JPH02236134A - Integrity evaluation for tube or container - Google Patents

Integrity evaluation for tube or container

Info

Publication number
JPH02236134A
JPH02236134A JP2019890A JP2019890A JPH02236134A JP H02236134 A JPH02236134 A JP H02236134A JP 2019890 A JP2019890 A JP 2019890A JP 2019890 A JP2019890 A JP 2019890A JP H02236134 A JPH02236134 A JP H02236134A
Authority
JP
Japan
Prior art keywords
pressure
flow rate
pipe
leakage flow
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019890A
Other languages
Japanese (ja)
Inventor
Akio Nakashiba
仲芝 明雄
Shigemitsu Okada
岡田 茂充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2019890A priority Critical patent/JPH02236134A/en
Publication of JPH02236134A publication Critical patent/JPH02236134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PURPOSE:To curtail time and expense for evaluation by comparing a change pattern of a leakage flow rate measured by varying a pressure of a pressure fluid introduced into a tube to be tested or in a container to be tested with a change pattern prepared beforehand to evaluate a pressure resistance. CONSTITUTION:A tube 1 to be tested with both ends thereof sealed, for example, a gas pipe buried underground is divided to a length of 100m and after a cutting thereof, both cut parts are sealed. A gas is forced into the pipe via a pipeline 6 from a pressure source 2 and a pressure thereof is set to a pressure set with a governor 3 to measure the pressure with a pressure detector 4. A gas pressure from the pressure source 2 is loaded gradually to detect leakage flow rates from a underground buried tube 1 at pressure points with a flowmeter 5. A change pattern of the leakage flow rate is compared with a change pattern of a leakage value prepared beforehand thereby evaluating an integrity (pressure resistance and durability).

Description

【発明の詳細な説明】 本発明は、たとえば地中埋設管などの被試験管や被試験
容器の健全性を評価するために実施される健全性の評価
方法に関する. 本明細書では、「健全性」とは被試験管や被試験容器に
おける耐圧性、耐久性などを言う.現在地中埋設管は、
埋設後一定の年限がたったものをその健全性を評価する
ために掘り返している.しかし地中埋設管は、その埋設
環境によって腐食状態に差がある.したがってこの方法
では、多くの健全な地中埋設管も掘り返すことになり無
駄が多い。そのため、地中埋設管を埋設したままでその
健全性を評価し、修繕工法を選定する必要がある. 従来から地中埋設管の健全性の評価を行うために、地中
埋設管内に管内テレビを入れたり、磁界を発生させて生
じる渦電流によって健全性を評価するセンサなどを用い
たりしているけれども、これらの方法では、地中埋設管
が小径の場合は適用できず、地中埋設管が曲がっている
場合には適用するのが困難である.またこれらの方法で
は、評価する対象部分全体に亘って測定せざるを得す、
測定のための時間、労力および経費が多大となる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a soundness evaluation method that is carried out to evaluate the soundness of a tube under test or a container under test, such as an underground pipe. In this specification, "integrity" refers to the pressure resistance, durability, etc. of test tubes and test containers. Currently underground pipes are
Items that have been buried for a certain period of time are dug up to evaluate their soundness. However, the state of corrosion of underground pipes varies depending on the environment in which they are buried. Therefore, this method requires digging up many healthy underground pipes, which is wasteful. Therefore, it is necessary to evaluate the soundness of underground pipes while they are still buried, and to select a repair method. Conventionally, in order to evaluate the health of underground pipes, we have installed in-tube televisions inside the underground pipes and used sensors that evaluate the health of the pipes using eddy currents generated by generating magnetic fields. However, these methods cannot be applied when the underground pipe is small in diameter, and are difficult to apply when the underground pipe is bent. In addition, these methods require measurement over the entire area to be evaluated;
Measurement requires a lot of time, effort, and expense.

