JP2013133620A - Junction structure of concrete column and steel frame beam, and joint method - Google Patents

Junction structure of concrete column and steel frame beam, and joint method Download PDF

Info

Publication number
JP2013133620A
JP2013133620A JP2011283591A JP2011283591A JP2013133620A JP 2013133620 A JP2013133620 A JP 2013133620A JP 2011283591 A JP2011283591 A JP 2011283591A JP 2011283591 A JP2011283591 A JP 2011283591A JP 2013133620 A JP2013133620 A JP 2013133620A
Authority
JP
Japan
Prior art keywords
column
steel
concrete column
concrete
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011283591A
Other languages
Japanese (ja)
Inventor
Shokichi Gokan
章吉 後閑
Yasuhiko Masuda
安彦 増田
Kuniyoshi Sugimoto
訓祥 杉本
Toru Morioka
徹 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2011283591A priority Critical patent/JP2013133620A/en
Publication of JP2013133620A publication Critical patent/JP2013133620A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ensured stress transmission at a junction of a concrete column and a steel frame beam, where the steel beam penetrates through the concrete column or an end of the steel beam is embedded in a concrete column, and an ensured horizontal strength of the whole frame including the junction.SOLUTION: A junction structure 10 of an RC column and an S beam, where the S beam 14 penetrates through the RC column 12 and one end of the S beam 16 is embedded in the RC column 12, allows the RC column 12 to be prestressed due to tension applied to a PC steel 20 which is inserted in the PC column 12.

Description

本発明は、コンクリート柱と鉄骨梁との接合部構造及び接合方法に関する。   The present invention relates to a joint structure and a joining method between a concrete column and a steel beam.

鉄筋コンクリート柱や鉄骨鉄筋コンクリート柱等のコンクリート柱と鉄骨梁とを組み合わせた混合構造による建築構造物が知られている(例えば、特許文献1、2参照)。特許文献1、2には、鉄骨梁がコンクリート柱を貫通し、又は、鉄骨梁の端部がコンクリート柱に埋設されたコンクリート柱と鉄骨梁との接合部の構造が開示されている。   A building structure having a mixed structure in which a concrete column such as a reinforced concrete column or a steel reinforced concrete column and a steel beam are combined is known (for example, see Patent Documents 1 and 2). Patent Documents 1 and 2 disclose a structure of a joint portion between a concrete column and a steel beam in which the steel beam penetrates the concrete column or the end of the steel beam is embedded in the concrete column.

特開平7−180215号公報Japanese Patent Laid-Open No. 7-180215 特開平11−100900号公報Japanese Patent Laid-Open No. 11-100900

特許文献1、2に記載のコンクリート柱と鉄骨梁との接合部では、コンクリート柱と鉄骨梁との間で、コンクリート柱と鉄骨梁との間の支圧力により応力が伝達される。ここで、高層建築物の場合、地震時の水平力によりコンクリート柱に引張軸力が生じるが、この引張軸力によりコンクリート柱と鉄骨梁との間の支圧力が減少されると、コンクリート柱と鉄骨梁との間で応力が十分に伝達されなくなり、鉄骨梁によるせん断力及び曲げモーメントの負担が減少し、架構全体の水平耐力が低下する。   In the joint portion between the concrete column and the steel beam described in Patent Literatures 1 and 2, stress is transmitted between the concrete column and the steel beam by the support pressure between the concrete column and the steel beam. Here, in the case of a high-rise building, a tensile axial force is generated in the concrete column due to the horizontal force at the time of the earthquake, but if the bearing pressure between the concrete column and the steel beam is reduced by this tensile axial force, Stress is not sufficiently transmitted to the steel beam, the load of shearing force and bending moment by the steel beam is reduced, and the horizontal strength of the entire frame is reduced.

本発明は、上記事情に鑑みてなされたものであり、鉄骨梁がコンクリート柱を貫通し、又は、鉄骨梁の端部がコンクリート柱に埋設されたコンクリート柱と鉄骨梁との接合部における応力の伝達性を確保し、当該接合部を含む架構全体の水平耐力を確保することを課題とするものである。   The present invention has been made in view of the above circumstances, in which the steel beam penetrates the concrete column or the end of the steel beam is embedded in the concrete column and the stress at the joint between the steel column and the steel beam is obtained. It is an object to ensure the transmissibility and ensure the horizontal strength of the entire frame including the joint.

