JP5607812B1 - Post-PS introduction method of RC building and its structure - Google Patents

Post-PS introduction method of RC building and its structure Download PDF

Info

Publication number
JP5607812B1
JP5607812B1 JP2013254866A JP2013254866A JP5607812B1 JP 5607812 B1 JP5607812 B1 JP 5607812B1 JP 2013254866 A JP2013254866 A JP 2013254866A JP 2013254866 A JP2013254866 A JP 2013254866A JP 5607812 B1 JP5607812 B1 JP 5607812B1
Authority
JP
Japan
Prior art keywords
building
tension
sheath
pillars
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013254866A
Other languages
Japanese (ja)
Other versions
JP2015113589A (en
Inventor
亮平 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurosawa Construction Co Ltd
Original Assignee
Kurosawa Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosawa Construction Co Ltd filed Critical Kurosawa Construction Co Ltd
Priority to JP2013254866A priority Critical patent/JP5607812B1/en
Application granted granted Critical
Publication of JP5607812B1 publication Critical patent/JP5607812B1/en
Publication of JP2015113589A publication Critical patent/JP2015113589A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

【課題】RC造建物としての設計で想定以上の巨大地震が発生した場合は、付与されたプレストレスで強度を補って耐震性能をアップさせ、震度7まで耐えられるプレストレスを付与する方法を提供する。
【解決手段】RC造とする基礎から柱および梁とで複数階構築される建物構造にプレストレスを導入する方法であって、フーチング3と各階の柱5および梁8の所要個所に予め緊張材9を挿入するシース6を埋設して最上階までRC造として構築し、その後にシース6に緊張材9を挿入して緊張定着することによって基礎から柱および梁までRC造とする建物構造全体にプレストレスを導入にしたことによって、RC造として設計された建物構造は、全体の耐震性能が大幅に向上される。常時荷重および中小地震時において、設計したRC造建物の鉄筋で対応し、設計で想定以上の巨大地震に耐えられるようにする。
【選択図】図3
Provided is a method of applying prestress that can withstand seismic intensity up to 7 by increasing the seismic performance by supplementing the strength with the applied prestress in the event of a huge earthquake that is greater than expected in the design of an RC building. To do.
A method of introducing pre-stress into a building structure constructed of a plurality of floors from a foundation made of RC with pillars and beams, wherein tension members are preliminarily applied to the required portions of the footing 3 and the pillars 5 and beams 8 on each floor. The entire building structure is constructed from the foundation to the pillars and beams by embedding the sheath 6 for inserting 9 and constructing it as RC structure up to the top floor, and then inserting the tension material 9 into the sheath 6 and fixing the tension. By introducing pre-stress, the overall seismic performance of the building structure designed as RC is greatly improved. In the case of constant loads and small and medium-sized earthquakes, we will respond with the reinforcing bars of the RC building that we have designed so that we can withstand large earthquakes beyond our expectations.
[Selection] Figure 3

Description

本発明は、鉄筋コンクリート構造(RC造)にプレストレス(PS)を導入する方法およびその方法によって得られる構造物に関するものである。   The present invention relates to a method for introducing prestress (PS) into a reinforced concrete structure (RC structure) and a structure obtained by the method.

例を挙げるまでもなく、アパートやマンションなどの集合住宅において、居住性を考慮して柱の間隔(スパン)を飛ばす必要がないため、鉄筋コンクリート造が安価で好適な条件を満たす構造物として、RC造の柱と梁とからなるラーメン構造の建造物が一般的で、最も多く造られている。   Needless to say, in apartment houses such as apartments and condominiums, it is not necessary to skip the spans of the columns in consideration of the habitability. Buildings with a ramen structure consisting of wooden pillars and beams are common, and most are built.

また、プレストレストコンクリート構造(PC構造)は、予めコンクリート部材断面にプレストレス(PS)を付与し、予め想定される荷重に対して抵抗できるようにしたもので、PC梁はロングスパンに飛ばすことができるし、地震に対して強い耐震性能を有するものである。さらに、プレストレス(PS)力は、予め部材内部に存在している内力であり、常に断面に対する垂直方向に作用しているから、緊張材であるPC鋼材が弾性範囲であればバネのように働き、地震などにより建物が変形しようとした時に抵抗する力になり、振り子のように変形した建物を元に戻そうとしており、つまり、元に戻そうとする力になり、これはプレストレス(PS)による復元力の効果である。この効果はプレストレスによる制震作用および効果であり、RC構造や鉄骨構造などでは得られないのである。   The prestressed concrete structure (PC structure) is pre-stressed (PS) on the cross section of the concrete member so that it can resist the load assumed in advance. Yes, it has strong earthquake resistance against earthquakes. Furthermore, the pre-stress (PS) force is an internal force that exists in the member in advance and always acts in a direction perpendicular to the cross section. It becomes a force that resists when the building is about to deform due to work, an earthquake, etc., trying to return the deformed building like a pendulum, that is, a force to return to the original, this is prestress ( This is the effect of restoring force by PS). This effect is a seismic control action and effect due to prestress, and cannot be obtained with an RC structure or a steel structure.

なし(RC構造にPSを付与した文献は見当たらない)         None (There is no literature that added PS to RC structure)

ところで、現行の耐震設計基準は震度5強程度で構造体の損傷を許容し、生命の安全性を確保した設計を行えば倒壊することも許容してきた。震度6を越える巨大地震時に、RC造の建物が崩壊し、または大きく変形すると共に損傷し、地震後残留変形が残ったままで修復できないという被害が多く発生したという報告があった。   By the way, the current seismic design standard has allowed a structural body to be damaged at a seismic intensity of about 5 or higher, and has allowed a collapse if it is designed to ensure life safety. There were reports that RC buildings collapsed or were greatly deformed and damaged during a huge earthquake exceeding seismic intensity 6 and that there were many damages that could not be repaired with residual deformation remaining after the earthquake.