本発明の目的は、被試験管または被試験容器の形状や大
きさに拘らず、健全性を確実に評価し、併せて健全性の
評価のための時間、労力および経費を大幅に削減した管
または容器の健全性評価方法を提供することである. 本発明は、被試験管または被試験容器にお,いて想定し
うる漏洩部の形状、大きさおよび周囲の状況ごとに圧力
変化に対応する漏洩流量の変化パターンを予め準備し、
被試験管または被試験容器に圧力流体供給源を接続し、
圧力流体の圧力を連続的または段階的に変1ヒさせなが
ら前記被試験管または被試験容器における漏洩流量を測
定し、その測定された漏洩流量の変化パターンと前記準
備された漏洩流量の変化パターンとを比較することによ
って前記被試験管または被試験容器の耐圧性を評価する
ことを特徴とする管または容器の健全性評価方法である
. 以下、図面に基づいて本発明の実施例について説明する
.第1図は土壌40中の地中埋設管1内に気体圧力P 
O k g / m 2を加えたときの漏洩個所を示す
簡略化した部分断面図である8第1図(a)は地中埋設
管1に腐食または亀裂によって直径d (m)の穴が生
じた場合の腐食洩れを示しており、管内圧力をPOkg
/m2、管外近傍圧力をPlkg/m2、大気圧をPc
Dkg/m2とすると、気体の漏洩流量Qm’/sは、
第1式で示される. ・・・(1) ここでρ0は管内ガス密度kg−s2/m’、κは断熱
指数を示している. 第1図(b)は土壌40中の地中埋設管1内にPOkg
/m2の気体圧を加えたときのねじ部を示している。こ
の第1図(b)に示されるねじ部は、第1図(C)に示
される長さ1 (m)に亘る直径d (m)の管に近似
することができる。このねじ部からの漏れすなわち継手
漏れの場合の漏洩流量Qm’/sは、第2式で示される
.Reはレイノルズ数を示す. 第1式および第2式においてP1−ωとすると、地中埋
設管1が大気圧開放下にあると仮定した場合の漏洩流量
Qm’/sを表すことになる.地中埋設管1の周囲の土
壌の影響を考慮して漏洩流量Qmコ/sを算出するには
、次の第3式を前述の第1式または第2式とともに用い
る. Q = (PL−PcX)) 4ff”       
     ・(3)μ ここでμはガスの粘度kg−s/m2 rは漏洩点から
の距離m.kは土壌の通気係数m2を表す。
The purpose of the present invention is to reliably evaluate the integrity of tubes or containers to be tested regardless of their shape or size, and to significantly reduce the time, labor, and expense for assessing the integrity of tubes. Or to provide a method for evaluating the integrity of containers. The present invention prepares in advance a change pattern of leakage flow rate corresponding to a pressure change for each shape, size, and surrounding situation of a leakage part that can be assumed in a tube under test or a container under test,
Connect a pressure fluid supply to the tube or container under test;
Measuring the leakage flow rate in the test tube or test container while changing the pressure of the pressure fluid continuously or stepwise, and the change pattern of the measured leakage flow rate and the prepared change pattern of the leakage flow rate. This is a method for evaluating the integrity of a tube or container, characterized in that the pressure resistance of the tube or container to be tested is evaluated by comparing the . Embodiments of the present invention will be described below based on the drawings. Figure 1 shows the gas pressure P inside the underground pipe 1 in the soil 40.
Figure 1 (a) is a simplified partial cross-sectional view showing the leakage location when 0 kg/m2 is applied, where a hole with a diameter of d (m) is formed in the underground pipe 1 due to corrosion or cracks. This shows corrosion leakage when the pipe pressure is reduced to POkg.
/m2, the pressure near the outside of the pipe is Plkg/m2, and the atmospheric pressure is Pc.
If Dkg/m2, the gas leakage flow rate Qm'/s is:
It is shown in the first equation. ...(1) Here, ρ0 is the gas density in the pipe kg-s2/m', and κ is the adiabatic index. Figure 1(b) shows POkg in underground pipe 1 in soil 40.
The threaded portion is shown when a gas pressure of /m2 is applied. The threaded portion shown in FIG. 1(b) can be approximated to a tube having a length of 1 (m) and a diameter d(m) shown in FIG. 1(C). The leakage flow rate Qm'/s in the case of leakage from the threaded portion, that is, leakage from the joint, is expressed by the second equation. Re indicates Reynolds number. In the first and second equations, P1-ω represents the leakage flow rate Qm'/s assuming that the underground pipe 1 is open to atmospheric pressure. To calculate the leakage flow rate Qm/s by considering the influence of the soil around the underground pipe 1, use the following third equation together with the first or second equation above. Q = (PL-PcX)) 4ff"
・(3)μ Here, μ is the viscosity of the gas in kg-s/m2, and r is the distance from the leak point in m. k represents the permeability coefficient m2 of the soil.

後述の第2図中では、r=0.05mとする.kはたと
えば粘土ではk=1.86X10日2m2であり、砂で
はk=2.79X10−”m2である.土壌40中にお
ける地中埋設管1からの腐食洩れの場合の漏洩流量Qm
’/sは、第1式と第3式において管外近傍圧力P l
 k g / m ”をパラメータとして漏洩流量Qm
’/sを算出すればよい.土壌40中における地中埋設
管1からの継手洩れの場合の漏洩流量Qm’/sは、第
2式と第3式から同様に算出すればよい. 前述の第1式、第2式、第3式の関係に基づいて第2図
に示すような管内圧力P O k g / c m 2
Gと漏洩流1(1/Sとの関係が得られる。横軸は管内
圧力POkg/cm2Gを示し、縦軸は漏洩流量Q1/
sを示している.ライン8,9、10,11は、継手の
隙間が0.5mm、1mm、2mm、3 m +nの継
手洩れをそれぞれ示しており、これらはいずれも大気圧
開放下にあると仮定した場合の変化である.すなわち継
手洩れの場合、たとえばライン10において、管内圧力
POが点50未満では、継手の隙管を通る流体は層流で
ありこの場合第2式および第3式の関係が成り立つ。
In Figure 2, which will be described later, r=0.05m. For example, k is k = 1.86 x 10 days 2 m2 for clay, and k = 2.79 x 10-'' m2 for sand. Leakage flow rate Qm in the case of corrosion leakage from underground pipe 1 in soil 40
'/s is the pressure near the outside of the pipe P l in the first and third equations.
Leakage flow rate Qm with “kg/m” as a parameter
'/s can be calculated. The leakage flow rate Qm'/s in the case of joint leakage from the underground pipe 1 in the soil 40 can be similarly calculated from the second and third equations. Based on the relationships of the above-mentioned first, second, and third equations, the pipe pressure P O kg / cm 2 as shown in Fig. 2 is calculated.
The relationship between G and leakage flow 1 (1/S) is obtained.The horizontal axis shows the pipe pressure POkg/cm2G, and the vertical axis shows the leakage flow rate Q1/S.
It shows s. Lines 8, 9, 10, and 11 indicate joint leakage when the joint gap is 0.5 mm, 1 mm, 2 mm, and 3 m + n, respectively, and these are changes when assuming that the joint is open to atmospheric pressure. It is. That is, in the case of a joint leak, for example in line 10, when the pipe internal pressure PO is less than point 50, the fluid passing through the gap pipe of the joint is a laminar flow, and in this case, the relationships of the second and third equations hold true.

