JP2013134180A - Flow rate measuring method and flow rate measuring apparatus using the same - Google Patents

Flow rate measuring method and flow rate measuring apparatus using the same Download PDF

Info

Publication number
JP2013134180A
JP2013134180A JP2011285357A JP2011285357A JP2013134180A JP 2013134180 A JP2013134180 A JP 2013134180A JP 2011285357 A JP2011285357 A JP 2011285357A JP 2011285357 A JP2011285357 A JP 2011285357A JP 2013134180 A JP2013134180 A JP 2013134180A
Authority
JP
Japan
Prior art keywords
flow rate
pressure
test pressure
workpiece
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011285357A
Other languages
Japanese (ja)
Other versions
JP5814109B2 (en
Inventor
Yoshihiro Honma
良廣 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP2011285357A priority Critical patent/JP5814109B2/en
Publication of JP2013134180A publication Critical patent/JP2013134180A/en
Application granted granted Critical
Publication of JP5814109B2 publication Critical patent/JP5814109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To measure the same flow rate as a flow rate measured by a regulated test pressure without performing test pressure adjustment even when a test pressure actually applied to a work is deviated from the regulated test pressure.SOLUTION: Gas to be supplied to the work through a flowmeter (20) is set to the test pressure by a pressure adjusting valve (12), a flow rate of the gas flowing out from the work in a measurement environment is measured by the flowmeter, gas temperature and atmospheric pressure in the measurement environment are measured, and the flow rate is converted into a flow rate of a reference state by a flow rate conversion part (30R) on the basis of the measured temperature and atmospheric pressure. A flow rate correction part (30C) calculates a correction coefficient for correcting the converted flow rate to a flow rate obtained when the gas of the regulated test pressure is applied to the work on the basis of the regulated test pressure, the measured gas and the actual test pressure and multiplies the converted flow rate by the correction coefficient, and the corrected conversion flow rate is displayed on a display part (31).

Description

本発明は計測環境の影響が少ない流量計測方法及びそれを使った流量計測装置に関する。   The present invention relates to a flow rate measurement method with little influence of a measurement environment and a flow rate measurement apparatus using the same.

流量計測装置は例えば容器から漏れる気体の流量計測、任意の気体の供給量調整のための流量計測又は流量管理などに使用される。これら流量計測において気体供給対象を以下ではワークと呼ぶ。この流量計測のためには、流量計を通して例えばテスト圧の気体をワークに供給し、ワークからの気体の流出量を計測する。以下の説明において流量計測の対象の気体は空気であるが、他の任意の気体にも適用できる。   The flow rate measuring device is used, for example, for flow rate measurement of gas leaking from a container, flow rate measurement or flow rate management for adjusting supply amount of arbitrary gas. In these flow measurement, the gas supply target is hereinafter referred to as a work. In order to measure the flow rate, for example, a test pressure gas is supplied to the work through a flow meter, and the outflow amount of the gas from the work is measured. In the following description, the target gas for flow rate measurement is air, but it can also be applied to other arbitrary gases.

このような気体の流量計測に使用される流量計測装置の従来例を図1に示す。図1の流量計測装置230は、空圧源11に接続されたテスト導管14と、テスト導管14に直列に挿入された調圧弁12と、調圧弁12の下流側においてテスト導管14に直列に挿入された流量計20と、流量計20の下流側においてテスト導管14に直列に挿入された開閉弁16と、開閉弁16の下流においてテスト導管14に連結されたテスト圧計13と、演算装置30と、演算結果の流量を表示する表示部31と、計測環境の大気温を測定する温度計32と、大気圧を測定する気圧計33とから構成され、テスト導管14の下流端にワーク40が接続される。空圧源11を流量計測装置230に含めてもよい。空圧源11は正圧を発生するものでも、負圧を発生するものでもよい。流量計20としては差圧式流量計、層流式流量計、熱線式流量計など、どのような形式の流量計でもよい。   FIG. 1 shows a conventional example of a flow rate measuring device used for such a gas flow rate measurement. The flow measuring device 230 in FIG. 1 includes a test conduit 14 connected to the pneumatic pressure source 11, a pressure control valve 12 inserted in series with the test conduit 14, and a test conduit 14 inserted in series downstream of the pressure control valve 12. The flow meter 20, the on-off valve 16 inserted in series with the test conduit 14 on the downstream side of the flow meter 20, the test pressure gauge 13 connected to the test conduit 14 on the downstream of the on-off valve 16, and the arithmetic unit 30. The display unit 31 for displaying the flow rate of the calculation result, the thermometer 32 for measuring the atmospheric temperature in the measurement environment, and the barometer 33 for measuring the atmospheric pressure, and the work 40 is connected to the downstream end of the test conduit 14. Is done. The air pressure source 11 may be included in the flow measurement device 230. The air pressure source 11 may generate a positive pressure or a negative pressure. The flow meter 20 may be any type of flow meter such as a differential pressure flow meter, a laminar flow meter, or a hot wire flow meter.

ワーク40に供給される気体の温度は大気温と同じであるとみなす。演算装置30は記憶部30Mと、流量換算部30Rとから構成されている。記憶部30Mには例えば標準状態の気圧(1013hPa)、温度(293K)などの値が予め格納されており、必要に応じて計測環境の気圧、温度の測定値及び流量計20による測定流量を記憶し、利用してもよい。流量換算部30Rは流量計20からの計測環境での計測流量Qtと、温度計32からの温度tと、気圧計33からの気圧Bと、記憶部30Mに保持されている係数が与えられ、流量計20により計測された流量(以下、計測環境での流量と呼ぶ)Qtを標準状態(例えば20℃、1気圧(1013hPa))での流量Q20’に換算して表示部31に与え、表示する。 It is considered that the temperature of the gas supplied to the workpiece 40 is the same as the atmospheric temperature. The arithmetic device 30 includes a storage unit 30M and a flow rate conversion unit 30R. The storage unit 30M stores, for example, the standard atmospheric pressure (1013 hPa) and temperature (293K) in advance, and stores the atmospheric pressure of the measurement environment, the measured value of the temperature, and the flow rate measured by the flow meter 20 as necessary. And may be used. The flow rate conversion unit 30R is provided with the measured flow rate Q t in the measurement environment from the flow meter 20, the temperature t from the thermometer 32, the atmospheric pressure B from the barometer 33, and the coefficient held in the storage unit 30M. The flow rate measured by the flow meter 20 (hereinafter referred to as the flow rate in the measurement environment) Q t is converted into a flow rate Q 20 ′ in a standard state (for example, 20 ° C., 1 atm (1013 hPa)) on the display unit 31. Give and display.

流速が音速未満であり、ワーク40の漏れ穴がオリフィス特性を有する場合、ワーク40からの気体の流出はベルヌイの定理に従うので、大気圧に対する差圧であるテスト圧ΔPの気体がワーク40に与えられた時のワークの穴41から流出する気体の流量Qに対応して流量計20により測定される流量Qtは次式 When the flow velocity is less than the sonic velocity and the leakage hole of the workpiece 40 has an orifice characteristic, the gas outflow from the workpiece 40 follows Bernoulli's theorem, so that a gas having a test pressure ΔP that is a differential pressure with respect to atmospheric pressure is given to the workpiece 40. The flow rate Q t measured by the flow meter 20 corresponding to the flow rate Q of the gas flowing out from the hole 41 of the workpiece when

Figure 2013134180
Figure 2013134180

で表される。Kはワークの穴41の大きさや形状などにより決まる形状係数であり、固定値である。Qtは計測環境(温度計32による温度がt℃、気圧計33による気圧がBhPa)でテスト圧ΔP=Ptが与えられた時の流量計20により計測される実体積流量(mL/min)である。ρtはワークに印加する空気圧(Pt+B)とその温度(以下では、環境温度t℃と同じとみなす)で決まる空気密度である。 It is represented by K is a shape factor determined by the size and shape of the hole 41 of the workpiece, and is a fixed value. Q t is the actual volume flow rate (mL / min) measured by the flow meter 20 when the test pressure ΔP = P t is given in the measurement environment (the temperature by the thermometer 32 is t ° C. and the atmospheric pressure by the barometer 33 is BhPa). ). ρ t is an air density determined by the air pressure (P t + B) applied to the workpiece and its temperature (hereinafter, assumed to be the same as the environmental temperature t ° C.).

図1において、ワーク40をテスト導管14に取り付けてから開閉弁16を開通させ、空圧源11からの気体を流量計20を通してワーク40に供給する。調圧弁12を調整し、テスト圧計13に表示されるワーク40に供給される気体の大気圧Bに対する差圧ΔP(ゲージ圧とも呼ばれる)が規定のテスト圧となるよう設定する。この時、ワーク40から流出する気体の流量Qに対応する実体積流量Qtが流量計20により計測される。 In FIG. 1, after the work 40 is attached to the test conduit 14, the on-off valve 16 is opened, and the gas from the pneumatic source 11 is supplied to the work 40 through the flow meter 20. The pressure regulating valve 12 is adjusted and set so that a differential pressure ΔP (also referred to as gauge pressure) with respect to the atmospheric pressure B of the gas supplied to the workpiece 40 displayed on the test pressure gauge 13 becomes a prescribed test pressure. At this time, the actual volume flow rate Q t corresponding to the flow rate Q of the gas flowing out from the workpiece 40 is measured by the flow meter 20.

このようにして式(1) により表される測定流量Qtは温度t、気圧B(hPa)の時の環境における実体積流量であり、温度及び気圧の少なくとも一方が変化すれば式(1) において空気密度ρtが変化するため、同じワーク40でも測定される流量Qtが変化してしまう。即ち、流量計測装置が使用される場所、あるいは同一場所における時間が変われば環境条件(計測環境での気圧B及び温度t)が変化するので、同じ流量計20を使って測定される流量Qtが異なる値を示す不都合がある。 Thus, the measured flow rate Q t represented by the equation (1) is the actual volume flow rate in the environment at the temperature t and the atmospheric pressure B (hPa), and if at least one of the temperature and the atmospheric pressure changes, the equation (1) In this case, since the air density ρ t changes, the measured flow rate Q t changes even with the same workpiece 40. That is, since the environmental conditions (atmospheric pressure B and temperature t in the measurement environment) change if the time at which the flow measuring device is used or the time at the same place changes, the flow rate Q t measured using the same flow meter 20. Has the disadvantage of showing different values.

流量計20により流量Qtを計測することにより、例えば検査対象のワークにおいて、ワークからの気体流出量が基準値より小さいか否か、あるいは要求された基準値より大か否かによりワークが良品か不良品かを判定すれば、その判定結果は環境に影響されてしまう問題がある。例えばワークの漏れの大きさによりワークの品質を判定する場合、本来であれば、漏れの原因であるワークの穴の大きさ(例えば穴の径あるいは面積)だけに依存する流量として計測できれば、計測環境に依存しない品質判定結果を得ることができるが、現実には穴の大きさが同じでも、計測環境の影響を受けてしまう。 By measuring the flow rate Q t by the flow meter 20, for example, in the inspected work, whether gas outflow amount is smaller than the reference value or, alternatively requested work good by determining large or not than a reference value from the work If it is determined whether the product is defective or not, the determination result is affected by the environment. For example, when judging the quality of a workpiece based on the size of the workpiece leakage, if it can be measured as a flow rate that depends only on the size of the hole in the workpiece (for example, the diameter or area of the hole) that is the cause of the leakage, Although it is possible to obtain a quality judgment result that does not depend on the environment, even if the hole size is the same, it is actually affected by the measurement environment.

あるいは、ワーク40の代わりに標準状態で規定のテスト圧に対し規定の流量を生じさせる流量抵抗設定ノズル(例えば特許文献1参照)を接続し、流量計測装置230を校正する場合、本来、流量抵抗設定ノズルの穴径にのみ依存する流量として校正できることが望まれるが、計測環境により流量が変化する。   Alternatively, when the flow rate measuring device 230 is calibrated by connecting a flow rate resistance setting nozzle (see, for example, Patent Document 1) that generates a specified flow rate for a specified test pressure in the standard state instead of the workpiece 40, the flow rate resistance is inherent Although it is desired that the flow rate can be calibrated only depending on the hole diameter of the setting nozzle, the flow rate varies depending on the measurement environment.

