JP5318295B1 - Solid separation apparatus and solid separation method - Google Patents

Solid separation apparatus and solid separation method Download PDF

Info

Publication number
JP5318295B1
JP5318295B1 JP2013056165A JP2013056165A JP5318295B1 JP 5318295 B1 JP5318295 B1 JP 5318295B1 JP 2013056165 A JP2013056165 A JP 2013056165A JP 2013056165 A JP2013056165 A JP 2013056165A JP 5318295 B1 JP5318295 B1 JP 5318295B1
Authority
JP
Japan
Prior art keywords
liquid
chamber
filter body
passage
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013056165A
Other languages
Japanese (ja)
Other versions
JP2014180615A (en
Inventor
不二夫 仙波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hanex Co Ltd
Original Assignee
Hanex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hanex Co Ltd filed Critical Hanex Co Ltd
Priority to JP2013056165A priority Critical patent/JP5318295B1/en
Application granted granted Critical
Publication of JP5318295B1 publication Critical patent/JP5318295B1/en
Publication of JP2014180615A publication Critical patent/JP2014180615A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】工場や施設から排出される液体、一般の下水などに含まれている固形物を液体から分離する固体分離装置と固体分離方法を提供する。
【解決手段】液体に含まれている固形物を分離する装置1において、垂直方向に延長する板状の濾過体16で互いに仕切られた流入室2と流出室3、およびその流出室3に連通する排出室31とを備え、流入室2には液体の供給部9が設けられ、流出室3には濾過体16の液体排出側16bに連通する液体の下降通路32が設けられ、下降通路32の下部で且つ前記濾過体の下端より下方に気泡供給部36が設けられ、流出室3の上部に気体排出部25aが設けられ、排出室31には液体の上昇通路33が設けられ、該上昇通路33の上部に液体の排出部26が設けられ、気泡供給部より低い下降通路32の下部と上昇通路33の下部が互いに連通している。
【選択図】 図1
A solid separation device and a solid separation method are provided for separating solids contained in liquid discharged from factories and facilities, general sewage, and the like from liquids.
In an apparatus for separating solids contained in a liquid, an inflow chamber 2 and an outflow chamber 3 which are partitioned from each other by a plate-like filter body 16 extending in a vertical direction, and the outflow chamber 3 communicate with each other. A liquid supply unit 9 is provided in the inflow chamber 2, and a liquid descending passage 32 communicating with the liquid exhaust side 16 b of the filter body 16 is provided in the outflow chamber 3. The bubble supply part 36 is provided below the lower end of the filter body and below the lower end of the filter body, the gas discharge part 25a is provided at the upper part of the outflow chamber 3, and the liquid rising passage 33 is provided in the discharge chamber 31. A liquid discharge portion 26 is provided in the upper portion of the passage 33, and a lower portion of the descending passage 32 and a lower portion of the ascending passage 33 which are lower than the bubble supply portion communicate with each other.
[Selection] Figure 1

Description

本発明は各分野の工場や施設から排出される液体、または一般の下水などに含まれている固形物(以下、固体と称する)を液体から分離する固体分離装置に関し、特に濾過体の液体処理能力を高めた高効率な固体分離装置と固体分離方法に関する。   The present invention relates to a solid separation apparatus for separating liquid discharged from factories and facilities in various fields or solids (hereinafter referred to as solids) contained in general sewage, etc. from liquid, and in particular, liquid treatment of a filter body. The present invention relates to a high-efficiency solid separation apparatus and a solid separation method with enhanced capabilities.

都市部に敷設される下水道に流入する雨水などの排水は、その一部が雨水貯留浸透設備などにより地中に貯留若しくは排出され、残りは河川に放流される。下水道を流通する雨水中には土砂、種々のゴミ類、紙類、落ち葉、等の固体が混入しており、それら固体が雨水貯留設備に流入すると、設備のメンテナンスを頻繁に行う必要があり、コスト的にも不利になる。また浸水対策のための雨水貯留設備等において、固体を除去せずに一時的に地下に貯留した雨水は、晴天時にポンプアップして河川に放流されることになり、河川の水質汚濁や環境汚染問題を発生する。   A part of drainage such as rainwater flowing into sewers laid in urban areas is stored or discharged in the ground by rainwater storage and penetration facilities, and the rest is discharged into rivers. The rainwater flowing through the sewer is mixed with solids such as earth and sand, various garbage, papers, fallen leaves, etc., and when these solids flow into the rainwater storage facility, it is necessary to frequently maintain the equipment, It is also disadvantageous in terms of cost. Also, in rainwater storage facilities for inundation countermeasures, rainwater temporarily stored in the basement without removing solids will be pumped up and released into rivers in fine weather, resulting in river water pollution and environmental pollution. Cause problems.

一方、工場などの廃水処理設備等に流入する廃水中には、製造過程で発生する微細な切削粉や木片、ゴミ類などの固体が混入していることが多く、下水道と同様な問題が生じる。そこで、このような水質汚濁や環境汚染を回避する手段として、下水道管路や廃水管路または処理設備の上流側に固体を予め分離する分離装置を設けている。   On the other hand, wastewater flowing into wastewater treatment facilities in factories and the like often contains solids such as fine cutting powder, wood chips, and garbage generated in the manufacturing process, resulting in the same problems as sewerage. . Therefore, as a means for avoiding such water pollution and environmental pollution, a separation device for separating solids in advance is provided on the upstream side of the sewer pipe, the waste water pipe, or the processing equipment.

さらに、下水道や工場排水には固体のほかに食用油や潤滑油などの油分が含まれていることも多く、これら油分も固形物と一緒に分離除去することが望ましい。   Furthermore, sewerage and industrial wastewater often contain oils such as edible oils and lubricating oils in addition to solids, and these oils are preferably separated and removed together with solids.