点50よりも大きい管内圧力POでは、継手の隙管を通
る流体が乱流となる.このライン10の場合、第2図に
は示されていないけれども、管内圧力POがさらに増大
すると、継手の隙管における流速は音速に近付いていき
、管内圧力のPOが上昇しても漏洩流量Qがあまり上昇
しなくなる。なお、ライン10の場合は、上述のように
大気圧開放下にあると仮定した場合の変化であり、ライ
ン10aは地中埋設管1が砂の中にあると仮定した場合
の変化であり、ライン10bは地中埋設管1が粘土中に
あると仮定した場合の変化を示す。同様な特性は、ライ
ン8,9およびl1に関しても同様に得られる。
At a pipe pressure PO greater than point 50, the fluid passing through the gap pipe of the joint becomes turbulent. In the case of this line 10, although it is not shown in FIG. 2, as the pipe internal pressure PO increases further, the flow velocity in the gap pipe of the joint approaches the sonic velocity, and even if the pipe internal pressure PO increases, the leakage flow rate Q will not rise much. In addition, in the case of line 10, it is a change when it is assumed that the atmospheric pressure is open as described above, and line 10a is a change when it is assumed that the underground pipe 1 is in sand. Line 10b shows the change when the underground pipe 1 is assumed to be in clay. Similar characteristics are obtained for lines 8, 9 and l1 as well.

ライン12,13,14.15,16.1718.19
は、穴の直径が0.5mm、1mm、2mm、3mm、
4 m m、5mm.10rnm、2Q m mの腐食
洩れをそれぞれ示しており、これらはいずれも大気圧開
放下にあると仮定した場合の変化である。たとえばライ
ン18において、点51よりも低い管内圧力POの範囲
では、前述の第1式および第3式の関係が成り立つ.点
51よりも高い管内圧力POでは、漏洩する流体が音速
に近付き、したがって管内圧力POが増大しても、漏洩
流量Qがあまり増大しない.このことはその他のライン
12〜17.19に関しても同様である.ライン20,
21,22.23,24,25.26は、穴の直径が1
mm、2mm、3mm、4mm、5mm.10mm、2
0mmの腐食洩れをそれぞれ示し、地中埋設管1が間隙
の少ない土壌たとえば粘土中にあると仮定した場合の変
化である.穴の直径が0.5mmの場合の粘土中での変
化はラインl2とほぼ一致している.ライン2728,
29.30.31は穴の直径が3mm、4mm、5mm
、10mm、20mmの腐A洩れをそれぞれ示し、地中
埋設管1が間隙の多い土壌たとえば砂の中にあると仮定
した場合の変化である。
Lines 12, 13, 14.15, 16.1718.19
The diameter of the hole is 0.5mm, 1mm, 2mm, 3mm,
4mm, 5mm. Corrosion leakage of 10 rnm and 2Q m m are shown, respectively, and both of these are changes when it is assumed that the sample is exposed to atmospheric pressure. For example, in the line 18, in the range of the pipe internal pressure PO lower than the point 51, the above-mentioned relationships of the first and third equations hold true. At a pressure PO in the pipe higher than point 51, the leaking fluid approaches the speed of sound, so even if the pressure PO in the pipe increases, the leakage flow rate Q does not increase much. This also applies to the other lines 12 to 17 and 19. line 20,
21, 22, 23, 24, 25.26 have a hole diameter of 1
mm, 2mm, 3mm, 4mm, 5mm. 10mm, 2
Each shows a corrosion leakage of 0 mm, and the changes are based on the assumption that the underground pipe 1 is located in soil with few gaps, such as clay. The change in the clay when the hole diameter is 0.5 mm almost coincides with line 12. line 2728,
29.30.31 has hole diameters of 3mm, 4mm, and 5mm.
, 10 mm, and 20 mm of corrosion A leakage, respectively, and are changes when it is assumed that the underground pipe 1 is located in soil with many gaps, such as sand.