本発明は、従来通りに設計されたRC造建物にプレストレス(PS)を付与し、常時荷重時においては、RC造建物として使用される。地震時において、RC造建物としての設計で想定以上の巨大地震が発生した場合は、付与されたプレストレスで強度を補って耐震性能をアップさせ、震度7まで耐えられるようなRC造の建物を提供し、そのプレストレスを簡単に且つ合理的に付与する方法を提案することを目的とするものである。   The present invention applies prestress (PS) to an RC building designed as usual, and is used as an RC building at the time of constant load. In the event of an earthquake, if an earthquake that is larger than expected occurs in the design of an RC building, an RC building that can withstand a seismic intensity of 7 by increasing the seismic performance by supplementing the strength with the applied pre-stress. It is intended to provide a method for providing the prestress easily and rationally.

上記目的を達成するための具体的手段として、本発明に係る第1の発明は、RC造とする基礎から柱および梁とで複数階構築される建物構造にプレストレスを導入する方法であって、前記柱については、基礎から最上階の柱まで連通させ、前記梁については、柱間の全スパンに渡って外周柱面まで連通させて、それぞれ緊張材を挿入するシースを予め埋設して最上階までRC造として構築し、その後に前記シースに緊張材を挿入して緊張定着することによって基礎から柱および梁までRC造とする建物構造全体にプレストレスを導入することを特徴とするRC造建物のPS後導入方法を提供するものである。 As a concrete means for achieving the above object, the first invention according to the present invention is a method of introducing prestress into a building structure constructed with a plurality of floors with columns and beams from an RC foundation. for the pre-Symbol column, communicated from basic to the top floor of the column, for the beam is communicated to the outer cylindrical surface over the entire span between the pillars, previously embedded sheath for inserting the respective tension member and RC built up to the top floor as RC structure, and then prestressing is introduced to the entire building structure that is RC structure from foundation to column and beam by inserting tension material into the sheath and fixing the tension. The post-PS introduction method of the building is provided.

上記第1の発明において、前記建物構造の所要中間層の柱および所要中間スパンの梁においてそれぞれ一対の箱抜き定着部を形成し、前記シースは、柱において基礎から箱抜き定着部までと、箱抜き定着部から最上階まで、および梁において箱抜き定着部から両方の外周柱面までそれぞれ配設し、箱抜き定着部でオーバーラッピングさせて緊張材を挿通させてプレストレスを付与すること、を含むものである。   In the first aspect of the invention, a pair of box fixing parts are formed in each of the pillars of the required intermediate layer and the beams of the required intermediate span of the building structure, and the sheath extends from the foundation to the box fixing part in the pillar, From the unfixing unit to the top floor, and in the beam from the box unfixing unit to both outer peripheral column surfaces, overlapping by the box unfixing unit and inserting a tension material to apply prestress, Is included.

本発明に係る第2の発明は、RC造とする基礎から柱および梁とで複数階構築される建物構造にプレストレスを導入した建造物であって、前記柱については、基礎から最上階の柱まで連通させ、前記梁については、柱間の全スパンに渡って外周柱面まで連通させて、それぞれ緊張材を挿入するシースを予め埋設して最上階までRC造として構築し、該構築物の構築後に、前記シースに緊張材を挿入して緊張定着することによって基礎から柱および梁までRC造とする建物構造全体にプレストレスを導入することを特徴とするPS後導入されたRC造の建物構造を提供するものである。 A second invention according to the present invention is a building that Prestressing the building structure constructed plurality floor between pillars and beams from the base to RC structure, the pre-Symbol pillar, the top floor from basic The beam is connected to the outer peripheral column surface over the entire span between the columns, and a sheath for inserting a tension material is embedded in advance and constructed as an RC structure up to the top floor. After the construction , the pre-stress is introduced into the entire building structure from the foundation to the pillar and the beam by inserting a tension material into the sheath and fixing the tension, and the RC construction introduced after PS The building structure is provided.

本発明に係るRC造建物のPS後導入方法よれば、RC造とする柱と梁を構築して建物構造全体を完成した後に、緊張材であるPC鋼材を予め柱と梁とに埋設したシースに挿入し、緊張材を緊張定着してプレストレスをRC造建物全体に導入することにより、RC造として設計された建物構造は、全体の耐震性能が大幅に向上される。常時荷重および中小地震時において、設計したRC造の鉄筋で対応し、設計で想定以上の巨大地震に対し、導入されたプレストレスで補い、震度5強程度で設計されたRC造の建物が震度7までの巨大地震にも耐えられるようにすることができるという優れた効果を奏する。
また、導入されたPSの復元力によって地震時の揺れを格段に小さく抑えることができ、地震後、建物が元の状態に戻るから、地震による繰り返しの揺れ変形を抑制し優れた制震効果が得られる。
According to the post-PS introduction method for an RC building according to the present invention, after a building and an RC building are constructed and the entire building structure is completed, a PC steel material as a tension material is embedded in the column and the beam in advance. The building structure designed as an RC structure is greatly improved in the overall seismic performance by being inserted into the structure and fixing the tension material and introducing prestress into the entire RC structure building. Responding with the designed RC reinforcing bars during regular loads and small and medium-sized earthquakes, RC buildings with a seismic intensity of about 5 are compensated for by the prestress that has been introduced, and the seismic intensity is around 5 It has an excellent effect of being able to withstand a huge earthquake up to 7.
In addition, the restoring force of the installed PS can significantly reduce the shaking at the time of the earthquake, and the building returns to its original state after the earthquake. can get.