特許文献1には、下水道などの管路に設ける固体の分離装置が開示されている。特許文献1の分離装置は分離槽と、分離槽の内部を流入室と流出室に仕切る仕切板と、仕切板に設けた濾過体(スクリーン)と、流入室に形成された流入部と、流出室に形成された排出部とを備えている。そして、流入室には流入部から流入する液体を反転させて該流入室内に上下方向の旋回流を形成するための誘導部が流入室の上下に設けられている。   Patent Document 1 discloses a solid separation device provided in a pipeline such as a sewer. The separation device of Patent Document 1 includes a separation tank, a partition plate that partitions the inside of the separation tank into an inflow chamber and an outflow chamber, a filter (screen) provided in the partition plate, an inflow portion formed in the inflow chamber, and an outflow And a discharge portion formed in the chamber. The inflow chamber is provided with guide portions at the top and bottom of the inflow chamber for reversing the liquid flowing from the inflow portion to form a vertical swirling flow in the inflow chamber.

特許文献1の分離装置は、流入室に設けた誘導部により供給される液体流が上下方向の旋回流に変化され、形成される旋回流の外周面と直交する方向の両側(旋回流の両側面)に2枚の濾過体が互いに平行に対向配置されている。流入室内の液体は濾過体で固体を分離されて流出室側に流出し、流出室に流出した液体はそこに設けた排出部から分離装置の外部に排出される。   In the separation device of Patent Document 1, the liquid flow supplied by the guide portion provided in the inflow chamber is changed into a vertical swirl flow, and both sides in a direction orthogonal to the outer peripheral surface of the swirl flow formed (both sides of the swirl flow). Two filter bodies are arranged in parallel to each other on the surface). The liquid in the inflow chamber is separated into solids by the filter body and flows out to the outflow chamber side, and the liquid that has flowed out to the outflow chamber is discharged to the outside of the separation device from the discharge section provided there.

特許第4395190号公報Japanese Patent No. 4395190

通常、液体に含まれている固体には種々の大きさのものが存在する。固体分離をする濾過体は、取り除くべき固体の最小寸法に応じてその開口寸法(例えばスクリーンの場合はスクリーンの孔径や間隙寸法、またはメッシュ値などの通過可能な固体の最小寸法や最小直径に対応する開口値)が選択される。   Usually, there are various sizes of solids contained in the liquid. Filter bodies that separate solids correspond to the minimum dimensions of the solids to be removed (for example, in the case of screens, the pore size and gap size of the screen, or the minimum and minimum diameters of solids that can be passed, such as mesh values). Aperture value) to be selected.

そのため取り除かなければならない固体の最小寸法が小さくなるほど、濾過体の開口寸法もそれに応じて小さくする必要がある。しかし濾過体の単位面積当たりの液体処理能力は、その開口寸法の大きさに反比例するので、液体処理能力も開口寸法の大きさに反比例して低下する。特に、ごく微細な固体も下流側に流出させないようにする場合は、処理液体量に適合するように分離装置の濾過体の処理面積をかなり大きくする必要があり、分離装置のコストアップとなり必要な設置面積も大きくなるという問題がある。また濾過体の開口寸法が小さいほど目詰まりしやすくなるので、洗浄などのメンテナンスの間隔も短くなり、メンテナンスコストも上昇する。   Therefore, the smaller the minimum size of the solid that must be removed, the smaller the opening size of the filter body. However, since the liquid processing capacity per unit area of the filter body is inversely proportional to the size of the opening dimension, the liquid processing capacity also decreases in inverse proportion to the size of the opening dimension. In particular, in order to prevent very fine solids from flowing downstream, it is necessary to significantly increase the processing area of the filter body of the separation device so as to match the amount of liquid to be processed, which increases the cost of the separation device. There is a problem that the installation area becomes large. Also, the smaller the opening size of the filter body, the easier it becomes to clog, so the maintenance interval such as cleaning becomes shorter and the maintenance cost also increases.

前記課題を解決するために本発明者らが種々調査した結果、一般的な排水中に含まれているごく微細な固体、例えば数ミクロン〜数ミリ程度の固体の割合は、液体中に含まれている固体の全体量に比べて極めて低いことが分かった。しかし、そのような少量の微細な固体が液体中に含まれている場合であっても、それを下流側に出来るだけ流出させないよう要求される場合が多いことも現実問題として存在する。   As a result of various investigations by the present inventors to solve the above-mentioned problems, a very fine solid contained in general waste water, for example, a ratio of a solid of about several microns to several millimeters is contained in the liquid. It was found to be very low compared to the total amount of solids. However, even when such a small amount of fine solid is contained in the liquid, there is a real problem that it is often required to prevent it from flowing out as much as possible downstream.

また近年、雨水や排水の高度処理による循環利用に膜処理が利用されるようになっているが、効率よく処理するには固体による目詰まりの低減が必要で、それには膜処理工程の前で出来るだけ多くの固体(微細な固体も含めて)を除去することが重要になる。   In recent years, membrane treatment has come to be used for recycling by advanced treatment of rainwater and wastewater, but for efficient treatment, it is necessary to reduce clogging caused by solids. It is important to remove as many solids as possible (including fine solids).

本発明の固体分離装置および固体分離方法は、従来方式とは異なる新しい「二段分離方式」を採用することによって、前記種々の問題を解決したものである。   The solid separation apparatus and solid separation method of the present invention solve the above-mentioned various problems by adopting a new “two-stage separation method” different from the conventional method.

