount of non-condensable gas is 1.15 [g / L], the suction pressure of the compressor 1 is zero. [KPa (abs)] and the compressor 1 could not be started.

圧縮機1を安定的に始動するためには圧縮機1始動後の最低吸入圧力が、安定的に起動できる最低吸入圧力以上となる不凝縮ガス量であれば良く、そのときの不凝縮ガス量は図5より0.8〔g/L〕以下である。   In order to start the compressor 1 stably, it is sufficient that the minimum suction pressure after starting the compressor 1 is not less than the minimum suction pressure that can be stably started. From FIG. 5, it is 0.8 [g / L] or less.

故に最低限、不凝縮ガス量が1.15〔g/L〕未満であれば、圧縮機1は始動することができ、安定的に起動するためには不凝縮ガス量は0.8〔g/L〕以下であることが望ましい。   Therefore, at a minimum, if the amount of non-condensable gas is less than 1.15 [g / L], the compressor 1 can be started, and in order to start stably, the amount of non-condensable gas is 0.8 [g / L] or less.

ここで、接続配管7、8及び室内機20a、20b内の圧力p2は、接続配管7、8及び室内機20a、20b内の不凝縮ガス(空気)量をα〔g/L〕とすると、αとβの関数で表され、p2=(83.07α−0.80)β+83.07αとなる。よって、ガスポンプ50による接続配管7、8及び室内機20a、20b内の到達圧力としては、圧縮機1を最低限始動するためには、不凝縮ガス量α<1.15〔g/L〕なので、p2<94.7β+95.5〔kPa(abs)〕、安定的に始動するためには不凝縮ガス量α≦0.8〔g/L〕なので、p2≦65.7β+66.5〔kPa(abs)〕であることが望ましい。 Here, the pressure p 2 in the connecting pipes 7 and 8 and the indoor units 20a and 20b is defined as α [g / L] when the amount of non-condensable gas (air) in the connecting pipes 7 and 8 and the indoor units 20a and 20b is α. , Α and β, and p 2 = (83.07α−0.80) β + 83.07α. Therefore, as the ultimate pressure in the connection pipes 7 and 8 and the indoor units 20a and 20b by the gas pump 50, in order to start the compressor 1 at a minimum, the non-condensable gas amount α <1.15 [g / L]. , P 2 <94.7β + 95.5 [kPa (abs)], and in order to start stably, the amount of noncondensable gas α ≦ 0.8 [g / L], so p 2 ≦ 65.7β + 66.5 [kPa] (abs)].

図6に上記結果をグラフ化したものを示す。ガスポンプ50により接続配管7、8と室内機20a、20b内の不凝縮ガスを大気に排出する前に、施工した接続配管7、8の接続箇所及び接続配管7、8と室外機40a、室内機20a、20bとの接続箇所にガス漏れが無いことを確認すべく、接続配管7、8及び室内機20a、20b内に窒素を加圧充填し漏れチェックを実施する。その後、接続配管7、8及び室内機20a、20b内の窒素を大気圧に開放するので、ガスポンプ50を稼動する直前の接続配管7、8及び室内機20a、20b内の圧力p2は大気圧である。そのため、安定的に始動できる場合のp2と内外容積比βとの関係である、p2=65.7β+66.5〔kPa(abs)〕と大気圧との交点となる内外容積比β=0.53以上であれば、ガスポンプ50を稼動しなくとも、安定的に稼動する条件であるp2≦65.7β+66.5〔kPa(abs)〕を満足することができる。 FIG. 6 shows a graph of the above results. Before exhausting the non-condensable gas in the connection pipes 7 and 8 and the indoor units 20a and 20b to the atmosphere by the gas pump 50, the connection points of the connection pipes 7 and 8 and the connection pipes 7 and 8 and the outdoor unit 40a and the indoor unit In order to confirm that there is no gas leakage at the connection points with 20a and 20b, the connection pipes 7 and 8 and the indoor units 20a and 20b are pressurized and filled with nitrogen, and a leak check is performed. Thereafter, connection pipe 7, 8 and the indoor unit 20a, since the nitrogen in 20b is opened to the atmospheric pressure, the pressure p 2 in the immediately preceding connection pipe 7, 8 and the indoor units 20a, within 20b that run gas pump 50 is atmospheric pressure It is. Therefore, the internal / external volume ratio β = 0, which is the intersection of p 2 = 65.7β + 66.5 [kPa (abs)] and the atmospheric pressure, which is the relationship between p 2 and the internal / external volume ratio β when stable starting is possible. If it is 0.53 or more, it is possible to satisfy p 2 ≦ 65.7β + 66.5 [kPa (abs)], which is a condition for stable operation, even if the gas pump 50 is not operated.