また、本発明に係るRC造の建物構造によれば、従来通りのRC造として設計するから、安価で構築することができると共に、RC造建物全体を完成するまで通常長い期間が経過するのでコンクリートの材齢が長くなるから、コンクリート強度を十分に達成させることが確保されると共に、コンクリートの乾燥収縮の進行が概ね完了するから、通常のPC構造に要求される高強度コンクリートを使用せずに、RC造建物に使用する安価な普通のコンクリートを使用すればよい。また、導入されるプレストレス(PS)は、コンクリートの乾燥収縮による損失量を大幅に減らすことができるという種々の優れた効果を奏する。   Also, according to the RC building structure according to the present invention, since it is designed as a conventional RC structure, it can be constructed at a low cost and a long period of time usually passes until the entire RC building is completed. Since the age of the steel is long, it is ensured that sufficient concrete strength is achieved, and the progress of the drying shrinkage of the concrete is almost completed, so that the high-strength concrete required for a normal PC structure is not used. What is necessary is just to use the cheap ordinary concrete used for RC building. Moreover, the prestress (PS) introduced has various excellent effects that the loss due to drying shrinkage of concrete can be greatly reduced.

本発明の第1の実施の形態に係るRC造建物であって、PSを付与する前のRC造建物の一部を省略して示した側面図である。It is the RC building which concerns on the 1st Embodiment of this invention, Comprising: It is the side view which abbreviate | omitted and showed a part of RC building before providing PS. 同実施の形態に係るRC造建物であって、PSを付与する前のRC造建物の要部のみを示した平面図である。It is the RC building which concerns on the same embodiment, Comprising: It is the top view which showed only the principal part of RC structure before providing PS. 同実施の形態に係るRC造建物であって、PSを付与する状態を略示的に示した側面図である。It is RC structure building which concerns on the embodiment, Comprising: It is the side view which showed schematically the state which provides PS. 同実施の形態に係るRC造建物であって、PSを付与する状態を略示的に示した平面図である。It is RC building which concerns on the embodiment, Comprising: It is the top view which showed schematically the state which provides PS. 本発明の第2の実施の形態に係るRC造建物であって、PSを付与する状態を略示的に一部を省略して示した側面図である。It is RC building based on the 2nd Embodiment of this invention, Comprising: It is the side view which abbreviate | omitted and showed the state which provides PS. 同実施の形態に係るRC造建物であって、PSを付与する状態を略示的に示した要部のみの平面図である。It is RC building based on the embodiment, Comprising: It is a top view of only the principal part which showed the state which provides PS roughly. 本発明の第3の実施の形態に係るRC造建物であって、PSを付与する状態を略示的に一部を省略して示した側面図である。It is RC structure building which concerns on the 3rd Embodiment of this invention, Comprising: It is the side view which abbreviate | omitted and showed the state which provides PS. 同実施の形態に係るRC造建物であって、PSを付与する状態を略示的に示した要部のみの平面図である。It is RC building based on the embodiment, Comprising: It is a top view of only the principal part which showed the state which provides PS roughly. 本発明の第1〜3の実施の形態に適用できる柱構造の実施例であって、PSを付与する状態を略示的に示した側面図である。It is the Example of the pillar structure applicable to the 1st-3rd embodiment of this invention, Comprising: It is the side view which showed schematically the state which provides PS. 同様に第1〜3の実施の形態に適用できる梁構造の実施例であって、PSを付与する状態を略示的に示した側面図である。Similarly, it is an example of a beam structure applicable to the first to third embodiments, and is a side view schematically showing a state in which PS is applied. 同実施例の梁構造であって、PSを付与する状態を略示的に示した要部のみの平面図である。It is the beam structure of the Example, Comprising: It is a top view of only the principal part which showed the state which provides PS roughly.

本発明を図示の複数の実施の形態に基づいて詳しく説明する。図1〜図4に示した第1の実施の形態において、RC造建物1は、従来通りの基礎、柱、梁の順序で構築する。例えば、所要間隔で地中に打ち込んで形成した杭基礎2の上に、それぞれ型枠を組み内部に所要の鉄筋を配設し、コンクリートを打設してフーチング3を構築すると共に、各フーチング3間を連結する地中梁4と、フーチング3の上部に柱5とを構築する。これら構築されるコンクリート部材、即ち、フーチング3、地中梁4および柱5を形成する時に、予め緊張材を挿入するための複数のシース6を配設しておくことで、コンクリート部材の内部における所要位置にシース6が埋設される。   The present invention will be described in detail based on a plurality of illustrated embodiments. In the first embodiment shown in FIGS. 1 to 4, the RC building 1 is constructed in the order of a conventional foundation, column, and beam. For example, on a pile foundation 2 formed by driving into the ground at a required interval, a formwork is assembled and a required reinforcing bar is arranged inside, and concrete is cast to construct a footing 3 and each footing 3 The underground beam 4 that connects the two and the pillar 5 are constructed above the footing 3. When forming the concrete members to be constructed, that is, when the footing 3, the underground beam 4 and the column 5 are formed, a plurality of sheaths 6 for inserting tension members are disposed in advance, so that the inside of the concrete member A sheath 6 is embedded at a required position.

地中梁4内に配設されるシース6は、一方の側面のフーチング3から他方の側面のフーチング3まで、フーチング3と地中梁4の内部を貫通するように連続させた状態で直線状に配設され、各両側端部に位置するフーチング3の外側側面に緊張材を緊張定着するための鋼管スリーブで形成される定着部7を設ける。   The sheath 6 disposed in the underground beam 4 is linear in a state of being continuous from the footing 3 on one side to the footing 3 on the other side so as to penetrate through the inside of the footing 3 and the underground beam 4. And a fixing portion 7 formed of a steel pipe sleeve for fixing and fixing the tension material on the outer side surface of the footing 3 positioned at each side end portion.

また、各柱5に配設されるシース6は、フーチング3から最上階の柱5の上端まで、その内部を貫通するように連続させた状態で直線状に配設され、最上端に緊張材を緊張定着するための鋼管スリーブで形成される定着部7を設け、下端部側のフーチング3内においては、緊張材の下端が固定されるべき手段が設けられる。   Further, the sheath 6 disposed in each column 5 is disposed in a straight line from the footing 3 to the upper end of the column 5 on the uppermost floor so as to penetrate the inside thereof, and the tension material is disposed at the uppermost end. A fixing portion 7 formed of a steel tube sleeve for fixing the tension is provided, and in the footing 3 on the lower end side, means for fixing the lower end of the tension material is provided.