すなわち本発明の固体分離装置は、液体に含まれている固形物を分離する装置において、垂直方向に延長する板状の濾過体で互いに仕切られた流入室と流出室、およびその流出室に連通する排出室とを備え、流入室には液体の供給部が設けられ、流出室には濾過体の液体排出側に連通する液体の下降通路が設けられ、下降通路の下部で且つ前記濾過体の下端より下方に気泡供給部が設けられ、流出室の上部に気体排出部が設けられ、排出室には液体の上昇通路が設けられ、該上昇通路の上部に液体の排出部が設けられ、気泡供給部より低い下降通路の下部と前記上昇通路の下部が互いに連通していることを特徴とする固体分離装置である(請求項1)。   That is, the solid separation device of the present invention is a device for separating solids contained in a liquid, and communicates with an inflow chamber and an outflow chamber separated from each other by a plate-like filter body extending in the vertical direction, and the outflow chamber. A liquid supply portion is provided in the inflow chamber, a liquid descending passage communicating with the liquid discharge side of the filter body is provided in the outflow chamber, a lower portion of the descending passage and the filter body. A bubble supply unit is provided below the lower end, a gas discharge unit is provided in the upper part of the outflow chamber, a liquid rising passage is provided in the discharge chamber, a liquid discharge unit is provided in the upper part of the rising passage, The lower part of the downward passage lower than the supply section and the lower part of the upward passage communicate with each other (Claim 1).

上記分離装置において、流入室として平断面が方形に形成されたものを使用し、流入室の対向する2つの垂直な側部に濾過体をそれぞれ形成し、流出室を流入室の縦方向周囲の外側を囲むように設け、気泡供給部は、そこから供給する気泡が前記2つの濾過体の液体排出側をそれぞれ上昇するように構成することができる(請求項2)。   In the separation apparatus, the inflow chamber having a square cross section is used, the filter body is formed on each of the two opposing vertical sides of the inflow chamber, and the outflow chamber is formed around the longitudinal direction of the inflow chamber. The bubble supply unit may be configured so as to surround the outside, and the bubbles supplied from the bubble supply unit may be configured to rise on the liquid discharge side of the two filter bodies, respectively.

上記いずれかの分離装置において、液体の供給部を濾過体の液体流入側の面に沿って平行に液体流が供給できるように形成し、さらに流入室内には前記供給された液体流を濾過体の液体流入側の面に沿って方向転換して上下方向の旋回流を形成させる誘導部を設け、供給部から流入室内に供給された液体は、誘導部により流入室内を旋回して上下方向の旋回流を形成し、前記濾過体はその面が該旋回流の回転中心軸に直交する面と平行するように配置することができる(請求項3)。   In any of the above-described separation devices, the liquid supply unit is formed so that a liquid flow can be supplied in parallel along the surface on the liquid inflow side of the filter body, and the supplied liquid flow is further filtered into the filter body. The liquid is supplied to the inflow chamber from the supply section by turning around the liquid inflow side surface of the liquid, and the liquid supplied from the supply section into the inflow chamber is swung through the inflow chamber in the vertical direction. A swirling flow is formed, and the filter body can be arranged so that its surface is parallel to a surface orthogonal to the rotation center axis of the swirling flow.

また本発明の液体に含まれる固体を分離装置で分離する方法は、分離装置に設けた濾過体に液体を通過させて固体を分離し、濾過体を通過した液体を下降通路で下降させた後、更に上昇通路で上昇させて分離装置の外部に排出し、一方、気泡を前記下降通路の下部に供給し、下降通路を下降する液体に含まれる比較的比重の小さい固体を上昇する気泡で捕捉して下降通路の上部に滞留させ、分離装置の外部に排出しないようにしたことを特徴とする(請求項4)。   In the method of separating a solid contained in the liquid of the present invention by a separation device, the liquid is passed through a filter body provided in the separation device to separate the solid, and the liquid that has passed through the filter body is lowered by a descending passage. Further, the liquid is further raised in the ascending passage and discharged to the outside of the separation device. On the other hand, the bubbles are supplied to the lower part of the descending passage, and the solid having a relatively low specific gravity contained in the liquid descending the descending passage is captured by the rising bubbles. Then, it stays in the upper part of the descending passage and is not discharged to the outside of the separator (claim 4).

また上記固体分離方法において、液体にさらに油分が含まれ、その油分が濾過体から流出室に通過し、液体と共に下降通路に下降した際には、前記上昇する気泡で下降する油分を捕捉し、下降通路の上部に滞留させることができる(請求項5)。   Further, in the solid separation method, when the liquid further contains oil, and the oil passes from the filter body to the outflow chamber and descends together with the liquid to the descending passage, the oil that descends with the rising bubbles is captured, It can be made to stay in the upper part of a downward passage (Claim 5).

本発明の固体分離装置は、垂直方向に延長する板状の濾過体で互いに仕切られた流入室と流出室、及びその流出室に連通する排出室とを備え、流入室に液体の供給部が設けられ、流出室には濾過体の液体排出側に連通する液体の下降通路が設けられ、下降通路の下部で且つ前記濾過体の下端より下方に空気などの細かい気泡を多数供給する気泡供給部が設けられ、流出室の上部に気体排出部が設けられ、排出室には液体の上昇通路が設けられ、該上昇通路の上部に液体の排出部が設けられ、気泡供給部より低い下降通路の下部と前記上昇通路の下部が互いに連通していることを特徴とする。   The solid separation device of the present invention includes an inflow chamber and an outflow chamber that are partitioned from each other by a plate-like filter body extending in the vertical direction, and a discharge chamber that communicates with the outflow chamber. A bubble supply unit provided in the outflow chamber is provided with a liquid descending passage communicating with the liquid discharge side of the filter body, and supplies a large number of fine bubbles such as air below the descending passage and below the lower end of the filter body A gas discharge part is provided in the upper part of the outflow chamber, a liquid ascending passage is provided in the discharge chamber, a liquid discharge part is provided in the upper part of the ascending passage, and the lowering passage is lower than the bubble supply part. The lower portion and the lower portion of the rising passage communicate with each other.