上記課題を解決するために、本発明に係るコンクリート柱と鉄骨梁との接合部構造であって、鉄骨梁がコンクリート柱を貫通し、又は鉄骨梁の端部がコンクリート柱に埋め込まれたコンクリート柱と鉄骨梁との接合部構造であって、PC鋼材が前記コンクリート柱に少なくとも前記鉄骨梁の上下に跨るように挿通され、該PC鋼材が緊張されて前記コンクリート柱にプレストレス力が与えられていることを特徴とする。   In order to solve the above problems, a concrete column and a steel beam joint structure according to the present invention, wherein the steel beam penetrates the concrete column, or the end of the steel beam is embedded in the concrete column. And a steel beam are inserted into the concrete column so as to straddle the steel beam at least above and below the steel beam, and the PC steel material is tensioned to give a prestressing force to the concrete column. It is characterized by being.

前記コンクリート柱と鉄骨梁との接合部構造において、前記プレストレス力が、前記コンクリート柱に地震時に生じる引張軸力以上に設定されてもよい。   In the joint structure between the concrete column and the steel beam, the prestress force may be set to be greater than a tensile axial force generated in the concrete column during an earthquake.

また、本発明に係るコンクリート柱と鉄骨梁との接合方法は、鉄骨梁がコンクリート柱を貫通し、又は鉄骨梁の端部がコンクリート柱に埋め込まれるようにコンクリート柱と鉄骨梁とを接合する方法であって、PC鋼材が前記コンクリート柱に少なくとも前記鉄骨梁の上下に跨るように挿通し、該PC鋼材を緊張させて前記コンクリート柱にプレストレス力を与えることを特徴とする。   The method for joining a concrete column and a steel beam according to the present invention is a method of joining a concrete column and a steel beam so that the steel beam penetrates the concrete column or the end of the steel beam is embedded in the concrete column. The PC steel material is inserted through the concrete column so as to straddle the steel beam at least above and below, and the PC steel material is tensioned to give a prestress force to the concrete column.

本発明によれば、鉄骨梁がコンクリート柱を貫通し、又は、鉄骨梁の端部がコンクリート柱に埋設されたコンクリート柱と鉄骨梁との接合部における応力の伝達性を確保し、当該接合部を含む架構全体の水平耐力を確保することができる。   According to the present invention, the steel beam penetrates the concrete column, or the end of the steel beam ensures the transferability of stress at the joint between the concrete column and the steel beam embedded in the concrete column, and the joint The horizontal strength of the entire frame including

一実施形態に係る柱梁接合部構造を示す斜視図である。It is a perspective view which shows the column beam junction part structure which concerns on one Embodiment. 柱梁接合部を示す平断面図である。It is a plane sectional view showing a column beam junction. 図2の3−3矢視図(立面図)である。FIG. 3 is a view (elevated view) taken along arrow 3-3 in FIG. 2. 図2の4−4断面図(立断面図)である。FIG. 4 is a sectional view (standing sectional view) taken along the line 4-4 in FIG. 柱梁接合部を構築する手順を示す立断面図である。It is an elevational sectional view showing a procedure for constructing a column beam joint. 柱梁接合部を構築する手順を示す立断面図である。It is an elevational sectional view showing a procedure for constructing a column beam joint. 柱梁接合部を構築する手順を示す立断面図である。It is an elevational sectional view showing a procedure for constructing a column beam joint. RC柱とS梁の埋込部分との間の支圧作用を示す図である。It is a figure which shows the bearing effect between RC pillar and the embedding part of S beam. RC柱に水平力が作用した際の曲げモーメント線図である。It is a bending moment diagram at the time of a horizontal force acting on RC pillar. 他の実施形態に係る柱梁接合部構造を示す分解斜視図である。It is a disassembled perspective view which shows the column beam junction part structure which concerns on other embodiment.