さらに、各階層の梁8と柱5との連結部分については、前記地中梁4の場合と同様に、梁8の内部に配設されるシース6は、一方の側面の柱5から他方の側面の柱5まで、各柱5と梁8との内部を貫通するように連続させた状態で直線状に配設され、各両側端面の柱5の外側側面等に緊張材を緊張定着するための定着部7を設けることができる。   Further, as for the connecting portion between the beam 8 and the column 5 at each level, as in the case of the underground beam 4, the sheath 6 arranged inside the beam 8 is connected to the other side from the column 5 on the other side. Up to the side pillars 5 are arranged in a straight line so as to pass through the insides of the pillars 5 and the beams 8, and tension tension is fixed on the outer side surfaces of the pillars 5 on both side end faces. The fixing unit 7 can be provided.

この場合に、梁4、8に対しては、2本のシース6を梁の断面図心に沿って水平に配設し、柱5に対しては、4本のシース6を柱断面図心に対称的な配置とし、つまり、緊張材図心を柱梁の断面図心に合わせて偏心することなく柱梁の軸方向にPS導入されるように配置することが好ましい。
なお、梁4、8に対しては、梁成方向において断面図心に対称的にシース6を2段配置することとしてもよい。
In this case, for the beams 4 and 8, two sheaths 6 are disposed horizontally along the cross-sectional centroid of the beam, and for the column 5, four sheaths 6 are provided as the column cross-sectional centroid. In other words, it is preferable that the tension material centroids are arranged so that PS is introduced in the axial direction of the column beam without being eccentric with the cross-sectional centroid of the column beam.
For the beams 4 and 8, the sheath 6 may be arranged in two stages symmetrically with respect to the cross-sectional centroid in the beam forming direction.

このように基礎上にフーチング3と、地中梁4と、柱5および各階層の梁8との内部にそれぞれシース6を埋め込んだ状態で、現場打ちコンクリートやプレキャストコンクリート工法によりRC造建物1を構築した後に、各シ―ス6内に緊張材9を挿通し、緊張材9の端部において定着部に設置される定着具を用いて緊張定着して各コンクリート部材の軸芯方向にプレストレスが付与された後に、グラウト10を高圧注入してシース6内に充填する。その結果RC造建物1の全体にプレストレスが導入されることになるのである。
また、複数配置される緊張材の図心を柱梁部材の断面図心に合わせて配置することにより,部材断面に軸力のみ導入されるから、RC造として設計された部材断面に偏心による複雑な応力が発生しないから、設計は簡単に確認することができる。
In this manner, the RC building 1 is constructed by a cast-in-place concrete or precast concrete method with the sheath 6 embedded in the footing 3, the underground beam 4, the column 5, and the beam 8 at each level on the foundation. After the construction, the tension members 9 are inserted into the respective sheaths 6 and the tension members 9 are tension-fixed by using fixing devices installed at the fixing portions at the end portions of the tension materials 9 and prestressed in the axial direction of the concrete members. Is applied to the sheath 6 by high-pressure injection of the grout 10. As a result, prestress is introduced to the entire RC building 1.
In addition, by arranging the centroids of the tension members to be aligned with the cross-sectional centroid of the column beam member, only the axial force is introduced into the member cross-section, so the cross-section of the member designed as RC is complicated due to eccentricity. Since no stress is generated, the design can be easily confirmed.

この場合に、梁については横方向からシース6内に緊張材9を挿通し、端部のフーチング3の側面で緊張材9の端部において定着部7に設置される定着具を用いて緊張定着してコンクリート部材である地中梁4と梁8との軸芯方向にプレストレスが付与された後に、グラウト10を高圧注入してシース6内に充填する。このようにしてコンクリート部材である地中梁4と梁8との軸芯方向にプレストレスが付与されるのである。また、柱5に付いては、最上端からシース6内に緊張材9を挿通し、その緊張材9の先端がフーチング3に埋設されたシース6の先端まで達した後に、シース6に設けているホースで形成されている注入孔13と排出孔(排気孔)11とを用いてシース6内にグラウト10を高圧注入して充満させ、該グラウト10が硬化した後に、最上端の定着部7で緊張材9の上端部を緊張定着して、RC造部材のコンクリート部材である柱5にプレストレスを付与するのである。要するに、フーチング内に通常の定着具を使用せずにグラウトの付着力で定着するから、極めて簡単で且つ安価に施工できるのである。   In this case, the tension material 9 is inserted into the sheath 6 from the lateral direction with respect to the beam, and the tension is fixed using a fixing tool installed on the fixing portion 7 at the end of the tension material 9 on the side of the footing 3 at the end. Then, after prestress is applied in the axial direction between the underground beam 4 and the beam 8 that are concrete members, the grout 10 is injected at a high pressure to fill the sheath 6. In this way, prestress is applied in the axial direction of the underground beams 4 and 8 which are concrete members. In addition, the column 5 is provided on the sheath 6 after the tension material 9 is inserted into the sheath 6 from the uppermost end and the distal end of the tension material 9 reaches the distal end of the sheath 6 embedded in the footing 3. After the grout 10 is hardened by filling the sheath 6 with high pressure using the injection hole 13 and the discharge hole (exhaust hole) 11 formed by the hose, the fixing unit 7 at the uppermost end is filled. Thus, the upper end portion of the tension member 9 is tension-fixed and prestress is applied to the column 5 which is a concrete member of the RC member. In short, since fixing is performed by the adhesive force of the grout without using a normal fixing tool in the footing, the construction can be performed very easily and at low cost.