この構成によれば、流入室に供給された液体は濾過体を通過する際に、濾過体の開口寸法より大きい固体が分離され(1段目分離)、それより小さい固体は液体と共に流出室に流出する。その際、流出室側の液流は大きな面積を有する部分である濾過体により減速されると共に均一化(整流化)される。そして流出室に流出した液体は下降通路を下降し、次いで排出室に入り、その上昇通路を上昇して排出部から外部に排出する。   According to this configuration, when the liquid supplied to the inflow chamber passes through the filter body, solids larger than the opening size of the filter body are separated (first-stage separation), and smaller solids together with the liquid enter the outflow chamber. leak. At that time, the liquid flow on the outflow chamber side is decelerated and made uniform (rectified) by the filter body which is a portion having a large area. Then, the liquid that has flowed into the outflow chamber descends the descending passage, then enters the discharge chamber, rises through the ascending passage, and is discharged from the discharge portion to the outside.

液体が下降通路を下降する際に、その下方に設けられた気泡供給部から供給されて下降通路を上昇する多数の細かい気泡と液体が上下方向で互いに交錯する。気泡の一部は上昇しながら液体に含まれている固体に付着してそれを捕捉し、その浮遊力(上昇力)により、液体の下降力に逆らって捕捉した固体を伴い上昇し、下降通路の上部に固体を滞留させる(2段目分離)。そのため、濾過体を通過した微細な固体は排出部から外部に排出されることはない。一方、下降通路の液面領域(上部空間に接する領域)に到達した気泡の一部は空気中に放出され、分離装置の上部に設けた気体排出部から外部に排出する。   When the liquid descends the descending passage, a large number of fine bubbles and the liquid that are supplied from the bubble supply section provided below the descending passage and ascend the descending passage cross each other in the vertical direction. Some of the bubbles rise and adhere to the solid contained in the liquid and catch it, and the floating force (rising force) rises along with the trapped solid against the descending force of the liquid. The solid is retained at the top of the (second stage separation). Therefore, the fine solid that has passed through the filter body is not discharged to the outside from the discharge portion. On the other hand, some of the bubbles that have reached the liquid level region (region in contact with the upper space) of the descending passage are discharged into the air and discharged to the outside from the gas discharge portion provided at the upper portion of the separation device.

上記のように作用する本発明の分離装置によれば、例え微細な固形物であっても下流側に排出できないような場合も、濾過体の開口寸法を極端に小さくする必要はなく、適度の開口寸法に設定することが可能となる。したがって従来のように分離装置の濾過体面積を増加する必要はなく、装置設置面積も小さくなり、洗浄などのメンテナンス間隔も長くなり、コスト面でも有利になる。   According to the separation device of the present invention that operates as described above, even if a fine solid matter cannot be discharged to the downstream side, it is not necessary to extremely reduce the opening size of the filter body. It becomes possible to set to an opening dimension. Therefore, it is not necessary to increase the filter body area of the separation apparatus as in the prior art, the apparatus installation area is reduced, the maintenance interval such as cleaning is increased, and this is advantageous in terms of cost.

さらに上記本発明において、流体に固体ほかに油分が含まれている場合は、通常油分は濾過体を通過し易いので微細な固体と共に流出室に流出する。しかしこのような油分も前記と同様に下降通路において上昇する気泡に捕捉され、下降通路の上部に滞留する。その結果、油分も効率よく分離されて分、離装置の下流側に油分が排出することはない。   Further, in the present invention, when the fluid contains oil in addition to the solid, the oil usually flows through the filter body and flows out into the outflow chamber together with the fine solid. However, such oil is also trapped in the bubbles rising in the descending passage as described above and stays in the upper part of the descending passage. As a result, the oil component is also efficiently separated and the oil component is not discharged downstream of the separation device.

上記分離装置において、流入室として平断面が方形に形成されたものを使用し、流入室の対向する2つの垂直な側部に濾過体をそれぞれ形成し、流出室を前記流入室の縦方向周囲の外側を囲むように設け、気泡供給部は、そこから供給する気泡が前記2つの濾過体の液体排出側をそれぞれ上昇するように構成することができる。   In the above separation apparatus, the inflow chamber having a square cross section is used, the filter body is formed on each of the two opposing vertical sides of the inflow chamber, and the outflow chamber is formed around the longitudinal direction of the inflow chamber. The bubble supply unit can be configured such that the bubbles supplied from the bubble supply unit rise on the liquid discharge side of the two filter bodies.

この構成によれば、濾過体の合計面積を大きくできるので、液体処理能力が更に向上する。また、流出室における液体の流速もそれに応じて低下するので、気泡による固形物捕捉効率もさらに向上する。   According to this configuration, since the total area of the filter body can be increased, the liquid processing capacity is further improved. In addition, since the flow rate of the liquid in the outflow chamber is reduced accordingly, the solid matter capturing efficiency by the bubbles is further improved.

上記いずれかの分離装置において、液体の供給部を濾過体の液体流入側の面に沿って平行に液体流が供給できるように形成し、さらに流入室内には前記供給された液体流を濾過体の液体流入側の面に沿って方向転換して上下方向の旋回流を形成させる誘導部を設け、供給部から流入室内に供給された液体は、誘導部により流入室内を旋回して上下方向の旋回流を形成し、前記濾過体はその面が該旋回流の回転中心軸に直交する面と平行するように配置することができる。   In any of the above-described separation devices, the liquid supply unit is formed so that a liquid flow can be supplied in parallel along the surface on the liquid inflow side of the filter body, and the supplied liquid flow is further filtered into the filter body. The liquid is supplied to the inflow chamber from the supply section by turning around the liquid inflow side surface of the liquid, and the liquid supplied from the supply section into the inflow chamber is swung through the inflow chamber in the vertical direction. A swirling flow is formed, and the filter body can be arranged so that its surface is parallel to a surface orthogonal to the rotation center axis of the swirling flow.