そこで、従来はワークの漏れ量検査においてはワークからの漏れ量に対応する実体積流量Qtを流量計20により計測し、演算装置30の流量換算部30Rにおいてその実体積流量Qtを予め決めた標準状態、例えば20℃、1気圧(1013hPa)の流量Q(20)にボイル・シャルルの法則を使って換算して表示している。具体的には、例えばテスト圧Ptでの実体積流量Qtを質量流量ρttで考えると、標準状態に換算された質量流量ρ20(20)と等しいので、次式 Therefore, conventionally, in the inspection of the leakage amount of the workpiece, the actual volume flow rate Q t corresponding to the leakage amount from the workpiece is measured by the flow meter 20, and the actual volume flow rate Q t is determined in advance by the flow rate conversion unit 30R of the arithmetic unit 30. It is converted into a standard state, for example, a flow rate Q (20) at 20 ° C. and 1 atm (1013 hPa) and converted and displayed using Boyle-Charles' law. Specifically, considering the actual volumetric flow rate Q t of the test pressure P t and the mass flow of [rho t Q t, is equal and converted mass flow ρ 20 Q (20) in the standard state, the following equation

Figure 2013134180
Figure 2013134180

のように換算して表示部31に表示している。以下、Rを換算係数と呼ぶことにする。この換算係数Rの値は計測環境の気体温度tと気圧Bとテスト圧Ptが決まれば一義的に決まる。Q(20)は標準状態での換算体積流量であり、ρ20は標準状態の空気の密度である。標準状態としては例えば温度0℃、気圧1013hPaを使用することもあるが、以下の説明では温度20℃、気圧1013hPaの場合で説明する。このような標準状態の流量への換算は例えば特許文献2において示されているボイル・シャルルの法則を使った流量の換算と同じである。 Is converted and displayed on the display unit 31. Hereinafter, R is referred to as a conversion factor. The value of the conversion factor R is uniquely determined if the gas temperature t, the atmospheric pressure B, and the test pressure P t in the measurement environment are determined. Q (20) is the converted volumetric flow rate in the standard state, and ρ 20 is the density of air in the standard state. As the standard state, for example, a temperature of 0 ° C. and an atmospheric pressure of 1013 hPa may be used, but in the following explanation, the temperature is 20 ° C. and the atmospheric pressure is 1013 hPa. Such conversion to the flow rate in the standard state is the same as the flow rate conversion using the Boyle-Charles law shown in Patent Document 2, for example.

特許第3778359号公報Japanese Patent No. 3778359 特開平11−190653号公報JP 11-190653 A

図1の流量検査装置においては、調圧弁12を調節してテスト圧計13に表示されるワーク40に対するテスト圧を規定のテスト圧に設定することが必要である。現実には多数のワークを順次検査していくにつれ環境温度及び大気圧が変化し、実際のテスト圧が規定のテスト圧から所定値以上ずれる毎に、そのつどテスト圧の調整を行う必要があった。またワーク毎に漏れ量が異なるのが普通であり、ワークを取り替える毎に流量が変化し、その結果、ワークに与えられるテスト圧が変化するので、調圧弁12によりテスト圧を規定のテスト圧に調整する必要がある。このような調整を調圧弁12で手動により短時間で行おうとすれば設定テスト圧の規定テスト圧に対する誤差が大きくなり、誤差を小さくしようとすれば、各設定に時間がかかる不便さがあった。   In the flow rate inspection apparatus of FIG. 1, it is necessary to adjust the pressure regulating valve 12 to set the test pressure for the workpiece 40 displayed on the test pressure gauge 13 to a specified test pressure. In reality, the environmental temperature and atmospheric pressure change as a large number of workpieces are inspected sequentially, and it is necessary to adjust the test pressure each time the actual test pressure deviates from the specified test pressure by a predetermined value or more. It was. In addition, the amount of leakage is usually different for each workpiece, and the flow rate changes each time the workpiece is replaced. As a result, the test pressure applied to the workpiece changes, so that the test pressure is adjusted to the specified test pressure by the pressure regulating valve 12. It needs to be adjusted. If such adjustment is performed manually with the pressure regulating valve 12 in a short time, the error of the set test pressure with respect to the specified test pressure increases, and if the error is reduced, there is an inconvenience that each setting takes time. .

そこで、図1中に破線で示すように、テスト圧計13の測定結果を電気信号として帰還制御部50に与え、測定テスト圧が規定の設定テスト圧となるよう帰還制御部50により調圧弁12を自動調節することが行われている。しかし、このような自動制御機構は価格が高くなる上に、帰還ループの遅延が大きく、設定テスト圧のハンチングが収斂するのに時間がかかる問題があった。   Therefore, as shown by a broken line in FIG. 1, the measurement result of the test pressure gauge 13 is given to the feedback control unit 50 as an electric signal, and the pressure regulating valve 12 is set by the feedback control unit 50 so that the measured test pressure becomes a specified set test pressure. Automatic adjustment is done. However, such an automatic control mechanism has a problem that the price is high, the delay of the feedback loop is large, and it takes time for the set test pressure hunting to converge.

この発明の目的は高価な帰還制御機構を使用せずに、ワークに与えられる実際のテスト圧が規定テスト圧からずれてもテスト圧の調整を行わずに規定のテスト圧で流量を測定したと同じ結果が得られる流量計測方法及び流量計測装置を提供することである。   The object of the present invention is that, without using an expensive feedback control mechanism, even if the actual test pressure applied to the workpiece deviates from the specified test pressure, the flow rate is measured at the specified test pressure without adjusting the test pressure. To provide a flow rate measuring method and a flow rate measuring device that can obtain the same result.

本発明の第1の観点によれば、計測環境の気圧Bと温度tacを測定し、流量計を通してワークに供給する気体のテスト圧Pacを測定し、流量計による計測環境での実体積流量Qacを測定し、上記温度tacと上記気圧Bと上記テスト圧Pacにより決まる所定の標準状態への換算係数を上記計測環境での実体積流量Qacに乗算して標準状態での流量Qac(20)に換算し、予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから、上記換算流量Qac(20)を、上記規定テスト圧Ppの気体がワークに与えられた時の流量に補正する補正係数を計算し、上記換算流量Qac(20)に上記補正係数を乗算して上記規定テスト圧Ppがワークに与えられた時の補正された換算流量Qp(20)を得て表示することを特徴とする。 According to the first aspect of the present invention, the atmospheric pressure B and temperature t ac of the measurement environment are measured, the test pressure P ac of the gas supplied to the work through the flow meter is measured, and the actual volume in the measurement environment by the flow meter is measured. the flow rate Q ac measured, in the standard state by multiplying a conversion factor to a predetermined standard state determined by the temperature t ac and the pressure B and the test pressure P ac the actual volumetric flow rate Q ac in the measurement environment in terms of the flow rate Q ac (20), the predetermined prescribed test pressure P p and measured the pressure B and the test pressure P ac, the conversion rate Q ac (20), defined above test pressure P p A correction coefficient for correcting the flow rate when the gas is applied to the work is calculated, and the correction flow rate Q ac (20) is multiplied by the correction coefficient to correct when the specified test pressure P p is applied to the work. The obtained converted flow rate Q p (20) is obtained and displayed.

本発明による第2の流量計測方法は、計測環境の気圧Bと温度tacを測定し、流量計を通してワークに供給する気体のテスト圧Pacを測定し、流量計による計測環境での実体積流量Qacを測定し、上記温度tacと上記気圧Bと上記テスト圧Pacにより決まる所定の標準状態への換算係数を上記計測環境での実体積流量Qacに乗算して標準状態での換算流量Qac(20)に換算し、予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから、上記換算流量Qac(20)を、上記規定テスト圧の気体が標準状態でワークに与えられたと等価な流量に変換する等価係数を計算し、上記換算流量Qac(20)に上記等価係数を乗算して上記規定テスト圧Ppが標準状態でワークに与えられた時の等価流量QEpを得て表示することを特徴とする。 The second flow measurement method according to the present invention measures the atmospheric pressure B and temperature t ac of the measurement environment, measures the test pressure P ac of the gas supplied to the work through the flow meter, and measures the actual volume in the measurement environment by the flow meter. the flow rate Q ac measured, in the standard state by multiplying a conversion factor to a predetermined standard state determined by the temperature t ac and the pressure B and the test pressure P ac the actual volumetric flow rate Q ac in the measurement environment in terms of conversion rate Q ac (20), the predetermined prescribed test pressure P p and measured the pressure B and the test pressure P ac, the terms flow Q ac (20), defined above test pressure of the gas Is equivalent to the flow rate equivalent to that applied to the workpiece in the standard condition, and the above specified test pressure P p is applied to the workpiece in the standard condition by multiplying the equivalent flow rate Q ac (20) by the equivalent factor. It is characterized by obtaining and displaying the equivalent flow rate Q Ep when

本発明は、実際にワークに供給される気体のテスト圧が規定テスト圧からずれても、規定テスト圧で測定したとほぼ同じ流量測定結果が得られる。   In the present invention, even if the test pressure of the gas actually supplied to the workpiece deviates from the specified test pressure, almost the same flow rate measurement result as that measured at the specified test pressure can be obtained.

従来の流量検査装置のブロック図を示す。The block diagram of the conventional flow volume inspection apparatus is shown. Aはワークの漏れ特性がオリフィスの場合の模式図を示し、Bはワークの漏れ特性が細管の場合の模式図を示す。A shows a schematic diagram when the leakage characteristic of the workpiece is an orifice, and B shows a schematic diagram when the leakage characteristic of the workpiece is a thin tube. この発明による流量計測装置の第1実施例を示す構成図。The block diagram which shows 1st Example of the flow measuring device by this invention. 第1実施例による流量計測方法の処理過程を示すフロー図。The flowchart which shows the process of the flow measuring method by 1st Example. 異なる漏れ特性に対応した流量計測の処理過程を示すフローを示す。The flow which shows the process of the flow measurement corresponding to a different leak characteristic is shown. 第1実施例の変形例を示す構成図。The block diagram which shows the modification of 1st Example. Aは第1のワークによる従来技術と第1実施例によるテスト圧を変化させた場合の計測流量を比較して示す表、Bはそのグラフ。A is a table showing a comparison of measured flow rates when the test pressure according to the prior art of the first workpiece and the first embodiment is changed, and B is a graph thereof. Aは第2のワークによる従来技術と第1実施例によるテスト圧を変化させた場合の計測流量を比較して示す表、Bはそのグラフ。A is a table showing a comparison of measured flow rates when the test pressure according to the conventional technique of the second workpiece and the first embodiment is changed, and B is a graph thereof. Aは第3のワークによる従来技術と第1実施例によるテスト圧を変化させた場合の計測流量を比較して示す表、Bはそのグラフ。A is a table showing a comparison of measured flow rates when the test pressure according to the third prior art and the first embodiment is changed, and B is a graph thereof. この発明による流量計測装置の第2実施例を示す構成図。The block diagram which shows 2nd Example of the flow measuring device by this invention. 第2実施例による流量計測方法の処理過程を示すフロー図。The flowchart which shows the process of the flow measuring method by 2nd Example.

この発明によれば、テスト圧が規定テスト圧からずれた場合、そのときの測定流量から規定テスト圧での流量を計算により求める。   According to the present invention, when the test pressure deviates from the specified test pressure, the flow rate at the specified test pressure is obtained by calculation from the measured flow rate at that time.

[この発明による流量計測原理への導入]
ワークを流れる気体の流速及びワークの漏れ特性により圧力変動補正の算出式が異なる。ここでは以下の3つの状態を検討する。
(1) オリフィス特性のワークの漏れ穴で流速が音速未満の場合。
(2) オリフィス特性のワークの漏れ穴で流速が音速の場合。
(3) ワークの漏れ特性が粘性流を生じさせる場合。
[Introduction to the flow measurement principle of the present invention]
The calculation formula for pressure fluctuation correction differs depending on the flow velocity of the gas flowing through the workpiece and the leakage characteristics of the workpiece. Here, the following three states are considered.
(1) When the flow velocity is less than the speed of sound at a workpiece leakage hole with orifice characteristics.
(2) When the flow velocity is sonic at the orifice hole of the workpiece with orifice characteristics.
(3) When the leakage characteristics of the work causes a viscous flow.

[ワークの漏れ特性が音速未満のオリフィス特性の場合]
図2Aに模式的に示すように、ワークの穴をオリフィスとみなして、そのオリフィスの入口での気体の圧力をP1(ゲージ圧)とし、出口での圧力をP0(ゲージ圧)とすると、周知のように入口側の流量Qtは流速が音速未満の場合次式で表される。
[When the leakage characteristic of the workpiece is an orifice characteristic less than the speed of sound]
As schematically shown in FIG. 2A, assuming that the hole of the workpiece is an orifice, the gas pressure at the inlet of the orifice is P 1 (gauge pressure), and the pressure at the outlet is P 0 (gauge pressure). As is well known, the flow rate Q t on the inlet side is expressed by the following equation when the flow velocity is less than the sonic velocity.

Figure 2013134180
Figure 2013134180

オリフィスの出口は大気に開放されているのでP0は大気圧である。入口と出口の差圧(オリフィス差圧)はΔP=P1-P0であり、ρは印加気体の圧力がP1+P0、温度がtでの気体密度である。圧力P1はテスト圧に該当する。ゲージ圧は大気圧P0との差圧を表し、従ってP0=0であり、ΔP=P1となる。 Since the outlet of the orifice is open to the atmosphere, P 0 is atmospheric pressure. The differential pressure between the inlet and outlet (orifice differential pressure) is ΔP = P 1 −P 0 , and ρ is the gas density when the pressure of the applied gas is P 1 + P 0 and the temperature is t. The pressure P 1 corresponds to the test pressure. The gauge pressure represents a differential pressure from the atmospheric pressure P 0, and thus P 0 = 0 and ΔP = P 1 .

図2Aにおいて、実際にワークに与えられているテスト圧をPac(ゲージ圧)とすると、オリフィス差圧はΔPac=Pacなので、その時のオリフィス入口での流量Qacは次式で与えられる。 In FIG. 2A, if the test pressure actually applied to the workpiece is P ac (gauge pressure), the orifice differential pressure is ΔP ac = P ac , and the flow rate Q ac at the orifice inlet at that time is given by the following equation. .

