JP2013133588A - Solid separation device and solid separation method - Google Patents

Solid separation device and solid separation method Download PDF

Info

Publication number
JP2013133588A
JP2013133588A JP2011282636A JP2011282636A JP2013133588A JP 2013133588 A JP2013133588 A JP 2013133588A JP 2011282636 A JP2011282636 A JP 2011282636A JP 2011282636 A JP2011282636 A JP 2011282636A JP 2013133588 A JP2013133588 A JP 2013133588A
Authority
JP
Japan
Prior art keywords
liquid
inflow chamber
guide
flow
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011282636A
Other languages
Japanese (ja)
Other versions
JP5318188B2 (en
Inventor
Fujio Senba
不二夫 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanex Co Ltd
Original Assignee
Hanex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanex Co Ltd filed Critical Hanex Co Ltd
Priority to JP2011282636A priority Critical patent/JP5318188B2/en
Publication of JP2013133588A publication Critical patent/JP2013133588A/en
Application granted granted Critical
Publication of JP5318188B2 publication Critical patent/JP5318188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a solid separation device for reducing solid matter coating weight to a screen by using the deviation phenomenon of pressure distribution.SOLUTION: A solid separation device for separating a solid matter contained in liquid includes a separation tank having an inflow chamber 2 and an outflow chamber 3. The inflow chamber is shaped having a square plane cross section, and a supply part 9 is formed at the upper or lower part of the front side part in the inflow chamber. A first guide part 10 having a guide surface 11 at a rear side part 6 is disposed so as to be faced to the supply part, and a second guide part 12 having a guide surface 15 is disposed so as to be movable in a vertical direction, so that a liquid flow in the inflow chamber forms a vertical revolving flow by the guide surfaces of the first guide part and the second guide part. Planar screens 16 are formed so as to be faced to each other in parallel at a right side part 7 and a left side part 8 which are orthogonal to the outer peripheral face of the revolving flow formed in the inflow chamber. The outflow chamber 3 is formed such that its internal surface surrounds the outside of the inflow chamber, and a discharge part 26 is formed at the outflow chamber 3.

Description

本発明は下水道管路等の液体に含まれている固形物(以下、固体とも称する)を分離する固体分離装置および固体分離方法に関する。   The present invention relates to a solid separation device and a solid separation method for separating solids (hereinafter also referred to as solids) contained in a liquid such as a sewer pipe.

都市部に敷設される下水道に流入する雨水などの排水は、その一部が雨水貯留浸透設備などにより地中に貯留若しくは排出され、残りは河川に放流される。下水道を流通する雨水中には土砂、種々のゴミ類、紙類、落ち葉、等の固形物が混入しており、それら固形物が雨水貯留設備に流入すると、設備のメンテナンスを頻繁に行う必要があり、コスト的にも不利になる。また浸水対策のための雨水貯留設備等において、固形物を除去せずに一時的に地下に貯留した雨水は、晴天時にポンプアップして河川に放流されることになり、河川の水質汚濁や環境汚染問題を発生する。   A part of drainage such as rainwater flowing into sewers laid in urban areas is stored or discharged in the ground by rainwater storage and penetration facilities, and the rest is discharged into rivers. The rainwater flowing through the sewer is contaminated with solids such as earth and sand, various garbage, papers, and fallen leaves. There is a disadvantage in terms of cost. In rainwater storage facilities for inundation countermeasures, rainwater temporarily stored underground without removing solids will be pumped up and discharged into rivers in fine weather. Cause pollution problems.

一方、工場などの廃水処理設備等に流入する廃水中には、製造過程で発生する微細な切削粉や木片、ゴミ類などの固形物が混入していることが多く、下水道と同様な問題が生じる。そこで、このような水質汚濁や環境汚染を回避する手段として、下水道管路や廃水管路または処理設備の上流側に固形物を予め分離する分離装置を設けている。   On the other hand, wastewater flowing into wastewater treatment facilities such as factories often contains fine cutting powder, wood chips, solids such as garbage generated in the manufacturing process, and the same problems as sewerage. Arise. Therefore, as a means for avoiding such water pollution and environmental pollution, a separation device for separating solids in advance is provided on the upstream side of the sewer pipe, the waste water pipe or the processing equipment.

特許文献1には、下水道などの管路に設ける固形物の分離装置が開示されている。特許文献1の分離装置は分離槽と、分離槽の内部を流入室と流出室に仕切る仕切板と、仕切板に設けたスクリーンと、流入室に形成された流入部と、流出室に形成された排出部とを備えている。そして、流入室には流入部から流入する液体を反転させて該流入室内に上下方向の旋回流を形成するための誘導部が流入室の上下に設けられている。   Patent Document 1 discloses a solid material separation device provided in a pipeline such as a sewer. The separation device of Patent Document 1 is formed in a separation tank, a partition plate that partitions the inside of the separation tank into an inflow chamber and an outflow chamber, a screen provided in the partition plate, an inflow portion formed in the inflow chamber, and an outflow chamber. And a discharge section. The inflow chamber is provided with guide portions at the top and bottom of the inflow chamber for reversing the liquid flowing from the inflow portion to form a vertical swirling flow in the inflow chamber.

特許文献1の分離装置は、流入室に設けた誘導部により供給される液体流が上下方向の旋回流に変化され、形成される旋回流の外周面と直交する方向の両側(旋回流の両側面)に2枚のスクリーンが互いに平行に対向配置されている。流入室内の液体はスクリーンで固形物を分離されて流出室側に流出し、流出室に流出した液体はそこに設けた排出部から分離装置の外部に排出される。   In the separation device of Patent Document 1, the liquid flow supplied by the guide portion provided in the inflow chamber is changed into a vertical swirl flow, and both sides in a direction orthogonal to the outer peripheral surface of the swirl flow formed (both sides of the swirl flow). Two screens are arranged in parallel to face each other. The liquid in the inflow chamber is separated into solids by the screen and flows out to the outflow chamber side, and the liquid that has flowed out to the outflow chamber is discharged to the outside of the separation device from the discharge portion provided there.

このように上下方向の旋回流の外周面と直交する方向の両側に2枚にスクリーンを互いに平行に配置すると、スクリーンは旋回流により生成される遠心力と直交する位置になるので、スクリーンで分離した固形物が旋回流の遠心力でスクリーンに押しつけられる力が低く、旋回流によるスクリーン表面からの固形物剥離がより容易になり、スクリーンの洗浄間隔も長くできる。しかし、スクリーン面の全体もしくはその大部分において、その固形物の剥離性を高い状態でより長期間維持できるようにするには、更なる改良を必要とすることが分かった。   When two screens are arranged in parallel with each other on both sides in the direction orthogonal to the outer peripheral surface of the swirling flow in the vertical direction in this way, the screens are positioned orthogonal to the centrifugal force generated by the swirling flow. The force with which the solids are pressed against the screen by the centrifugal force of the swirling flow is low, and the solids can be easily separated from the screen surface by the swirling flow, and the cleaning interval of the screen can be increased. However, it has been found that further improvements are required in order to maintain the solid peelability in a high state for a longer period of time on the whole or most of the screen surface.

特許第4395190号公報Japanese Patent No. 4395190

前記の分離装置において、実験によれば、スクリーン面の中央領域では長期間運転後も固形物の付着量が極めて低い状態に維持されるが、スクリーン面の周辺領域では長期間運転後に、ある程度の固形物付着が確認された。すなわち流入室内の旋回流の圧力分布に偏りがあり、それがスクリーン面の周辺領域における固形物付着量が長時間運転により徐々に増える主な原因であることが分かった。   In the above-described separation apparatus, according to experiments, the amount of solid matter adhered to the central area of the screen surface is maintained at a very low level even after long-term operation. Solid matter adhesion was confirmed. In other words, the pressure distribution of the swirling flow in the inflow chamber is uneven, which is the main cause of the solid matter adhesion amount in the peripheral region of the screen surface gradually increasing after long-time operation.

流入室内に上下方向の旋回流を形成させると、旋回流の中心軸に近い領域の圧力は旋回流の外周面に近い領域より低下する。このように旋回流の中心領域の圧力が周辺領域より低下する現象は、流体力学上、リンキン渦といわれており、例えば洗濯機の渦中心部がへこむ現象もこれに相当する。   When a vertical swirl flow is formed in the inflow chamber, the pressure in the region near the central axis of the swirl flow is lower than the region near the outer peripheral surface of the swirl flow. The phenomenon in which the pressure in the central region of the swirling flow is lower than that in the peripheral region is called a linkin vortex in terms of fluid dynamics. For example, the phenomenon in which the central portion of the vortex of the washing machine is dented corresponds to this phenomenon.

このように圧力が低くなる領域では固形物をスクリーン表面に押しつける力が一層低くなり、それによって旋回流による剥離性能もより高くなるので、上記のように長期間運転後も該領域では固形物の付着量が著しく低いという結果になると考えられる。   Thus, in the region where the pressure is low, the force for pressing the solid matter against the screen surface is further reduced, and thereby the separation performance by the swirl flow is further improved. It is thought that the result is that the adhesion amount is extremely low.

本発明はこの圧力分布の偏り現象を利用し、スクリーンの中央領域だけでなく周辺領域の固形物付着量も著しく低下させるため、上下旋回流の中心領域を移動可能とし、スクリーンの広い範囲にわたって圧力の低い領域を作り出す装置を提供するものである。   The present invention makes use of this pressure distribution bias phenomenon to significantly reduce the amount of solid matter adhering not only to the central area of the screen but also to the peripheral area. An apparatus for producing a low region of the temperature is provided.