なお、構築されたRC造建物1に対して緊張材9を緊張定着する場合に、下層階の地中梁4から上部建物の梁8側への順で緊張定着作業を行い、梁8の緊張材9の緊張作業が終了してから柱5に対する緊張材9の緊張定着作業を行うのである。その理由は、建造物が下層側から構築されるから、下層側のコンクリート部材は、経時によって充分に養生されて硬化しているので、プレストレスを導入しても乾燥収縮等による変形は生じないからである。   When the tension member 9 is fixed to the RC building 1 constructed, the tension is fixed in the order from the underground beam 4 on the lower floor to the beam 8 side of the upper building. After the tension work of the material 9 is finished, the tension fixing work of the tension material 9 to the pillar 5 is performed. The reason is that since the building is constructed from the lower layer side, the concrete member on the lower layer side is sufficiently cured and hardened over time, so even if prestress is introduced, deformation due to drying shrinkage does not occur Because.

図5と図6に示した第2の実施の形態について説明する。この実施の形態に係るRC造建物1においては、前記第1の実施の形態と柱5に対するシースおよび緊張材の配設構成が異なるのみで、他の構成部分については略同一であるので、同一符号を付して詳細な説明は省略する。
即ち、柱5に対する4本のシース6の下端部は、フーチング3の側面に設けた箱抜き凹部12に開口させ、上端部は最上階の柱5の上端まで連続させて直線状に延ばして配設し、その最上端において緊張材9を緊張定着するための定着部7を設ける。そして箱抜き凹部12は、アンカーヘッド等の定着具の格納スペースとなるので実質的に箱抜き定着部7ということができる。
The second embodiment shown in FIGS. 5 and 6 will be described. In the RC building 1 according to this embodiment, the arrangement of the sheath and the tension material for the column 5 is different from that of the first embodiment, and the other components are substantially the same. A detailed description is omitted with reference numerals.
That is, the lower end portions of the four sheaths 6 with respect to the pillars 5 are opened to the box opening recesses 12 provided on the side surfaces of the footings 3 and the upper end portions are continuously extended to the upper ends of the pillars 5 on the uppermost floor so as to extend linearly. And a fixing portion 7 for fixing the tension material 9 in tension at the uppermost end. The box opening recess 12 serves as a storage space for a fixing tool such as an anchor head, and thus can be substantially referred to as a box fixing section 7.

そして、前記第1の実施の形態と同様に、下層階の地中梁4および上部建物の梁8側から緊張定着作業を行い、梁8の緊張材9の緊張作業が終了してから柱5に対する緊張材9の緊張定着作業を行うのである。その理由は、建造物が下層側から構築されるから、下層側のコンクリート部材は、経時によって充分に養生されて硬化しているので、プレストレスを導入しても支障は生じないからである。このようにコンクリート部材の軸芯方向にプレストレスが付与され、その結果RC造建物1の全体にプレストレスが導入されることになるのである。但し、この順序に限定されることなく、全体の施工工程によって、先に柱5に対して緊張定着作業を行い、その後、下層階の梁4から上層階の梁8への順で緊張定着してもよい。   Then, as in the first embodiment, the tension fixing work is performed from the underground beam 4 on the lower floor and the beam 8 side of the upper building, and after the tension work of the tension member 9 of the beam 8 is finished, the column 5 The tension fixing work of the tension material 9 is performed. The reason is that since the building is constructed from the lower layer side, the concrete member on the lower layer side is sufficiently cured and hardened over time, so that no trouble occurs even if prestress is introduced. In this way, prestress is applied in the axial direction of the concrete member, and as a result, prestress is introduced to the entire RC building 1. However, without being limited to this order, the tension fixing work is first performed on the pillar 5 by the entire construction process, and then the tension fixing is performed in the order from the beam 4 on the lower floor to the beam 8 on the upper floor. May be.

図7と図8に示した第3の実施の形態について説明する。この実施の形態においても、構築されるRC造建物1は、前記第1の実施の形態と柱5に対するシースおよび緊張材の配設構成が異なるのみで、他の構成部分については略同一であるので、同一符号を付して詳細な説明は省略する。
即ち、柱5に対する4本のシース6の下端部は、各柱5の脚部、つまり、下端部側の側面に設けた箱抜き凹部12に開口させ、上端部は最上階の柱5の上端まで連続させて直線状に延ばして配設し、その最上端において緊張材9を緊張定着するための定着部7を設ける。そして箱抜き凹部12は、定着具の格納スペースとなるので実質的に箱抜き定着部7ということができる。
A third embodiment shown in FIGS. 7 and 8 will be described. Also in this embodiment, the RC building 1 constructed is different from the first embodiment only in the arrangement configuration of the sheath and the tension material with respect to the pillar 5, and the other components are substantially the same. Therefore, the same reference numerals are assigned and detailed description is omitted.
That is, the lower end portions of the four sheaths 6 with respect to the pillars 5 are opened to the leg portions of the pillars 5, that is, the unboxing recesses 12 provided on the side surfaces on the lower end side, and the upper end portions are the upper ends of the uppermost pillars 5. A fixing portion 7 is provided for extending and linearly extending the tension material 9 at the uppermost end thereof. Since the box opening recess 12 becomes a storage space for the fixing tool, it can be substantially said to be the box fixing portion 7.

そして、この実施の形態においても、前記第1の実施の形態と同様に、下層階の地中梁4および上部建物の梁8側から緊張定着作業を行い、梁8の緊張材9の緊張作業が終了してから柱5に対する緊張材9の緊張定着作業を行うのである。その理由も、建造物が下層側から構築されるから、下層側のコンクリート部材は、経時によって充分に養生されて硬化しているので、プレストレスを導入しても支障が生じないからである。このようにコンクリート部材の軸芯方向にプレストレスが付与され、その結果RC造建物1の全体にプレストレスが導入されることになるのである。
いずれにしても、前記第1〜3の実施の形態において、箱抜き定着部と鋼管スリーブの定着部7の先端にそれぞれアンカープレートを配置し、鋼管スリーブ内にアンカーヘッド等の定着具を配置して定着すること、これらを含めて定着部7と称しているのである。
Also in this embodiment, similarly to the first embodiment, the tension fixing work is performed from the underground beam 4 of the lower floor and the beam 8 side of the upper building, and the tension work of the tension member 9 of the beam 8 is performed. After the end, the tension fixing work of the tension material 9 to the pillar 5 is performed. The reason is also that since the building is constructed from the lower layer side, the concrete member on the lower layer side is sufficiently cured and hardened over time, so that no trouble occurs even if prestress is introduced. In this way, prestress is applied in the axial direction of the concrete member, and as a result, prestress is introduced to the entire RC building 1.
In any case, in the first to third embodiments, an anchor plate is arranged at the tip of the box fixing part and the fixing part 7 of the steel pipe sleeve, and a fixing tool such as an anchor head is arranged in the steel pipe sleeve. These are referred to as the fixing unit 7 including these.