以下、本発明の一実施形態を、図面を参照しながら説明する。図1は、一実施形態に係る柱梁接合部構造10を示す斜視図である。この図に示すように、柱梁接合部構造10は、高層建築物の外周部に配された鉄筋コンクリート製の柱であるRC柱12と、RC柱12を貫通する鉄骨製の梁であるS梁14と、該S梁14と直交し端部がRC柱12に埋設されるS梁16と、RC柱12とS梁14、16との接合部を囲むふさぎ板18とを備えている。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a column beam joint structure 10 according to an embodiment. As shown in this figure, the column beam joint structure 10 includes an RC column 12 which is a reinforced concrete column disposed on the outer periphery of a high-rise building, and an S beam which is a steel beam penetrating the RC column 12. 14, an S beam 16 that is orthogonal to the S beam 14 and has an end embedded in the RC column 12, and a cover plate 18 that surrounds the joint between the RC column 12 and the S beams 14 and 16.

S梁14の中間部とS梁16の端部とは溶接されてこれらの接合部は平面視にてトの字(T字)型に構成されており、RC柱12に埋設されている。また、ふさぎ板18は、平断面形状がL字型の一対の鋼板18Aと、平断面形状がコの字(U字)型の鋼板18Bとにより平断面形状が矩形状に構成されている。鋼板18Aは、S梁14とS梁16とからなる隅部に配され、S梁14のウェブ14AとS梁16のウェブ16Aに溶接されている。また、鋼板18Bは、S梁14を挟んで鋼板18Aの反対側に配され、S梁14のウェブ14Aに溶接されている。   The intermediate portion of the S beam 14 and the end portion of the S beam 16 are welded, and these joint portions are formed in a G shape (T shape) in plan view, and are embedded in the RC column 12. Further, the cover plate 18 is configured to have a rectangular cross-sectional shape by a pair of steel plates 18A having a L-shaped flat cross-sectional shape and a steel plate 18B having a U-shaped flat cross-sectional shape. The steel plate 18 </ b> A is disposed at a corner portion composed of the S beam 14 and the S beam 16 and is welded to the web 14 </ b> A of the S beam 14 and the web 16 </ b> A of the S beam 16. The steel plate 18B is disposed on the opposite side of the steel plate 18A with the S beam 14 interposed therebetween, and is welded to the web 14A of the S beam 14.

鋼板18A、18Bの内側面は、RC柱12の側面と面一となるように配されており、鋼板18A、18BとS梁14、16とにより囲まれる空間にコンクリートが充填されることで、角鋼管コンクリートからなる仕口部11が形成されている。   The inner side surfaces of the steel plates 18A and 18B are arranged so as to be flush with the side surfaces of the RC pillar 12, and the concrete is filled in the space surrounded by the steel plates 18A and 18B and the S beams 14 and 16, A joint portion 11 made of square steel pipe concrete is formed.

また、RC柱12には、複数のPC鋼材20が内蔵されている。各PC鋼材20は、PC柱12の4角の各々に対応して設けられ、複数階に亘って延びるように配されている。なお、PC鋼材20としては、PC鋼棒やPC鋼線等が挙げられる。   The RC pillar 12 has a plurality of PC steel materials 20 built therein. Each PC steel material 20 is provided corresponding to each of the four corners of the PC pillar 12, and is arranged so as to extend over a plurality of floors. The PC steel material 20 includes a PC steel rod, a PC steel wire, and the like.

図2は、柱梁接合部10を示す平断面図であり、図3は、図2の3−3矢視図(立面図)であり、図4は、図2の4−4断面図(立断面図)である。なお、RC柱12の主筋と帯筋とについては図示を省略している。   2 is a cross-sectional plan view showing the beam-column joint 10, FIG. 3 is a sectional view (elevated view) taken along the line 3-3 in FIG. 2, and FIG. (Elevated sectional view). It should be noted that the main bars and the band bars of the RC column 12 are not shown.

図2〜図4に示すように、各PC鋼材20は、仕口部11ではふさぎ板18とS梁14、16との間に挿通され、上端が所定階の仕口部11から突出しており、上下のPC鋼材20は、所定階の仕口部11の上側でカプラー22により接続されている。また、複数のPC鋼材20は緊張されており、RC柱12には圧縮軸力であるプレストレス力が導入されている。ここで、RC柱12に導入されている圧縮軸力であるプレストレス力は、地震時にRC柱12に作用する引張軸力以上に設定されており、地震時にもRC柱12には圧縮軸力が作用する。   As shown in FIGS. 2 to 4, each PC steel material 20 is inserted between the cover plate 18 and the S beams 14 and 16 in the joint portion 11, and the upper end protrudes from the joint portion 11 on the predetermined floor. The upper and lower PC steel materials 20 are connected by a coupler 22 on the upper side of the joint portion 11 on a predetermined floor. Further, the plurality of PC steel materials 20 are tensioned, and a pre-stress force that is a compression axial force is introduced into the RC column 12. Here, the prestressing force, which is the compression axial force introduced into the RC column 12, is set to be equal to or greater than the tensile axial force acting on the RC column 12 during an earthquake, and the compression axial force is applied to the RC column 12 even during an earthquake. Works.