施工時に接続配管7、8と室内機20a、20b内を真空引きする際に使用する真空ポンプはロータリ方式であるが、ガスポンプ50としては、例えばダイヤフラム方式であっても必要な到達圧力を実現することが可能である。   The vacuum pump used when evacuating the inside of the connection pipes 7 and 8 and the indoor units 20a and 20b at the time of construction is a rotary type, but the gas pump 50 realizes a necessary ultimate pressure even if it is a diaphragm type, for example. It is possible.

図4は接続配管7、8と室内機20a、20b内に所定量の空気を残留させ、運転開始後2時間経過したときの、冷凍サイクル内を循環している冷媒とレシーバ5の上部から気相冷媒を抽出して不凝縮ガス量を分析した結果を示し、この結果から、冷凍サイクル内を循環している冷媒よりも、レシーバ5上部の気相に不凝縮ガスは多く存在することが分かった。そして、空気調和機を運転することで、不凝縮ガスはレシーバ5の上部気相部に集まるので、不凝縮ガスを吸着するための吸着材33をレシーバ5上部の気相部に配置した。これにより、効率良く、不凝縮ガスを吸着除去することができる。   FIG. 4 shows a state in which a predetermined amount of air remains in the connection pipes 7 and 8 and the indoor units 20a and 20b. The result of extracting the phase refrigerant and analyzing the amount of non-condensable gas is shown. From this result, it can be seen that there is more non-condensable gas in the gas phase above the receiver 5 than the refrigerant circulating in the refrigeration cycle. It was. And by operating an air conditioner, non-condensable gas collects in the upper vapor phase part of the receiver 5, Therefore The adsorbent 33 for adsorb | sucking non-condensable gas was arrange | positioned in the vapor phase part of the receiver 5 upper part. Thereby, non-condensable gas can be adsorbed and removed efficiently.

また、水分は、第1の膨張装置4と第2の膨張装置21a、21bの間に配置したドライヤ32により吸着除去し、ドライヤ32は、主流部31をバイパスするバイパス部に配置することで、ドライヤ32に流れる冷媒流量を主流部に比べ10%以下に設定することができる。したがって、流体力によるドライヤ剤(乾燥剤)の摩耗を抑制することが可能である。   Further, moisture is adsorbed and removed by a dryer 32 disposed between the first expansion device 4 and the second expansion devices 21a and 21b, and the dryer 32 is disposed in a bypass portion that bypasses the main flow portion 31. The refrigerant flow rate flowing through the dryer 32 can be set to 10% or less as compared with the main flow portion. Therefore, it is possible to suppress wear of the dryer agent (desiccant) due to fluid force.

さらに、例えば室外機40aに搭載した圧縮機1が故障した場合、圧縮機1を交換する必要がある。修理時においては、室外機40a、接続配管7、8及び室内機20a、20b内の冷媒を冷媒回収装置にて回収した後、故障箇所を修理するために冷凍サイクルを大気に開放し、故障箇所を修理後、冷凍サイクルを密閉する。   Furthermore, for example, when the compressor 1 mounted on the outdoor unit 40a fails, the compressor 1 needs to be replaced. At the time of repair, after the refrigerant in the outdoor unit 40a, the connecting pipes 7 and 8, and the indoor units 20a and 20b is recovered by the refrigerant recovery device, the refrigeration cycle is opened to the atmosphere in order to repair the failed part. After repairing, seal the refrigeration cycle.