穴の直径が0.5mm,1mm、2 m mの場合の砂
の中での変化は、それぞれライン12.1314にほぼ
一致している. 第2図を参照して、継手洩れを示すライン8〜11と、
腐食洩れを示すライン12〜31とは、その漏洩流量の
変化パターンが相違している、継手洩れの場合は、管内
圧力と漏洩流量との間には比例関係があり、漏洩流量は
管内圧力の増加につれて増大するけれども、腐食洩れの
場合は或る圧力付近から漏洩流量はほぼ一定となり増加
しなくなる。したがってこの漏洩流量の変化パターンの
相違によって地中埋設管1の洩れが、継手洩れか、腐食
洩れかの判別が可能となる.継手洩れと腐食洩れのどち
らも生じている場合であっても、主なる漏洩原因がどち
らであるか判定することが可能である。漏洩部の大きさ
によっても漏洩流量の変化パターンが異なり、特にこの
場合は、漏洩流量の変化パターンにおいて管内圧力や漏
洩流量の値の大きさを考慮することによって腐食状態の
判定が可能となる.さらに土壌の影響を考慮することに
よって、より確実に地中埋設管の健全性を評価すること
ができる. 第3図は本発明の一実施例の楕成を示すための図である
.両端が密封された被試験管1、たとえば地中に埋設さ
れたガスの本管や支管を約100mの長さで区切り、区
切るべき位置の地中を掘削し、区切るべき位置で前記本
管や支管を切断後、その両切断部を密封したものに圧力
源2からたとえば気体が管路6を経て圧入される。この
管路6としては、たとえば地中埋設管1に形成されてい
る顧客用の引込み管すなわち供給管のIM所を用いれば
よい。圧力源2からの圧力は、ガバナ3によって設定さ
れた圧力に調整される。ガバナ3と地中埋設管1との間
の管路6から分岐した管路7には、圧力検出計4が設け
られる。ガバナ3と地中埋設管1との間の管路6には、
流量計5が設けられる. 圧力源2からの気体圧をたとえば0.1〜10kg/c
m2Gに亘って数点の圧力点で段階的に負荷し、各圧力
点における地中埋設管1からの漏洩流量を流量計5で検
出する。このとき気体圧を段階的に変化させるのは、各
圧力点での安定した状態の漏洩流量を検出するためであ
る.このようにして求められた漏洩流量の変化パターン
を、第2図に示されるような予め準備された漏洩流量の
変化パターンと比較することによって、漏洩部の形状、
すなわち腐食洩れか継手洩れかの判別や、漏洩個所の状
況すなわち漏洩部の大きさなどを判定することが可能と
なる. 第4図は本発明の他の実施例の構成を示すための図であ
る.両端が密封された被試験管たとえば前述の実施例と
同様な地中埋設管1には、圧力源2から流体たとえば気
体が管路6を経て前述の実施例と同様に圧入される.圧
力源2からの気体圧は、管路6に設けられたガバナ3に
よって設定圧力に調整される.ガバナ3の気体の圧送方
向下流側には、弁32が設けられる.ガバナ3と弁32
との間の管路6からは、管路34が分岐し、その管銘3
4には弁33、圧力検出計4,その圧力検出計4のため
の分岐管7、比較タンク35、差圧計36が気体の圧送
方向の下流に向かって順次設けられる.管路34は、弁
32と地中埋設管1との間の管路6に連結される. 始めに弁32.33を開いて所定の圧力POを加える.
次に弁32.33を閉じ時問t後の圧力の降下量すなわ
ち比較タンク35と被試験管1との差圧がΔPである場
合には、地中埋設管lの内容積をVOとすると次式で漏
洩流量Qが求められる. いくつかの段階的に変化させた圧力点において漏洩流量
を測定し、そん測定された漏洩流量変化パターンと前述
の予め準備された第2図の漏洩流量の変化パターンとの
比較によって地中埋設管1の健全性を評価する.この実
施例は、前述の実施例に比べて漏洩流量が比較的小さい
場合に有効である. 第5図は測定された管内圧力と漏洩流景との関係を示す
図である.この図は前述の第3図または第4図に示され
た構成に基づいて測定された管内圧力と漏洩流量の変化
を示している.たとえば第5図に示された漏洩流量の変
化パターンと前述の第2図に示されるような予め準備さ
れた漏洩流量の変化パターンとから地中埋設管の健全性
を評価し、その健全性の程度によって修繕工法を次のよ
うに選定する.第5図(a)のライン41は、管内圧力
の増加につれて漏洩流量が一定の割合で増加している.
これによって継手洩れであることが判別でき、継手部に
シール剤を噴霧する工法を施せばよい。第5図(b)の
ライン42は管内圧力が高いときに漏洩流量の増加の割
合が減少し,ている.さらに管内圧力と漏洩流量の値の
大きさを考慮することによって継手洩れと直径2mm以
下の小さな腐食洩れとが生じていることがわかる.第5
図(c)のライン43は管内圧力が1 k g / c
m2G付近からは圧力が増加しても漏洩流量はほぼ一定
で増加しない.さらに管内圧力と漏洩流量の値の大きさ
を考慮することによって、直径2mm以下の小さな腐食
洩れが生じていることがわかる.この第5図(b)およ
び(C)の場合は、管体の内面に樹脂などをライニング
する工法を施せばよい。第5図(d)のライン44は、
管内圧力lkg/cm2G付近から圧力が増加しても漏
洩流量はほぼ一定で増加しない.さらに第5図(c)の
ライン43に比べて漏洩流量の値が大きい.これは直径
5mm程度の大きな腐食洩れが生じていることを示して
いる。第5図(e)のライン45は、・或る圧力から急
激に漏洩流量が増加しており、耐圧性がなく、10kg
/cm2Gで亀裂が生じたことがわかる.第5図(d)
および第5図(e)の場合は、管体を掘り返して入替え
なければならない. 第6図は本発明の一実施例の管体の耐圧性を説明するた
めの図である.第6図(1)は管体表面が直径断面2a
に亘って部分的に腐食し、腐食残肉厚がhになった場合
のモデルを示している。腐食部の大きさ2aと、腐食残
肉厚hと、管内圧力Pとの関係は次の第5式で与えられ
る.ここでσは管体の引張強度である.第6図(2)は
管内圧力P=10kg/cm’Gのときの腐食部の大き
さ2ammと、腐食残肉厚hmmとの関係を示す図であ
る.第6図(2)を参照して、たとえば直径断面20m
mに亘って腐食減肉した場合には、10kg/cm”G
の管内圧力では、残肉厚0.5mmで亀裂が生じる.直
径断面80mmに亘って腐食減肉した場合には1 0 
k g / c mGの管内圧力では、残肉厚2mmで
も亀裂が生じる.また10kg/cm2Gの管内圧力で
亀裂が生じなければ、第6図(2)の斜線を施し,た領
域にあることになる.このように腐食部の大きさと、腐
食残肉厚との関係から、或る圧力水準で亀裂が生じなけ
れば耐圧性の評価ができることになる. すなわち、第5図(2)で示されるようにして、管内圧
力を変化させたとき漏洩流量が急変したときの圧力を測
定し、この測定した管内圧力に対応して予め準備されて
いる第6図(2)のグラフを見て、その地中埋設管は第
6図(2)の斜線を施していない広い領域にあるものと
判断して、耐圧性の評価を行うことができ、このように
して漏洩が大きくなったときには、その管の修繕を行う
ことになる。管内圧力を変化させたとき、漏洩流量の急
変が生じていないときには,その管内圧力毎に準備した
第6図(2)と同様なグラフにおける斜線を施した領域
にあるものと判断して、耐圧性の評価を行うことができ
る.このことは次に述べる第7図でも同様である.第6
図(2)のグラフは,管内圧力毎に、予め準備しておく
.またこの管内圧力を変化したとき、漏洩流量が零であ
ることもあり、管内圧力を上昇したとき、漏洩流量に急
に生じることもあり、このような場合においても、上述
と同様に耐圧性の評価を行うことができる. 第7図は継手ねじ部の耐圧性を説明するための図である
.第7図(1)は、継手ねじ部が最初の肉厚dOから残
肉厚dまで減肉したモデルを示している.必要残肉厚d
と、管の内径Dと,管内圧力Dとの関係は次の第6式で
与えられる。
The changes in the sand when the hole diameters are 0.5 mm, 1 mm, and 2 mm, respectively, approximately correspond to line 12.1314. With reference to FIG. 2, lines 8 to 11 indicating joint leakage,
The change pattern of the leakage flow rate is different from lines 12 to 31 indicating corrosion leakage.In the case of joint leakage, there is a proportional relationship between the pipe internal pressure and the leakage flow rate, and the leakage flow rate is a change in the pipe internal pressure. Although it increases as the pressure increases, in the case of corrosion leakage, the leakage flow rate becomes almost constant and does not increase from around a certain pressure. Therefore, it is possible to determine whether the leak in the underground pipe 1 is a joint leak or a corrosion leak based on the difference in the change pattern of the leakage flow rate. Even if both joint leakage and corrosion leakage occur, it is possible to determine which is the main cause of the leakage. The change pattern of the leakage flow rate also differs depending on the size of the leakage part, and especially in this case, the state of corrosion can be determined by considering the magnitude of the pipe pressure and leakage flow rate in the change pattern of the leakage flow rate. Furthermore, by considering the influence of soil, the health of underground pipes can be evaluated more reliably. FIG. 3 is a diagram showing the ellipse of one embodiment of the present invention. A test tube 1 with both ends sealed, such as a gas main or branch pipe buried underground, is divided into sections of approximately 100 m in length, and the underground is excavated at the location where the division is to be performed. After cutting the branch pipe, gas, for example, is injected from the pressure source 2 through the pipe line 6 into the both cut portions of which are sealed. As this conduit 6, for example, an IM station of a customer service lead-in pipe, that is, a supply pipe formed in the underground pipe 1 may be used. The pressure from the pressure source 2 is adjusted to the pressure set by the governor 3. A pressure detector 4 is provided in a pipe line 7 branched from a pipe line 6 between the governor 3 and the underground pipe 1. The pipe line 6 between the governor 3 and the underground pipe 1 includes
A flow meter 5 is provided. The gas pressure from the pressure source 2 is, for example, 0.1 to 10 kg/c.
The load is applied stepwise at several pressure points over m2G, and the leakage flow rate from the underground pipe 1 at each pressure point is detected by the flow meter 5. The reason why the gas pressure is changed stepwise at this time is to detect the leakage flow rate in a stable state at each pressure point. By comparing the change pattern of the leakage flow rate obtained in this way with the change pattern of the leakage flow rate prepared in advance as shown in FIG. 2, the shape of the leakage part can be determined.