本発明の第1の固体分離装置は、液体に含まれている固形物を分離する固体分離装置において、流入室と流出室を有する分離槽を備え、流入室は、底部と該底部から上方に延長する前後左右の4つの側部を有し平断面方形な形状とされ、流入室内に水平方向の液体流を供給する供給部が前側部の上方または下方に形成され、前記水平方向の液体流を後側部の内面に沿った方向に変化させる誘導面を有する第1誘導部が前記供給部に対向して後側部に設けられ、前記方向変化した液体流を前側部に向かう水平方向の液体流に方向変化させる誘導面を有する第2誘導部がさらに後側部に設けられ、且つ該第2誘導部の誘導面は後側部に沿って上下方向に移動可能とされ、前記第1誘導部と第2誘導部の誘導面により流入室内の液体流が上下方向の旋回流を形成するように構成され、流入室内の液体を流出室側に流出させるため、流入室に形成される旋回流の外周面と直交する前記流入室の右側部と左側部に、平面状のスクリーンが互いに平行に対向して形成されており、流出室はその内面が前記流入室の4つの側部の外側を取り囲むように形成され、且つ流出室には液体の排出部が形成されていることを特徴とするものである。   A first solid separation device of the present invention is a solid separation device that separates solids contained in a liquid, and includes a separation tank having an inflow chamber and an outflow chamber, and the inflow chamber is located above the bottom and the bottom. A supply portion for supplying a horizontal liquid flow into the inflow chamber is formed above or below the front side portion and has a rectangular shape with four sides on the front, rear, left and right sides. A first guide part having a guide surface that changes the direction of the liquid in a direction along the inner surface of the rear side part is provided on the rear side part so as to face the supply part, and the liquid flow whose direction has changed is directed in the horizontal direction toward the front side part. A second guiding portion having a guiding surface for changing the direction of the liquid flow is further provided on the rear side portion, and the guiding surface of the second guiding portion is movable in the vertical direction along the rear side portion. The liquid flow in the inflow chamber is moved in the vertical direction by the guide surfaces of the guide part and the second guide part. In order to allow the liquid in the inflow chamber to flow out to the outflow chamber side, the right and left sides of the inflow chamber orthogonal to the outer peripheral surface of the swirl flow formed in the inflow chamber are planar. The screens are formed in parallel with each other, the outflow chamber is formed so that the inner surface surrounds the outside of the four side portions of the inflow chamber, and the liquid discharge portion is formed in the outflow chamber. It is characterized by this.

本発明の第2の固体分離装置は、液体に含まれている固形物を分離する固体分離装置において、流入室と流出室を有する分離槽を備え、流入室は底部と該底部から上方に延長する前後左右の4つの側部を有し平断面が方形な形状とされ、流入室内に水平方向の液体流を供給する供給部が前側部の上方または下方に形成され、前記水平方向の液体流を後側部の内面に沿った方向に変化させる誘導面を有する第1誘導部が前記供給部に対向して後側部に設けられ、前記方向変化した液体流を前側部に向かう液体流に方向変化させる誘導面を有する第2誘導部が後側部の中間部に設けられ、且つ第2誘導部の誘導面は前記後側部の固定位置を旋回中心とする上下方向の角度変化が可能とされ、それによって第2誘導部から前記前側部に向かう液体流の方向転換角度を上下方向に変化できるように構成され、前記第1誘導部と第2誘導部の誘導面により流入室内の液体流は上下方向の旋回流を形成するように構成され、流入室内の液体を流出室側に流出させるため、流入室に形成される旋回流の外周面と直交する前記流入室の右側部と左側部に、平面状のスクリーンが互いに平行に対向して形成されており、流出室はその内面が前記流入室の4つの側部の外側を取り囲むように形成され、且つ流出室には液体の排出部が形成されていることを特徴とするものである。   A second solid separation device of the present invention is a solid separation device for separating solids contained in a liquid, and includes a separation tank having an inflow chamber and an outflow chamber, and the inflow chamber extends upward from the bottom portion. And a supply portion for supplying a horizontal liquid flow into the inflow chamber is formed above or below the front side portion, and the horizontal liquid flow A first guide portion having a guide surface that changes the direction of the liquid in a direction along the inner surface of the rear side portion is provided on the rear side portion so as to face the supply portion, and the liquid flow changed in direction is changed to a liquid flow toward the front side portion. A second guiding portion having a guiding surface for changing the direction is provided in an intermediate portion of the rear side portion, and the guiding surface of the second guiding portion can change in the vertical angle with the fixed position of the rear side portion as a turning center. And thereby the liquid flow from the second guiding part toward the front side part The direction change angle can be changed in the vertical direction, and the liquid flow in the inflow chamber is configured to form a swirl flow in the vertical direction by the guide surfaces of the first guide portion and the second guide portion. In order to allow the liquid to flow out to the outflow chamber side, planar screens are formed on the right side and the left side of the inflow chamber orthogonal to the outer peripheral surface of the swirl flow formed in the inflow chamber so as to face each other in parallel. The outflow chamber is formed so that its inner surface surrounds the outside of the four side portions of the inflow chamber, and a liquid discharge portion is formed in the outflow chamber.

本発明の第3の固体分離装置は、上記何れかの固体分離装置において、前記流出室は平断面が流入室と相似形の方形、または平断面が円形、楕円形、方円形、小判型のいずれかであることを特徴とするものである。   A third solid separation device of the present invention is the solid separation device according to any one of the above, wherein the outflow chamber has a square cross section similar to the inflow chamber, or a circular cross section, an elliptical shape, a square shape, or an oval shape. It is either one.

本発明の固体分離方法は、液体に含まれている固形物を分離する固体分離方法において、上記いずれかの固体分離装置を用い、前記分離装置における流入室の供給部から液体を流入して上下方向の旋回流を形成し、スクリーンで固形物を分離すると共に、スクリーンを通過して流出室に流出した液体を排出部から分離槽の外部に排出し、上下旋回流の回転中心軸近傍における液体中に負圧状態が発生するように前記供給部から供給する液体の流速を設定することを特徴とするものである。   The solid separation method of the present invention is a solid separation method for separating solids contained in a liquid, using any one of the above-described solid separation devices, and flowing the liquid from the supply portion of the inflow chamber in the separation device. A swirl flow in the direction, and the solids are separated by the screen, and the liquid that has passed through the screen and has flowed into the outflow chamber is discharged from the discharge portion to the outside of the separation tank. The flow rate of the liquid supplied from the supply unit is set so that a negative pressure state is generated therein.

本発明の第1の固体分離装置は、第2誘導部の誘導面が後側部に沿って上下方向に移動可能になっている。上下方向の旋回流の中心軸は基本的には第1誘導部と第2誘導部の上下方向の中間領域に形成される。例えば液体の供給部を前側部の上方に形成し、それに対向して第1誘導部の誘導面の位置を流入室の後側部の上部に固定した状態で、第2誘導部の誘導面を後側部の最下部に設定すると、上下方向の旋回流の中心軸は流入室の上下方向のほぼ中央領域に形成され、その領域の圧力が最も低くなり、該領域におけるスクリーンの固形物剥離性が最も高くなる。   In the first solid separation device of the present invention, the guide surface of the second guide part is movable in the vertical direction along the rear side part. The central axis of the swirling flow in the vertical direction is basically formed in an intermediate region in the vertical direction between the first guiding portion and the second guiding portion. For example, in the state where the liquid supply unit is formed above the front side portion and the position of the guide surface of the first guide portion is fixed to the upper portion of the rear side portion of the inflow chamber, the guide surface of the second guide portion is When set at the lowermost part of the rear side, the central axis of the swirling flow in the vertical direction is formed in the substantially central region in the vertical direction of the inflow chamber, and the pressure in that region is the lowest, and the solids peelability of the screen in this region Is the highest.

上記において、第2誘導部の誘導面を最下部から上方に移動していくと、上下方向の旋回流の中心軸もその移動に応じて上方に移動し、それと共に旋回流の一部は第2誘導部の下側の流入室内に分岐して上側とは逆方向の上下方向の旋回流を形成するようになる。   In the above, when the guiding surface of the second guiding part is moved upward from the lowermost part, the central axis of the vertical swirling flow is also moved upward according to the movement, and a part of the swirling flow is The branching into the inflow chamber below the two guide portions forms a swirling flow in the vertical direction opposite to the upper side.

第2誘導部の誘導面を流入室における後側部の上下方向の中心位置より更に上方に移動していくと、旋回流の主要部もそれに応じて第2誘導部の上側から下側に次第に移っていく。このように第2誘導部の誘導面の移動に応じて上下方向旋回流の中心軸位置が上下方向に移動し、それと共に旋回流の分割割合も変化していく。そして二つの旋回流の中心軸の圧力が低い領域が広い範囲に移動し、該領域におけるスクリーンの固形物剥離性を高める。   When the guiding surface of the second guiding part is moved further upward from the center position in the vertical direction of the rear side part in the inflow chamber, the main part of the swirling flow is gradually increased from the upper side to the lower side of the second guiding part accordingly. Move. As described above, the center axis position of the vertical swirling flow moves in the vertical direction in accordance with the movement of the guiding surface of the second guiding portion, and the dividing ratio of the swirling flow also changes. And the area | region where the pressure of the center axis | shaft of two swirl | vortex flows moves to a wide range, and the solid substance peelability of the screen in this area | region is improved.