この構成によれば、流入室側では液体が比較的高速の上下方向旋回流となり、濾過体で分離された固体は濾過体の液体流入側の面に平行に旋回しながら、その重力で流入室底部に蓄積していく。流入室に流入する液体による濾過体面への固体押し付け作用も極めて小さいので、濾過体が固体で目詰まりすることを抑制できる。また、流入室側で液体が比較的高速で旋回しても、液体が濾過体を通過する際にはその流速が大幅に減速し、ほぼ均一化した整流状態で流出室側に流出するので、流出室における前記気泡による固体捕捉作用を妨げることはない。   According to this configuration, the liquid becomes a relatively high-speed vertical swirling flow on the inflow chamber side, and the solid separated by the filter body swirls in parallel with the surface of the filter body on the liquid inflow side, and its gravity causes the inflow chamber. Accumulate at the bottom. Since the solid pressing action on the surface of the filter body by the liquid flowing into the inflow chamber is also extremely small, the filter body can be prevented from being clogged with solids. Also, even if the liquid swirls at a relatively high speed on the inflow chamber side, when the liquid passes through the filter body, the flow velocity is greatly reduced, and the liquid flows out to the outflow chamber side in a substantially uniform rectified state. The solid trapping action by the bubbles in the outflow chamber is not disturbed.

また本発明の液体に含まれる固体を分離装置で分離する方法は、分離装置に設けた濾過体に液体を通過させて固体を分離し、濾過体を通過した液体を下降通路で下降させた後、更に上昇通路で上昇させて分離装置の外部に排出し、一方、気泡を前記下降通路の下部に供給し、下降通路を下降する液体に含まれる比較的比重の小さい固体を上昇する気泡で捕捉して下降通路の上部に滞留させ、分離装置の外部に排出しないようにしたことを特徴とする。   In the method of separating a solid contained in the liquid of the present invention by a separation device, the liquid is passed through a filter body provided in the separation device to separate the solid, and the liquid that has passed through the filter body is lowered by a descending passage. Further, the liquid is further raised in the ascending passage and discharged to the outside of the separation device. On the other hand, the bubbles are supplied to the lower part of the descending passage, and the solid having a relatively low specific gravity contained in the liquid descending the descending passage is captured by the rising bubbles. Then, it is retained in the upper part of the descending passage and is not discharged to the outside of the separation device.

このように構成した固体分離方法によれば、濾過体を通過し下降通路を下降する固体は、そこで上昇する気泡に捕捉され、気泡の上昇力により液体の下降力に逆らって上昇し、下降通路の上部に滞留される。そのため極端に開口寸法が小さな濾過体を使用しなくても、かなり微細な固体まで分離装置内で捕捉することができ、濾過体の単位面積当たりの液体処理能力を向上させることができる。また濾過体の目詰まり等による必要なメンテナンスの間隔も長くでき、それによってメンテナンスコストも抑制できる。   According to the solid separation method configured as described above, the solid passing through the filter body and descending the descending passage is captured by the bubbles rising there, and rises against the descending force of the liquid by the ascending force of the bubbles, and the descending passage It stays on top of. Therefore, even if a filter body having an extremely small opening size is not used, a considerably fine solid can be captured in the separation device, and the liquid throughput per unit area of the filter body can be improved. In addition, the necessary maintenance interval due to clogging of the filter body can be lengthened, thereby reducing the maintenance cost.

上記固体分離方法において、液体にさらに油分が含まれ、その油分が濾過体から流出室に通過し、液体と共に下降通路に下降した際には、前記上昇する気泡で下降する油分を捕捉し、下降通路の上部に滞留させることができる。   In the solid separation method, when the liquid further contains an oil component, and the oil component passes from the filter body to the outflow chamber and descends together with the liquid to the descending passage, the oil component descending with the rising bubbles is captured and lowered. It can be retained in the upper part of the passage.

このように構成した固体分離方法によれば、下降通路を下降する液体に含まれている油分は、上昇する気泡に捕捉され、気泡の上昇力により液体の下降力に逆らって上昇し、下降通路の上部に滞留されるので、油分が分離装置の下流側に排出されることはない。 According to the solid separation method configured as described above, the oil contained in the liquid descending the descending passage is captured by the rising bubbles, and rises against the descending force of the liquid by the ascending force of the bubbles, and the descending passage The oil component is not discharged to the downstream side of the separation device.

本発明に係る固体分離装置の実施例を示す図である。It is a figure which shows the Example of the solid-separation apparatus which concerns on this invention.

次に図面により本発明の実施例を説明する。図1は本発明の固体分離装置の実施態様の1例を示すもので、図1における(a)は(b)のB−B矢視の平断面図、(b)は(a)のA−A矢視の側断面図である。   Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an embodiment of the solid separation device of the present invention, in which (a) in FIG. 1 is a plan sectional view taken along the line BB in (b), and (b) is A in (a). It is a sectional side view of -A arrow.

分離装置1は流入室2と、その流入室2の縦方向に垂直な周囲の外側を囲むように設けられた流出室3を有する分離槽を備えている。流入室2は平坦な底部4と該底部4から上方に垂直に延長する前後左右の4つの側部、すなわち、それぞれが平板状の前側部5、後側部6、右側部(前側部5から見て右側)7、左側部(前側部5から見て左側)8を有し、各側部は底部4から垂直上方に延長し、図1(a)に示すように、平断面が長辺と短辺からなる平断面方形な形状になっている。   The separation apparatus 1 includes a separation tank having an inflow chamber 2 and an outflow chamber 3 provided so as to surround the outside of the periphery perpendicular to the longitudinal direction of the inflow chamber 2. The inflow chamber 2 has a flat bottom portion 4 and four side portions on the front, rear, left and right extending vertically upward from the bottom portion 4, that is, a flat front side portion 5, a rear side portion 6, and a right side portion (from the front side portion 5). Right side 7), left side 8 (left side viewed from the front side part 5) 8, each side part extends vertically upward from the bottom part 4, as shown in FIG. And it has a rectangular shape with a flat cross section consisting of short sides.