図5〜図7は、柱梁接合部10を構築する手順を示す立断面図である。まず、図5に示すように、PC鋼材20を挿通するためのシース管24が埋設されたプレキャスト製品であるRC柱体12Aを建て込み、その上に溶接されたS梁14、16及びふさぎ板18を設置する。そして、ふさぎ板18とS梁14、16の間にPC鋼材20を挿通するためのシース管26や鉄筋等を設置して、ふさぎ板18とS梁14、16との間にコンクリートを充填することで仕口部11を構築する。その後、仕口部11の上にRC柱体12Aを設置し、仕口部11とRC柱体12Aとの目地や鉄筋の継手にグラウトを注入する。   5 to 7 are elevation sectional views showing a procedure for constructing the column beam joint 10. First, as shown in FIG. 5, an RC column body 12A, which is a precast product in which a sheath tube 24 for inserting a PC steel material 20 is embedded, is built, and S beams 14 and 16 and a cover plate welded thereon. 18 is installed. Then, a sheath tube 26 and a reinforcing bar for inserting the PC steel material 20 are installed between the blocking plate 18 and the S beams 14 and 16, and concrete is filled between the blocking plate 18 and the S beams 14 and 16. The joint part 11 is constructed. Then, RC pillar body 12A is installed on the joint part 11, and grout is inject | poured into the joint of the joint part 11 and RC pillar body 12A, or the joint of a reinforcing bar.

そして、図6に示すように、一層分(複数階分)のRC柱12とS梁14、16の建て込みが終了すると、PC鋼材20をシース管24、26に挿通する。ここで、下層のPC鋼材20の上端を、下層の最上階の仕口部11から突出させ、該上端にカプラー22を取り付けておく。そして、上層のPC鋼材20の下端と下層のPC鋼材20の上端とをカプラー22で接続する。   Then, as shown in FIG. 6, when the building of the RC pillar 12 and the S beams 14, 16 for one layer (a plurality of floors) is completed, the PC steel material 20 is inserted into the sheath tubes 24, 26. Here, the upper end of the lower layer PC steel material 20 is projected from the lowermost joint portion 11 of the lower layer, and a coupler 22 is attached to the upper end. Then, the lower end of the upper PC steel material 20 and the upper end of the lower PC steel material 20 are connected by a coupler 22.

そして、上層の最上階の仕口部11から突出したPC鋼材20の上端を油圧ジャッキ28に接続し、該油圧ジャッキ28でPC鋼材20に張力を与えた状態で、PC鋼材20を仕口部11の上部に定着させる。これにより、PC鋼材20が緊張されて上層のRC柱12に圧縮軸力であるプレストレス力が導入される。   Then, the upper end of the PC steel material 20 protruding from the uppermost joint portion 11 of the upper layer is connected to the hydraulic jack 28, and the PC steel material 20 is connected to the joint portion in a state where tension is applied to the PC steel material 20 with the hydraulic jack 28. 11 is fixed to the upper part. As a result, the PC steel material 20 is tensioned and a prestressing force that is a compression axial force is introduced into the upper RC column 12.

そして、図7に示すように、RC柱体12に設けられたグラウト注入口30からシース管24、26にグラウトを充填する。以上により、複数階分のRC柱12とS梁14、16とが建て込まれ、複数階分のRC柱12に圧縮軸力であるプレストレス力が導入される。   Then, as shown in FIG. 7, the grout is filled into the sheath tubes 24 and 26 from the grout inlet 30 provided in the RC column 12. As described above, the RC pillars 12 and the S beams 14 and 16 for a plurality of floors are built, and a prestress force that is a compression axial force is introduced into the RC pillars 12 for a plurality of floors.