In other words, it is possible to determine whether it is a corrosion leak or a joint leak, as well as the condition of the leak location, ie, the size of the leak. FIG. 4 is a diagram showing the configuration of another embodiment of the present invention. A fluid such as gas is pressurized from a pressure source 2 through a pipe line 6 into a tube to be tested, such as an underground pipe 1 similar to the above embodiment, which is sealed at both ends, in the same manner as in the above embodiment. The gas pressure from the pressure source 2 is adjusted to a set pressure by a governor 3 provided in the conduit 6. A valve 32 is provided downstream of the governor 3 in the gas pumping direction. Governor 3 and valve 32
A pipe line 34 branches from the pipe line 6 between
4, a valve 33, a pressure detector 4, a branch pipe 7 for the pressure detector 4, a comparison tank 35, and a differential pressure gauge 36 are sequentially installed downstream in the gas pumping direction. The pipe line 34 is connected to the pipe line 6 between the valve 32 and the underground pipe 1. First, open valves 32 and 33 and apply a predetermined pressure PO.
Next, when the valves 32 and 33 are closed and the amount of pressure drop after time t, that is, the differential pressure between the comparison tank 35 and the tube under test 1 is ΔP, if the internal volume of the underground pipe 1 is VO, then The leakage flow rate Q can be calculated using the following formula. The leakage flow rate was measured at several pressure points that were changed in stages, and the measured leakage flow rate change pattern was compared with the previously prepared leakage flow rate change pattern shown in Figure 2. Evaluate the soundness of 1. This embodiment is effective when the leakage flow rate is relatively small compared to the previous embodiment. Figure 5 is a diagram showing the relationship between the measured pipe pressure and the leakage flow pattern. This figure shows changes in pipe pressure and leakage flow rate measured based on the configuration shown in Figure 3 or Figure 4 above. For example, the soundness of an underground pipe is evaluated based on the change pattern of leakage flow rate shown in Figure 5 and the change pattern of leakage flow rate prepared in advance as shown in Figure 2 above. Depending on the severity, repair methods are selected as follows. In the line 41 of FIG. 5(a), the leakage flow rate increases at a constant rate as the pressure inside the pipe increases.
From this, it can be determined that it is a joint leak, and a method of spraying a sealant on the joint can be applied. Line 42 in FIG. 5(b) shows that when the pressure inside the pipe is high, the rate of increase in the leakage flow rate decreases. Furthermore, by considering the magnitude of the pipe pressure and leakage flow rate, it can be seen that joint leakage and small corrosion leakage with a diameter of 2 mm or less occur. Fifth
Line 43 in figure (c) has an internal pressure of 1 kg/c.
Even if the pressure increases from around m2G, the leakage flow rate remains almost constant and does not increase. Furthermore, by considering the values of the pipe internal pressure and leakage flow rate, it can be seen that small corrosion leaks with a diameter of 2 mm or less occur. In the case of FIGS. 5(b) and 5(C), a method of lining the inner surface of the tube with resin or the like may be applied. The line 44 in FIG. 5(d) is
Even if the pressure increases from around 1kg/cm2G in the pipe, the leakage flow rate remains almost constant and does not increase. Furthermore, the value of the leakage flow rate is larger than that of line 43 in FIG. 5(c). This indicates that a large corrosion leak with a diameter of about 5 mm has occurred. Line 45 in Fig. 5(e) shows that the leakage flow rate increases rapidly from a certain pressure, has no pressure resistance, and has a pressure of 10 kg.
It can be seen that a crack occurred at /cm2G. Figure 5(d)
In the case of Figure 5(e), the pipe body must be dug up and replaced. FIG. 6 is a diagram for explaining the pressure resistance of a tube body according to an embodiment of the present invention. Figure 6 (1) shows that the tube surface has a diameter cross section of 2a.
The model shows a case where partial corrosion occurs over the period of time, and the residual corrosion thickness becomes h. The relationship between the size 2a of the corroded part, the corroded residual wall thickness h, and the pipe internal pressure P is given by the following equation 5. Here, σ is the tensile strength of the tube. FIG. 6(2) is a diagram showing the relationship between the size of the corroded part, 2 amm, and the corroded residual wall thickness, hmm, when the pipe internal pressure P=10 kg/cm'G. For example, with reference to Figure 6 (2), the diameter cross section is 20 m.
In case of corrosion thinning over m, 10kg/cm”G
At the pressure inside the pipe, cracks occur when the remaining wall thickness is 0.5 mm. 1 0 in the case of corrosion thinning over a diameter cross section of 80 mm
At an internal pressure of kg/cmG, cracks occur even with a remaining wall thickness of 2 mm. Furthermore, if no cracks occur under the internal pressure of 10 kg/cm2G, the cracks will be in the shaded area in Figure 6 (2). In this way, from the relationship between the size of the corroded area and the thickness of the corroded remaining wall, it is possible to evaluate the pressure resistance if no cracks occur at a certain pressure level. That is, as shown in FIG. 5 (2), the pressure at which the leakage flow rate suddenly changes when the pipe internal pressure is changed is measured, and the sixth Looking at the graph in Figure (2), we can judge that the underground pipe is located in a wide area not shaded in Figure 6 (2), and evaluate its pressure resistance. If the leak becomes large, the pipe will need to be repaired. When the pressure inside the pipe is changed, if there is no sudden change in the leakage flow rate, it is judged that the area is in the shaded area in the graph similar to Figure 6 (2) prepared for each pressure inside the pipe, and the withstand pressure is determined. It is possible to evaluate gender. This also applies to Figure 7, which will be described next. 6th
The graph in Figure (2) is prepared in advance for each pipe pressure. In addition, when the pressure inside the pipe is changed, the leakage flow rate may be zero, and when the pressure inside the pipe is increased, the leakage flow rate may suddenly increase.In such cases, as well as the above, the pressure resistance Evaluation can be performed. Figure 7 is a diagram for explaining the pressure resistance of the joint thread. Figure 7 (1) shows a model in which the joint thread has been reduced from the initial wall thickness dO to the remaining wall thickness d. Required remaining thickness d
The relationship between , the inner diameter D of the tube, and the pressure D inside the tube is given by the following equation 6.