すなわち、第2誘導部の誘導面の位置を定期的もしくは随時に順次移動させることにより、スクリーン面の各領域を固形物剥離性の高い領域に順次変化させることができ、それによりスクリーンに付着する固形物量がスクリーン面全体でより均一化され、結果としてスクリーン面に付着する固形物の全体量も少なくなり、従来技術よりスクリーン清掃のメンテナンス間隔を長くすることができる。なお、液体の供給部を前側部の下方に形成し、それに対向して第1誘導部の誘導面の位置を流入室の後側部の下部に固定した状態では、上下方向の旋回流の方向が逆になるだけで、その作用効果は上記と同様である。   That is, by periodically moving the position of the guide surface of the second guide part periodically or from time to time, each region of the screen surface can be sequentially changed to a region having a high solid material peelability, thereby adhering to the screen. The amount of solid matter is made more uniform over the entire screen surface. As a result, the total amount of solid matter adhering to the screen surface is also reduced, and the maintenance interval for screen cleaning can be made longer than in the prior art. In the state where the liquid supply part is formed below the front side part and the position of the guide surface of the first guide part is fixed to the lower part of the rear side part of the inflow chamber so as to face it, the direction of the swirl flow in the vertical direction The effect is the same as described above, except that is reversed.

本発明の第2の固体分離装置は、第2誘導部の誘導面が前記後側部内面を旋回中心とする上下方向の角度変化が可能になっている。例えば液体の供給部を前側部の上方に形成し、それに対向して第1誘導部の誘導面の位置を流入室の後側部の上部に固定した状態で、第2誘導部の誘導面の角度を最も下方に向かうように設定すると、第1誘導部で下方に方向転換した液体流は、第2誘導部の誘導面により最も下方向、すなわち流入室の底部に向かう方向に転換される。その結果、前記第1の発明において第2誘導部の誘導面を流入室の最も下方に設定した場合と同様に、流入室内の上下方向の中央領域に中心軸を有する上下方向の旋回流が1つ形成される。   In the second solid state separation device of the present invention, the guide surface of the second guide portion can change in the vertical direction with the inner surface of the rear side portion as the turning center. For example, the liquid supply part is formed above the front side part, and the position of the guide surface of the first guide part is fixed to the upper part of the rear side part of the inflow chamber so as to face the liquid supply part. If the angle is set so as to be the most downward, the liquid flow that has been turned downward by the first guide portion is turned downward by the guide surface of the second guide portion, that is, the direction toward the bottom of the inflow chamber. As a result, the vertical swirl flow having the central axis in the central region in the vertical direction in the inflow chamber is 1 as in the case where the guide surface of the second guide portion is set at the lowest position in the inflow chamber in the first invention. Formed.

第2誘導部の誘導面の角度を上記のような下方向から水平方向に順次変化すると、前記第1の発明において第2誘導部の誘導面を流入室の上方に順次移動した場合と同様に、上下方向の旋回流の中心軸もその角度変化に応じて上方に移動し、それと共に旋回流の一部は第2誘導部の下側の流入室内に分岐して上側とは逆方向の上下方向の旋回流を形成するようになる。   When the angle of the guide surface of the second guide portion is sequentially changed from the lower direction to the horizontal direction as described above, the guide surface of the second guide portion is sequentially moved above the inflow chamber in the first invention. The central axis of the swirling flow in the vertical direction also moves upward according to the change in the angle, and at the same time, a part of the swirling flow branches into the inflow chamber on the lower side of the second guiding portion and moves up and down in the direction opposite to the upper side. A swirling flow in the direction is formed.

第2誘導部の誘導面を水平方向より更に上方に移動していくと、旋回流の主要部もそれに応じて第2誘導部下側に移っていく。このように第2誘導部の角度変化に応じて上下方向旋回流の中心軸位置が上下方向に移動し、それと共に旋回流の分割割合も変化していく。そして二つの旋回流の中心軸の圧力が低い領域も広い範囲に移動し、該領域におけるスクリーンの固形物剥離性を高める。なお、液体の供給部を前側部の下方に形成し、それに対向して第1誘導部の誘導面の位置を流入室の後側部の下部に固定した状態では、上下方向の旋回流の方向が逆になるだけで、その作用効果は上記と同様である。   When the guiding surface of the second guiding part is moved further upward from the horizontal direction, the main part of the swirling flow is also moved to the lower side of the second guiding part accordingly. As described above, the center axis position of the vertical swirling flow moves in the vertical direction in accordance with the change in the angle of the second guiding portion, and the dividing ratio of the swirling flow also changes. And the area | region where the pressure of the central axis of two swirl | vortex flows is also moved to a wide range, and the solid substance peelability of the screen in this area | region is improved. In the state where the liquid supply part is formed below the front side part and the position of the guide surface of the first guide part is fixed to the lower part of the rear side part of the inflow chamber so as to face it, the direction of the swirl flow in the vertical direction The effect is the same as described above, except that is reversed.

本発明の第3の固体分離装置は、上記何れかの固体分離装置において、前記流出室は平断面が流入室と相似形の方形、または平断面が円形、楕円形、方円形、小判型のいずれかであることを特徴とする固体分離装置である。本発明の特徴は流入室の形状と第2誘導部にあり、流出室の形状は特に制限がなく、形状の自由度が高いので設置条件に適合する形状を採用することができる。   A third solid separation device of the present invention is the solid separation device according to any one of the above, wherein the outflow chamber has a square cross section similar to the inflow chamber, or a circular cross section, an elliptical shape, a square shape, or an oval shape. It is either, The solid-state separator characterized by the above-mentioned. The feature of the present invention lies in the shape of the inflow chamber and the second guiding portion, and the shape of the outflow chamber is not particularly limited, and since the degree of freedom of the shape is high, a shape suitable for installation conditions can be adopted.

本発明の固体分離方法は、上記何れかの固体分離装置を用いた分離方法であり、前記装置における流入室の供給部から液体を流入し、流入室内に上下方向の旋回流を形成し、前記2枚のスクリーンで固形物を分離すると共に、スクリーンを通過して流出室に流出した液体を排出部から分離槽の外部に排出し、その際、上下旋回流の回転中心軸近傍における液体中に負圧状態が発生するように前記供給部から供給する液体の流速を設定することを特徴とする。   The solid separation method of the present invention is a separation method using any one of the above-described solid separation devices, in which a liquid flows in from the supply portion of the inflow chamber in the device, forms a swirling flow in the vertical direction in the inflow chamber, The solids are separated by the two screens, and the liquid that has passed through the screens and has flowed into the outflow chamber is discharged from the discharge unit to the outside of the separation tank. The flow rate of the liquid supplied from the supply unit is set so that a negative pressure state occurs.

上下方向の旋回流の回転中心軸近傍の圧力は、流入室に供給される液体の流速が高くなるとそれに逆比例して低くなり、液体の流速を次第に高くしていくと、上下方向の旋回流の回転中心軸近傍における液体中の圧力は正圧状態から負圧状態に変化する。負圧状態になるとスクリーンを通過して流出室側に流出した液体の一部はその負圧に引き寄せられてスクリーンを逆通過して流出室側に戻る現象が発生する。   The pressure in the vicinity of the rotation center axis of the swirling flow in the vertical direction decreases in inverse proportion to the increase in the flow velocity of the liquid supplied to the inflow chamber, and as the flow velocity of the liquid is gradually increased, the swirling flow in the vertical direction The pressure in the liquid in the vicinity of the rotation center axis changes from a positive pressure state to a negative pressure state. In a negative pressure state, a part of the liquid that has passed through the screen and has flowed out to the outflow chamber side is attracted to the negative pressure, and reversely passes through the screen and returns to the outflow chamber side.

したがって本発明の分離方法においては、上下方向の旋回流の回転中心軸近傍のスクリーンが常に流出室側から逆流する液体の作用で逆洗浄される状態となり、該領域の固形物剥離性が更に高くなる。そして上下方向の旋回流の回転中心軸の位置を前記のように移動することにより、逆洗浄領域を広範囲に移動させることができる。   Therefore, in the separation method of the present invention, the screen in the vicinity of the rotation center axis of the swirling flow in the vertical direction is always back-washed by the action of the liquid flowing back from the outflow chamber side, and the solids releasability in this region is further enhanced Become. By moving the position of the rotation center axis of the swirling flow in the vertical direction as described above, the reverse cleaning region can be moved over a wide range.

本発明の固体分離装置の第1実施形態を示す図である。It is a figure showing a 1st embodiment of a solid separation device of the present invention. 図1(b)に示す流入室2の主要部を模式的に示した図である。It is the figure which showed typically the principal part of the inflow chamber 2 shown in FIG.1 (b). 本発明の固体分離装置の第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the solid-state separator of this invention. 本発明の固体分離装置の第3実施形態を示す図である。It is a figure which shows 3rd Embodiment of the solid-separation apparatus of this invention. 図1の例における流出室の平断面形状(方形)を変えたものを模式的に示す図である。It is a figure which shows typically what changed the plane cross-sectional shape (square shape) of the outflow chamber in the example of FIG.

次に図面を基に本発明の最良の実施形態を説明する。図1は本発明の分離装置の第1実施形態であり、図1における(a)は(b)のB−B矢視の平断面図、(b)は(a)のA−A矢視の側断面図である。   Next, the best embodiment of the present invention will be described with reference to the drawings. 1A and 1B show a first embodiment of a separation apparatus according to the present invention. FIG. 1A is a plan sectional view taken along the line BB in FIG. 1B, and FIG. 1B is a view taken along the line AA in FIG. FIG.