Figure 2013134180
Figure 2013134180

ただし、計測時の大気圧をB(hPa)とすると、ρacは圧力Pac+B(絶対圧)、温度t℃での気体密度である。 However, if the atmospheric pressure at the time of measurement is B (hPa), ρ ac is a gas density at a pressure P ac + B (absolute pressure) and a temperature t ° C.

同様に図2Aにおいて、規定のテスト圧Ppがワークに与えられた時の流量Qpは次式で与えられる。 Similarly, in FIG. 2A, the flow rate Q p when a prescribed test pressure P p is applied to the workpiece is given by the following equation.

Figure 2013134180
Figure 2013134180

ただし、ρpは圧力Pp+B、温度tでの気体密度を表す。 However, ρ p represents the gas density at pressure P p + B and temperature t.

式(4),(5)から次式が得られる。   From the equations (4) and (5), the following equation is obtained.

Figure 2013134180
Figure 2013134180

密度ρはW(質量)/V(体積)で表されるので、計測環境(気圧B、温度t℃)でのテスト圧Pacの気体の密度ρacと、同じ環境での規定テスト圧Ppの気体の密度ρpの比はρacp=Vp(規定テスト圧Paでの体積)/Vac(テスト圧Pacでの体積)である。体積VacとVpの関係をボイルシャルルの法則で表すと、 Since the density ρ is expressed by W (mass) / V (volume), the gas density ρ ac of the test pressure P ac in the measurement environment (atmospheric pressure B, temperature t ° C.) and the specified test pressure P in the same environment The ratio of the density ρ p of the gas p is ρ ac / ρ p = V p (volume at the specified test pressure Pa) / V ac (volume at the test pressure P ac ). When the relationship between the volume V ac and V p is expressed by Boyle Charles' law,

Figure 2013134180
Figure 2013134180

となるので、前記密度の比は次式で表される。 Therefore, the density ratio is expressed by the following equation.

Figure 2013134180
Figure 2013134180

この密度比を使って式(6)から次式が得られる。 Using this density ratio, the following equation is obtained from equation (6).

Figure 2013134180
Figure 2013134180

式(8)は実際のテスト圧Pacが規定のテスト圧Ppからずれている場合の、実際のテスト圧Pacで計測した実体積流量Qacと規定のテスト圧Ppで測定されるべき実体積流量Qpの関係を示している。ただし、この関係式は計測環境(温度t、大気圧B)における関係式であり、一般に使用される流量計測装置においては、流量を標準状態(例えば20℃=273K、1気圧=1013hPa)での流量に換算して表示するのが通常である。以下に、換算式を導く。 Is measured in real when the test pressure P ac deviates from prescribed test pressure P p, actual volume measured at actual test pressure P ac flow Q ac the prescribed test pressure P p Equation (8) The relationship between the actual volume flow rate Q p is shown. However, this relational expression is a relational expression in the measurement environment (temperature t, atmospheric pressure B), and in a generally used flow measurement device, the flow rate is in a standard state (for example, 20 ° C. = 273 K, 1 atmospheric pressure = 10 13 hPa). It is normal to display in terms of flow rate. The conversion formula is derived below.

温度tac、大気圧Bの環境で、テスト圧Pacで計測した実体積流量Qacを標準状態(20℃、1013hPa)での換算流量Pac(20)に換算すると次式で表される。 When the actual volume flow rate Q ac measured at the test pressure P ac in the environment of temperature t ac and atmospheric pressure B is converted to the converted flow rate P ac (20) in the standard state (20 ° C, 1013 hPa), it is expressed by the following equation. .

Figure 2013134180
Figure 2013134180

1は換算係数であり、式(2)における換算係数Rと実質的に同じである。式(9)から流量QacR 1 is a conversion factor, which is substantially the same as the conversion factor R in equation (2). From equation (9), the flow rate Q ac is

Figure 2013134180
Figure 2013134180

となる。同様に温度tacで規定のテスト圧Ppのときの換算流量Qp(20)は、 It becomes. Similarly, the converted flow rate Q p (20) at the specified test pressure P p at the temperature t ac is

Figure 2013134180
Figure 2013134180

で与えられる。式(10), (11)を式(8)に入れると次式が得られる。 Given in. When equations (10) and (11) are put into equation (8), the following equation is obtained.

Figure 2013134180
Figure 2013134180

式(12)は、実際のテスト圧がPacの時に音速未満で漏洩する気体の実体積流量Qacの標準状態への換算流量Qac(20)を、規定テスト圧Ppの気体をワークに供給して測定したと仮定した場合の計測流量Qpの標準状態への換算流量Qp(20)に補正する圧力変動補正式である。つまり、規定テスト圧Ppが決められいるが、測定環境下(大気圧B、温度tac℃)で規定テスト圧からずれた実際に与えられたテスト圧Pacにより流量Qacが計測され、従来の方法による式(2)から換算流量Q(20)が得られれば、式(12)のように補正係数C1を乗算することにより規定のテスト圧Ppで計測された流量Qpの標準状態での換算流量Qp(20)が求まることを意味している。 Equation (12), the actual test pressure to standard conditions of actual volume flow rate Q ac of gas leaking below sound velocity at the time of P ac conversion rate Q ac (20), a work gas prescribed test pressure P p This is a pressure fluctuation correction formula that corrects the measured flow rate Q p to the converted flow rate Q p (20) to the standard state when it is assumed that the measured flow rate Q p is supplied and measured. That is, the specified test pressure P p is determined, but the flow rate Q ac is measured by the actually applied test pressure P ac that deviates from the specified test pressure in the measurement environment (atmospheric pressure B, temperature t ac ° C). If the converted flow rate Q (20) is obtained from the formula (2) according to the conventional method, the flow rate Q p measured at the specified test pressure P p is multiplied by the correction coefficient C 1 as shown in the formula (12). This means that the converted flow rate Q p (20) in the standard state is obtained.

[ワークの漏れ特性が音速のオリフィス特性の場合]
図2Aにおいて、オリフィスの入口での圧力P1と出口の圧力P0の絶対圧比が1.89以上となると、即ち、(B+P1)/(B+P0)≧1.89となると、オリフィスを通過する気体の流速は音速になり、音速を超える流速にはならない。このときのオリフィスの特性式は次式で表される。
[When workpiece leakage characteristics are sonic orifice characteristics]
In FIG. 2A, when the absolute pressure ratio between the pressure P 1 at the inlet of the orifice and the pressure P 0 at the outlet becomes 1.89 or more, that is, (B + P 1 ) / (B + P 0 ) ≧ 1.89, the orifice passes. The flow velocity of the gas is sonic and does not exceed the sonic velocity. The characteristic equation of the orifice at this time is expressed by the following equation.

t=KL1×(B+P1) (13)
このときの流量計測で、テスト圧が規定テスト圧からずれた場合を検討する。
Q t = K L1 × (B + P 1 ) (13)
In the flow rate measurement at this time, consider the case where the test pressure deviates from the specified test pressure.

規定のテスト圧Ppからずれたテスト圧Pacがオリフィスの入口に与えられたとすると、そのときの入口での実体積流量Qacは式(13)から
ac=KL1×(B+Pac) (14)
と表される。同様に、規定のテスト圧Ppがオリフィスの入り口に与えられた時の実体積流量Qpは式(13)から
p=KL1×(B+Pp) (15)
と表される。式(14), (15)から
Assuming that a test pressure P ac deviating from the specified test pressure P p is given to the inlet of the orifice, the actual volume flow rate Q ac at the inlet at that time is calculated from the equation (13).
Q ac = K L1 × (B + P ac ) (14)
It is expressed. Similarly, the actual volume flow rate Q p when a specified test pressure P p is applied to the inlet of the orifice is obtained from equation (13).
Q p = K L1 × (B + P p ) (15)
It is expressed. From equations (14) and (15)

Figure 2013134180
Figure 2013134180

式(15)から流量Qpは次式で与えられる。 From equation (15), the flow rate Q p is given by the following equation.

Figure 2013134180
Figure 2013134180

圧力(B+Pac)、温度tacでの実体積流量がQacを標準状態(1013hPa、20℃)での流量に換算した換算流量Qac(20)は、 Pressure (B + P ac), in terms of the flow rate Q ac (20) the actual volumetric flow rate at the temperature t ac is converted into a flow rate of Q ac under standard conditions (1013 hPa, 20 ° C.), the

Figure 2013134180
Figure 2013134180

となる。式(18)は式(9)と同じであり、換算係数R2は換算係数R1と同じである。式(18)を変形して It becomes. Expression (18) is the same as Expression (9), and the conversion coefficient R 2 is the same as the conversion coefficient R 1 . By transforming equation (18)

Figure 2013134180
Figure 2013134180

が得られる。同様に規定テスト圧Ppのときの換算流量Qp(20)は次式で表される。 Is obtained. Similarly, the converted flow rate Q p (20) at the specified test pressure P p is expressed by the following equation.

Figure 2013134180
Figure 2013134180

式(19), (20)を式(17)に代入すると、 Substituting equations (19) and (20) into equation (17),

Figure 2013134180
Figure 2013134180

が、音速でのオリフィス特性の換算流量における圧力変動補正式として得られる。この場合も、実際のテスト圧Pacが規定のテスト圧Ppからずれても、換算流量Qac(20)に補正係数C2を乗算することにより規定テスト圧Ppで測定される流量の標準状態への換算流量Qp(20)を得ることができる。 Is obtained as a pressure fluctuation correction formula at the converted flow rate of the orifice characteristic at the speed of sound. Again, even if misalignment actual test pressure P ac from prescribed test pressure P p, in terms of the flow rate Q ac (20) to the correction by multiplying the coefficient C 2 of the flow rate measured at specified test pressure P p The converted flow rate Q p (20) to the standard state can be obtained.

[ワークの漏れ特性が粘性流の場合]
図2Bに模式的に示すように、ワークの漏れ穴が細管とみなされる場合、細管を流れる気体の流量は粘性の影響を受ける。このような場合は粘性流の流れの式であるハーゲンポアゼイユ(Hagen-Poiseuille)の式に従う。その基本式は次のように表される。
[When work leakage characteristics are viscous flow]
As schematically shown in FIG. 2B, when the leak hole of the workpiece is regarded as a narrow tube, the flow rate of the gas flowing through the narrow tube is affected by the viscosity. In such a case, the Hagen-Poiseuille equation, which is a viscous flow equation, is followed. The basic formula is expressed as follows.

Figure 2013134180
Figure 2013134180

Q'tは細管内を流れる気体の流量であり、KL2は粘性流を生じさせる穴の形状係数であり、ηは計測時の流体粘度であり、ΔPはテスト圧P1と大気圧P0の差P1-P0である。大気圧はゲージ圧でP0=0なのでΔP=P1である。図2Bにおいて、温度tac℃、気圧B(hPa)の計測環境において、規定テスト圧Ppからずれたテスト圧Pacがワークに与えられたとすると、そのときの細管中を流れる実体積流量Q'acは式(22)から Q ′ t is the flow rate of the gas flowing in the narrow tube, K L2 is the shape factor of the hole that generates the viscous flow, η is the fluid viscosity at the time of measurement, ΔP is the test pressure P 1 and the atmospheric pressure P 0 The difference is P 1 -P 0 . Atmospheric pressure is gauge pressure and P 0 = 0, so ΔP = P 1 . In FIG. 2B, assuming that a test pressure P ac deviating from the specified test pressure P p is applied to the workpiece in the measurement environment of the temperature t ac ° C. and the atmospheric pressure B (hPa), the actual volume flow rate Q flowing through the narrow tube at that time ' ac from equation (22)

Figure 2013134180
Figure 2013134180

となる。また、同じ計測環境で規定のテスト圧Ppが与えられた時の細管を流れる実体積流量Q'pは同様に式(22)から It becomes. In addition, the actual volume flow rate Q ′ p flowing through the narrow tube when the specified test pressure P p is applied in the same measurement environment is similarly obtained from the equation (22).

Figure 2013134180
Figure 2013134180

となる。式(23), (24)から It becomes. From equations (23) and (24)

Figure 2013134180
Figure 2013134180

が得られる。粘性流の場合は、細管の単位長さ当たりほぼ一定の圧力損が生じるので、細管内における気体の圧力は平均圧力(P1-P0)/2とみなせる。温度tac℃、気圧Bの計測環境で細管を流れる実体積流量Q'acを標準状態(1気圧,20℃)での流量Qac(20)に換算すると、 Is obtained. In the case of a viscous flow, an almost constant pressure loss occurs per unit length of the narrow tube, so that the gas pressure in the narrow tube can be regarded as an average pressure (P 1 -P 0 ) / 2. Converting the actual volume flow rate Q ' ac flowing through the narrow tube in the measurement environment of temperature t ac ° C and pressure B to the flow rate Q ac (20) in the standard state (1 atm, 20 ° C),

Figure 2013134180
Figure 2013134180

となる。R3は換算係数である。式(26)を変形すれば It becomes. R 3 is a conversion factor. If equation (26) is transformed

Figure 2013134180
Figure 2013134180

となる。同様に、同じ計測環境で規定テスト圧Ppが与えられた時に細管を流れる実体積流量Q'pを標準状態での流量Qp(20)に換算する式を求め、変形すると、 It becomes. Similarly, when a specified test pressure P p is applied in the same measurement environment, an equation for converting the actual volume flow rate Q ′ p flowing through the narrow tube into the flow rate Q p (20) in the standard state is obtained and transformed,

Figure 2013134180
Figure 2013134180

が得られる。式(27), (28)のQ'ac, Q'pを式(25)に代入すれば次式が得られる。 Is obtained. Substituting Q ′ ac and Q ′ p in equations (27) and (28) into equation (25) yields the following equation.