その後は施工時と同じ作業を実施することになるが、施工時においては、接続配管7、8及び室内機20a、20b内の不凝縮ガスを大気に排出するのみでよいが、修理時は室外機40a内の不凝縮ガスも排出する必要がある。製造時に室外機40aの圧力p1は、安定的に圧縮機1を始動できる接続配管7、8及び室内機20a、20b内の圧力p2よりも低く、そのため、ガスポンプ50の到達圧力は接続配管7、8及び室内機20a、20bの内容積から決まる値では、室外機40aでの圧力差p2−p1分、不凝縮ガスが冷凍サイクル内に混入することになり、圧縮機1が始動できない可能性がある。 After that, the same work as at the time of construction will be carried out, but at the time of construction, it is only necessary to discharge the non-condensable gas in the connecting pipes 7 and 8 and the indoor units 20a and 20b to the atmosphere, but at the time of repairing the outdoor It is also necessary to discharge the non-condensable gas in the machine 40a. The pressure p 1 of the outdoor unit 40a at the time of manufacture is lower than the pressures p 2 in the connecting pipes 7 and 8 and the indoor units 20a and 20b that can stably start the compressor 1, and therefore the ultimate pressure of the gas pump 50 is the connecting pipe. 7 and 8 and the value determined from the internal volume of the indoor units 20a and 20b, the non-condensable gas is mixed in the refrigeration cycle for the pressure difference p 2 -p 1 in the outdoor unit 40a, and the compressor 1 is started. It may not be possible.

そのため、ガスポンプ50による到達圧力は、ガスポンプ50で排出すべき全ての内容積を接続配管7、8及び室内機20a、20bとした場合の内外容積比、つまりβ=0となる圧力になるまで実施する必要がある。このとき圧縮機1を最低限始動するためには、不凝縮ガス量α<1.15〔g/L〕なので、ガスポンプ50による到達圧力<95.5〔kPa(abs)〕、安定的に始動するためには不凝縮ガス量α≦0.8〔g/L〕なので、ガスポンプ50による到達圧力≦66.5〔kPa(abs)〕であることが望ましい。   For this reason, the ultimate pressure by the gas pump 50 is implemented until the internal / external volume ratio when all the internal volumes to be discharged by the gas pump 50 are the connection pipes 7 and 8 and the indoor units 20a and 20b, that is, a pressure that satisfies β = 0. There is a need to. At this time, in order to start the compressor 1 at a minimum, since the non-condensable gas amount α <1.15 [g / L], the ultimate pressure by the gas pump 50 <95.5 [kPa (abs)] and stable start Therefore, since the amount of non-condensable gas α ≦ 0.8 [g / L], it is desirable that the ultimate pressure by the gas pump 50 ≦ 66.5 [kPa (abs)].

室外機40aに内蔵するガスポンプ50の到達圧力は、修理時も考慮した上記の値のポンプを選定するか、修理時に上記の値のポンプに交換しても良い。   For the ultimate pressure of the gas pump 50 built in the outdoor unit 40a, a pump having the above value may be selected in consideration of repair or may be replaced with a pump having the above value during repair.

本実施例では、冷凍サイクル内に混入した不凝縮ガスを吸着する不凝縮ガス吸着材33aをレシーバ5上部の気相部以外の箇所に配置した場合の冷凍サイクル装置の例を説明する。図3は、実施例2におけるサイクル系統図の例である。既に説明した図1に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。   In the present embodiment, an example of a refrigeration cycle apparatus will be described in which a non-condensable gas adsorbent 33a that adsorbs a non-condensable gas mixed in the refrigeration cycle is disposed at a location other than the gas phase portion above the receiver 5. FIG. 3 is an example of a cycle diagram in the second embodiment. The description of the components having the same functions as those shown in FIG. 1 already described with reference to FIG. 1 is omitted.

図3に示すように、図1のドライヤ32に代わりに、第1の膨張装置4と第2の膨張装置21a、21bの間に水分と不凝縮ガスとを吸着する吸着材34を配置しても良く、図1のものより不凝縮ガスを吸着除去の効率は落ちるが、レシーバ5内に不凝縮ガス吸着材33を封入する必要がないので、真空引きレス機能を含んでいない標準的な空気調和機に対して、変更点が少なくて済むので、開発期間を短縮することができる。   As shown in FIG. 3, instead of the dryer 32 of FIG. 1, an adsorbent 34 that adsorbs moisture and non-condensable gas is disposed between the first expansion device 4 and the second expansion devices 21a and 21b. Although the efficiency of adsorbing and removing non-condensable gas is lower than that of FIG. 1, it is not necessary to enclose the non-condensable gas adsorbent 33 in the receiver 5. The development period can be shortened because there are fewer changes to the harmonic machine.