さらに、前記第1〜第3の実施の形態に適用できる柱と梁との実施例について説明する。つまり、RC造建物1が中・高層建造物、および/または横長の大きい(広い)建造物になった時に、適用できる技術である。   Further, examples of columns and beams applicable to the first to third embodiments will be described. In other words, this is a technique that can be applied when the RC building 1 becomes a middle / high-rise building and / or a horizontally long (wide) building.

まず、図9に示した、柱5について説明する。
RC造建物1が中・高層になった時に、柱5の高さ(長さ)が高く(長く)なるので、内部に埋設されるシース6や緊張材9もそれに合わせて長尺のものが必要になり、これら材料を一本ものにすると取り扱いが必然的に厄介になると共に、作業上で支障を来すばかりでなく、距離が長過ぎてコンクリート部材に均等なプレストレスを付与できないのであります。
First, the pillar 5 shown in FIG. 9 will be described.
Since the height (length) of the pillar 5 becomes higher (longer) when the RC building 1 becomes a middle / high-rise building, the sheath 6 and the tension material 9 embedded in the column 5 are also long in accordance with that. It becomes necessary, and handling these materials inevitably becomes cumbersome and not only disturbs the work, but also the distance is too long to apply equal prestress to the concrete parts. .

そこで、RC造建物1が中・高層建物の場合には、柱5に対して複数本の緊張材を挿通する位置で、所要中間層の柱5の側面に所要間隔をおいて、向かい合う方向に定着部7となるそれぞれ一対の箱抜き凹部12を設け、シース6の配置は基礎となるフーチング3から所要中間層の上側の箱抜き凹部12までと、所要中間層の下側の箱抜き凹部12から最上階まで延長して配置する。この場合に、所要中間層におけるシース6の端部はオーバーラップする。要するに、柱5が長い場合には、緊張材9は基礎から最上階まで連続的に一本ものとせずに所要中間層でラップジョイントとすることができる。なお、建物の高さによって、所要中間層を1個所だけでなく、同じ要領で複数個所設けることができる。   Therefore, when the RC building 1 is a middle- or high-rise building, at a position where a plurality of tendons are inserted into the column 5, in a direction facing the side of the column 5 of the required intermediate layer with a necessary interval. A pair of box-shaped recesses 12 serving as the fixing unit 7 are provided, and the sheath 6 is arranged from the base footing 3 to the box-shaped recess 12 above the required intermediate layer and the box-shaped recess 12 below the required intermediate layer. Extend from the top to the top floor. In this case, the ends of the sheath 6 in the required intermediate layer overlap. In short, when the column 5 is long, the tension material 9 can be formed as a lap joint in the required intermediate layer without continuously forming one piece from the foundation to the top floor. Depending on the height of the building, not only one required intermediate layer but also a plurality of locations can be provided in the same manner.

また、図10と図11に示した、梁4、8について説明する。
RC造建物1が横長の大きい(広い)建造物になった時に、建物の一側端から他側端までの柱間の全スパンに渡る梁4、8の数が多くなるので、内部に埋設されるシース6や緊張材9もそれに合わせて長尺のものが必要になり、これら材料を一本ものにすると取り扱いが必然的に厄介になると共に、作業上で支障を来すばかりでなく、距離が長過ぎてコンクリート部材に均等なプレストレスを付与できないのであります。
Further, the beams 4 and 8 shown in FIGS. 10 and 11 will be described.
When the RC building 1 becomes a horizontally long (wide) building, the number of beams 4 and 8 across the entire span between the columns from one end of the building to the other end increases. The length of the sheath 6 and the tension material 9 that are to be used is also long, and handling these materials will inevitably be troublesome and will not only hinder the work, The distance is too long and the pre-stress can not be evenly applied to the concrete member.

そこで、RC造建物1が横長の大きい(広い)建造物になった場合には、梁4、8に対して複数本の緊張材を挿通する位置で、横長の所要中間スパンの梁4、8の上面に所要間隔をおいて、向かい合う方向に定着部7となるそれぞれ一対の箱抜き凹部12を設け、シース6の配置は建物の一方の側端からから中間スパン梁4、8の右側箱抜き凹部12までと、中間スパン梁4、8の左側の箱抜き凹部12から建物の他方の端部まで延長して配置する。この場合に、中間スパン梁4、8におけるシース6の端部はオーバーラップする。要するに、建物の横長が大きい場合には、建物の一側端から他側端までの梁の本数が多くなるので、緊張材9は一側端から他側端まで連続的に一本ものとせずに所要中間スパン梁4、8でラップジョイントとすることができる。なお、建物の長さによって、所要中間スパンを1個所だけでなく、同じ要領で複数個所設けることができる。   Therefore, when the RC building 1 is a horizontally long (wide) building, the horizontally long beams 4 and 8 having a required intermediate span are inserted at the positions where a plurality of tendons are inserted into the beams 4 and 8. A pair of boxing recesses 12 to be the fixing portions 7 are provided in a facing direction with a required interval on the upper surface of the frame, and the sheath 6 is arranged from the one side end of the building to the right side boxing of the intermediate span beams 4 and 8. It extends to the recess 12 and extends from the box opening recess 12 on the left side of the intermediate span beams 4 and 8 to the other end of the building. In this case, the ends of the sheath 6 in the intermediate span beams 4 and 8 overlap. In short, since the number of beams from one side end of the building to the other side end increases when the building is long, the tension material 9 is not made continuously from one side end to the other side end. The required intermediate span beams 4 and 8 can be used as lap joints. Depending on the length of the building, not only one required intermediate span but also a plurality of locations can be provided in the same manner.