なお、図示の分離装置では流入室2の上端部が開口され、下水道の増水などの非常時に、流入室2から流出室3に液体はオーバフロー可能になっているが、流入室2の上端部に図示しない蓋を着脱自在に密着固定して流入室2内の液体を加圧状体にして運転することもできる。   In the illustrated separation device, the upper end of the inflow chamber 2 is opened, so that liquid can overflow from the inflow chamber 2 to the outflow chamber 3 in the event of an emergency such as an increase in sewerage. It is also possible to operate by making a liquid in the inflow chamber 2 into a pressurized state by detachably fixing a lid (not shown).

流入室2の前側部5の上方に液体の供給部9が形成される。供給部9は流出室3及び流入室2の前側部5を水平方向に貫通する管で構成され、処理すべき液体を流入室2内にその上方から後側部6に向けて水平に、且つ、後側部6の面に対して垂直に噴出するようになっている。このように液体を供給すると、流入室2内の液体は、後述する濾過体16の液体流入側16aの面に沿ってそれに平行な液流になる。   A liquid supply portion 9 is formed above the front side portion 5 of the inflow chamber 2. The supply unit 9 is composed of a pipe penetrating the outflow chamber 3 and the front side portion 5 of the inflow chamber 2 in the horizontal direction, and the liquid to be processed is horizontally introduced into the inflow chamber 2 from above to the rear side portion 6. The jet is perpendicular to the surface of the rear side portion 6. When the liquid is supplied in this way, the liquid in the inflow chamber 2 becomes a liquid flow parallel to the liquid inflow side 16a of the filter body 16 to be described later.

流入室2の後側部6の上方であって供給部9と対向する位置(具体的には、供給部9から水平に噴出する液体流が、そのまま水平移動したときに突き当たる位置)に第1誘導部10が設けられている。第1誘導部10は平板からなり、前側部5の方向に向かって図示のように傾斜した状態で後側部6に固定され、その状態における第1誘導部10の傾斜した平坦な下面が液流の誘導面11を形成する。   A first position above the rear side portion 6 of the inflow chamber 2 and facing the supply portion 9 (specifically, a position where the liquid flow ejected horizontally from the supply portion 9 abuts when moving horizontally as it is). A guiding part 10 is provided. The first guide portion 10 is formed of a flat plate, and is fixed to the rear side portion 6 in an inclined state as shown in the drawing toward the front side portion 5, and the inclined flat lower surface of the first guide portion 10 in that state is a liquid. A flow guide surface 11 is formed.

第1誘導部10より下方の後側部6、すなわち底部4に近い位置に、第2誘導部12が設けられている。第2誘導部12は第1誘導部10と同様な形状を有し、前側部5の方向に向かって図示のように傾斜した状態で後側部6に固定され、その状体における第2誘導部12の傾斜した平坦な上面が液流の誘導面13を形成する。なお、場合によっては第2誘導部12を省略することもできる。さらに、前側部5の下方に第2誘導部12と対向して上方に傾斜面を有する第3誘導部を設けることもできる。   A second guiding portion 12 is provided at a position close to the rear side portion 6 below the first guiding portion 10, that is, the bottom portion 4. The second guide portion 12 has the same shape as the first guide portion 10 and is fixed to the rear side portion 6 in a state inclined as shown in the drawing toward the front side portion 5, and the second guide in the state body. The inclined flat upper surface of the portion 12 forms the liquid flow guide surface 13. In some cases, the second guiding portion 12 can be omitted. Furthermore, a third guide part having an inclined surface above the second guide part 12 may be provided below the front side part 5.

流入室2の右側部7と左側部8の各面にそれぞれ平板状の方形な濾過体16が互いに平行になるように対向して装着される。濾過体16は流入室2側の液体をその液体流入側の面16aから液体流出側の面16bに通過して流出室3側に流出させ、液体に含まれる固体のうち、濾過体の開口寸法以上の固体の通過を阻止する。   A flat plate-like rectangular filter body 16 is mounted on each surface of the right side portion 7 and the left side portion 8 of the inflow chamber 2 so as to be parallel to each other. The filter body 16 causes the liquid on the inflow chamber 2 side to flow from the liquid inflow side surface 16a to the liquid outflow side surface 16b and outflow to the outflow chamber 3 side, and among the solids contained in the liquid, the opening size of the filter body Blocking the passage of these solids.

図1の例では、濾過体16は流入室2の右側部7と左側部8の各面にそれと平行し、且つ、平板状の方形な濾過体16が互いに平行になるように対向して装着されている。なお濾過体16を流入室2の右側部7と左側部8のいずれか一方だけに装着することもできる。   In the example of FIG. 1, the filter body 16 is mounted on the right side 7 and the left side 8 of the inflow chamber 2 so as to be parallel to each other and so that the flat rectangular filter bodies 16 are parallel to each other. Has been. The filter body 16 can also be attached to only one of the right side portion 7 and the left side portion 8 of the inflow chamber 2.