ここでσは管体の引張強度を、αは応力集中係数をそれ
ぞれ示している.第7図《2)は、管内圧力が10kg
/cm2Gのときの管の内径D m mと、腐食残肉厚
dmmとの関係を示す図である。
Here, σ represents the tensile strength of the tube, and α represents the stress concentration factor. In Fig. 7 (2), the pressure inside the pipe is 10 kg.
FIG. 3 is a diagram showing the relationship between the inner diameter D mm of the pipe and the corrosion remaining wall thickness d mm when /cm2G.

第7図(2)を参照して、たとえば管の呼び内径Okg
/cm2Gの管内圧力で亀裂が発生する.管の呼び内径
が3Bでは残肉厚が0.19mmになると、10kg/
cm2Gの管内圧力で亀裂が発生する.また10kg/
cm”Gの管内圧力で亀裂が生じなければ、第7図《2
》の斜線を施した領域にあることになる.したがって或
る圧力水準で亀裂が生じなければ耐圧性の評価ができる
ことになる。
Referring to FIG. 7 (2), for example, the nominal inner diameter of the pipe is Okg.
Cracks occur at an internal pressure of /cm2G. If the nominal inner diameter of the pipe is 3B and the remaining wall thickness is 0.19mm, the weight will be 10kg/
Cracks occur at an internal pressure of cm2G. Also 10kg/
If no cracks occur under the pressure in the pipe of cm"G, Fig. 7《2
] in the shaded area. Therefore, if no cracks occur at a certain pressure level, the pressure resistance can be evaluated.