Figure 2013134180
Figure 2013134180

式(29)は、粘性流のワーク漏れ特性の場合の換算流量に対する圧力変動補正式を表している。即ち、テスト圧Pacで測定された流量の標準状態への換算流量Qac(20)に補正係数C3を乗算することにより規定テスト圧Ppで測定される流量の標準状態への換算流量Qp(20)が得られる。ただし、式(29)における換算流量Qac(20)を与える式(26)において、流量Q'acは細管内の流量であり、直接測定することはできない。そこで、細管内の流量Q'acを細管の入口における流量Qacに換算すると、 Expression (29) represents a pressure fluctuation correction expression with respect to the converted flow rate in the case of the workpiece leakage characteristic of the viscous flow. That is, the flow rate measured at the specified test pressure P p is converted into the standard flow rate by multiplying the flow rate measured at the test pressure P ac into the standard flow rate Q ac (20) by the correction coefficient C 3. Q p (20) is obtained. However, in the equation (26) that gives the converted flow rate Q ac (20 ) in the equation (29), the flow rate Q ′ ac is the flow rate in the narrow tube and cannot be directly measured. Therefore, when the flow rate Q ′ ac in the narrow tube is converted into the flow rate Q ac at the inlet of the narrow tube,

Figure 2013134180
Figure 2013134180

となるので、式(30)のQ'acを式(26)に代入すると次式が得られる。 Therefore, substituting Q ′ ac in equation (30) into equation (26) yields the following equation.

Figure 2013134180
Figure 2013134180

換算係数R'3は換算係数R1、R2と同じである。従って、式(29)における換算流量Qac(20)は測定流量Qacを使って式(31)から計算すればよい。 The conversion factor R ′ 3 is the same as the conversion factors R 1 and R 2 . Therefore, the converted flow rate Q ac (20 ) in the equation (29) may be calculated from the equation (31) using the measured flow rate Q ac .

[第1実施例]
上述では3つのワークの漏れ特性の場合についてそれぞれ規定テスト圧Ppからずれたテスト圧Pacで測定された換算流量Qac(20)を、規定テスト圧Ppで測定した場合の換算流量Qp(20)に変換する式を示した。この第1実施例においては、流速が音速未満のワーク漏れ特性の場合の圧力変動補正が可能な流量計測装置としてまず説明し、その後で流速が音速のワーク漏れ特性の場合及び粘性流となるワークの漏れ特性の場合の圧力変動補正を可能とする変形例を説明する。
[First embodiment]
In the above description, the converted flow rate Q ac (20) measured at the test pressure P ac deviated from the specified test pressure P p for each of the three workpiece leakage characteristics is converted into the converted flow rate Q when measured at the specified test pressure P p. The formula to convert to p (20) is shown. In this first embodiment, a flow rate measuring device capable of correcting pressure fluctuations when the flow velocity is less than the sonic velocity and the workpiece leakage characteristic will be described first. The modification which enables the pressure fluctuation correction in the case of the leak characteristic will be described.

以下では、まず流速が音速未満の場合の流量計測装置及び計測方法について図3を参照して説明する。   Hereinafter, a flow rate measuring device and a measuring method when the flow velocity is lower than the sound velocity will be described with reference to FIG.

図3は図1と同様に流量計を使用した流量計測装置の第1実施例を示し、図4はその計測方法のフローチャートを示す。図1における流量計測装置230との差異は図1における演算装置30に流量補正部30Cが追加された演算装置30’を使用していることである。その他の構成は図1と全く同じである。従って、従来の演算装置30に流量補正部30Cの処理が新しく追加されており、その他は図1と同じである。流量換算部30Rは選択部34による選択に応じて式(9)又は(18)又は(31)により換算流量Qac(20)を計算する。流量補正部30Cは選択部34による選択に応じて式(12a)の補正係数C1又は式(21a)の補正係数C2又は式(29a)の補正係数C3を計算し、更に式(12)又は(21)又は(29)による補正換算流量(即ち規定テスト圧を供給した場合の換算流量)Qp(20)を計算する。 FIG. 3 shows a first embodiment of a flow rate measuring apparatus using a flow meter as in FIG. 1, and FIG. 4 shows a flowchart of the measuring method. A difference from the flow rate measurement device 230 in FIG. 1 is that a calculation device 30 ′ in which a flow rate correction unit 30C is added to the calculation device 30 in FIG. 1 is used. Other configurations are the same as those in FIG. Accordingly, the processing of the flow rate correction unit 30C is newly added to the conventional arithmetic unit 30, and the rest is the same as FIG. The flow rate conversion unit 30R calculates the converted flow rate Q ac (20) according to the formula (9), (18), or (31) according to the selection by the selection unit 34. Flow rate correction unit 30C calculates the correction coefficient C 3 of the correction factor C 2 or formula for correction factor C 1 or of formula (12a) in response to the selection by the selection section 34 (21a) (29a), further wherein (12 ) Or (21) or (29), the corrected conversion flow rate (that is, the conversion flow rate when the specified test pressure is supplied) Q p (20) is calculated.

以下、測定手順を説明する。   Hereinafter, the measurement procedure will be described.

まず、開閉弁16を閉じた状態でワーク40がテスト導管14の下流端に取り付けられる。
ステップS1:開閉弁16を開いて空圧源11から流量計20を通してワーク40に気体を供給し、調圧弁12を調整してテスト圧計13が示すゲージ圧(大気圧との差圧ΔP)が規定テスト圧Ppに対し所定の許容範囲内となるようにテスト圧Pacを設定する。
ステップS2:温度計32及び気圧計33から計測環境の大気温度tac(℃)及び大気圧B(hPa)を記憶部30Mに読み込む。
ステップS3:流量計20が計測した計測環境での実体積流量Qacを演算装置30’に取り込む。
ステップS4:流量換算部30Rにおいて計測環境での実体積流量Qacに対し、式(9)により気圧Bと温度tacとテスト圧Pacを使って換算流量Qac(20)を計算する。
ステップS5:流量補正部30Cにおいて、測定した気圧B、測定したテスト圧Pac、規定テスト圧Ppを使って式(12a)により補正係数C1を計算し、更に式(12) により換算流量Qac(20)に補正係数C1を乗算して規定テスト圧Ppによる流量の標準状態への換算流量Qp(20)を得、表示部31に表示する。
First, the work 40 is attached to the downstream end of the test conduit 14 with the on-off valve 16 closed.
Step S1: The on-off valve 16 is opened, gas is supplied from the air pressure source 11 to the work 40 through the flow meter 20, the pressure regulating valve 12 is adjusted, and the gauge pressure (differential pressure ΔP from the atmospheric pressure) indicated by the test pressure gauge 13 is obtained. The test pressure P ac is set so as to be within a predetermined allowable range with respect to the specified test pressure P p .
Step S2: Read the atmospheric temperature t ac (° C.) and atmospheric pressure B (hPa) of the measurement environment from the thermometer 32 and the barometer 33 into the storage unit 30M.
Step S3: The actual volume flow rate Q ac in the measurement environment measured by the flow meter 20 is taken into the arithmetic unit 30 ′.
Step S4: The flow rate conversion unit 30R calculates the converted flow rate Q ac (20) with respect to the actual volume flow rate Q ac in the measurement environment using the air pressure B, the temperature t ac and the test pressure P ac according to the equation (9).
Step S5: In the flow correction unit 30C, measured atmospheric pressure B, the measured test pressure P ac, with a prescribed test pressure P p to calculate the correction coefficient C 1 by the equation (12a), in terms of flow by further equation (12) Q ac (20) is multiplied by the correction coefficient C 1 to obtain a converted flow rate Q p (20) of the flow rate to the standard state by the specified test pressure P p and displayed on the display unit 31.

ワークを取り替える毎に上記ステップS1〜S5を実行すればよい。ステップS1におけるテスト圧の設定は、規定テスト圧Ppに対し所定の許容範囲内の誤差で設定すればよく、その許容範囲は後述するように規定テスト圧の例えば±10%程度と大きくてもよいので、設定に要する時間は短い。設定テスト圧が変動しても式(12)によりる補正により、常に規定テスト圧で測定される流量を標準状態に換算した正しい換算流量を求めることが出来る。 What is necessary is just to perform said step S1-S5 whenever a workpiece | work is replaced | exchanged. The test pressure in step S1 may be set with an error within a predetermined allowable range with respect to the specified test pressure P p , and the allowable range may be as large as about ± 10% of the specified test pressure, as will be described later. Because it is good, the time required for setting is short. Even if the set test pressure fluctuates, the correct conversion flow rate obtained by converting the flow rate measured at the specified test pressure into the standard state can always be obtained by the correction according to the equation (12).

上述では、ワーク漏れ特性が音速未満の流量計測について説明したが、変形例として図5にフローチャートで示すように、ワーク漏れ特性が音速未満の場合の流量、音速の場合の流量及び粘性流を生じさせる場合の流量を区別して計測できるようにしてもよい。   In the above description, the flow rate measurement with the workpiece leakage characteristic less than the sonic speed has been described. However, as shown in the flowchart in FIG. 5 as a modified example, the flow rate when the workpiece leakage characteristic is less than the sonic velocity, It is also possible to make it possible to measure by distinguishing the flow rate in the case of making them.

図3に破線で示すように、選択部34が設けられており、操作者が、ワークが粘性流を生じさせるものか、オリフィス特性のものかを選択部で指定しておく。
図5のステップS1〜S3は図4のステップS1〜S3と同じであり、説明を省略する。
ステップSX1:選択部で設定されたワークの漏れ特性が粘性流特性か、オリフィス特性か判定し、粘性流特性の場合はステップS43に移り、オリフィス特性の場合はステップSX2に移る。
ステップSX2:設定したテスト圧Pac(ゲージ圧)と測定した大気圧B(hPa)とから(B+Pac)が1.89×B以上であるか判定し、否であれば流速は音速未満でありステップS41に移り、是であれば流速は音速でありステップS42に移る。
ステップS41,S51は図4のステップS4,S5と同じであり、説明を省略する。
ステップS42:流速は音速なので、式(18)により計測環境でのテスト圧Pacで測定された流量を標準状態の流量Qac(20)に換算する。
ステップS52:式(21)により換算流量Qac(20)に補正係数C2を乗算して規定テスト圧による流量の標準状態への換算流量Qp(20)を得て、表示する。
ステップS43:ワークの漏れ特性が粘性流の場合であり、式(31)により計測環境でのテスト圧Pacで測定された流量を標準状態の流量Qac(20)に換算する。
ステップS53:式(29)により換算流量Qac(20)に補正係数C3を乗算して規定テスト圧による流量の標準状態への換算流量Qp(20)を得て、表示する。
As shown by a broken line in FIG. 3, a selection unit 34 is provided, and an operator designates whether the workpiece generates a viscous flow or an orifice characteristic by the selection unit.
Steps S1 to S3 in FIG. 5 are the same as steps S1 to S3 in FIG.
Step SX1: It is determined whether the leakage characteristic of the workpiece set by the selection unit is a viscous flow characteristic or an orifice characteristic. If the characteristic is a viscous flow characteristic, the process proceeds to Step S43. If the characteristic is an orifice characteristic, the process proceeds to Step SX2.
Step SX2: Determine whether (B + P ac ) is 1.89 × B or more from the set test pressure P ac (gauge pressure) and the measured atmospheric pressure B (hPa). If yes, the process proceeds to step S41, and if yes, the flow velocity is the speed of sound, and the process proceeds to step S42.
Steps S41 and S51 are the same as steps S4 and S5 in FIG.
Step S42: Since the flow velocity is the sonic velocity, the flow rate measured at the test pressure P ac in the measurement environment is converted into the flow rate Q ac (20) in the standard state using Equation (18).
Step S52: Multiplying the converted flow rate Q ac (20) by the correction coefficient C 2 according to the equation (21 ) to obtain the converted flow rate Q p (20) to the standard state of the flow rate by the specified test pressure, and displaying it.
Step S43: This is a case where the leakage characteristic of the workpiece is a viscous flow, and the flow rate measured at the test pressure P ac in the measurement environment is converted into the flow rate Q ac (20) in the standard state by the equation (31).
Step S53: Multiplying the converted flow rate Q ac (20) by the correction coefficient C 3 according to the equation (29 ) to obtain the converted flow rate Q p (20) to the standard state of the flow rate by the specified test pressure, and displaying it.

[変形実施例]
上述の実施例においては、既存の技術で計測した換算流量Qac(20)を規定テスト圧での換算流量Qp(20)に補正する場合を説明したが、実際のテスト圧Pacと環境条件から直接規定テスト圧での換算流量Qp(20)を以下のように求めてもよい。
[Modification]
In the above-described embodiment, the case where the converted flow rate Q ac (20) measured by the existing technology is corrected to the converted flow rate Q p (20) at the specified test pressure has been described. However, the actual test pressure P ac and the environment are corrected. From the conditions, the converted flow rate Q p (20) at the specified test pressure may be obtained as follows.