本発明に使用する濾過体16には、直線状に連通空隙を有するものとして、網状のスクリーン、パンチングプレート型のスクリーン、ウェッジワイヤ型のスクリーンなどがあり、同一形状ではなく複雑に三次元的に連通している空隙を有するものとして、複数の金属メッシュを積層した板状の濾過体、非金属性の濾材を金属メッシュでサンドイッチした濾過体、フエルト状濾過体、三次元状の微細な連通孔を有するポーラスコンクリート板からなる濾過体などがある。   The filter body 16 used in the present invention includes a net-like screen, a punching plate type screen, a wedge wire type screen, etc., having linear communication gaps. A plate-like filter body in which a plurality of metal meshes are laminated, a filter body in which nonmetallic filter media are sandwiched with metal meshes, a felt-like filter body, and a three-dimensional fine communication hole. There is a filter body made of a porous concrete board having

例えばウェッジワイヤ型のスクリーンを使用する場合は、そのウェッジワイヤの軸が上下方向になるように装着することが望ましい。ウェッジワイヤ型のスクリーンを装着する場合、右側部7と左側部8にそれぞれ方形な開口部を形成し、開口部の垂直な両側部にそれぞれスライドガイドを形成し、平板状の方形なウェッジワイヤ型のスクリーンを上方から滑らせて装着する方法を採用することができる。   For example, when a wedge wire type screen is used, it is desirable to mount the wedge wire so that the axis of the wedge wire is in the vertical direction. When a wedge wire type screen is mounted, a rectangular opening is formed on each of the right side portion 7 and the left side portion 8, slide guides are formed on both sides perpendicular to the opening portion, and a flat rectangular wedge wire type is formed. It is possible to adopt a method of sliding the screen from above and mounting it.

図1には図示されていないが、流入室2の下方領域、例えば流入室2の上下方向の下から五分の一〜十分の一程度の高さに、底部4と平行に仕切板を設け、その仕切板の一部に開口部を設けることもできる。開口部の位置は旋回流が図1において時計方向に旋回するように構成されている場合は前側部5に近い領域に、反時計方向に旋回するように構成されている場合は後側部6に近い領域とすることが好ましい。また開口部の大きさは仕切板の面積の十分の一〜二十分の一程度でよい。そして仕切板の下方に形成される室(第2流入室)を濾過体で分離した固体の集積室とする。集積室には集積した固体を外部に取り出すための開閉式の扉や吸引管などを設ける。   Although not shown in FIG. 1, a partition plate is provided in parallel with the bottom portion 4 at a lower region of the inflow chamber 2, for example, a height of about one fifth to one-tenth from below in the vertical direction of the inflow chamber 2. An opening can be provided in a part of the partition plate. The position of the opening is in a region close to the front side 5 when the swirling flow is swung clockwise in FIG. 1, and the rear side 6 when swirling counterclockwise. It is preferable that the region be close to. The size of the opening may be about 1/10 to 1/2 of the area of the partition plate. The chamber (second inflow chamber) formed below the partition plate is a solid accumulation chamber separated by a filter body. The accumulation chamber is provided with an openable / closable door and a suction tube for taking out the accumulated solid.

流出室3は平坦な上面を有する底部20と、該底部20から上方に延長する前後左右の4つの側部、すなわちそれぞれが平板状の前側部21、後側部22、右側部23および左側24を有し、各側部は底部20から上方に垂直に延長する。本実施形態の流出室は、平断面が長辺と短辺からなる方形であって、流入室2の平断面と相似形になっており、各側部の上縁部には上方から蓋体25が着脱自在に装着されている。なお本実施例では流出室3の底部20と流入室2の底部4が共通に連続しているが、流入室2と流出室3はそれぞれ独立した底部を有してもよい。   The outflow chamber 3 has a bottom portion 20 having a flat upper surface, and four front and rear, left and right side portions extending upward from the bottom portion 20, that is, a flat front side portion 21, a rear side portion 22, a right side portion 23 and a left side 24. Each side extends vertically upward from the bottom 20. The outflow chamber of the present embodiment has a rectangular shape with a long cross section and a short side, and is similar to the flat cross section of the inflow chamber 2. 25 is detachably mounted. In this embodiment, the bottom 20 of the outflow chamber 3 and the bottom 4 of the inflow chamber 2 are continuously connected in common, but the inflow chamber 2 and the outflow chamber 3 may have independent bottom portions.

図1に示すように、流出室3には後側部22と平行に方形な仕切板30が設けられている。仕切板30の垂直方向の両端部は流出室3の右側部23と左側部24に固定され、その下端は底部20から所定距離だけ上方に位置している。   As shown in FIG. 1, the outflow chamber 3 is provided with a rectangular partition plate 30 in parallel with the rear side portion 22. Both end portions of the partition plate 30 in the vertical direction are fixed to the right side portion 23 and the left side portion 24 of the outflow chamber 3, and the lower ends thereof are located above the bottom portion 20 by a predetermined distance.

本実施例では、この仕切板30により流出室の一部が分割されて排出室31を形成している。なお、排出室31を流出室3とは別に設け、流出室3と排出室31を図1のように連続させることもできる。   In this embodiment, a part of the outflow chamber is divided by the partition plate 30 to form the discharge chamber 31. The discharge chamber 31 may be provided separately from the outflow chamber 3, and the outflow chamber 3 and the discharge chamber 31 may be continuous as shown in FIG.

図1における仕切板30の左側領域は流出室3における液体の下降通路32を形成し、仕切板30の右側領域は排出室31及びそこにおける液体の上昇通路33を形成する。そして下降通路32と上昇通路33はそれぞれの下部で連通路34により互いに連通しており、流出室3の液体はその連通部34を通って下降通路32から上昇通路33に流出し、排出室31の上部(具体的には流入室2に形成した液体の供給部9と同じ高さ位置)に形成した排出部26から外部に排出される。   The left region of the partition plate 30 in FIG. 1 forms a liquid descending passage 32 in the outflow chamber 3, and the right region of the partition plate 30 forms a discharge chamber 31 and a liquid ascending passage 33 there. The descending passage 32 and the ascending passage 33 communicate with each other through the communicating passages 34 at the lower portions, and the liquid in the outflow chamber 3 flows out from the descending passage 32 to the ascending passage 33 through the communicating portion 34, and the discharge chamber 31. Is discharged to the outside from a discharge portion 26 formed on the upper portion (specifically, at the same height as the liquid supply portion 9 formed in the inflow chamber 2).