分離装置1は流入室2とその外周面を外側から囲むように設けられた流出室3を備えている。流入室2は平坦な上面を有する底部4と該底部4から上方に延長する前後左右の4つの内面が平坦な側部、すなわち、それぞれが平板状の前側部5、後側部6、右側部(前側部から見て右側)7および左側部(前側部から見て左側)8を有し、各側部は底部4から垂直上方に延長し、図1(a)に示すように、平断面図が長辺と短辺からなる方形とされている。なお図示の装置では流入室2の上端部が開口され、流入室2から流出室3に液体はオーバフローが可能になっているが、流入室2に蓋を着脱自在に固定してもよく、処理すべき液体が加圧液体である場合は、液体が流入室2の上部から漏出しないように、蓋体により流入室2を密閉型とすることが好ましい。   The separation device 1 includes an inflow chamber 2 and an outflow chamber 3 provided so as to surround the outer peripheral surface from the outside. The inflow chamber 2 includes a bottom portion 4 having a flat upper surface and four side surfaces extending from the bottom portion 4 in the front, rear, left and right directions, ie, flat side portions, that is, a flat front side portion 5, a rear side portion 6, and a right side portion, respectively. (Right side as viewed from the front side portion) 7 and left side portion (left side as viewed from the front side portion) 8, each side portion extends vertically upward from the bottom portion 4, as shown in FIG. The figure is a square consisting of a long side and a short side. In the apparatus shown in the figure, the upper end of the inflow chamber 2 is opened and the liquid can overflow from the inflow chamber 2 to the outflow chamber 3, but a lid may be detachably fixed to the inflow chamber 2. When the liquid to be pressurized is a pressurized liquid, it is preferable that the inflow chamber 2 be sealed with a lid so that the liquid does not leak from the upper portion of the inflow chamber 2.

流入室2の前側部5の上方に液体の供給部9が形成される。供給部9は流出室3及び流入室2の前側部5を水平に貫通する管で構成され、処理すべき液体を流入室2内にその上方から後側部6に向けて水平に噴出するようになっている。   A liquid supply portion 9 is formed above the front side portion 5 of the inflow chamber 2. The supply unit 9 is configured by a pipe that horizontally penetrates the outflow chamber 3 and the front side portion 5 of the inflow chamber 2, and jets the liquid to be processed into the inflow chamber 2 from above toward the rear side portion 6. It has become.

流入室2の後側部6の上方であって供給部9と対向する位置(具体的には、供給部9から水平に噴出する液体流が、そのまま水平に移動したときに突き当たる位置)に第1誘導部10が設けられている。第1誘導部10は平板からなり後側部6から前側部5に向けて傾斜した状態で後側部6に固定され、傾斜状態における第1誘導部10の平坦な下面が誘導面11を形成する。   A position above the rear side portion 6 of the inflow chamber 2 and facing the supply portion 9 (specifically, a position where the liquid flow ejected horizontally from the supply portion 9 strikes when moved horizontally as it is). One guide portion 10 is provided. The first guide portion 10 is formed of a flat plate and is fixed to the rear side portion 6 in an inclined state from the rear side portion 6 toward the front side portion 5, and the flat lower surface of the first guide portion 10 in the inclined state forms the guide surface 11. To do.

第1誘導部10より下方の後側部6に、上下方向に移動可能な第2誘導部12が設けられている。第2誘導部12は後側部6に沿ってスライド可能に装着された傾斜部13とそれから水平方向に延長する平板状の水平部14を有し、傾斜部13の平坦な上面と水平部14の平坦な上面により第2誘導部12の誘導面15が形成される。なお第1誘導部10と第2誘導部12の誘導面における傾斜角度は、上下旋回流の形成効率が最適になるように実験などにより適宜設定される。   A second guiding portion 12 that is movable in the vertical direction is provided on the rear side portion 6 below the first guiding portion 10. The second guide part 12 has an inclined part 13 slidably mounted along the rear side part 6 and a flat plate-like horizontal part 14 extending horizontally from the inclined part 13, and the flat upper surface of the inclined part 13 and the horizontal part 14. The guide surface 15 of the second guide portion 12 is formed by the flat upper surface. In addition, the inclination angle in the guide surface of the 1st guide part 10 and the 2nd guide part 12 is suitably set by experiment etc. so that the formation efficiency of a vertical swirl flow may become the optimal.

第2誘導部12を後側部6にスライド可能に装着するには、例えば後側部6の内面に垂直方向かつ直線状の断面凹型のスライドガイドを固定し、第2誘導部12の傾斜部13に垂直状の突起を有する係合部を設け、更にその突起の上端から上方に棒状の操作部を延長する。そして前記スライドガイドの凹部に突起を嵌合した状態で、操作棒を流入室2の上方から上下方向に移動操作すれば、第2誘導部12が後側部6に沿って上下方向に移動できる。   In order to slidably mount the second guide portion 12 on the rear side portion 6, for example, a vertical and linear concave cross-section slide guide is fixed to the inner surface of the rear side portion 6, and the inclined portion of the second guide portion 12 is fixed. An engaging portion having a vertical protrusion is provided at 13, and a rod-shaped operation portion is extended upward from the upper end of the protrusion. Then, when the operation rod is moved up and down from above the inflow chamber 2 with the projections fitted in the recesses of the slide guide, the second guide portion 12 can move up and down along the rear side portion 6. .

流入室2の右側部7と左側部8に、平板状の方形なスクリーン16が互いに平行になるように対向して装着される。スクリーン16は流入室2の液体を通過させ、液体に含まれている固形物の通過を阻止するもので、この分野で使用される剛性のあるパンチメタル型のスクリーンやウェッジワイヤ型のスクリーンを採用することができる。ウェッジワイヤ型のスクリーンを採用する場合は、ウェッジワイヤの軸が上下方向になるように装着することが望ましい。   A flat rectangular screen 16 is mounted on the right side portion 7 and the left side portion 8 of the inflow chamber 2 so as to be parallel to each other. The screen 16 allows the liquid in the inflow chamber 2 to pass therethrough and blocks the passage of solid substances contained in the liquid, and adopts a rigid punch metal type screen or wedge wire type screen used in this field. can do. When a wedge wire type screen is employed, it is desirable to mount the wedge wire so that the axis of the wedge wire is in the vertical direction.

ウェッジワイヤ型のスクリーンの装着方法としては、例えば右側部7と左側部8にそれぞれ方形な開口部を形成し、開口部の垂直な両側部にそれぞれスライドガイドを形成し、平板状の方形なウェッジワイヤ型のスクリーンを上方からスライドガイドに滑らせて装着する。なお、スクリーン16は分離すべき固体の粒径に応じた孔径や隙間を有するものを適宜選択する。   As a method for mounting the wedge wire type screen, for example, a rectangular opening is formed in each of the right side portion 7 and the left side portion 8, slide guides are formed on both sides perpendicular to the opening portion, and a flat rectangular wedge is formed. A wire type screen is slid onto the slide guide from above. The screen 16 is appropriately selected to have a hole diameter or a gap corresponding to the particle size of the solid to be separated.

流出室3は平坦な上面を有する底部20と、該底部20から上方に延長する前後左右の4つの側部、すなわちそれぞれが平板状の前側部21、後側部22、右側部23および左側部24を有し、各側部は底部20から垂直上方に延長する。本実施形態の流出室3は、平断面が長辺と短辺からなる方形であって、流入室2の平断面と相似形になっており、その上端部には蓋体25が着脱自在に装着されている。なお本実施形態では流出室3の底部20が流入室2の底部4と共通になっているが、流入室2と流出室3が夫々独立した底部を有することでもよい。   The outflow chamber 3 includes a bottom portion 20 having a flat upper surface and four front and rear, left and right side portions extending upward from the bottom portion 20, that is, a front side portion 21, a rear side portion 22, a right side portion 23, and a left side portion, each having a flat plate shape. 24 and each side extends vertically upward from the bottom 20. The outflow chamber 3 of the present embodiment has a rectangular shape with a long cross section and a short side, and is similar to the flat cross section of the inflow chamber 2, and a lid 25 is detachable at the upper end portion. It is installed. In the present embodiment, the bottom 20 of the outflow chamber 3 is shared with the bottom 4 of the inflow chamber 2, but the inflow chamber 2 and the outflow chamber 3 may have independent bottoms.

図1に示すように、流出室3の4つの側部は流入室2の4つの側部を取り囲むように配置され、全体がコンパクトになるように形成されている。そして流出室3の後側部22上方には管体からなる液体の排出部26が形成される。   As shown in FIG. 1, the four side portions of the outflow chamber 3 are disposed so as to surround the four side portions of the inflow chamber 2, and are formed so as to be compact as a whole. A liquid discharge portion 26 formed of a tubular body is formed above the rear side portion 22 of the outflow chamber 3.

次に上記固体分離装置の作用を説明する。先ず図1のように第2誘導部12を流入室2の最下部に設定した場合において、処理すべき液体を供給部9から流入室2の上部に水平方向に供給すると、液体流は第1誘導部10の誘導面11により下方に方向変化する。   Next, the operation of the solid separation device will be described. First, when the second guiding portion 12 is set at the lowermost portion of the inflow chamber 2 as shown in FIG. 1, when the liquid to be processed is supplied from the supply portion 9 to the upper portion of the inflow chamber 2 in the horizontal direction, the liquid flow is first. The direction is changed downward by the guide surface 11 of the guide unit 10.