オリフィスでの流速が音速未満の場合、式(10)を使って式(12)を変形すると、   If the flow velocity at the orifice is less than the speed of sound, using equation (10) to transform equation (12),

Figure 2013134180
Figure 2013134180

が得られる。ここで、流量Qacは流量計20により測定される値であり、気圧B及び温度tacは環境条件として測定され、テスト圧Pacはゲージ圧としてテスト圧計13により測定され、規定テスト圧Ppは予め決めた値なので、これらから式(32)を計算することができる。 Is obtained. Here, the flow rate Q ac is a value measured by the flow meter 20, the atmospheric pressure B and the temperature t ac are measured as environmental conditions, the test pressure P ac is measured by the test pressure gauge 13 as a gauge pressure, and the specified test pressure P Since p is a predetermined value, equation (32) can be calculated from these values.

オリフィスでの流速が音速の場合式(18)を式(21)に代入すると、   Substituting equation (18) into equation (21) when the flow velocity at the orifice is sonic,

Figure 2013134180
Figure 2013134180

が得られる。この場合も、測定値Qac, tac、Pac、Bと規定テスト圧値Ppを使って式(33)からQp(20)を計算することができる。 Is obtained. Also in this case, Q p (20) can be calculated from the equation (33) using the measured values Q ac , t ac , P ac , B and the specified test pressure value P p .

漏れ流が粘性流の場合、式(31)を式(29)に代入すると、   If the leakage flow is a viscous flow, substituting equation (31) into equation (29),

Figure 2013134180
Figure 2013134180

が得られ、測定値Qac, tac、Pac、Bと規定テスト圧値Ppを使って式(34)からQp(20)を計算することができる。 Is obtained, the measured value Q ac, t ac, can be calculated Q p (20) using the P ac, B and defines the test pressure value P p from equation (34).

図6は上記変形実施例を実現する流量計測装置の構成を示す。図3との差異は、演算装置30’の流量換算部30Rと流量補正部30Cの代わりに補正換算流量計算部30Kが設けられた演算装置30”が設けられていることであり、その他の構成は図3と同じである。補正換算流量計算部30Kは、選択部34により選択されたワークの漏れ特性に対応した上記式(32), (33), (34)の何れかを使用して、記憶部30Mに取り込まれた測定値、Qac, tac, B及び規定テスト圧値Ppから規定テスト圧による漏れ流量の標準状態への換算流量Qp(20)を計算し、表示部31に与える。測定の処理手順は図5における各ワークの漏れ特性に対する換算係数の乗算による換算流量の計算と、補正係数の乗算による補正換算流量の計算の替わりに、上記式(32), (33), (34)のいずれかを実施するだけであり、処理フロー図とその説明を省略する。 FIG. 6 shows a configuration of a flow rate measuring apparatus that realizes the above-described modified embodiment. The difference from FIG. 3 is that an arithmetic device 30 ″ provided with a corrected converted flow rate calculation unit 30K is provided instead of the flow rate conversion unit 30R and the flow rate correction unit 30C of the arithmetic device 30 ′. Is the same as in Fig. 3. The corrected converted flow rate calculation unit 30K uses any one of the above formulas (32), (33), and (34) corresponding to the leakage characteristics of the workpiece selected by the selection unit 34. , Calculates the converted flow Q p (20) from the measured values Q ac , t ac , B and the specified test pressure value P p taken into the storage unit 30M to the standard state of the leakage flow rate by the specified test pressure, and the display unit The measurement procedure is shown in FIG. 5 in place of the calculation of the conversion flow rate by multiplication of the conversion coefficient for the leakage characteristics of each workpiece and the calculation of the correction conversion flow rate by multiplication of the correction coefficient. It is only necessary to carry out either (33) or (34). I will omit the description.

[流量計測実験例]
図7A、図8A、図9Aは3種類のワークについて規定テスト圧をそれぞれ200hPa, 500hPa, 1000hPaとした場合に、それぞれを中心としてテスト圧を変動させた時の従来技術により測定された換算流量と、それに対しこの発明により補正を行った補正流量と、補正流量の規定テスト圧での流量に対する偏差を表で示す。ただし、計測時の環境大気圧Bは1005hPa、大気温度は26.5℃であった。また、図7B、図8B、図9Bは図7A、図8A、図9Aにおける実測換算流量(×印で示す)と補正流量(○印で示す)の値をグラフで表したものであり、横軸はテスト圧(hPa)、縦軸は流量(L/min)示す。これらのグラフから明らかなように、いずれの場合も実測換算流量はテスト圧の変動により大きく変化するのに対し、補正流量の変化は著しく小さい。テスト圧の規定テスト圧に対する変動が10%以内では、補正流量の偏差は±1%以内に入っている。従って、この発明によれば、ワークを取り付ける毎に行うテスト圧の設定精度を高くする必要がなく、例えば規定テスト圧に対し±10%の範囲内となるようテスト圧を設定すれば、規定テスト圧による測定流量に対し±1%以内の誤差で測定可能であり、設定が容易である。
[Example of flow measurement experiment]
7A, 8A, and 9A show the converted flow rates measured by the prior art when the test pressure is varied around each of the three types of workpieces when the specified test pressure is 200 hPa, 500 hPa, and 1000 hPa, respectively. In contrast, the corrected flow rate corrected by the present invention and the deviation of the corrected flow rate from the flow rate at the specified test pressure are shown in a table. However, the ambient atmospheric pressure B at the time of measurement was 1005 hPa, and the atmospheric temperature was 26.5 ° C. 7B, FIG. 8B, and FIG. 9B are graphs showing the values of the actually measured converted flow rate (indicated by x) and the corrected flow rate (indicated by o) in FIGS. 7A, 8A, and 9A. The axis indicates the test pressure (hPa), and the vertical axis indicates the flow rate (L / min). As is apparent from these graphs, in any case, the actually measured flow rate changes greatly due to variations in the test pressure, whereas the change in the correction flow rate is extremely small. When the variation of the test pressure with respect to the specified test pressure is within 10%, the deviation of the correction flow rate is within ± 1%. Therefore, according to the present invention, there is no need to increase the accuracy of setting the test pressure every time a workpiece is mounted. For example, if the test pressure is set to be within a range of ± 10% with respect to the specified test pressure, the specified test is performed. Measurement is possible with an error within ± 1% of the measured flow rate due to pressure, and setting is easy.

[第2実施例]
ところで、上述した各種ワークの漏れ特性についての換算流量の補正方法について説明したが、例えば流速が音速未満の場合の式(12)による補正換算流量Qp(20)を求めるためには、換算流量Qac(20)を式(9)により計算する必要がある。式(9)により換算流量Qac(20)を計算するには流量Qacを差圧流量計20で測定するが、流量Qacは式(4)から明らかなように気体密度ρacに依存する。ところが、気体密度ρacは気体の圧力Pac+Bと温度tacに依存するので、テスト圧Pacが同じに設定されたとしても環境温度tac及び大気圧Bの少なくとも一方が変化すると測定される流量Qacが変化することを意味している。つまり、流量計測装置が設置されている環境の時間変化あるいは装置を設置する地理的環境が異なることによって測定流量Qacが異なってしまい、その結果、補正換算流量も異なってしまう。同じ問題は流速が音速の場合の式(18)にも生じる。更に、粘性流の場合の式(23)には気体密度が含まれてないが、流体粘度ηは流体の温度に依存するので、計測環境温度が変化すれば計測される流量Qacが変化し、同じ問題がある。
[Second Embodiment]
By the way, although the correction | amendment flow rate correction method about the leakage characteristic of the various workpieces mentioned above was demonstrated, in order to obtain | require the correction | amendment conversion flow rate Qp (20) by Formula (12) when the flow velocity is less than a sonic speed, for example, Q ac (20) needs to be calculated by equation (9). Although To calculate the conversion rate Q ac (20) by equation (9) for measuring the flow rate Q ac in differential pressure flow meter 20, the flow rate Q ac is dependent on the gas density [rho ac As is apparent from equation (4) To do. However, since the gas density ρ ac depends on the gas pressure P ac + B and the temperature t ac , it is measured when at least one of the environmental temperature t ac and the atmospheric pressure B changes even if the test pressure P ac is set to be the same. This means that the flow rate Q ac is changed. That is, the measured flow rate Q ac differs depending on the time change of the environment where the flow rate measuring device is installed or the geographical environment where the device is installed, and as a result, the corrected conversion flow rate also differs. The same problem occurs in equation (18) when the flow velocity is sonic. Further, although the gas density is not included in the equation (23) in the case of the viscous flow, since the fluid viscosity η depends on the temperature of the fluid, the measured flow rate Q ac changes if the measurement environment temperature changes. Have the same problem.

第2実施例では、テスト圧が変動しても規定テスト圧での計測流量と同じ結果が得られ、しかもその計測流量が環境の変化に依存せず、標準状態で計測された流量と同じになる流量計測方法を説明する。即ち、ここでは任意の環境においてテスト圧Pacの気体をワークに与えた時の洩れ流量を、標準状態で規定テスト圧Ppの気体をワークに与えた時の流量と等価な流量に換算して表示する。この換算流量を以下では等価流量と呼ぶ。 In the second embodiment, even if the test pressure fluctuates, the same result as the measured flow rate at the specified test pressure can be obtained, and the measured flow rate does not depend on the environmental change and is the same as the flow rate measured in the standard state. A flow rate measuring method will be described. That is, the leakage flow rate when fed a gaseous test pressure P ac in any environment in the work here, converts the gas prescribed test pressure P p in the standard state flow rate equivalent to the flow rate when applied to the work To display. Hereinafter, this converted flow rate is referred to as an equivalent flow rate.

[ワークの漏れ特性が音速未満のオリフィス特性の場合]
図2Aにおいて、計測環境の大気温度がtac℃、大気圧がB(hPa)の時、テスト圧Pacを与えて生じる漏れ流量(オリフィス入口での流量)Qacは式(4)で与えられる。これをオリフィス出口の流量QBacに換算すると、
[When the leakage characteristic of the workpiece is an orifice characteristic less than the speed of sound]
In FIG. 2A, when the atmospheric temperature of the measurement environment is t ac ° C and the atmospheric pressure is B (hPa), the leakage flow rate (flow rate at the orifice inlet) Q ac generated by applying the test pressure P ac is given by equation (4). It is done. When this is converted into the flow rate Q Bac at the orifice outlet,

Figure 2013134180
Figure 2013134180

となる。同様に、同じ環境で規定テスト圧Ppを与えて生じる漏れ量Qpをオリフィス出口の流量QBpに換算すると、 It becomes. Similarly, when the leakage amount Q p generated by applying the specified test pressure P p in the same environment is converted into the flow rate Q Bp at the orifice outlet,

Figure 2013134180
Figure 2013134180

となる。式(35), (36)から次式が得られる。 It becomes. From the equations (35) and (36), the following equation is obtained.

Figure 2013134180
Figure 2013134180

密度比は次式 The density ratio is

Figure 2013134180
Figure 2013134180

で表されるから、式(37)に代入して変形すると次式が得られる。 Therefore, the following equation is obtained by substituting into equation (37) and transforming.

Figure 2013134180
Figure 2013134180

式(38)において標準状態のB=1013hPa、tp=tac=20℃とすれば、QBp、QBacはそれぞれ規定テスト圧Ppを与えた時およびテスト圧Pacを与えた時の等価流量QEp、QEacを意味することになり、次式が得られる。 If B = 1013 hPa and t p = t ac = 20 ° C. in the standard state in equation (38), Q Bp and Q Bac are the values when the specified test pressure P p and the test pressure P ac are applied, respectively. This means equivalent flow rates Q Ep and Q Eac , and the following equation is obtained.

Figure 2013134180
Figure 2013134180

式(4)において、計測環境が標準状態(気圧1013hPa、温度20℃)でテスト圧Pacの気体をワークに供給した時の式(4)により与えられるオリフィス入口の流量Qacをオリフィス出口の流量(即ち等価流量QEac)に換算すると、 In the equation (4), the flow rate Q ac at the orifice inlet given by the equation (4) when the gas of the test pressure P ac is supplied to the workpiece in the standard condition (atmospheric pressure 1013 hPa, temperature 20 ° C.) at the orifice outlet. When converted to a flow rate (ie equivalent flow rate Q Eac ),

Figure 2013134180
Figure 2013134180

となる。式(40)を式(4)に代入すると、 It becomes. Substituting equation (40) into equation (4),

Figure 2013134180
Figure 2013134180

式(37a)と同様に次式、 Similar to equation (37a),

Figure 2013134180
Figure 2013134180

が成立するから、式(40)は Therefore, Equation (40) becomes

Figure 2013134180
Figure 2013134180

となる。式(42)により計測環境(気圧BhPa、温度tac℃)で規定テスト圧Ppからずれたテスト圧Pacが与えられて測定した実体積流量Qacから標準状態でテスト圧Pacを与えた時の等価流量QEacが計算される。同じ計測環境で規定テスト圧Ppが与えられた時の等価流量QEpは式(42)を式(39)に代入して次式のように求められる。 It becomes. Giving a test pressure P ac under standard conditions from the actual volumetric flow Q ac the measurement environment (atmospheric pressure BhPa, temperature t ac ° C.) in a defined test pressure P p from displacement test pressure P ac is measured given by equation (42) The equivalent flow rate Q Eac at that time is calculated. The equivalent flow rate Q Ep when the specified test pressure P p is applied in the same measurement environment is obtained as follows by substituting Equation (42) into Equation (39).