図8は、RC柱12とS梁16の埋込部分との間の支圧作用を示す図であり、図9は、RC柱12に水平力が作用した際の曲げモーメント線図である。   FIG. 8 is a view showing a support pressure action between the RC column 12 and the embedded portion of the S beam 16, and FIG. 9 is a bending moment diagram when a horizontal force is applied to the RC column 12.

図8に示すように、圧縮軸力NrがかかっているRC柱12にS梁16の軸方向への水平力Qrが作用すると、S梁16の埋込部分の上下のフランジ16Bとその上下のRC柱体12Aとの間にS梁16のてこ作用による支圧力Pが生じ、この支圧力Pにより、RC柱12とS梁16との間での応力伝達が行われる。この際、図9に示すように、RC柱12とS梁16とには、夫々、両端が最大、中央が最小となる曲げモーメントが生じ、S梁16の中央部には、せん断力Qsが生じる。   As shown in FIG. 8, when the horizontal force Qr in the axial direction of the S beam 16 acts on the RC column 12 to which the compressive axial force Nr is applied, the upper and lower flanges 16B of the embedded portion of the S beam 16 and the upper and lower flanges 16B A support pressure P due to the lever action of the S beam 16 is generated between the RC column body 12 </ b> A, and stress transfer between the RC column 12 and the S beam 16 is performed by the support pressure P. At this time, as shown in FIG. 9, the RC column 12 and the S beam 16 have bending moments that are the maximum at both ends and the minimum at the center, respectively. Arise.

即ち、圧縮軸力Nrが作用した状態のRC柱12に水平力Qrが作用すると、RC柱12とS梁16との間での応力伝達が良好に行われ、S梁16がせん断力と曲げモーメントとを負担することになる。   That is, when the horizontal force Qr is applied to the RC column 12 in the state where the compression axial force Nr is applied, the stress transmission between the RC column 12 and the S beam 16 is performed well, and the S beam 16 is sheared and bent. Will bear the moment.

ここで、高層建築物では、地震時の水平力により柱に引張軸力が生じる場合があり、S梁の端部が埋設されて接合されたRC柱に圧縮軸力を上回る大きさの引張軸力が生じると、S梁の埋込部分とその上下のRC柱との間に支圧力Pが生じずに、RC柱とS梁との間での応力伝達が行われなくなる。   Here, in a high-rise building, a tensile axial force may be generated in the column due to a horizontal force at the time of an earthquake, and a tensile shaft having a magnitude exceeding the compressive axial force on the RC column in which the end of the S beam is embedded and joined. When a force is generated, a support pressure P is not generated between the embedded portion of the S beam and the upper and lower RC columns, and stress transmission is not performed between the RC column and the S beam.

これに対して、本実施形態に係る柱梁接合部構造10では、S梁16の埋込部分の上下のRC柱12に、地震時に生じる引張軸力以上の大きさの圧縮軸力がプレストレス力として導入されていることにより、S梁16の埋込部分の上下のフランジ16Bとその上下のRC柱12との間にS梁16のてこ作用による支圧力Pが生じ、RC柱12とS梁16との間での応力伝達が良好に行われる。これにより、地震時にS梁16の軸方向への水平力がRC柱12に作用した際に、S梁16にせん断力及び曲げモーメントを負担させることができ、RC柱12、S梁16を含む架構のS梁16の軸方向についての水平耐力を確保することができる。   In contrast, in the column beam joint structure 10 according to the present embodiment, a compressive axial force greater than the tensile axial force generated during an earthquake is prestressed on the RC columns 12 above and below the embedded portion of the S beam 16. By introducing the force, a support pressure P due to the lever action of the S beam 16 is generated between the upper and lower flanges 16B of the embedded portion of the S beam 16 and the upper and lower RC columns 12, and the RC column 12 and the S column Stress transmission to and from the beam 16 is favorably performed. As a result, when a horizontal force in the axial direction of the S beam 16 acts on the RC column 12 during an earthquake, the S beam 16 can be subjected to a shearing force and a bending moment, and the RC column 12 and the S beam 16 are included. It is possible to ensure horizontal proof stress in the axial direction of the S beam 16 of the frame.