前述の実施例では、地中埋設管1に加える気体の圧力を
段階的に変化させて漏洩流量を測定したけれども、本発
明の他の実施例として気体の圧力を連続的に変化させて
漏洩流量を測゜定し、粗かしめ準備された漏洩流量の変
化パターンと比較することによって耐圧性を判定するよ
うにしてもよい.前述の実施例では、流体として気体が
用いられたけれども本発明の他の実施例として気体に代
えて液体が用いられてもよい. 以上のように本発明によれば、被試験管または被試験容
器に圧力流体供給源を接続し、圧力を連続的または段階
的に変化させながら漏洩流量を測定し、その測定された
漏洩流量の変化パターンと、予め漏洩部の形状、大きさ
、周囲の状況ごとに圧力の変化に対応して準備された漏
洩流量の変化パターンとを比較することによって被試験
管または被試験容器の健全性を評価するようにしたので
、圧力の変化によって漏洩流量が変化するかどうかを調
べることによって、または漏洩しないことを調べること
によって耐圧性についての評価ができることになる.ま
た被試験管または被試験容器の評価は、被試験管や被試
験容器の試験区間ごとに一括してできるので、先行技術
のように測定個所の数が多くなることがなく、評価のた
めの時間、労力および経費を大幅に削減することができ
るとともに、被試験管や被試験容器の形状や大きさに拘
らず健全性を評価することが可能である.
In the above embodiment, the leakage flow rate was measured by changing the gas pressure applied to the underground pipe 1 in stages, but in another embodiment of the present invention, the leakage flow rate was measured by continuously changing the gas pressure. The pressure resistance may be determined by measuring the leakage flow rate and comparing it with the change pattern of the leakage flow rate prepared by rough caulking. Although gas was used as the fluid in the embodiments described above, other embodiments of the present invention may use liquid instead of gas. As described above, according to the present invention, a pressure fluid supply source is connected to a test tube or a test container, and the leakage flow rate is measured while changing the pressure continuously or stepwise, and the measured leakage flow rate is The integrity of the tube or container under test can be determined by comparing the change pattern with the change pattern of leakage flow rate prepared in advance in response to changes in pressure depending on the shape, size, and surrounding conditions of the leakage part. Since this is done, pressure resistance can be evaluated by checking whether the leakage flow rate changes with changes in pressure, or by checking whether there is no leakage. In addition, the evaluation of test tubes or containers under test can be performed all at once for each test section of the test tube or test container, so unlike the prior art, the number of measurement points does not increase, and the evaluation It is possible to significantly reduce time, labor, and expenses, and it is also possible to evaluate the integrity of test tubes and test containers regardless of their shape or size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は漏洩個所を示す簡略化した部分断面図、第2図
は管内圧力と漏洩流量との関係を示す図、第3図は本発
明の一実施例の構成を示すための図、第4図は本発明の
他の実施例の構成を示すための図、第5図は測定された
管内圧力と漏洩流量との関係を示す図、第6図は本発明
の一実施例の管体の耐圧性を説明するための図、第7図
は本発明の一実施例の継手ねし部の耐圧性を説明するた
めの図である. 1・・・地中埋設管、2・・・圧力源、4・・・圧力検
出計、5・・・流置計、35・・・比較タンク、PO・
・・管内圧力、Q・・・漏洩流量 代理人  弁理士 西教 圭一郎 第 図 第6 図 腐食IPの大8:!2a(mm)
FIG. 1 is a simplified partial cross-sectional view showing the leakage location, FIG. 2 is a diagram showing the relationship between the pressure inside the pipe and the leakage flow rate, and FIG. 3 is a diagram showing the configuration of an embodiment of the present invention. Fig. 4 is a diagram showing the configuration of another embodiment of the present invention, Fig. 5 is a diagram showing the relationship between the measured pressure inside the pipe and the leakage flow rate, and Fig. 6 is a diagram showing the pipe body of one embodiment of the present invention. FIG. 7 is a diagram for explaining the pressure resistance of a joint thread according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Underground pipe, 2... Pressure source, 4... Pressure detection meter, 5... Flow meter, 35... Comparison tank, PO・
...Pipe pressure, Q...Leakage flow rate agent Patent attorney Keiichiro Saikyo Figure 6 Figure 8 of Corrosion IP:! 2a (mm)