下方に方向変化した液体流は第2誘導部12の誘導面15により前側部5に向かう水平な液体流に変化され、次いでその液体流は前側部5に沿って上昇し、供給部9から新たに噴出する液体流と合流して、再び第1誘導部10に向かう水平方向の液体流となる。このようにして流入室2内には図1(b)に点線で示すように、回転中心軸Sを有する上下方向の旋回流(図正面から見て時計回り)が持続的に形成される。なお、第2誘導部12に上方から下降した液体流は、先ずその傾斜部13の誘導面15により水平方向に方向転換し、水平方向に延長する水平部14の誘導面15でその水平方向への移動力を安定化される。   The liquid flow changed in the downward direction is changed into a horizontal liquid flow toward the front side portion 5 by the guide surface 15 of the second guide portion 12, and then the liquid flow rises along the front side portion 5 and is newly supplied from the supply portion 9. The liquid flow that is jetted into the first flow is merged to become a horizontal liquid flow toward the first guiding portion 10 again. In this way, as shown by a dotted line in FIG. 1B, a vertical swirling flow having a rotation center axis S (clockwise as viewed from the front of the drawing) is continuously formed in the inflow chamber 2. The liquid flow descending from the upper side to the second guiding portion 12 is first changed in the horizontal direction by the guiding surface 15 of the inclined portion 13, and in the horizontal direction by the guiding surface 15 of the horizontal portion 14 extending in the horizontal direction. The moving force is stabilized.

旋回する液体の一部は、図1(a)に矢印で示すように2枚のスクリーン16を通過して流出室3側に流出し、次いで流出室3の排出部26から分離装置の外部に排出される。一方、液体に含まれている固形物は各スクリーン16で阻止される。各スクリーン16で阻止された固形物の大部分は流出室2内を旋回流に乗って旋回するが、一部はスクリーン16の表面(流入室2側の表面)に付着する。   A part of the swirling liquid passes through the two screens 16 as shown by arrows in FIG. 1A and flows out to the outflow chamber 3 side, and then flows from the discharge part 26 of the outflow chamber 3 to the outside of the separation device. Discharged. On the other hand, solids contained in the liquid are blocked by each screen 16. Most of the solid matter blocked by each screen 16 swirls in the outflow chamber 2 by swirling flow, but part of the solid matter adheres to the surface of the screen 16 (surface on the inflow chamber 2 side).

スクリーン16の表面に付着した固形物の殆どは旋回流の剥離作用によりスクリーン16から剥離されて旋回流内に戻るが、その際の剥離性能は上下方向の旋回流の旋回流速に比例する、言い換えれば供給部9から供給される液体の流速に比例する。しかし固形物の一部はスクリーン16の表面に固着して残留した状態を継続することがあり、それが次第に蓄積してきたときに分離処理を一時的に中断してスクリーン清掃(メンテナンス作業)を行う必要がある。   Most of the solid matter adhering to the surface of the screen 16 is peeled off the screen 16 by the swirling action of the swirling flow and returns to the swirling flow, but the peeling performance at that time is proportional to the swirling flow velocity of the swirling flow in the vertical direction. For example, it is proportional to the flow rate of the liquid supplied from the supply unit 9. However, a part of the solid matter may remain adhered to the surface of the screen 16 and remain, and when it gradually accumulates, the separation process is temporarily interrupted to perform screen cleaning (maintenance work). There is a need.

スクリーン表面に残留する固形物の量はスクリーン表面を押圧する液体圧に比例する傾向があり、その傾向は上下方向の旋回流における押圧力が低い旋回流の回転軸領域では比較的低く、押圧力が高い周辺領域では比較的高くなる。本発明の固体分離装置では前記のように、上下方向の旋回流の回転中心軸を適宜移動できるように構成されており、それによって上記スクリーン表面の固形物残留問題を低減することができる。   The amount of solids remaining on the screen surface tends to be proportional to the liquid pressure pressing the screen surface, and this tendency is relatively low in the rotating shaft region of the swirling flow where the pressing force in the swirling flow in the vertical direction is low. It is relatively high in the peripheral region where is high. As described above, the solid separation apparatus of the present invention is configured to be able to appropriately move the rotation center axis of the swirling flow in the vertical direction, thereby reducing the solid matter remaining problem on the screen surface.

スクリーン16の表面における旋回流の流速は、供給部9から供給される液体の流速に比例し、且つ、旋回流の中心領域(旋回の回転中心軸領域)から外周領域(旋回流の外周面領域)になるほどその流速は大きくなる。そして旋回流の流速を次第に大きくしていくと、旋回流の外周領域におけるスクリーン16に向かう圧力(スクリーン16の表面を押圧する液体圧)もそれに応じて大きくなるが、中心領域におけるスクリーン16への圧力(スクリーン16の表面を押圧する液体圧)は逆に低下していき、ついに負圧状態に転じる。   The flow velocity of the swirling flow on the surface of the screen 16 is proportional to the flow velocity of the liquid supplied from the supply unit 9, and from the central region of the swirling flow (rotational center axis region of swirling) to the outer peripheral region (outer peripheral surface region of the swirling flow) ) The greater the flow velocity. When the flow velocity of the swirl flow is gradually increased, the pressure toward the screen 16 in the outer peripheral region of the swirl flow (liquid pressure that presses the surface of the screen 16) increases accordingly, but the pressure on the screen 16 in the central region is increased. The pressure (liquid pressure that presses the surface of the screen 16) decreases conversely, and finally turns to a negative pressure state.

例えば、立方形の流入室の両側に縦1000mm、横450mmの方形のスクリーン16を2枚平行に、且つ互いの間隔を500mmにして取り付けた分離装置を用いて実験した結果、スクリーン16の短い方の両端近傍、すなわち横方向(450mmの方向)の両端近傍を流れる旋回流の流速が1m/s程度に達すると、旋回流の中心領域の圧力は負圧領域に転じることがわかった。その際、スクリーン16の短い方の両端近傍では液体が流入室2から流出室3に流速1m/s程度で流出しているが、スクリーン16の中心領域では逆に液体が流出室3から流入室2に0.3m/s程度の流速で流入する状態になる。   For example, as a result of an experiment using a separation device in which two rectangular screens 16 having a length of 1000 mm and a width of 450 mm are mounted on both sides of a cubic inflow chamber in parallel and spaced from each other by 500 mm, It was found that when the flow velocity of the swirling flow flowing in the vicinity of both ends in the horizontal direction (direction of 450 mm) reached about 1 m / s, the pressure in the central region of the swirling flow turned to the negative pressure region. At that time, the liquid flows out from the inflow chamber 2 to the outflow chamber 3 at a flow velocity of about 1 m / s near both ends of the short side of the screen 16, but conversely, in the central region of the screen 16, the liquid flows out of the outflow chamber 3. 2 flows in at a flow rate of about 0.3 m / s.

この負圧領域は、スクリーン16の面から直角に見た場合、旋回流の中心領域を軸とするほぼ円形もしくは楕円形(スクリーンの縦方向が幾分長い楕円形)の形状をしている。そして旋回流の流速をさらに高めていくと、それに比例して負圧領域の大きさ(スクリーン16に平行な面の負圧面積)も大きくなることが確認された。   This negative pressure region, when viewed at a right angle from the surface of the screen 16, has a substantially circular or elliptical shape (an ellipse with a somewhat longer vertical direction of the screen) centered on the central region of the swirling flow. Further, it was confirmed that as the flow velocity of the swirl flow was further increased, the size of the negative pressure region (the negative pressure area of the surface parallel to the screen 16) also increased in proportion thereto.

旋回流の中心領域が負圧状態になると、その領域の液体の流れは流出室側から流入室側に向かう流れ(逆流)になる。このような液体が逆流する領域ではスクリーン16に付着した固形物が裏面から逆押圧されることになるので、スクリーン16における固形物の剥離効果が著しく大きくなり、固形物をより効率的に剥離することができる。   When the central region of the swirl flow is in a negative pressure state, the liquid flow in that region becomes a flow (back flow) from the outflow chamber side to the inflow chamber side. In such a region where the liquid flows backward, the solid matter adhering to the screen 16 is reversely pressed from the back surface, so that the solid matter peeling effect on the screen 16 is remarkably increased, and the solid matter is peeled off more efficiently. be able to.

図2は図1(b)に示す流入室2の主要部を模式的に示した図であり、(a)は第2誘導部12の位置を後側部6の最下部から幾分上昇させたときの流入室2内における液体流の様子を示す図、(b)は第2誘導部12の位置を後側部6の中央部まで上昇させたときの流入室2内における流入室2内の液体流の様子を示す図、(c)は第2誘導部12の位置を後側部6の上部まで上昇させたときの流入室2内における液体流の様子を示す図である。   FIG. 2 is a diagram schematically showing the main part of the inflow chamber 2 shown in FIG. 1B. FIG. 2A is a diagram in which the position of the second guiding part 12 is raised somewhat from the lowermost part of the rear side part 6. The figure which shows the mode of the liquid flow in the inflow chamber 2 at the time, (b) is the inside of the inflow chamber 2 in the inflow chamber 2 when the position of the 2nd guide part 12 is raised to the center part of the rear side part 6. The figure which shows the mode of the liquid flow of (c) is a figure which shows the mode of the liquid flow in the inflow chamber 2 when the position of the 2nd guide part 12 is raised to the upper part of the rear side part 6. FIG.

図2(a)の場合、第2誘導部12の誘導面の上側であって、流入室2内の中央部から少し上方に、図1(b)に示す大きさにほぼ近い上下方向の旋回流(図正面から見て時計回り)が形成され、それと共に、第2誘導部12の下側において小さな上下方向の旋回流が形成される。この小さな旋回流の旋回方向は第2誘導部12の上側に形成される前記の大きな旋回流と逆方向(正面から見て反時計回り)の上下方向の旋回流である。   In the case of FIG. 2 (a), it is above the guiding surface of the second guiding portion 12 and slightly above the central portion in the inflow chamber 2, in the vertical direction substantially close to the size shown in FIG. 1 (b). A flow (clockwise as viewed from the front of the figure) is formed, and a small swirl flow in the vertical direction is formed at the lower side of the second guide portion 12. The swirl direction of this small swirl flow is a swirl flow in the vertical direction in the opposite direction (counterclockwise when viewed from the front) to the large swirl flow formed above the second guiding portion 12.