また、S梁14の軸方向への水平力がRC柱12に作用した場合も同様、S梁14の埋込部分の上下のフランジ14BとRC柱12との間に支圧力が生じ、RC柱12とS梁14との間での応力伝達が良好に行われる。これにより、地震時にS梁14の軸方向への水平力がRC柱12に作用した際に、S梁14にせん断力及び曲げモーメントを負担させることができ、RC柱12、梁14を含む架構のS梁14の軸方向についての水平耐力を確保することができる。   Similarly, when a horizontal force in the axial direction of the S beam 14 acts on the RC column 12, a bearing pressure is generated between the upper and lower flanges 14B of the embedded portion of the S beam 14 and the RC column 12, and the RC column. Stress transmission between the S 12 and the S beam 14 is performed well. As a result, when a horizontal force in the axial direction of the S beam 14 acts on the RC column 12 during an earthquake, the S beam 14 can be subjected to a shearing force and a bending moment, and the frame including the RC column 12 and the beam 14 can be loaded. The horizontal proof stress in the axial direction of the S beam 14 can be ensured.

なお、上述の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明はその趣旨を逸脱することなく、変更、改良され得ると共に本発明にはその等価物が含まれることは勿論である。例えば、上述の実施形態では、T字型に接合された一対のS梁14、16と建物外周部のRC柱12との接合部構造を例に挙げて本発明を説明したが、L字型に接合された一対のS梁と隅柱であるRC柱との接合部構造や、十字型に接合された一対のS梁と建物内周側のRC柱との接合部構造等にも本発明を適用することができる。   In addition, the above-mentioned embodiment is for making an understanding of this invention easy, and does not limit this invention. It goes without saying that the present invention can be changed and improved without departing from the gist thereof, and that the present invention includes equivalents thereof. For example, in the above-described embodiment, the present invention has been described by taking, as an example, the joint structure of a pair of S beams 14 and 16 joined in a T shape and the RC pillar 12 at the outer periphery of the building. The present invention is also applied to a joint structure between a pair of S beams joined to each other and an RC pillar as a corner pillar, a joint structure between a pair of S beams joined to a cross shape and an RC pillar on the inner peripheral side of the building, and the like. Can be applied.

また、上述の実施形態では、仕口部11をコンクリートの現場打ちを行うことによって構築したが、図10に示すように、S梁114、116とコンクリートとが予め一体化されたプレキャスト構造体である仕口部111を用いてもよい。また、同図に示すように、S梁114、116の接合部分117を、S梁114、116の本体部分114A、114Bとは別に作製して、この接合部分117と仕口部111とが予め一体化されたプレキャスト構造体119を作製し、接合部分117とS梁114、116とを現場等で結合してもよい。   Moreover, in the above-mentioned embodiment, although the joint part 11 was constructed | assembled by hitting concrete on-site, as shown in FIG. 10, it is a precast structure by which S beams 114 and 116 and concrete were integrated previously. A certain joint 111 may be used. Further, as shown in the figure, the joint portion 117 of the S beams 114 and 116 is produced separately from the main body portions 114A and 114B of the S beams 114 and 116, and the joint portion 117 and the joint portion 111 are preliminarily formed. An integrated precast structure 119 may be manufactured, and the joint portion 117 and the S beams 114 and 116 may be joined on site.

また、上述の実施形態では、コンクリート柱としてRC柱11を例に挙げたが、鉄骨鉄筋コンクリート製の柱等の他のコンクリート柱でもよい。また、コンクリート柱はプレキャストコンクリート製であってもよく、現場でコンクリートを打設して作製してもよい。   Moreover, in the above-mentioned embodiment, although the RC pillar 11 was mentioned as an example as a concrete pillar, other concrete pillars, such as a column made from a steel reinforced concrete, may be sufficient. Further, the concrete pillar may be made of precast concrete, or may be produced by placing concrete on site.