さらに、不凝縮ガスを、特に酸素と炭酸ガスを吸着するための吸着材33として、少なくとも酸化鉄と酸化カルシウムを添加したものを使用すれば、酸化鉄は酸素を、酸化カルシウムは水分と炭酸ガスを吸着除去することができ、効率が良い。そして、一度吸着した不凝縮ガスは化学吸着により強固に吸着材33内に吸着されるので、再度冷凍サイクル中に放出されることはない。   Further, if non-condensable gas, in particular, adsorbent 33 for adsorbing oxygen and carbon dioxide is used, at least iron oxide and calcium oxide are used, iron oxide is oxygen, calcium oxide is moisture and carbon dioxide. Can be adsorbed and removed, and the efficiency is high. Since the non-condensable gas once adsorbed is firmly adsorbed in the adsorbent 33 by chemical adsorption, it is not released again during the refrigeration cycle.

1 圧縮機
2 四方弁
3 熱源機側熱交換器
4 第1の膨張装置
5a、5b、5c レシーバ
6、9 阻止弁
7 液側接続配管
8 ガス側接続配管
10 アキュムレータ
20a、20b 室内機
21a、21b 第2の膨張装置
22a、22b 利用側熱交換器
30a 不純物回収キット
31a 主流配管
32a、32c 乾燥剤
33a、33c 不凝縮ガス吸着材
34b 水分及び不凝縮ガス吸着材
35c、36c 冷媒導入出管
40a、40b 室外機
50 ガスポンプ
51a、51b 開閉弁
52a、52b ガスポンプ接続配管
321c、322c バイパス配管
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Heat source machine side heat exchanger 4 1st expansion apparatus 5a, 5b, 5c Receiver 6, 9 Stop valve 7 Liquid side connection piping 8 Gas side connection piping 10 Accumulator 20a, 20b Indoor units 21a, 21b Second expansion device 22a, 22b Use side heat exchanger 30a Impurity recovery kit 31a Main pipe 32a, 32c Desiccant 33a, 33c Noncondensable gas adsorbent 34b Moisture and noncondensable gas adsorbent 35c, 36c Refrigerant inlet / outlet pipe 40a, 40b Outdoor unit 50 Gas pump 51a, 51b On-off valve 52a, 52b Gas pump connection piping 321c, 322c Bypass piping

Claims (7)