Figure 2013134180
Figure 2013134180

式(43)実体積流量Qacを換算流量Qac(20)で表すため、式(10)を式(43)に代入すると次式が得られる。 Since the actual volume flow rate Q ac is expressed by the converted flow rate Q ac (20) in the equation (43), the following equation is obtained by substituting the equation (10) into the equation (43).

Figure 2013134180
Figure 2013134180

ここでE1を等価係数と呼ぶことにする。なお、式(44a)の等価係数は、式(9a)の換算係数R1を使って次式のように表すことができる。 Here, E 1 is called an equivalent coefficient. Note that the equivalent coefficient of the equation (44a) can be expressed as the following equation using the conversion factor R 1 of the equation (9a).

Figure 2013134180
Figure 2013134180

式(44)から明らかなように、従来の技術により測定される換算流量Qac(20)に等価係数E1を乗算することにより等価流量QEpが得られる。式(44)の等価流量QEpは大気圧BhPa,気温tac℃の環境で、テスト圧Pacの気体がワークに与えられた時に流量計で測定される流量Qac(オリフィス入口の流量)から、標準状態で、規定テスト圧Ppの気体がワークに与えられた時の環境大気への流出流量を意味する等価流量QEpが計算できることを意味している。従って、この等価流量QEpは計測環境に依存しない。 As is apparent from the equation (44), the equivalent flow rate Q Ep is obtained by multiplying the equivalent flow rate Q ac (20) measured by the conventional technique by the equivalent coefficient E 1 . Equivalent flow rate Q Ep of equation (44) is the flow rate Q ac (flow rate at the orifice inlet) measured by the flow meter when the test pressure P ac is given to the workpiece in the environment of atmospheric pressure BhPa and temperature t ac ℃ Therefore, in the standard state, it means that the equivalent flow rate Q Ep which means the outflow rate to the ambient atmosphere when the gas of the specified test pressure P p is given to the workpiece can be calculated. Therefore, this equivalent flow rate Q Ep does not depend on the measurement environment.

[ワークの漏れ特性が音速でのオリフィス特性の場合]
前述のように図2Aにおいて(B+P1)/(B+P0)≧1.89の場合であり、計測環境の大気温度がtac℃、大気圧がB(hPa)の時、テスト圧Pacを与えて生じる漏れ流量(オリフィス入口の流量)Qacは式(14)で与えられる。これをオリフィス出口の流量QBacに換算すると、
[When workpiece leakage characteristics are orifice characteristics at sonic speed]
As described above, when (B + P 1 ) / (B + P 0 ) ≧ 1.89 in FIG. 2A, when the atmospheric temperature of the measurement environment is t ac ° C and the atmospheric pressure is B (hPa), the test pressure P The leakage flow rate (flow rate at the orifice inlet) Q ac generated by giving ac is given by the equation (14). When this is converted into the flow rate Q Bac at the orifice outlet,

Figure 2013134180
Figure 2013134180

となる。同様に、同じ環境で規定テスト圧Ppを与えて生じる漏れ量Qpをオリフィス出口の流量QBpに換算すると、 It becomes. Similarly, when the leakage amount Q p generated by applying the specified test pressure P p in the same environment is converted into the flow rate Q Bp at the orifice outlet,

Figure 2013134180
Figure 2013134180

となる。式(45), (46)から次式が得られる。 It becomes. From the equations (45) and (46), the following equation is obtained.

Figure 2013134180
Figure 2013134180

式(47)において標準状態のB=1013hPa、tp=tac=20℃とすれば、QBp、QBacはそれぞれ等価流量QEp、QEacを意味することになり、次式が得られる。 If B = 1013 hPa and t p = t ac = 20 ° C. in the standard state in equation (47), Q Bp and Q Bac mean equivalent flow rates Q Ep and Q Eac respectively, and the following equations are obtained. .

Figure 2013134180
Figure 2013134180

式(45)において大気温度がtac=20℃、大気圧がB=1013hPaの時は、流量QBacは等価流量QEacを表すことになるので、等価流量QEacは次式で表される。 In the equation (45), when the atmospheric temperature is t ac = 20 ° C. and the atmospheric pressure is B = 1013 hPa, the flow rate Q Bac represents the equivalent flow rate Q Eac , so the equivalent flow rate Q Eac is expressed by the following equation: .

Figure 2013134180
Figure 2013134180

式(49)と式(14)から次式が得られる。 From the equations (49) and (14), the following equation is obtained.

Figure 2013134180
Figure 2013134180

一方、規定テスト圧が与えられた場合の等価流量QEpは式(50)を式(48)に代入して次式のように表される。 On the other hand, the equivalent flow rate Q Ep when the specified test pressure is applied is expressed as the following equation by substituting equation (50) into equation (48).

Figure 2013134180
Figure 2013134180

が得られる。式(51)の実体積流量Qacを式(18)の換算流量Qac(20)で表すと式(51)は次式のようになる。 Is obtained. When the actual volume flow rate Q ac of the equation (51) is expressed by the converted flow rate Q ac (20) of the equation (18), the equation (51) becomes as follows.

Figure 2013134180
Figure 2013134180

ここでE2を等価係数と呼ぶことにする。 Here, E 2 is called an equivalent coefficient.

式(52)から明らかなように、従来の技術により測定される換算流量Qac(20)に等価係数E2を乗算することにより等価流量QEpが得られる。なお、この等価係数E2は式(18)における換算係数R2を使って表すと、 As is apparent from the equation (52), the equivalent flow rate Q Ep is obtained by multiplying the equivalent flow rate Q ac (20) measured by the conventional technique by the equivalent coefficient E 2 . The equivalent coefficient E 2 is expressed using the conversion coefficient R 2 in the equation (18).

Figure 2013134180
Figure 2013134180

と表される。式(52)の等価流量QEpは大気圧BhPa,気温tac℃の環境で、テスト圧Pacの気体がワークに与えられた時に流量計で測定される流量Qac(オリフィス入口の流量)から、標準状態で、規定テスト圧Ppの気体がワークに与えられた時の大気への流出流量を意味する等価流量QEpが計算できることを意味している。 It is expressed. Equivalent flow rate Q Ep in equation (52) is the flow rate Q ac (flow rate at the orifice inlet) measured by the flow meter when the gas of test pressure P ac is given to the workpiece in the environment of atmospheric pressure BhPa and temperature t ac ℃ Therefore, in the standard state, it means that the equivalent flow rate Q Ep which means the outflow rate to the atmosphere when the gas of the specified test pressure P p is given to the workpiece can be calculated.

[ワークの漏れ特性が粘性流の場合]
図2Bに模式的に示すように、ワークの漏れ穴が細管とみなされる場合、前述のように細管を流れる気体の流量は粘性の影響を受け、細管を流れる気体の流量は式(22)で表される。計測環境の大気温度がtac℃、大気圧がB(hPa)の時、テスト圧Pacを与えて生じる漏れ流量(細管内の流量)Q'acは式(23)で与えられる。これを細管出口の流量QBacに換算すると、
[When work leakage characteristics are viscous flow]
As schematically shown in FIG. 2B, when the leak hole of the workpiece is regarded as a narrow tube, the flow rate of the gas flowing through the narrow tube is affected by the viscosity as described above, and the flow rate of the gas flowing through the narrow tube is expressed by the equation (22). expressed. When the atmospheric temperature of the measurement environment is t ac ° C and the atmospheric pressure is B (hPa), the leakage flow rate (flow rate in the narrow tube) Q ′ ac generated by applying the test pressure P ac is given by equation (23). When this is converted into the flow rate Q Bac at the outlet of the narrow tube,

Figure 2013134180
Figure 2013134180

となる。同様に、同じ環境で規定テスト圧Ppを与えて生じる漏れ量Qpを細管出口の流量QBpに換算すると、 It becomes. Similarly, when the leak amount Q p generated by applying the specified test pressure P p in the same environment is converted into the flow rate Q Bp at the outlet of the narrow tube,

Figure 2013134180
Figure 2013134180

となる。環境温度が同じなのでηacpであり、式(53), (54)から次式が得られる。 It becomes. Since the environmental temperature is the same, η ac = η p and the following equation is obtained from equations (53) and (54).

Figure 2013134180
Figure 2013134180

式(55)において標準状態のB=1013hPa、tp=tac=20℃とすれば、QBp、QBacはそれぞれ等価流量(細管出口の流量)QEp、QEacを意味することになり、次式が得られる。 If B = 1013hPa and t p = t ac = 20 ° C in the standard condition in equation (55), Q Bp and Q Bac mean equivalent flow rates (flow rates at the narrow tube outlet) Q Ep and Q Eac , respectively. The following equation is obtained.

Figure 2013134180
Figure 2013134180

式(53)において計測環境が標準状態であれば、流量QBacは等価流量QEacを意味し、次式で表される。 In the equation (53), when the measurement environment is a standard state, the flow rate Q Bac means an equivalent flow rate QE ac and is expressed by the following equation.

Figure 2013134180
Figure 2013134180

一方、式(53)の細管出口側の流量QBacを細管入り口側の流量、即ち測定される実体積流量Qacに換算すると、次式で表される。 On the other hand, when the flow rate Q Bac on the narrow tube outlet side in equation (53) is converted into the flow rate on the narrow tube inlet side, that is, the actual volume flow rate Q ac to be measured, it is expressed by the following equation.

Figure 2013134180
Figure 2013134180

式(57)と(58)から次式が得られる。 From the equations (57) and (58), the following equation is obtained.

Figure 2013134180
Figure 2013134180

空気の粘性係数ηは温度依存性があり、一般的な温度0℃〜50℃間においては温度t℃のときの粘性係数ηtは近似的に次式で求めることができる。 The viscosity coefficient η of air is temperature-dependent, and the viscosity coefficient η t at a temperature t ° C. can be approximately calculated by the following equation between a general temperature of 0 ° C. and 50 ° C.

ηt=1.71×(1+0.00257t)×10-5 (Pa・s) (60)
20℃の場合はη20=1.80×10-5(Pa・s)である。これを式(59)に代入すると、
η t = 1.71 × (1 + 0.00257t) × 10 -5 (Pa ・ s) (60)
In the case of 20 ° C., η 20 = 1.80 × 10 −5 (Pa · s). Substituting this into equation (59) gives

Figure 2013134180
Figure 2013134180

式(61)を式(56)に代入すると次式が得られる。 Substituting equation (61) into equation (56) yields:

Figure 2013134180
Figure 2013134180

が得られる。式(62)の実体積流量Qacを式(31)の換算流量Qac(20)で表すと式(62)は次式のようになる。 Is obtained. When the actual volume flow rate Q ac of the equation (62) is expressed by the converted flow rate Q ac (20) of the equation (31), the equation (62) becomes as follows.

Figure 2013134180
Figure 2013134180

ここで、E3を等価係数と呼ぶ。式(63)から明らかなように、従来の技術により測定される換算流量Qac(20)に等価係数E3を乗算することにより等価流量QEpが得られる。なお、この等価係数E3は式(31)における換算係数R'3を使って表すと、 Here, E 3 is called an equivalent coefficient. As is apparent from the equation (63), the equivalent flow rate Q Ep is obtained by multiplying the converted flow rate Q ac (20) measured by the conventional technique by the equivalent coefficient E 3 . The equivalent coefficient E 3 is expressed using the conversion coefficient R ′ 3 in the equation (31).

Figure 2013134180
Figure 2013134180

となる。式(63)の等価流量QEpは大気圧BhPa,気温tac℃の環境で、テスト圧Pacの気体がワークに与えられた時に流量計で測定される流量Qac(オリフィス入口の流量)から、標準状態で、規定テスト圧Ppの気体がワークに与えられた時の大気への流出流量を意味する等価流量QEpが計算できることを意味している。 It becomes. Equivalent flow rate Q Ep in equation (63) is the flow rate Q ac (flow rate at the orifice inlet) measured by the flowmeter when the gas of test pressure P ac is given to the workpiece in the environment of atmospheric pressure BhPa and temperature t ac ℃ Therefore, in the standard state, it means that the equivalent flow rate Q Ep which means the outflow rate to the atmosphere when the gas of the specified test pressure P p is given to the workpiece can be calculated.