また、上述の実施形態では、複数階分のRC柱12を貫通するPC鋼材20を緊張させることで複数階分のRC柱12に一斉にプレストレス力を導入したが、1階分のRC柱12を貫通するPC鋼材を緊張させることで各階毎にRC柱12にプレストレス力を導入したり、最下階から最上階までのRC柱12を貫通するPC鋼材を緊張させることで最下階から最上階までのRC柱12に一斉にプレストレス力を導入したりしてもよい。   Moreover, in the above-mentioned embodiment, the pre-stress force was introduced to the RC pillars 12 for a plurality of floors by tensioning the PC steel material 20 penetrating the RC pillars 12 for a plurality of floors. The prestressing force is introduced into the RC pillar 12 for each floor by tensing the PC steel material that penetrates the 12th floor, or the bottom floor by tensioning the PC steel material that penetrates the RC pillar 12 from the bottom floor to the top floor. A prestressing force may be introduced to the RC pillars 12 from the top to the top floor all at once.

また、PC鋼材20の本数、配置は適宜設定すればよく、ふさぎ板18の有無や構成も適宜設定すればよい。また、シース管24、26へのグラウトの充填は、下からの圧入に限らず、上からの流し込みにより実施してもよい。   Moreover, what is necessary is just to set suitably the number and arrangement | positioning of the PC steel materials 20, and what is necessary is just to set the presence or absence and structure of the cover board 18 suitably. Moreover, the filling of the grout into the sheath tubes 24 and 26 is not limited to press-fitting from the bottom, but may be performed by pouring from the top.

さらに、上述の実施形態では、コンクリート内にシース管を打ち込み、その中にPC鋼棒やPC鋼線等のPC鋼材を挿通し、PC鋼材を緊張させた後、シース管とPC鋼材との隙間にモルタル等のグラウト材を充填するという方法を用いた。しかし、PC鋼材をビニール類等のカバーで被覆したものをコンクリート内に打ち込み、カプラー継手等の緊張時に動く所のみシース管等で覆い、PC鋼材を緊張させる方法(アンボンド工法)を用いてもよい。   Furthermore, in the above-described embodiment, a sheath tube is driven into concrete, a PC steel material such as a PC steel rod or a PC steel wire is inserted therein, and the PC steel material is tensioned, and then the gap between the sheath tube and the PC steel material A method of filling a grout material such as mortar into the mortar was used. However, it is also possible to use a method (unbond method) in which a PC steel material covered with a cover such as vinyl is driven into concrete and covered only with a sheath tube or the like that moves when a coupler joint or the like is in tension, and the PC steel material is tensioned. .

10 柱梁接合部構造、11 仕口部、12 RC柱(コンクリート柱)、14 S梁(鉄骨梁)、14A ウェブ、14B フランジ、16 S梁(鉄骨梁)、16A ウェブ、16B フランジ、18 ふさぎ板、18A、18B 鋼板、20 PC鋼材、22 カプラー、24、26 シース管、28 油圧ジャッキ、111 仕口部、114 S梁、114A 本体部分、116 S梁、116A 本体部分、117 接合部分、119 プレキャスト構造体 10 beam-column joint structure, 11 joint, 12 RC column (concrete column), 14 S beam (steel beam), 14A web, 14B flange, 16 S beam (steel beam), 16A web, 16B flange, 18 cover Plate, 18A, 18B Steel plate, 20 PC steel, 22 Coupler, 24, 26 Sheath tube, 28 Hydraulic jack, 111 Joint, 114 S beam, 114 A body part, 116 S beam, 116 A body part, 117 joint part, 119 Precast structure

Claims (3)