冷媒を圧縮する圧縮機、熱源機側熱交換器、第1の膨張装置、液側接続配管、第2の膨張装置、利用側熱交換器、ガス側接続配管が順次連結されることで構成される冷凍サイクル装置において、
前記第1の膨張装置と前記第2の膨張装置との間に、不凝縮ガスの内、少なくとも酸素を吸着する吸着材及び水分を吸着するドライヤが配置されると共に、
前記液側接続配管又は前記ガス側接続配管の少なくとも一方にガスポンプが接続され、
該ガスポンプは、前記液側接続配管又は前記ガス側接続配管の内部に冷媒が導入される前に稼動することにより、これらの接続配管内部の不凝縮ガスを大気に開放することを特徴とする冷凍サイクル装置。
The compressor for compressing the refrigerant, the heat source device side heat exchanger, the first expansion device, the liquid side connection piping, the second expansion device, the use side heat exchanger, and the gas side connection piping are sequentially connected. In the refrigeration cycle equipment
Between the first expansion device and the second expansion device, an adsorbent that adsorbs at least oxygen and a dryer that adsorbs moisture in the non-condensable gas are disposed,
A gas pump is connected to at least one of the liquid side connection pipe or the gas side connection pipe,
The gas pump operates before the refrigerant is introduced into the liquid side connection pipe or the gas side connection pipe, thereby opening the non-condensable gas inside these connection pipes to the atmosphere. Cycle equipment.
請求項1に記載の冷凍サイクル装置において、
前記液側接続配管と前記ガス側接続配管の内部に冷媒が導入された後に、これらの接続配管の内部の冷媒が冷媒回収装置により回収され、さらにこれらの接続配管が大気に開放された後に、これらの接続配管が密閉され、
前記ガスポンプは、その後、これらの接続配管の内部に冷媒が導入される前に稼動することにより、これらの接続配管の内部の不凝縮ガスを大気に開放することを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1,
After the refrigerant is introduced into the liquid side connection pipe and the gas side connection pipe, the refrigerant inside these connection pipes is recovered by the refrigerant recovery device, and further, after these connection pipes are opened to the atmosphere, These connecting pipes are sealed,
Thereafter, the gas pump is operated before the refrigerant is introduced into the connection pipes, thereby opening the non-condensable gas inside the connection pipes to the atmosphere.
請求項1に記載の冷凍サイクル装置において、
前記液側接続配管に冷媒を保持するレシーバが設けられ、
該レシーバ内部に前記吸着剤が配置されることを特徴とする冷凍サイクル装置。
The refrigeration cycle apparatus according to claim 1,
A receiver for holding a refrigerant is provided in the liquid side connection pipe,
A refrigeration cycle apparatus, wherein the adsorbent is disposed inside the receiver.
請求項1〜3の何れかに記載の冷凍サイクル装置において、
前記液側接続配管に該液側接続配管をバイパスするバイパス配管が接続され、
該バイパス配管に前記ドライヤが配置されることを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus according to any one of claims 1 to 3,
A bypass pipe that bypasses the liquid side connection pipe is connected to the liquid side connection pipe,
The refrigeration cycle apparatus, wherein the dryer is disposed in the bypass pipe.
請求項1〜3の何れかに記載の冷凍サイクル装置において、
前記圧縮機、前記熱源機側熱交換器を搭載した熱源機の内容積をVhとし、
該熱源機内の油量をVoとし、
一方で前記液側接続配管、前記ガス側接続配管及び利用側熱交換器を搭載した利用機器の内容積の和をVp、容積比をβ(=(Vh−Vo)/Vp)とすると、
前記ガスポンプの到達圧力は、94.7β+95.5〔kPa(abs)〕未満であることを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus according to any one of claims 1 to 3,
The internal volume of the heat source machine on which the compressor and the heat source machine side heat exchanger are mounted is V h ,
Let V o be the amount of oil in the heat source machine,
On the other hand, the sum of the internal volumes of the equipment on which the liquid side connection pipe, the gas side connection pipe and the use side heat exchanger are mounted is V p , and the volume ratio is β (= (V h −V o ) / V p ). Then,
The ultimate pressure of the gas pump is less than 94.7β + 95.5 [kPa (abs)].
請求項1〜3の何れかに記載の冷凍サイクル装置において、
前記圧縮機、前記熱源機側熱交換器を搭載した熱源機の内容積をVhとし、
該熱源機内の油量をVoとし、
一方で前記液側接続配管、前記ガス側接続配管及び利用側熱交換器を搭載した利用機器の内容積の和をVp、容積比をβ(=(Vh−Vo)/Vp)とすると、
前記ガスポンプの到達圧力は、65.7β+66.5〔kPa(abs)〕以下であることを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus according to any one of claims 1 to 3,
The internal volume of the heat source machine on which the compressor and the heat source machine side heat exchanger are mounted is V h ,
Let V o be the amount of oil in the heat source machine,
On the other hand, the sum of the internal volumes of the equipment on which the liquid side connection pipe, the gas side connection pipe and the use side heat exchanger are mounted is V p , and the volume ratio is β (= (V h −V o ) / V p ). Then,
The ultimate pressure of the gas pump is 65.7β + 66.5 [kPa (abs)] or less.
請求項1〜3の何れかに記載の冷凍サイクル装置において、
前記圧縮機、前記熱源機側熱交換器を搭載した熱源機の内容積をVhとし、
該熱源機内の油量をVoとし、
一方で前記液側接続配管、前記ガス側接続配管及び利用側熱交換器を搭載した利用機器の内容積の和をVp、容積比をβ(=(Vh−Vo)/Vp)とすると、
該容積比βが0.53以上の場合には、前記ガスポンプを稼動しないことを特徴とする冷凍サイクル装置。
In the refrigeration cycle apparatus according to any one of claims 1 to 3,
The internal volume of the heat source machine on which the compressor and the heat source machine side heat exchanger are mounted is V h ,
Let V o be the amount of oil in the heat source machine,
On the other hand, the sum of the internal volumes of the equipment on which the liquid side connection pipe, the gas side connection pipe and the use side heat exchanger are mounted is V p , and the volume ratio is β (= (V h −V o ) / V p ). Then,
When the volume ratio β is 0.53 or more, the gas pump is not operated.
JP2011287252A 2011-12-28 2011-12-28 Refrigeration cycle equipment Active JP5677282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287252A JP5677282B2 (en) 2011-12-28 2011-12-28 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287252A JP5677282B2 (en) 2011-12-28 2011-12-28 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2013137124A true JP2013137124A (en) 2013-07-11
JP5677282B2 JP5677282B2 (en) 2015-02-25