図10はこの発明の第2実施例による流量計測装置の構成を示し、図11はその計測方法の処理過程を示す。図3における流量計測装置230との差異は図3における演算装置30’の流量補正部30Cの替わりに流量等価部30Eが設けられた演算装置30'”を使用していることである。その他の構成は図3と全く同じである。従って、演算装置30'”における流量等価部30Eの処理が新しく、その他は図3と同じである。流量等価部30Eは流量換算部30Rから計測された換算流量Qac(20)が与えられると、ワークの漏れ特性に応じて式(44a)の等価係数E1又は式(52a)の等価係数E2又は式(63a)の等価係数E3を計算し、更に式(44)又は(52)又は(63)により換算流量Qac(20)に等価係数を乗算して等価流量QEpを得、表示部31に与える。 FIG. 10 shows the configuration of a flow rate measuring apparatus according to the second embodiment of the present invention, and FIG. 11 shows the process of the measuring method. A difference from the flow rate measuring device 230 in FIG. 3 is that an arithmetic unit 30 ′ ″ provided with a flow rate equivalent unit 30E is used instead of the flow rate correction unit 30C of the arithmetic unit 30 ′ in FIG. The configuration is exactly the same as in Fig. 3. Accordingly, the processing of the flow rate equivalent unit 30E in the arithmetic unit 30 '"is new, and the rest is the same as in Fig. 3. When the converted flow rate Q ac (20) measured from the flow rate conversion unit 30R is given to the flow rate equivalent unit 30E, the equivalent coefficient E 1 of the formula (44a) or the equivalent coefficient E of the formula (52a) is selected according to the leakage characteristics of the workpiece. 2 or calculating the equivalent coefficient E 3 of formula (63a), further multiplies the equivalence in terms of the flow rate Q ac (20) by equation (44) or (52) or (63) to give the equivalent flow Q Ep, This is given to the display unit 31.

気圧計33及び温度計32により計測環境の気圧B(hPa)とワーク40に供給する気体の温度t(℃)が測定され、演算装置30”の記憶部30Mに記憶される。また、記憶部30Mには形状係数Kなども記憶される。   The atmospheric pressure B (hPa) of the measurement environment and the temperature t (° C.) of the gas supplied to the workpiece 40 are measured by the barometer 33 and the thermometer 32 and stored in the storage unit 30M of the arithmetic device 30 ″. 30M also stores a shape factor K and the like.

図11は等価流量の計測手順を示しており、予め開閉弁16を閉じた状態でワーク40がテスト導管14の下流端に取り付けられる。ステップS1〜S4の換算流量を計測するまでは図4と同じであり、説明を省略する。ステップS54で規定テスト圧Pp、計測されている大気圧B,大気温度tac,テスト圧Pac及び換算流量Qac(20)を使って、式(44a)又は(52a)又は(63a)により等価係数E1又はE2又はE3を計算し、更に式(44)又は(52)又は(63)により等価流量QEpを計算し、表示部31に与える。 FIG. 11 shows a procedure for measuring the equivalent flow rate. The work 40 is attached to the downstream end of the test conduit 14 with the on-off valve 16 closed in advance. Until the converted flow rate of steps S1 to S4 is measured, it is the same as FIG. In step S54, using the specified test pressure P p , the measured atmospheric pressure B, the atmospheric temperature t ac , the test pressure P ac and the converted flow rate Q ac (20) , the formula (44a) or (52a) or (63a) The equivalent coefficient E 1, E 2, or E 3 is calculated by the following, and the equivalent flow rate Q Ep is further calculated by the formula (44), (52), or (63) and given to the display unit 31.

以上の各実施例の説明において、標準状態は大気圧B=1気圧(1013hPa)、温度20°(293K)として説明したが、他の予め決めた任意の気圧B0及び温度t0でもよいことは明らかである。 In the above description of each embodiment, the standard state has been described as the atmospheric pressure B = 1 atm (1013 hPa) and the temperature 20 ° (293 K), but may be any other predetermined atmospheric pressure B 0 and temperature t 0. Is clear.

本発明は、気体の流量の計測に利用することができる。   The present invention can be used for measurement of gas flow rate.

Claims (16)

ワークの漏れの流量計測方法であり、
(a) 計測環境の気圧Bと温度tacを測定する過程と、
(b) 流量計を通してワークに供給する気体のテスト圧Pacを測定する過程と、
(c) 流量計による計測環境での実体積流量Qacを測定する過程と、
(d) 上記温度tacと上記気圧Bと上記テスト圧Pacにより決まる所定の標準状態への換算係数を上記計測環境での実体積流量Qacに乗算して標準状態での流量Qac(20)に換算する過程と、
(e) 予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから、上記換算流量Qac(20)を、上記規定テスト圧Ppの気体がワークに与えられた時の流量に補正する補正係数を計算する過程と、
(f) 上記換算流量Qac(20)に上記補正係数を乗算して上記規定テスト圧Ppがワークに与えられた時の補正された換算流量Qp(20)を得て、表示する過程と、
を含むことを特徴とする流量計測方法。
This is a method for measuring the flow rate of workpiece leakage.
(a) a process of measuring the atmospheric pressure B and temperature t ac of the measurement environment;
(b) a process of measuring the test pressure P ac of the gas supplied to the work through the flow meter;
(c) a process of measuring the actual volume flow rate Q ac in a measurement environment with a flow meter;
(d) The actual volume flow rate Q ac in the measurement environment is multiplied by a conversion factor to a predetermined standard state determined by the temperature t ac , the atmospheric pressure B, and the test pressure P ac to obtain a flow rate Q ac ( 20)
(e) From the predetermined test pressure P p determined in advance and the measured pressure B and the test pressure P ac , the converted flow rate Q ac (20) and the gas of the specified test pressure P p were given to the workpiece. A process of calculating a correction coefficient for correcting to the hourly flow rate,
(f) A process of obtaining and displaying a corrected converted flow rate Q p (20) when the specified test pressure P p is applied to the workpiece by multiplying the converted flow rate Q ac (20) by the correction coefficient. When,
A flow rate measuring method comprising:
請求項1記載の流量計測方法において、ワークの漏れの特性が、流速が音速未満のオリフィス特性とみなせる場合であり、上記過程(e) は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記補正係数C1を次式
Figure 2013134180
により計算することを特徴とする流量計測方法。
2. The flow rate measuring method according to claim 1, wherein the leakage characteristic of the workpiece can be regarded as an orifice characteristic with a flow velocity less than the sonic velocity, and the step (e) includes the predetermined specified test pressure P p and the measured atmospheric pressure. The correction coefficient C 1 is calculated from B and the test pressure P ac as follows:
Figure 2013134180
The flow rate measurement method characterized by calculating by.
請求項1記載の流量計測方法において、ワークの漏れの特性が、流速が音速のオリフィス特性とみなせる場合であり、上記過程(e) は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記補正係数C2を次式
Figure 2013134180
により計算することを特徴とする流量計測方法。
2. The flow rate measurement method according to claim 1, wherein the workpiece leakage characteristic is an orifice characteristic in which the flow velocity is a sonic velocity, and the step (e) includes the predetermined specified test pressure P p and the measured atmospheric pressure B. And the correction coefficient C 2 from the test pressure P ac
Figure 2013134180
The flow rate measurement method characterized by calculating by.
請求項1記載の流量計測方法において、ワークの漏れの特性が粘性流とみなせる場合であり、上記過程(e) は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記補正係数C3を次式
Figure 2013134180
により計算することを特徴とする流量計測方法。
2. The flow rate measuring method according to claim 1, wherein the leakage characteristic of the workpiece can be regarded as a viscous flow, and the step (e) includes the predetermined specified test pressure Pp , the measured pressure B and the measured test pressure P. The above correction coefficient C 3 is calculated from ac
Figure 2013134180
The flow rate measurement method characterized by calculating by.
ワークの漏れの流量計測方法であり、
(a) 計測環境の気圧Bと温度tacを測定する過程と、
(b) 流量計を通してワークに供給する気体のテスト圧Pacを測定する過程と、
(c) 流量計による計測環境での実体積流量Qacを測定する過程と、
(d) 上記温度tacと上記気圧Bと上記テスト圧Pacにより決まる所定の標準状態への換算係数を上記計測環境での実体積流量Qacに乗算して標準状態での換算流量Qac(20)に換算する過程と、
(e) 予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから、上記換算流量Qac(20)を、上記規定テスト圧の気体が標準状態でワークに与えられたと等価な流量に変換する等価係数を計算する過程と、
(f) 上記換算流量Qac(20)に上記等価係数を乗算して上記規定テスト圧Ppが標準状態でワークに与えられた時の等価流量QEpを得て、表示する過程と、
を含むことを特徴とする流量計測方法。
This is a method for measuring the flow rate of workpiece leakage.
(a) a process of measuring the atmospheric pressure B and temperature t ac of the measurement environment;
(b) a process of measuring the test pressure P ac of the gas supplied to the work through the flow meter;
(c) a process of measuring the actual volume flow rate Q ac in a measurement environment with a flow meter;
(d) Multiplying the actual volume flow rate Q ac in the measurement environment by a conversion factor to a predetermined standard state determined by the temperature t ac , the atmospheric pressure B, and the test pressure P ac , the converted flow rate Q ac in the standard state (20) conversion process,
(e) From the predetermined test pressure P p determined in advance and the measured air pressure B and the test pressure P ac , the converted flow rate Q ac (20) is supplied to the workpiece in the standard state with the gas at the specified test pressure. A process of calculating an equivalent coefficient for conversion to a flow rate equivalent to
(f) Multiplying the converted flow rate Q ac (20) by the equivalent coefficient to obtain and display an equivalent flow rate Q Ep when the specified test pressure P p is applied to the workpiece in a standard state;
A flow rate measuring method comprising:
請求項5記載の流量計測方法において、ワークの漏れの特性が、流速が音速未満のオリフィス特性とみなせる場合であり、上記過程(e) は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記等価係数E1を次式
Figure 2013134180
により計算することを特徴とする流量計測方法。
6. The flow rate measuring method according to claim 5, wherein the workpiece leakage characteristic can be regarded as an orifice characteristic with a flow velocity less than the sonic velocity, and the step (e) includes the predetermined specified test pressure P p and the measured atmospheric pressure. The equivalent coefficient E 1 is calculated from B and the test pressure P ac
Figure 2013134180
The flow rate measurement method characterized by calculating by.
請求項5記載の流量計測方法において、ワークの漏れの特性が、流速が音速のオリフィス特性とみなせる場合であり、上記過程(e) は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記補正係数E2を次式
Figure 2013134180
により計算することを特徴とする流量計測方法。
6. The flow rate measuring method according to claim 5, wherein the leakage characteristic of the work is a case where the flow velocity can be regarded as an orifice characteristic having a sonic velocity, and the step (e) includes the predetermined specified test pressure P p and the measured atmospheric pressure B. And the correction coefficient E 2 from the test pressure P ac
Figure 2013134180
The flow rate measurement method characterized by calculating by.
請求項5記載の流量計測方法において、ワークの漏れの特性が粘性流とみなせる場合であり、上記過程(e) は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから補正係数E3を次式
Figure 2013134180
により計算することを特徴とする流量計測方法。
6. The flow rate measurement method according to claim 5, wherein the leakage characteristic of the workpiece can be regarded as a viscous flow, and the step (e) includes the predetermined specified test pressure P p , the measured pressure B and the measured test pressure P. From ac , the correction coefficient E 3 is
Figure 2013134180
The flow rate measurement method characterized by calculating by.
ワークの漏れの流量計測装置であり、
計測環境の気圧Bを測定する気圧計と、
計測環境の温度tacを測定する温度計と、
空圧現からテスト導管を通してワークに供給する気体のテスト圧Pacを調整する調圧弁と、
上記調圧弁の下流において上記テスト導管に直列に挿入され、ワークに供給される上記気体の実体積流量Qacを測定する流量計と、
上記流量計を通してワークに供給する上記気体のテスト圧Pacを測定するテスト圧計と、
上記温度tacと上記気圧Bと上記テスト圧Pacにより決まる所定の標準状態への換算係数を上記計測環境での実体積流量Qacに乗算して標準状態での換算流量Qac(20)に換算する流量換算部と、
予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから、上記換算流量を、上記規定テスト圧の気体がワークに与えられた時の流量に補正する補正係数を計算し、上記換算流量Qac(20)に上記補正係数を乗算して上記規定テスト圧Ppがワークに与えられた時の補正された換算流量Qp(20)を得る流量補正部と、
上記補正された換算流量Qp(20)を表示する表示部と、
を含むことを特徴とする流量計測装置。
It is a flow measurement device for workpiece leakage,
A barometer for measuring the atmospheric pressure B of the measurement environment;
A thermometer for measuring the temperature t ac of the measurement environment;
A pressure regulating valve for adjusting the test pressure P ac of the gas supplied to the workpiece from the pneumatic pressure through the test conduit;
A flow meter that is inserted in series in the test conduit downstream of the pressure regulating valve and measures the actual volume flow rate Q ac of the gas supplied to the workpiece;
A test pressure gauge for measuring the test pressure P ac of the gas supplied to the workpiece through the flow meter;
The temperature t ac and the pressure B and the test pressure P conversion rate of the conversion factor to a predetermined standard state determined by the ac in the standard state by multiplying the actual volumetric flow rate Q ac in the measurement environment Q ac (20) A flow rate conversion unit for converting to
A correction coefficient for correcting the converted flow rate to the flow rate when the gas of the specified test pressure is applied to the workpiece is calculated from the predetermined specified test pressure P p and the measured pressure B and the measured test pressure P ac. A flow rate correction unit that multiplies the converted flow rate Q ac (20) by the correction coefficient to obtain a corrected converted flow rate Q p (20) when the specified test pressure P p is applied to the workpiece;
A display unit for displaying the corrected converted flow rate Q p (20) ;
A flow rate measuring device comprising:
請求項9記載の流量計測装置において、ワークの漏れの特性が、流速が音速未満のオリフィス特性とみなせる場合であり、上記流量補正部は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記補正係数C1を次式
Figure 2013134180
により計算することを特徴とする流量計測装置。
10. The flow rate measuring apparatus according to claim 9, wherein the workpiece leakage characteristic is considered to be an orifice characteristic having a flow velocity less than the sonic velocity, and the flow rate correction unit is configured to determine the predetermined test pressure P p and the measured atmospheric pressure B. And the correction coefficient C 1 from the test pressure P ac
Figure 2013134180
The flow rate measuring device characterized by calculating by.
請求項9記載の流量計測装置において、ワークの漏れの特性が、流速が音速のオリフィス特性とみなせる場合であり、上記流量補正部は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記補正係数C2を次式
Figure 2013134180
により計算することを特徴とする流量計測装置。
10. The flow rate measuring apparatus according to claim 9, wherein the workpiece leakage characteristic is a case where the flow velocity can be regarded as an orifice characteristic having a sonic velocity, and the flow rate correction unit is configured to determine a predetermined specified test pressure P p and the measured atmospheric pressure B and The correction coefficient C 2 is calculated from the test pressure P ac
Figure 2013134180
The flow rate measuring device characterized by calculating by.
請求項9記載の流量計測装置において、ワークの漏れの特性が粘性流とみなせる場合であり、上記流量補正部は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記補正係数C3を次式
Figure 2013134180
により計算することを特徴とする流量計測装置。
10. The flow rate measuring apparatus according to claim 9, wherein the leakage characteristic of the workpiece can be regarded as a viscous flow, and the flow rate correcting unit is configured to determine the predetermined test pressure P p and the measured atmospheric pressure B and the test pressure P ac. To the correction coefficient C 3
Figure 2013134180
The flow rate measuring device characterized by calculating by.
ワークの漏れの流量計測装置であり、
計測環境の気圧Bを測定する気圧計と、
計測環境の温度tacを測定する温度計と、
空圧現からテスト導管を通してワークに供給する気体のテスト圧Pacを調整する調圧弁と、
上記調圧弁の下流において上記テスト導管に直列に挿入され、ワークに供給される上記気体の実体積流量Qacを測定する流量計と、
上記流量計を通してワークに供給する上記気体のテスト圧Pacを測定するテスト圧計と、
上記温度tacと上記気圧Bと上記テスト圧Pacにより決まる所定の標準状態への換算係数を上記計測環境での実体積流量Qacに乗算して標準状態での換算流量Qac(20)に換算する流量換算部と、
予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから、上記換算流量Qac(20)を、上記規定テスト圧Ppの気体が標準状態でワークに与えられたと等価な流量に変換する等価係数を計算し、上記換算流量Qac(20)に上記等価係数を乗算して等価流量QEpを得る流量等価部と、
上記等価流量QEpを表示する表示部と、
を含むことを特徴とする流量計測装置。
It is a flow measurement device for workpiece leakage,
A barometer for measuring the atmospheric pressure B of the measurement environment;
A thermometer for measuring the temperature t ac of the measurement environment;
A pressure regulating valve for adjusting the test pressure P ac of the gas supplied to the workpiece from the pneumatic pressure through the test conduit;
A flow meter that is inserted in series in the test conduit downstream of the pressure regulating valve and measures the actual volume flow rate Q ac of the gas supplied to the workpiece;
A test pressure gauge for measuring the test pressure P ac of the gas supplied to the workpiece through the flow meter;
The temperature t ac and the pressure B and the test pressure P conversion rate of the conversion factor to a predetermined standard state determined by the ac in the standard state by multiplying the actual volumetric flow rate Q ac in the measurement environment Q ac (20) A flow rate conversion unit for converting to
From the predetermined test pressure P p determined in advance and the measured atmospheric pressure B and the test pressure P ac , the converted flow rate Q ac (20) and the gas at the specified test pressure P p are given to the workpiece in a standard state. A flow rate equivalent unit for calculating an equivalent coefficient to be converted into an equivalent flow rate, and multiplying the converted flow rate Q ac (20) by the equivalent coefficient to obtain an equivalent flow rate Q Ep ;
A display for displaying the equivalent flow rate Q Ep ,
A flow rate measuring device comprising:
請求項13記載の流量計測装置において、ワークの漏れの特性が、流速が音速未満のオリフィス特性とみなせる場合であり、上記流量等価部は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記等価係数E1を次式
Figure 2013134180
により計算することを特徴とする流量計測装置。
14. The flow rate measuring apparatus according to claim 13, wherein the workpiece leakage characteristic is considered to be an orifice characteristic having a flow velocity less than the sonic velocity, and the flow rate equivalent portion is determined by the predetermined specified test pressure Pp and the measured atmospheric pressure B. And the equivalent coefficient E 1 from the test pressure P ac
Figure 2013134180
The flow rate measuring device characterized by calculating by.
請求項13記載の流量計測装置において、ワークの漏れの特性が、流速が音速のオリフィス特性とみなせる場合であり、上記流量等価部は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記等価係数E2を次式
Figure 2013134180
により計算することを特徴とする流量計測装置。
14. The flow rate measuring apparatus according to claim 13, wherein the characteristic of workpiece leakage is a case where the flow velocity can be regarded as an orifice characteristic having a sonic velocity, and the flow rate equivalent part includes a predetermined specified test pressure Pp and the measured atmospheric pressure B and From the test pressure P ac , the equivalent coefficient E 2 is
Figure 2013134180
The flow rate measuring device characterized by calculating by.
請求項13記載の流量計測装置において、ワークの漏れの特性が粘性流とみなせる場合であり、上記流量等価部は予め決めた規定テスト圧Ppと測定された上記気圧B及び上記テスト圧Pacから上記等価係数E3を次式
Figure 2013134180
により計算することを特徴とする流量計測装置。
14. The flow rate measuring apparatus according to claim 13, wherein the leakage characteristic of the workpiece can be regarded as a viscous flow, and the flow rate equivalent part includes a predetermined specified test pressure Pp , the measured atmospheric pressure B, and the test pressure Pac. The equivalent coefficient E 3 is given by
Figure 2013134180
The flow rate measuring device characterized by calculating by.
JP2011285357A 2011-12-27 2011-12-27 Flow rate measuring method and flow rate measuring apparatus using the same Active JP5814109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285357A JP5814109B2 (en) 2011-12-27 2011-12-27 Flow rate measuring method and flow rate measuring apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285357A JP5814109B2 (en) 2011-12-27 2011-12-27 Flow rate measuring method and flow rate measuring apparatus using the same