鉄骨梁がコンクリート柱を貫通し、又は鉄骨梁の端部がコンクリート柱に埋め込まれたコンクリート柱と鉄骨梁との接合部構造であって、
PC鋼材が前記コンクリート柱に少なくとも前記鉄骨梁の上下に跨るように挿通され、該PC鋼材が緊張されて前記コンクリート柱にプレストレス力が与えられていることを特徴とするコンクリート柱と鉄骨梁との接合部構造。
The steel beam penetrates the concrete column, or the end part of the steel beam is a joint structure between the concrete column and the steel beam embedded in the concrete column,
A concrete column and a steel beam, wherein a PC steel material is inserted through the concrete column so as to straddle at least above and below the steel beam, and the PC steel material is tensioned to give a prestressing force to the concrete column. Joint structure.
前記プレストレス力が、前記コンクリート柱に地震時に生じる引張軸力以上に設定されていることを特徴とする請求項1に記載のコンクリート柱と鉄骨梁との接合部構造。   The joint structure of a concrete column and a steel beam according to claim 1, wherein the prestress force is set to be equal to or greater than a tensile axial force generated in the concrete column during an earthquake. 鉄骨梁がコンクリート柱を貫通し、又は鉄骨梁の端部がコンクリート柱に埋め込まれるようにコンクリート柱と鉄骨梁とを接合する方法であって、
PC鋼材を前記コンクリート柱に少なくとも前記鉄骨梁の上下に跨るように挿通し、該PC鋼材を緊張させて前記コンクリート柱にプレストレス力を与えることを特徴とするコンクリート柱と鉄骨梁との接合方法。
A method of joining a concrete column and a steel beam so that the steel beam penetrates the concrete column or the end of the steel beam is embedded in the concrete column,
A method for joining a concrete column and a steel beam, characterized in that a PC steel material is inserted into the concrete column so as to straddle the steel beam at least above and below the steel beam, and the PC steel material is tensioned to give a prestressing force to the concrete column. .
JP2011283591A 2011-12-26 2011-12-26 Junction structure of concrete column and steel frame beam, and joint method Pending JP2013133620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011283591A JP2013133620A (en) 2011-12-26 2011-12-26 Junction structure of concrete column and steel frame beam, and joint method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011283591A JP2013133620A (en) 2011-12-26 2011-12-26 Junction structure of concrete column and steel frame beam, and joint method

Publications (1)

Publication Number Publication Date
JP2013133620A true JP2013133620A (en) 2013-07-08

Family

ID=48910509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011283591A Pending JP2013133620A (en) 2011-12-26 2011-12-26 Junction structure of concrete column and steel frame beam, and joint method

Country Status (1)

Country Link
JP (1) JP2013133620A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278333A (en) * 1985-09-30 1987-04-10 鹿島建設株式会社 High building
JP2008163630A (en) * 2006-12-28 2008-07-17 Ps Mitsubishi Construction Co Ltd Joint structure of reinforced concrete column and steel beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278333A (en) * 1985-09-30 1987-04-10 鹿島建設株式会社 High building
JP2008163630A (en) * 2006-12-28 2008-07-17 Ps Mitsubishi Construction Co Ltd Joint structure of reinforced concrete column and steel beam

Similar Documents

Publication Publication Date Title
JP5991132B2 (en) Seismic reinforcement structure and construction method
JP2012046960A (en) Joining structure for precast concrete member and structural body
JP2011246937A (en) Building structure using post with wall provided with earthquake control prestress
JP2016160617A (en) COMPOSITE BEAM AND PCa COMPOSITE BEAM MEMBER CONSTITUTING THE SAME, AND COMPOSITE RIGID-FRAME STRUCTURE
JP2012057314A (en) Connection method and connection structure for pc members and pc members
JP2015048643A (en) Aseismic reinforcing method for existing building, and aseismic reinforcing structure
JP2013011103A (en) Support column for high-rise building and construction method for the same
JP2011149265A (en) Beam member and building structure
JP7050542B2 (en) Mixed structure of reinforced concrete columns and steel beams
JP2010281044A (en) Mixed-structure beam
JP7028728B2 (en) Joint structure of foundation pile and foundation slab
JP5429812B2 (en) Joining structure and method of shaft member and RC member
JP6574336B2 (en) Steel-framed reinforced concrete columns and buildings using the same
JP2017095915A (en) Junction structure between column-beam joint part and column, rigid-frame viaduct, construction method for junction structure between column-beam joint part and column, and precast concrete member
JP2016035178A (en) Beam connection panel, column reinforcement connection panel, and reinforcement structure
JP4571904B2 (en) Seismic reinforcement method using concrete blocks
JP2013133620A (en) Junction structure of concrete column and steel frame beam, and joint method
JP6012353B2 (en) Composite column structure and composite column construction method
JP2015045202A (en) Arch culvert and manufacturing method thereof
JP6340467B1 (en) Ramen structure using sleeve wall and joining method thereof
JP2009108500A (en) Precast beam construction method, precast beam, precast beam joint structure, and building
KR102017822B1 (en) Earthquake-registant column and beam constructing method using concrete filled tube and pre-assembled rebar cage
JP2017082548A (en) Concrete foundation joint member and pile structure
JP5607812B1 (en) Post-PS introduction method of RC building and its structure
JP2010285783A (en) Aseismatic structure and method for construction therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160308