いずれにしても、前記した柱5と梁4、8の実施例は、建造物の高さおよび広さが大きい場合に、前記第1〜3の実施の形態の工法に適用できるのであり、それによって、コンクリート部材にプレストレスを効果的に付与することができるのである。また、使用される緊張材としては、PC鋼より線、PC鋼線のいずれでも良く、RC造建物1として使用コンクリートについては、普通のコンクリートから高強度コンクリートまでのいずれとしてもよい。特に、普通のコンクリートの場合は、コンクリートの設計強度F=250N/mm以上とすることが望ましい。また、実施の形態では基礎杭として説明したが、これに限定されることなく、例えば、ベタ基礎、布基礎等様々な基礎であってもよい。さらに、上部構造と基礎構造との間に免震装置を設けて免震構造としてもよい。要するに、上部構造としてRC造建物で設計された建造物において、PS後導入方法を適用した構造物は全て本発明の趣旨に含まれるのである。
また、地盤と基礎状況により、地中梁4にPS後導入せず、RC上部構造のコンクリート部材のみにPS後導入方法を適用することもできる。なお、いずれの実施の形態でも、定着部7において緊張材9を緊張定着した後は、モルタル等を詰めて定着具の防錆処理とするのである。
In any case, the examples of the pillar 5 and the beams 4 and 8 described above can be applied to the construction methods of the first to third embodiments when the height and the width of the building are large. Thus, prestress can be effectively applied to the concrete member. In addition, the tension material used may be either a PC steel strand or a PC steel wire, and the concrete used as the RC building 1 may be any of ordinary concrete to high-strength concrete. In particular, in the case of ordinary concrete, it is desirable that the concrete design strength F = 250 N / mm 2 or more. Moreover, although demonstrated as a foundation pile in embodiment, it is not limited to this, For example, various foundations, such as a solid foundation and a cloth foundation, may be sufficient. Furthermore, a seismic isolation device may be provided between the upper structure and the foundation structure to form a seismic isolation structure. In short, all the structures to which the post-PS introduction method is applied are included in the gist of the present invention in a structure designed as an RC structure as an upper structure.
Moreover, the post-PS introduction method can be applied only to the RC superstructure concrete member without introducing the post-PS into the underground beam 4 depending on the ground and the foundation condition. In any of the embodiments, after the tension member 9 is tension-fixed in the fixing unit 7, the mortar is filled and the anti-rust treatment of the fixing tool is performed.

本発明に係るRC造建物のPS後導入方法は、RC造とする基礎から柱および梁とで複数階構築される建物構造にプレストレスを導入する方法であって、前記基礎と各階の柱および梁の所要個所に予め緊張材を挿入するシースを埋設して最上階までRC造として構築し、その後に前記シースに緊張材を挿入して緊張定着することによって基礎から柱および梁までRC造とする建物構造全体にプレストレスを導入にしたことによって、RC造として設計された建物構造は、全体の耐震性能が大幅に向上される。常時荷重および中小地震時において、設計したRC造の鉄筋で対応し、設計で想定以上の巨大地震に対し、導入されたプレストレスで補い、震度5強程度で設計されたRC造の建物が震度7までの巨大地震にも耐えられるようにすることができるので、上部構造としてRC造で設計された建造物において、合理的に且つ簡単にPS後導入方法を適用することができるので、安価に設計できるRC造に対して耐震性能を付与でき広く利用することができる。   The post-PS introduction method for an RC building according to the present invention is a method for introducing prestress into a building structure constructed of a plurality of floors from pillars and beams from a foundation made of RC, wherein the foundation and the pillars of each floor and The RC structure is built from the foundation to the pillar and the beam by embedding a sheath for inserting the tension material in the required part of the beam in advance and constructing it as RC structure up to the top floor, and then inserting the tension material into the sheath and fixing the tension. By introducing prestress to the entire building structure, the overall seismic performance of the building structure designed as RC structure is greatly improved. Responding with the designed RC reinforcing bars during regular loads and small and medium-sized earthquakes, RC buildings with a seismic intensity of about 5 are compensated for by the prestress that has been introduced, and the seismic intensity is around 5 Since it can withstand even large earthquakes up to 7, it can be applied reasonably and easily after PS in a building designed with RC as the superstructure, so it is inexpensive. Seismic performance can be given to RC structures that can be designed and can be used widely.

1 RC造建物
2 杭基礎
3 フーチング
4 地中梁
5 柱
6 シース
7 定着部
8 梁
9 緊張材
10 グラウト
11 排出孔(排気孔)
12 箱抜き凹部(定着部)
13 注入孔
DESCRIPTION OF SYMBOLS 1 RC building 2 Pile foundation 3 Footing 4 Underground beam 5 Column 6 Sheath 7 Anchoring part 8 Beam 9 Tensile material 10 Grout 11 Exhaust hole (exhaust hole)
12 Unboxing recess (fixing part)
13 Injection hole

Claims (3)