Family

ID=48912986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287252A Active JP5677282B2 (en) 2011-12-28 2011-12-28 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP5677282B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588223A (en) * 2015-08-31 2016-05-18 青岛海信日立空调系统有限公司 Outdoor unit, defrosting control system and method
CN105588222A (en) * 2015-06-16 2016-05-18 青岛海信日立空调系统有限公司 Outdoor unit, multi-connected heat pump system and control method thereof
CN108107938A (en) * 2017-12-21 2018-06-01 安徽华宇机械制造有限公司 A kind of temperature control equipment and its detecting and controlling system for silo

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856290A (en) * 1988-07-26 1989-08-15 Rodda Richard K Refrigerant reclamation system
JPH04302967A (en) * 1991-03-28 1992-10-26 Matsushita Refrig Co Ltd Refrigerating system
JP2006162081A (en) * 2004-12-02 2006-06-22 Hitachi Ltd Refrigerating cycle device
JP2007071421A (en) * 2005-09-05 2007-03-22 Hitachi Ltd Air conditioner
JP2011085360A (en) * 2009-10-19 2011-04-28 Panasonic Corp Air conditioner and installation method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4856290A (en) * 1988-07-26 1989-08-15 Rodda Richard K Refrigerant reclamation system
JPH04302967A (en) * 1991-03-28 1992-10-26 Matsushita Refrig Co Ltd Refrigerating system
JP2006162081A (en) * 2004-12-02 2006-06-22 Hitachi Ltd Refrigerating cycle device
JP2007071421A (en) * 2005-09-05 2007-03-22 Hitachi Ltd Air conditioner
JP2011085360A (en) * 2009-10-19 2011-04-28 Panasonic Corp Air conditioner and installation method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105588222A (en) * 2015-06-16 2016-05-18 青岛海信日立空调系统有限公司 Outdoor unit, multi-connected heat pump system and control method thereof
CN105588223A (en) * 2015-08-31 2016-05-18 青岛海信日立空调系统有限公司 Outdoor unit, defrosting control system and method
CN108107938A (en) * 2017-12-21 2018-06-01 安徽华宇机械制造有限公司 A kind of temperature control equipment and its detecting and controlling system for silo
CN108107938B (en) * 2017-12-21 2020-11-13 安徽华宇机械制造有限公司 Temperature control device for granary and detection control system thereof

Also Published As

Publication number Publication date
JP5677282B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
EP2312241B1 (en) Refrigerating cycle apparatus, and air-conditioning apparatus
JP2004183913A (en) Air conditioner
JP5263522B2 (en) Refrigeration equipment
JP2007240026A (en) Refrigerating device
WO2007063798A1 (en) Freezing apparatus
WO2004113803A1 (en) Freezing device construction method and freezing device
JP5677282B2 (en) Refrigeration cycle equipment
JP5871880B2 (en) Refrigeration cycle equipment
JPWO2003004948A1 (en) Heat pump equipment
WO2013175963A1 (en) Freezer
US20170204314A1 (en) Air conditioner
EP3627077A1 (en) Refrigerant recovery apparatus
JP4221598B2 (en) Refrigeration cycle equipment
JP2007139347A (en) Refrigerating unit and its construction method
JP5765325B2 (en) Refrigeration equipment
JP6393181B2 (en) Refrigeration cycle equipment
JP2007139346A (en) Refrigeration unit and its constructing method
JP4860668B2 (en) Refrigeration cycle apparatus, refrigerant charging method and refrigerant recovery method for refrigeration cycle apparatus
JP6771311B2 (en) Refrigeration cycle equipment
JP5573296B2 (en) Air conditioner
WO2007105425A1 (en) Method of recovering refrigerator oil
WO2023068197A1 (en) Freezing apparatus
CN215638115U (en) Refrigerant purification device and refrigerating system
JP2008202909A (en) Refrigerating apparatus and method of removing foreign matter in the apparatus
JP7190408B2 (en) Refrigerator renewal method and air conditioner renewal method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5677282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250