Publications (2)

Publication Number Publication Date
JP2013134180A true JP2013134180A (en) 2013-07-08
JP5814109B2 JP5814109B2 (en) 2015-11-17

Family

ID=48910965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285357A Active JP5814109B2 (en) 2011-12-27 2011-12-27 Flow rate measuring method and flow rate measuring apparatus using the same

Country Status (1)

Country Link
JP (1) JP5814109B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180091901A (en) * 2015-12-14 2018-08-16 가부시키가이샤 후쿠다 Leakage test apparatus and method
WO2019186783A1 (en) * 2018-03-28 2019-10-03 株式会社木幡計器製作所 Flow-rate measurement device and flow-rate measurement method
JP2020060427A (en) * 2018-10-09 2020-04-16 株式会社コスモ計器 Control device, flow rate sensitivity correction method and program
CN115495939A (en) * 2022-11-17 2022-12-20 国网江西省电力有限公司电力科学研究院 Steam turbine set throttle flow characteristic diagnosis method based on equivalent flow difference amplitude

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952728A (en) * 1982-09-20 1984-03-27 Osaka Gas Co Ltd Evaluating method of soundness of tube or container
JPS6444824A (en) * 1987-08-14 1989-02-17 Kanto Jidosha Kogyo Kk Air leakage measuring apparatus
JPH02236134A (en) * 1990-01-29 1990-09-19 Osaka Gas Co Ltd Integrity evaluation for tube or container
JPH0961278A (en) * 1995-08-25 1997-03-07 Fukuda:Kk Capacity changer for air leak tester
JPH11190653A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Flow amount compensator
JP2000039347A (en) * 1998-07-21 2000-02-08 Cosmo Keiki:Kk Flowrate inspection device
JP2000259255A (en) * 1999-03-11 2000-09-22 Ckd Corp Gas supply controller
JP2002303560A (en) * 2001-04-05 2002-10-18 Kitz Corp Method for testing airtightness performance
JP2003194658A (en) * 2001-12-28 2003-07-09 Cosmo Instruments Co Ltd Initial error correction method and device of leak inspection device
JP2005024421A (en) * 2003-07-03 2005-01-27 Tadahiro Omi Differential pressure type flow meter and differential pressure type flow control system
JP2007248320A (en) * 2006-03-17 2007-09-27 Soken Kogyo Kk Gas flowmeter and apparatus for controlling quantity of gas flow

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952728A (en) * 1982-09-20 1984-03-27 Osaka Gas Co Ltd Evaluating method of soundness of tube or container
JPS6444824A (en) * 1987-08-14 1989-02-17 Kanto Jidosha Kogyo Kk Air leakage measuring apparatus
JPH02236134A (en) * 1990-01-29 1990-09-19 Osaka Gas Co Ltd Integrity evaluation for tube or container
JPH0961278A (en) * 1995-08-25 1997-03-07 Fukuda:Kk Capacity changer for air leak tester
JPH11190653A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Flow amount compensator
JP2000039347A (en) * 1998-07-21 2000-02-08 Cosmo Keiki:Kk Flowrate inspection device
JP2000259255A (en) * 1999-03-11 2000-09-22 Ckd Corp Gas supply controller
JP2002303560A (en) * 2001-04-05 2002-10-18 Kitz Corp Method for testing airtightness performance
JP2003194658A (en) * 2001-12-28 2003-07-09 Cosmo Instruments Co Ltd Initial error correction method and device of leak inspection device
JP2005024421A (en) * 2003-07-03 2005-01-27 Tadahiro Omi Differential pressure type flow meter and differential pressure type flow control system
JP2007248320A (en) * 2006-03-17 2007-09-27 Soken Kogyo Kk Gas flowmeter and apparatus for controlling quantity of gas flow

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180091901A (en) * 2015-12-14 2018-08-16 가부시키가이샤 후쿠다 Leakage test apparatus and method
KR102093571B1 (en) * 2015-12-14 2020-03-25 가부시키가이샤 후쿠다 Leak test device and method
US10816434B2 (en) 2015-12-14 2020-10-27 Fukuda Co., Ltd. Apparatus and method for leak testing
WO2019186783A1 (en) * 2018-03-28 2019-10-03 株式会社木幡計器製作所 Flow-rate measurement device and flow-rate measurement method
CN113029261A (en) * 2018-03-28 2021-06-25 株式会社木幡计器制作所 Flow rate measuring device
JP2020060427A (en) * 2018-10-09 2020-04-16 株式会社コスモ計器 Control device, flow rate sensitivity correction method and program
JP7037466B2 (en) 2018-10-09 2022-03-16 株式会社コスモ計器 Control device, flow sensitivity correction method, program
CN115495939A (en) * 2022-11-17 2022-12-20 国网江西省电力有限公司电力科学研究院 Steam turbine set throttle flow characteristic diagnosis method based on equivalent flow difference amplitude

Also Published As

Publication number Publication date
JP5814109B2 (en) 2015-11-17

Similar Documents

Publication Publication Date Title
CN102483344B (en) Upstream volume mass flow verification system and method
JP4788920B2 (en) Mass flow control device, verification method thereof, and semiconductor manufacturing device
TWI431255B (en) Mass flow verifiers capable of providing different volumes and related methods
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
JP4798774B2 (en) Mixed gas supply system
JP5814109B2 (en) Flow rate measuring method and flow rate measuring apparatus using the same
US20180328812A1 (en) Apparatus and Method for Leak Testing
WO2013165314A1 (en) A flow meter system
KR20160043060A (en) Flow meter and flow control device provided therewith
CN107631773B (en) Method for operating a flow measuring device and flow measuring device
JPH05248916A (en) Mass flowmeter, method for measuring mass of fluid and viscosity measuring device
RU2665350C1 (en) Device for application of a variable algorithm for a vibration flowmeter and a related method
RU2358250C2 (en) Calibration of pressure sensor during engineering process
RU2019115360A (en) IMPROVEMENTS IN FLUID CONTROL
JP5113894B2 (en) Flow rate measuring method and flow rate measuring apparatus using the same
JP7043023B2 (en) Gas flow rate estimation method, pore size estimation method, gas flow rate estimation device and pore size estimation device
US11519769B2 (en) Flow rate control system and flow rate measurement method
US20030110853A1 (en) Critical gas flow measurement apparatus and method
JP2000039347A (en) Flowrate inspection device
Fedchak et al. Accurate conductance measurements of a pinhole orifice using a constant-pressure flowmeter
JP5749377B1 (en) Flow rate measuring method and flow rate measuring device
KR102116651B1 (en) The method of flow measurement for sonic flow meter, the sonic flow meter
US11162832B2 (en) Pressure compensation for a vibrating flowmeter and related method
Mills The consistency of pressure effects between three identical Coriolis flow meters
JP5749378B1 (en) Flow rate measuring method and flow rate measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150917

R150 Certificate of patent or registration of utility model

Ref document number: 5814109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250