この現象は、第2誘導部12の誘導面が流入室2の底部から少し上昇してその小さな下側に空間領域が生じ、その空間領域に向けて図示のような液体流が前側部5付近から流れ込んで旋回し、それによってこのような小さい上下方向の旋回流が形成されることが実験とその解析から実証された。この小さな旋回流によるスクリーン16表面に残留する固形物の剥離性能向上はあまり期待できないが、第2誘導部12の上側に形成する大きな旋回流の回転中心軸領域は図1の場合より流入室2内を上方に移動しており、それによって低い圧力領域が上方に移動するので、本発明が目的とする広範囲の剥離性能向上効果は十分に発揮できる。   This phenomenon is caused by the fact that the guiding surface of the second guiding portion 12 rises slightly from the bottom of the inflow chamber 2 to create a space area below the small space, and a liquid flow as shown in the drawing is directed to the space area near the front side portion 5. It was proved from the experiment and the analysis that it swirled in and then swirled, and this formed such a small vertical swirl flow. Although the improvement in the separation performance of the solid matter remaining on the surface of the screen 16 due to this small swirl flow cannot be expected, the rotation center axis region of the large swirl flow formed on the upper side of the second guiding portion 12 is larger than that in the case of FIG. Since the low pressure region moves upward due to the movement inside, the wide range peeling performance improvement effect intended by the present invention can be sufficiently exerted.

図2(b)の場合、流入室2の上下方向の中央部を境にして第2誘導部12の上側と下側に略同じ大きさで互いに逆方向(上側が正面から見て時計回り、下側が正面から見て反時計回り)の上下方向の旋回流が形成される。すなわち、第2誘導部12の誘導面15が流入室2の底部から上昇してその下側に上側と同じ大きさの空間領域が生じ、その空間領域に向けて図示のような液体流が前側部5付近から流れ込んで旋回する現象が発生し、それによって2つの互いに逆方向の同じ大きさの旋回流が形成される。このような場合は、2つの旋回流の回転軸中心の領域は互いに離間し、且つ図1(b)の状態から上下方向に離反するので、それらの領域における固形物剥離性を高めることができる。なお、第2誘導部12の誘導面15の下面は平坦な面に形成されており、下側の旋回流の流速低下などへの影響は見られない。   In the case of FIG. 2B, the upper and lower sides of the second guiding portion 12 are substantially the same size and opposite to each other with the central portion in the vertical direction of the inflow chamber 2 as the boundary (the upper side is clockwise when viewed from the front, A swirling flow in the vertical direction is formed with the lower side counterclockwise as viewed from the front. That is, the guide surface 15 of the second guide portion 12 rises from the bottom of the inflow chamber 2, and a space area having the same size as the upper side is formed below the inflow chamber 2. The phenomenon of swirling by flowing from the vicinity of the part 5 occurs, whereby two swirling flows of the same magnitude in opposite directions are formed. In such a case, the regions of the two swirling flow centers of the rotational axes are separated from each other and are separated from each other in the vertical direction from the state of FIG. 1B, so that the solids releasability in these regions can be improved. . Note that the lower surface of the guide surface 15 of the second guide portion 12 is formed as a flat surface, and there is no effect on the lowering of the flow velocity of the lower swirling flow.

図2(c)の場合、第2誘導部12の上側における流入室2内の上下方向の旋回流の大きさが図2(b)の場合より小さくなり、その分、第2誘導部12の下側における流入室2内の上下方向の旋回流が大きくなっている。これは第2誘導部12の上側における空間領域が小さくなり、下側における空間領域が大きくなったことによる。この小さな旋回流によるスクリーン16表面に残留する固形物の剥離性能向上は小さくなるが、第2誘導部12の下側に形成する大きな旋回流の回転中心軸領域は図1の場合より流入室2内を下方に移動しており、それによって低い圧力領域が下方に移動するので、本発明が目的とする広範囲の剥離性能向上効果は十分に発揮できる。   In the case of FIG. 2C, the size of the vertical swirling flow in the inflow chamber 2 on the upper side of the second guiding portion 12 is smaller than that in the case of FIG. The swirling flow in the vertical direction in the inflow chamber 2 on the lower side is large. This is because the space area on the upper side of the second guiding portion 12 is reduced and the space area on the lower side is increased. Although the improvement in the separation performance of the solid matter remaining on the surface of the screen 16 due to the small swirl flow is reduced, the rotation center axis region of the large swirl flow formed below the second guide portion 12 is larger than that in the case of FIG. Since the low pressure region is moved downward due to the downward movement of the inside, the wide range peeling performance improvement effect intended by the present invention can be sufficiently exhibited.

図3は本発明の固体分離装置の第2実施形態であり、図3における(a)は(b)のC−C矢視の平断面図、(b)は(a)のD−D矢視の側断面図である。本実施形態が図1の例と異なる部分は、流入室2における供給部9の位置と、第1誘導部10及び第2誘導部12の位置のみで、その他は同様に構成される。そのため同じ部分には同一符号を付し、重複する説明は省略する。   3A and 3B show a second embodiment of the solid separation device of the present invention, in which FIG. 3A is a plan sectional view taken along the line CC of FIG. 3B, and FIG. 3B is a DD arrow of FIG. FIG. 1 is different from the example of FIG. 1 only in the position of the supply section 9 in the inflow chamber 2 and the positions of the first guide section 10 and the second guide section 12, and the rest is configured similarly. For this reason, the same parts are denoted by the same reference numerals, and redundant description is omitted.

図3(b)に示されているように、本実施形態では供給部9が流入室2の前側部5の下方に形成され、そこから水平方向に液体を噴出するようになっている。第1誘導部10は供給部9に対向して後側部6の下方に設けられ、さらに第2誘導部12は後側部6の上方に設けられ、且つ第2誘導部12は図1の例と同様に上下方向に移動可能とされている。   As shown in FIG. 3 (b), in the present embodiment, the supply section 9 is formed below the front side section 5 of the inflow chamber 2, and the liquid is ejected therefrom in the horizontal direction. The first guiding part 10 is provided below the rear side part 6 so as to face the supply part 9, and the second guiding part 12 is provided above the rear side part 6, and the second guiding part 12 is shown in FIG. Like the example, it can be moved in the vertical direction.

次に本実施形態の作用を説明する。先ず図3(b)のように、第2誘導部12を流入室2の最上部に設定した場合において、処理すべき液体を供給部9から流入室2の下部に水平方向に供給すると、液体流は第1誘導部10の誘導面11により上方に方向変化する。   Next, the operation of this embodiment will be described. First, as shown in FIG. 3B, when the second guiding portion 12 is set at the uppermost portion of the inflow chamber 2, when the liquid to be processed is supplied from the supply portion 9 to the lower portion of the inflow chamber 2 in the horizontal direction, The flow changes its direction upward by the guide surface 11 of the first guide part 10.

上方に方向変化した液体流は第2誘導部12の誘導面15により前側部5に向かう水平な液体流に変化され、次いでその液体流は前側部5に沿って下降し、供給部9から新たに噴出する液体流と合流しながら再び第1誘導部10に向かう水平方向の液体流となる。このようにして流入室2内には図3(b)に点線で示すように、回転中心軸Sを有する上下方向の旋回流(図正面から見て反時計回り)が持続的に形成される。   The liquid flow changed in the upward direction is changed to a horizontal liquid flow toward the front side portion 5 by the guide surface 15 of the second guide portion 12, and then the liquid flow is lowered along the front side portion 5 and newly supplied from the supply portion 9. The liquid flows in the horizontal direction toward the first guiding portion 10 again while merging with the liquid flow ejected in the first direction. In this way, as shown by a dotted line in FIG. 3B, a vertical swirling flow having a rotation center axis S (counterclockwise when viewed from the front in the figure) is continuously formed in the inflow chamber 2. .

旋回する液体の一部は、図3(a)に矢印で示すように2枚のスクリーン16を通過して流出室3側に流出し、次いで排出部26を経て分離装置の外部に排出される。なお、第2誘導部12の上下方向の移動による旋回流の回転中心軸領域の移動とその効果は図1の例と同様である。   A part of the swirling liquid passes through the two screens 16 as shown by arrows in FIG. 3A and flows out to the outflow chamber 3 side, and then is discharged to the outside of the separation device through the discharge unit 26. . The movement of the rotation center axis region of the swirling flow due to the vertical movement of the second guiding portion 12 and the effect thereof are the same as those in the example of FIG.

図4は本発明の第3の実施形態であり、図3における(a)は(b)のF−F矢視の平断面図、(b)は(a)のE−E−矢視の側断面図である。本実施形態が図1の例と異なる部分は、第2誘導部の構造とその作用のみで、その他は同様に構成される。そのため同じ部分には同一符号を付し、重複する説明は省略する。   4A and 4B show a third embodiment of the present invention, in which FIG. 3A is a plan sectional view taken along line FF in FIG. 3B, and FIG. 4B is a view taken along line E-E in FIG. It is a sectional side view. The difference of the present embodiment from the example of FIG. 1 is only the structure of the second guiding portion and its operation, and the rest is configured similarly. For this reason, the same parts are denoted by the same reference numerals, and redundant description is omitted.