RC造とする基礎から柱および梁とで複数階構築される建物構造にプレストレスを導入する方法であって、
記柱については、基礎から最上階の柱まで連通させ、前記梁については、柱間の全スパンに渡って外周柱面まで連通させて、それぞれ緊張材を挿入するシースを予め埋設して最上階までRC造として構築し、
その後に前記シースに緊張材を挿入して緊張定着することによって基礎から柱および梁までRC造とする建物構造全体にプレストレスを導入すること
を特徴とするRC造建物のPS後導入方法。
It is a method of introducing prestress into a building structure that is constructed with multiple floors with pillars and beams from the RC foundation.
For pre-Symbol column, communicated from basic to the top floor of the column, for the beam is communicated to the outer cylindrical surface over the entire span between the pillars, previously embedded sheath for inserting the respective tension member and the top Built as an RC building up to the floor,
A post-PS introduction method for RC buildings, wherein pre-stress is introduced to the entire building structure of RC construction from the foundation to the pillars and beams by subsequently inserting a tension material into the sheath and fixing the tension.
前記建物構造の所要中間層の柱および所要中間スパンの梁においてそれぞれ一対の箱抜き定着部を形成し、
前記シースは、柱において基礎から箱抜き定着部までと、箱抜き定着部から最上階まで、および梁において箱抜き定着部から両方の外周柱面までそれぞれ配設し、
箱抜き定着部でオーバーラッピングさせて緊張材を挿通させてプレストレスを付与すること
を特徴とする請求項1に記載のRC造建物のPS後導入方法。
A pair of unboxing fixing portions are formed in each of the required intermediate layer pillar and the required intermediate span beam of the building structure,
The sheath is disposed from the foundation to the boxing fixing unit in the column, from the boxing fixing unit to the top floor, and from the boxing fixing unit to both outer peripheral column surfaces in the beam, respectively.
The post-PS introduction method for RC buildings according to claim 1, wherein prestressing is applied by allowing a tensioning material to be overlapped by a boxing fixing unit and inserting a tension material.
RC造とする基礎から柱および梁とで複数階構築される建物構造にプレストレスを導入した建造物であって、
記柱については、基礎から最上階の柱まで連通させ、前記梁については、柱間の全スパンに渡って外周柱面まで連通させて、それぞれ緊張材を挿入するシースを予め埋設して最上階までRC造として構築し、
該構築物の構築後に、前記シースに緊張材を挿入して緊張定着することによって基礎から柱および梁までRC造とする建物構造全体にプレストレスを導入すること
を特徴とするPS後導入されたRC造の建物構造。
It is a building that introduced pre-stress into a building structure that is constructed with multiple floors from pillars and beams from the foundation made of RC,
For pre-Symbol column, communicated from basic to the top floor of the column, for the beam is communicated to the outer cylindrical surface over the entire span between the pillars, previously embedded sheath for inserting the respective tension member and the top Built as an RC building up to the floor,
After the construction of the structure, a pre-stress was introduced to the entire building structure of RC structure from the foundation to the pillar and the beam by inserting a tension material into the sheath and fixing the tension after the construction . RC building structure.
JP2013254866A 2013-12-10 2013-12-10 Post-PS introduction method of RC building and its structure Active JP5607812B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013254866A JP5607812B1 (en) 2013-12-10 2013-12-10 Post-PS introduction method of RC building and its structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254866A JP5607812B1 (en) 2013-12-10 2013-12-10 Post-PS introduction method of RC building and its structure

Publications (2)

Publication Number Publication Date
JP5607812B1 true JP5607812B1 (en) 2014-10-15
JP2015113589A JP2015113589A (en) 2015-06-22

Family

ID=51840531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254866A Active JP5607812B1 (en) 2013-12-10 2013-12-10 Post-PS introduction method of RC building and its structure

Country Status (1)

Country Link
JP (1) JP5607812B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115853113A (en) * 2022-12-29 2023-03-28 东南大学 Multi-safety redundancy self-reset structure system and self-reset method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7428170B2 (en) 2021-08-19 2024-02-06 株式会社大林組 bridge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0151619B2 (en) * 1982-12-03 1989-11-06 Hasegawa Komuten Kk
JP2718594B2 (en) * 1992-04-01 1998-02-25 黒沢建設株式会社 Joint structure of beam and column in prestressed concrete structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0151619B2 (en) * 1982-12-03 1989-11-06 Hasegawa Komuten Kk
JP2718594B2 (en) * 1992-04-01 1998-02-25 黒沢建設株式会社 Joint structure of beam and column in prestressed concrete structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115853113A (en) * 2022-12-29 2023-03-28 东南大学 Multi-safety redundancy self-reset structure system and self-reset method
CN115853113B (en) * 2022-12-29 2024-04-16 东南大学 Multi-safety redundancy self-resetting structure system and self-resetting method

Also Published As

Publication number Publication date
JP2015113589A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP4647714B1 (en) Buildings using walled columns with seismic prestressing
KR101720473B1 (en) Underground PC structure and its construction method using Partial-PC wall with improved seismic performance
JP5440945B2 (en) Joining structure and method of shaft member and RC member
KR20120119824A (en) Reinforced concrete composite columns using precast high-performance fiber-reinforced cement
JP6647721B1 (en) Tensionless PC steel bar concrete beam-column structure
JP5509380B1 (en) Seismic reinforcement method and structure for existing buildings
JP5607812B1 (en) Post-PS introduction method of RC building and its structure
KR101358878B1 (en) Reinforcement member and girder using the same
JP2006104883A (en) Base-isolated building
JP6393588B2 (en) Existing building reinforcement method
KR101882386B1 (en) Double lateral stiffening Structures and Reinforced Concrete Structure Reinforcement Method
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP5426047B1 (en) Construction method of precast concrete frame
JP5429812B2 (en) Joining structure and method of shaft member and RC member
JP5676800B1 (en) Method of introducing PS into constructed building later and its building
JP7028728B2 (en) Joint structure of foundation pile and foundation slab
JP6428027B2 (en) Column rebar connection panel and rebar structure
JP5509374B1 (en) Seismic strengthening structure and seismic strengthening method for existing buildings
JP2017095915A (en) Junction structure between column-beam joint part and column, rigid-frame viaduct, construction method for junction structure between column-beam joint part and column, and precast concrete member
CN112012356B (en) Embedded shear-energy consumption dual-function sleeve reinforced beam-column joint
JP6683336B1 (en) Building structure and method of forming building structure
JP6340467B1 (en) Ramen structure using sleeve wall and joining method thereof
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP2012132203A (en) Junction structure of precast concrete member, structure and construction method of structure
KR101297110B1 (en) Concrete filled tube

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

R150 Certificate of patent or registration of utility model

Ref document number: 5607812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250