Claims (1)

【特許請求の範囲】[Claims] 被試験管または被試験容器において想定しうる漏洩部の
形状、大きさおよび周囲の状況ごとに圧力変化に対応す
る漏洩流量の変化パターンを予め準備し、被試験管また
は被試験容器に圧力流体供給源を接続し、圧力流体の圧
力を連続的または段階的に変化させながら前記被試験管
または被試験容器における漏洩流量を測定し、その測定
された漏洩流量の変化パターンと前記準備された漏洩流
量の変化パターンとを比較することによつて前記被試験
管または被試験容器の耐圧性を評価することを特徴とす
る管または容器の健全性評価方法。
Prepare in advance a leakage flow rate change pattern that corresponds to pressure changes for each shape, size, and surrounding situation of the leakage part that can be assumed in the tube or container under test, and supply pressure fluid to the tube or container under test. Connect the source and measure the leakage flow rate in the test tube or test container while changing the pressure of the pressure fluid continuously or stepwise, and compare the change pattern of the measured leakage flow rate and the prepared leakage flow rate. A method for evaluating the integrity of a tube or container, characterized in that the pressure resistance of the tube or container to be tested is evaluated by comparing the variation pattern of .
JP2019890A 1990-01-29 1990-01-29 Integrity evaluation for tube or container Pending JPH02236134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019890A JPH02236134A (en) 1990-01-29 1990-01-29 Integrity evaluation for tube or container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019890A JPH02236134A (en) 1990-01-29 1990-01-29 Integrity evaluation for tube or container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16450282A Division JPS5952728A (en) 1982-09-20 1982-09-20 Evaluating method of soundness of tube or container

Publications (1)

Publication Number Publication Date
JPH02236134A true JPH02236134A (en) 1990-09-19

Family

ID=12020471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019890A Pending JPH02236134A (en) 1990-01-29 1990-01-29 Integrity evaluation for tube or container

Country Status (1)

Country Link
JP (1) JPH02236134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192328A (en) * 2008-02-13 2009-08-27 Toshiba Corp Water distribution information analyzer and analysis method
JP2010107454A (en) * 2008-10-31 2010-05-13 Yamatake Corp Leak detection system and method for sealed container
JP2013134180A (en) * 2011-12-27 2013-07-08 Cosmo Instruments Co Ltd Flow rate measuring method and flow rate measuring apparatus using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009192328A (en) * 2008-02-13 2009-08-27 Toshiba Corp Water distribution information analyzer and analysis method
JP4612695B2 (en) * 2008-02-13 2011-01-12 株式会社東芝 Water distribution information analyzer
JP2010107454A (en) * 2008-10-31 2010-05-13 Yamatake Corp Leak detection system and method for sealed container
JP2013134180A (en) * 2011-12-27 2013-07-08 Cosmo Instruments Co Ltd Flow rate measuring method and flow rate measuring apparatus using the same

Similar Documents

Publication Publication Date Title
US4608857A (en) Method for checking pipes or pipe networks for leaks
Ahammed et al. Reliability estimation of pressurised pipelines subject to localised corrosion defects
US7328618B2 (en) Non-destructive testing of pipes
US8909479B2 (en) Apparatus and method for detecting and quantifying leakage in a pipe
US6244100B1 (en) Temperature compensation for automated leak detection
US8838399B2 (en) Method for estimating the location of a leak in a pipeline
Botros et al. Transferability of decompression wave speed measured by a small-diameter shock tube to full size pipelines and implications for determining required fracture propagation resistance
Ndalila et al. Modeling dynamic pressure of gas pipeline with single and double leakage
EP0733892B1 (en) Method of testing pipes for leakage and leakage testing device
EP0047032B1 (en) A method for determination of internal pipeline or tubing corrosion
JP6834952B2 (en) Deterioration analyzer, deterioration analysis method and deterioration analysis program and recording medium
JPH02236134A (en) Integrity evaluation for tube or container
JP2002528713A (en) Leak measurement in duct
JPS621209B2 (en)
SA112340090B1 (en) A system and method for enhancing corrosion rate determination in process equipment using a telescoping/rotating sensor
EP0027720B1 (en) Method of and apparatus for location of leaks in pressure-assisted oil-filled electric power cables
JPS5952728A (en) Evaluating method of soundness of tube or container
Pavić Experimental identification of physical parameters of fluid-filled pipes using acoustical signal processing
CN219757611U (en) Pore water pressure gauge check-up equipment
JPH1137883A (en) Method for measuring leak amount
US20090165535A1 (en) Leak localization in a cavitated body
Susarev et al. Use of the database during the operation of the intelligent hardware and software monitoring complex of lingering objects in real-time mode
RU2155947C2 (en) Method for detection of distance to place of leaking in long sized articles
JPH08261860A (en) Method and apparatus for detection of leak of gas
Rudroff Onsite Proving of Gas Turbine Meters