本実施形態の第2誘導部12は、後側部6における上下方向の中間部(もしくは中央部)に固定され、且つその誘導面15の上下方向の角度を変化できるようになっている。第2誘導部12は後側部6に固定される固定部12aと、固定部12aに回転可能に連結された平板状で方形の延長部12bを有し、延長部12bの上面に誘導面15が形成されている。   The second guide portion 12 of the present embodiment is fixed to the middle portion (or center portion) of the rear side portion 6 in the vertical direction, and the vertical angle of the guide surface 15 can be changed. The second guide part 12 has a fixed part 12a fixed to the rear side part 6 and a flat and rectangular extension part 12b rotatably connected to the fixed part 12a. A guide surface 15 is provided on the upper surface of the extension part 12b. Is formed.

固定部12aに延長部12bを回転可能に連結するには、例えば固定部12aに水平方向に軸芯を有する回転軸を設け、その回転軸に延長部12bの後端部を固定すると共に円形のギア部を連結し、そのギア部に流入室2の上方まで垂直に延長する棒状のラックを螺合する。そしてラックを流入室2の上方から上下に操作することにより、第2誘導部12の誘導面15の上下方向の角度を変化させる。   In order to connect the extension portion 12b to the fixing portion 12a in a rotatable manner, for example, a rotation shaft having a horizontal axis is provided on the fixing portion 12a, the rear end portion of the extension portion 12b is fixed to the rotation shaft, and a circular shape is provided. The gear portion is connected, and a rod-like rack extending vertically to the upper portion of the inflow chamber 2 is screwed into the gear portion. Then, by operating the rack up and down from above the inflow chamber 2, the angle in the vertical direction of the guide surface 15 of the second guide portion 12 is changed.

第2誘導部12は上記のように後側部6における上下方向の中間部(もしくは中央部)に固定されるが、その固定位置は第2誘導部12を下方向に最大限に回転した際に、その先端部が流入室2の底部4に接触しない位置もしくはそれより上方である。なお、後側部6の上下方向の長さに比べて第2誘導部12の長さがかなり小さい場合は、固定位置の寸法的制約はない。   As described above, the second guide portion 12 is fixed to the middle portion (or center portion) of the rear side portion 6 in the vertical direction, and the fixing position thereof is when the second guide portion 12 is rotated downward to the maximum. In addition, the front end of the inflow chamber 2 is not in contact with the bottom 4 or above the position. In addition, when the length of the 2nd guide part 12 is quite small compared with the length of the up-down direction of the rear side part 6, there is no dimensional restriction | limiting of a fixed position.

図4(b)に示すように、第2誘導部12の誘導面15を最も下方の角度に設定した状態で、処理すべき液体を供給部9から流入室2の上部に水平方向に供給すると、液体流は第1誘導部10の誘導面11により下方に方向変化する。   As shown in FIG. 4B, when the liquid to be processed is supplied from the supply unit 9 to the upper part of the inflow chamber 2 in the horizontal direction with the guide surface 15 of the second guide unit 12 set to the lowest angle. The liquid flow changes its direction downward by the guide surface 11 of the first guide part 10.

下方に方向変化した液体流は第2誘導部12の誘導面15により前側部5に向かう水平な液体流に変化され、次いでその液体流は前側部5に沿って上昇し、供給部9から新たに噴出する液体流と合流しながら再び第1誘導部10に向かう水平方向の液体流となる。このようにして流入室2内には図1(b)に点線で示すように回転中心軸Sを有する上下方向の旋回流(図正面から見て時計回り)が持続的に形成される。   The liquid flow changed in the downward direction is changed into a horizontal liquid flow toward the front side portion 5 by the guide surface 15 of the second guide portion 12, and then the liquid flow rises along the front side portion 5 and is newly supplied from the supply portion 9. The liquid flows in the horizontal direction toward the first guiding portion 10 again while merging with the liquid flow ejected in the first direction. In this manner, a vertical swirling flow (clockwise as viewed from the front of the figure) having a rotation center axis S as shown by a dotted line in FIG. 1B is continuously formed in the inflow chamber 2.

旋回する液体の一部は、図4(a)に矢印で示すように、2枚のスクリーン16を通過して流出室3側に流出し、次いで排出部26を経て分離装置の外部に排出される。一方、液体に含まれている固形物はスクリーン16で阻止される。スクリーン16で阻止された固形物は流出室2内を旋回流に乗って旋回し、一部はスクリーン16の表面(流入室2側の表面)に付着する。   A part of the swirling liquid passes through the two screens 16 and flows out to the outflow chamber 3 side as shown by arrows in FIG. 4A, and then is discharged to the outside of the separation device through the discharge unit 26. The On the other hand, solids contained in the liquid are blocked by the screen 16. The solid matter blocked by the screen 16 swirls in the outflow chamber 2 in a swirling flow, and part of the solid matter adheres to the surface of the screen 16 (the surface on the inflow chamber 2 side).

次に第2誘導部12の誘導面15を水平方向になるように、延長部12bの角度を変化させると、図2(b)のケースに類似した同じ大きさの2つの上下方向の旋回流が形成され、2つの旋回流は互いに逆方向(誘導面15の上側の旋回流は図正面から見て時計回り、誘導面15の下側は図正面から見て反時計回り)になる。更に第2誘導部12の誘導面15を上方に角度変化させると、図2(c)のケースに類似した2つの上下方向の旋回流が形成される。すなわち誘導面15の上側が小さな旋回流となり、下側は大きな旋回流になる。これらの作用効果も図2(b)(c)のケースと同様である。   Next, when the angle of the extension portion 12b is changed so that the guide surface 15 of the second guide portion 12 is in the horizontal direction, two vertical swirl flows having the same size similar to the case of FIG. The two swirl flows are in opposite directions (the swirl flow on the upper side of the guide surface 15 is clockwise when viewed from the front of the figure and the lower side of the guide surface 15 is counterclockwise when viewed from the front of the figure). When the angle of the guiding surface 15 of the second guiding portion 12 is further changed upward, two vertical swirling flows similar to the case of FIG. 2C are formed. That is, the upper side of the guide surface 15 is a small swirl flow, and the lower side is a large swirl flow. These functions and effects are also the same as in the cases of FIGS.

図5は図1の例における流出室3の平断面形状(方形)を変えたものの模式的な図であり、流入室2とその周辺部分は図1の例と同じである。図5における(a)は流出室3の平断面が円形な側部を有するものであり、これに類似するものとして楕円形の側部を有するものでもよい。図5(b)は流出室3の平断面が小判状の側部を有するもので、図5(c)は流出室3の平断面が方円形の側部を有するものである。いずれの形状であっても流入室2における上下方向の旋回流の形成に対する影響はほとんどなく、流出室3の形状自由性の高いことが本発明の特徴である。   FIG. 5 is a schematic view of the outflow chamber 3 in the example shown in FIG. 1 with the flat cross-sectional shape (rectangular shape) changed, and the inflow chamber 2 and its peripheral portion are the same as in the example of FIG. (A) in FIG. 5 has the side part with the circular cross section of the outflow chamber 3, and it may have an elliptical side part as a thing similar to this. FIG. 5 (b) shows that the outflow chamber 3 has an oval side section, and FIG. 5 (c) shows that the outflow chamber 3 has a square side section. In any shape, there is almost no influence on the formation of a swirling flow in the vertical direction in the inflow chamber 2, and the feature of the present invention is that the outflow chamber 3 has a high shape freedom.

本発明の固体分離装置および固体分離方法は、下水道等の液体中に含まれる固形物を分離するために利用できる。   The solid separation device and the solid separation method of the present invention can be used to separate solids contained in a liquid such as a sewer.

1 分離装置
2 流入室
3 流出室
4、20 底部
5、21 前側部
6、22 後側部
7、23 右側部
8、24 左側部
9 供給部
10 第1誘導部
11 誘導面
12 第2誘導部
13 傾斜部
14 水平部
15 誘導面
16 スクリーン
25 蓋体
26 排出部
DESCRIPTION OF SYMBOLS 1 Separator 2 Inflow chamber 3 Outflow chamber 4, 20 Bottom part 5, 21 Front side part 6, 22 Rear side part 7, 23 Right side part 8, 24 Left side part 9 Supply part 10 First guide part 11 Guide surface 12 Second guide part 13 Inclination part 14 Horizontal part 15 Guide surface 16 Screen 25 Cover 26 Discharge part

Claims (4)

液体に含まれている固形物を分離する固体分離装置において、流入室と流出室を有する分離槽を備え、
流入室は、底部と該底部から上方に延長する前後左右の4つの側部を有し平断面方形な形状とされ、流入室内に水平方向の液体流を供給する供給部が前側部の上方または下方に形成され、前記水平方向の液体流を後側部の内面に沿った方向に変化させる誘導面を有する第1誘導部が前記供給部に対向して後側部に設けられ、前記方向変化した液体流を前側部に向かう水平方向の液体流に方向変化させる誘導面を有する第2誘導部がさらに後側部に設けられ、且つ該第2誘導部の誘導面は後側部に沿って上下方向に移動可能とされ、前記第1誘導部と第2誘導部の誘導面により流入室内の液体流が上下方向の旋回流を形成するように構成され、
流入室内の液体を流出室側に流出させるため、流入室に形成される旋回流の外周面と直交する前記流入室の右側部と左側部に、平面状のスクリーンが互いに平行に対向して形成されており、
流出室はその内面が前記流入室の4つの側部の外側を取り囲むように形成され、且つ流出室には液体の排出部が形成されていることを特徴とする固体分離装置。
In a solid separation device for separating solids contained in a liquid, a separation tank having an inflow chamber and an outflow chamber is provided,
The inflow chamber has a bottom portion and four side portions on the front, rear, left and right extending upward from the bottom portion and has a rectangular shape in cross section, and a supply portion for supplying a horizontal liquid flow into the inflow chamber is located above the front side portion or A first guide part formed below and having a guide surface that changes the liquid flow in the horizontal direction in a direction along the inner surface of the rear side part is provided on the rear side part facing the supply part, and the direction change A second guiding portion having a guiding surface for changing the direction of the liquid flow into a horizontal liquid flow toward the front side portion is further provided on the rear side portion, and the guiding surface of the second guiding portion extends along the rear side portion. It is configured to be movable in the vertical direction, and the liquid flow in the inflow chamber is configured to form a vertical swirl flow by the guide surfaces of the first guide part and the second guide part,
In order to allow the liquid in the inflow chamber to flow out to the outflow chamber, planar screens are formed in parallel to each other on the right and left sides of the inflow chamber perpendicular to the outer peripheral surface of the swirl flow formed in the inflow chamber. Has been
The outflow chamber is formed so that its inner surface surrounds the outside of the four side portions of the inflow chamber, and the liquid discharge portion is formed in the outflow chamber.
液体に含まれている固形物を分離する固体分離装置において、流入室と流出室を有する分離槽を備え、
流入室は底部と該底部から上方に延長する前後左右の4つの側部を有し平断面が方形な形状とされ、流入室内に水平方向の液体流を供給する供給部が前側部の上方または下方に形成され、前記水平方向の液体流を後側部の内面に沿った方向に変化させる誘導面を有する第1誘導部が前記供給部に対向して後側部に設けられ、前記方向変化した液体流を前側部に向かう液体流に方向変化させる誘導面を有する第2誘導部が後側部の中間部に設けられ、且つ第2誘導部の誘導面は前記後側部の固定位置を旋回中心とする上下方向の角度変化が可能とされ、それによって第2誘導部から前記前側部に向かう液体流の方向転換角度を上下方向に変化できるように構成され、前記第1誘導部と第2誘導部の誘導面により流入室内の液体流は上下方向の旋回流を形成するように構成され、
流入室内の液体を流出室側に流出させるため、流入室に形成される旋回流の外周面と直交する前記流入室の右側部と左側部に、平面状のスクリーンが互いに平行に対向して形成されており、
流出室はその内面が前記流入室の4つの側部の外側を取り囲むように形成され、且つ流出室には液体の排出部が形成されていることを特徴とする固体分離装置。
In a solid separation device for separating solids contained in a liquid, a separation tank having an inflow chamber and an outflow chamber is provided,
The inflow chamber has a bottom portion and four side portions on the front, rear, left and right extending upward from the bottom portion and has a rectangular cross section, and a supply portion for supplying a horizontal liquid flow into the inflow chamber is located above the front side portion or A first guide part formed below and having a guide surface that changes the liquid flow in the horizontal direction in a direction along the inner surface of the rear side part is provided on the rear side part facing the supply part, and the direction change A second guide portion having a guide surface for changing the direction of the liquid flow to the liquid flow toward the front side portion is provided in an intermediate portion of the rear side portion, and the guide surface of the second guide portion has a fixed position of the rear side portion. It is possible to change the angle in the vertical direction around the turning center, thereby changing the direction change angle of the liquid flow from the second guiding part to the front side part in the vertical direction. 2 The liquid flow in the inflow chamber is swung up and down by the guide surface of the guide section. It is configured to form a flow,
In order to allow the liquid in the inflow chamber to flow out to the outflow chamber, planar screens are formed in parallel to each other on the right and left sides of the inflow chamber perpendicular to the outer peripheral surface of the swirl flow formed in the inflow chamber. Has been
The outflow chamber is formed so that its inner surface surrounds the outside of the four side portions of the inflow chamber, and the liquid discharge portion is formed in the outflow chamber.
請求項1または請求項2において、前記流出室は平断面が流入室と相似形の方形、または平断面が円形、楕円形、方円形、小判型のいずれかであることを特徴とする固体分離装置。   3. The solid separation according to claim 1, wherein the outflow chamber has a square shape with a plane section similar to the inflow chamber, or a plane section with a circular shape, an elliptical shape, a square shape, or an oval shape. apparatus. 液体に含まれている固形物を分離する固体分離方法において、請求項1ないし請求項3のいずれかに記載の液体分離装置を用い、前記供給部から液体を流入して上下方向の旋回流を形成し、スクリーンで固形物を分離すると共に、スクリーンを通過して流出室に流出した液体を排出部から分離槽の外部に排出し、上下旋回流の回転中心軸近傍における液体中に負圧状態が発生するように前記供給部から供給する液体の流速を設定することを特徴とする固体分離方法。   In a solid separation method for separating a solid contained in a liquid, the liquid separation device according to any one of claims 1 to 3 is used, and a liquid is introduced from the supply unit to generate a vertical swirling flow. Form and separate the solids with the screen, and the liquid that has passed through the screen and flowed out into the outflow chamber is discharged from the discharge section to the outside of the separation tank, and the negative pressure state in the liquid near the rotation center axis of the vertical swirl flow The solid separation method is characterized in that the flow rate of the liquid supplied from the supply unit is set so as to be generated.
JP2011282636A 2011-12-26 2011-12-26 Solid separation apparatus and solid separation method Active JP5318188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011282636A JP5318188B2 (en) 2011-12-26 2011-12-26 Solid separation apparatus and solid separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011282636A JP5318188B2 (en) 2011-12-26 2011-12-26 Solid separation apparatus and solid separation method

Publications (2)

Publication Number Publication Date
JP2013133588A true JP2013133588A (en) 2013-07-08
JP5318188B2 JP5318188B2 (en) 2013-10-16

Family

ID=48910478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011282636A Active JP5318188B2 (en) 2011-12-26 2011-12-26 Solid separation apparatus and solid separation method

Country Status (1)

Country Link
JP (1) JP5318188B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134640A (en) * 2018-05-23 2018-08-30 株式会社日水コン Refuse separation system
JP2018144008A (en) * 2017-03-09 2018-09-20 ゼニス羽田株式会社 Separator and separation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187993A (en) * 1987-01-30 1988-08-03 Sharp Corp Special stereoscopic reproducing device for vtr
JPH078982A (en) * 1993-06-23 1995-01-13 Hitachi Plant Eng & Constr Co Ltd Revolving flow aeration apparatus
JP2002219478A (en) * 2001-01-25 2002-08-06 Sumitomo Heavy Ind Ltd Wastewater treatment equipment
JP2009279485A (en) * 2008-05-20 2009-12-03 Hanex Co Ltd Separation device and separation method
JP2010069350A (en) * 2008-09-16 2010-04-02 Hanex Co Ltd Separator
JP2010095953A (en) * 2008-10-20 2010-04-30 Hanex Co Ltd Separation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63187993A (en) * 1987-01-30 1988-08-03 Sharp Corp Special stereoscopic reproducing device for vtr
JPH078982A (en) * 1993-06-23 1995-01-13 Hitachi Plant Eng & Constr Co Ltd Revolving flow aeration apparatus
JP2002219478A (en) * 2001-01-25 2002-08-06 Sumitomo Heavy Ind Ltd Wastewater treatment equipment
JP2009279485A (en) * 2008-05-20 2009-12-03 Hanex Co Ltd Separation device and separation method
JP2010069350A (en) * 2008-09-16 2010-04-02 Hanex Co Ltd Separator
JP2010095953A (en) * 2008-10-20 2010-04-30 Hanex Co Ltd Separation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144008A (en) * 2017-03-09 2018-09-20 ゼニス羽田株式会社 Separator and separation method
JP6999914B2 (en) 2017-03-09 2022-01-19 ベルテクス株式会社 Separator
JP2018134640A (en) * 2018-05-23 2018-08-30 株式会社日水コン Refuse separation system

Also Published As

Publication number Publication date
JP5318188B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2009104572A1 (en) Separator and separation method
JP2009279485A (en) Separation device and separation method
KR20090112501A (en) Apparatus for Treatment of First Flush Rainfall
JP2017213560A (en) Transfer system
JP5318188B2 (en) Solid separation apparatus and solid separation method
JP6317249B2 (en) Sand settling device
CN102596374A (en) Membrane module, membrane unit, and membrane separation device
JP2016059912A (en) Sedimentation basin
US8182700B2 (en) Method and exhaust arrangement in the removal of surface scum
JP6475902B1 (en) Liquid collecting device in liquid tank and upward filtration device provided with the same
RU2630546C2 (en) Waste water treatment plant
RU192851U1 (en) FILTER-DIPPER
JP5318295B1 (en) Solid separation apparatus and solid separation method
JP2006198571A (en) Precipitator
JP2014008487A (en) Sedimentary sand separation apparatus
CN111468283A (en) Abnormal shape inclined plane is sorting unit against current
JP6999914B2 (en) Separator
RU2465944C2 (en) Device to separate phases in water-oil mix and inclined settler
CN204502480U (en) One leads heavy sloping plate deposition integral box
CN108975439A (en) A kind of omnidirectional's stream flotation unit
KR100962546B1 (en) Treatment apparatus for nonpoint pollution source
JP2015208709A (en) Vertical sand sedimentation pond
JP2007113321A (en) Reservoir hopper
JP2006161301A (en) Rainwater discharge chamber
KR101551854B1 (en) Vortex Generator for River water

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5318188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250