本実施例では、排出室31の底部20と後側部22が接続される下方隅部に傾斜したガイド板35が設けられている。このガイド板35は液体を連通部から上昇通路にスムーズに且つ平滑に通過させるために設けるものであるが,場合によっては省略することもできる。   In this embodiment, an inclined guide plate 35 is provided at the lower corner where the bottom 20 and the rear side 22 of the discharge chamber 31 are connected. The guide plate 35 is provided to allow the liquid to pass smoothly and smoothly from the communication portion to the ascending passage, but may be omitted depending on circumstances.

図示の例では下降通路32は、2つの濾過体16の液体流出側16b付近の2つの領域、それら2つの領域から連続している仕切板30に近い領域、の3つの領域を含み、それら三者は互いに連通している。下降通路32における2つの濾過体16より下部の領域にそれぞれ気泡供給部36が設けられる。各気泡供給部36は細長い管と、その軸線方向に沿って形成された多数の小さな気泡孔を有し、外部から管内に供給される加圧空気等の気体が多数の気泡孔を通して液中に噴出し、細かい気泡となって下降通路32を上昇するようになっている。なお、各気泡供給部36の気泡供給高さ、具体的にはそれぞれの気泡供給部36の軸線上に位置する気泡の噴出位置は、仕切板30の下端部より上方(連通路34より上方)であるが、濾過体16の下端部より下方になっている。   In the illustrated example, the descending passage 32 includes three regions, two regions near the liquid outflow side 16b of the two filter bodies 16, and a region close to the partition plate 30 continuing from the two regions. Are in communication with each other. Bubble supply portions 36 are respectively provided in regions below the two filter bodies 16 in the descending passage 32. Each bubble supply unit 36 has an elongated tube and a large number of small bubble holes formed along the axial direction thereof, and a gas such as pressurized air supplied from the outside into the tube passes into the liquid through the large number of bubble holes. It is ejected and becomes a fine bubble to rise in the descending passage 32. It should be noted that the bubble supply height of each bubble supply unit 36, specifically, the bubble ejection position located on the axis of each bubble supply unit 36 is above the lower end of the partition plate 30 (above the communication path 34). However, it is below the lower end of the filter body 16.

気泡供給部36から下降通路32内に供給された気泡は、その下降通路32を通ってその上方に上昇するが、気泡の少なくとも一部は流出室3内における上部空間に放出される。その放出された気泡が上部空間の気体(空気)と混合すると流出室3内の気体量が増加し、内気圧が外気圧より幾分上昇するので、その上昇分は蓋体25に形成した貫通孔からなる気泡排出部25aを通して外部に排出される。なお、蓋体25と分離槽1の間に隙間が存在する場合は、その隙間が気泡排出部25aを形成し、あるいは蓋体25を設けない場合は、分離槽1の上部の解放空間が気泡排出部25aを形成する。   The bubbles supplied from the bubble supply unit 36 into the descending passage 32 rise upward through the descending passage 32, but at least a part of the bubbles is discharged into the upper space in the outflow chamber 3. When the released bubbles are mixed with the gas (air) in the upper space, the amount of gas in the outflow chamber 3 is increased, and the internal pressure rises somewhat from the external pressure. It is discharged to the outside through a bubble discharge portion 25a made up of holes. In addition, when a clearance gap exists between the cover body 25 and the separation tank 1, the clearance gap forms the bubble discharge part 25a, or when the cover body 25 is not provided, the open space above the separation tank 1 is a bubble. The discharge part 25a is formed.

次に図1の固体分離装置を使用して液体に含まれている固体を分離する方法について説明する。   Next, a method for separating the solid contained in the liquid using the solid separation apparatus of FIG. 1 will be described.

処理すべき液体を供給部9から流入室2の上部に水平方向に供給すると、液体は2つの濾過体16の液体流入側16aの面に沿って平行に流れ、次いでその液体流は第1誘導部10の誘導面11により下方に方向変化する。下方に方向変化した液体流は第2誘導部12の誘導面13により、更に前側部5に向かう水平な液体流に変化され、次いでその液体流は前側部5に沿って上昇し、供給部9から新たに噴出する液体流と合流して、再び第1誘導部10に向かう水平方向の液体流となる。このようにして流入室2内には図1(b)に点線で示すように、回転中心軸Sを有する上下方向の旋回流(図1(b)の正面から見て時計周り)が持続的に形成される。   When the liquid to be processed is supplied from the supply unit 9 to the upper part of the inflow chamber 2 in the horizontal direction, the liquid flows in parallel along the surface of the liquid inflow side 16a of the two filter bodies 16, and then the liquid flow is the first induction. The direction is changed downward by the guide surface 11 of the portion 10. The liquid flow whose direction has been changed downward is changed to a horizontal liquid flow toward the front side portion 5 by the guide surface 13 of the second guide portion 12, and then the liquid flow rises along the front side portion 5, and the supply portion 9. The liquid flow that is newly ejected from the liquid flows into a horizontal liquid flow toward the first guide portion 10 again. In this way, as shown by the dotted line in FIG. 1B, the vertical swirl flow having the rotation center axis S (clockwise as viewed from the front of FIG. 1B) is sustained in the inflow chamber 2. Formed.

上記のように形成された上下方向の旋回流は、一対の濾過体16の間を各濾過体16の液体流入側16aの面に沿って平行に旋回する。旋回する液体の一部は、図1(a)に矢印で示すように2枚の濾過体16を通過してその液体流出側16bの面から連続的に流出室3に流出する。   The vertical swirling flow formed as described above swirls in parallel between the pair of filter bodies 16 along the surface of the liquid inflow side 16 a of each filter body 16. A part of the swirling liquid passes through the two filter bodies 16 as indicated by arrows in FIG. 1A and continuously flows out from the surface of the liquid outflow side 16b into the outflow chamber 3.

一方、液体に含まれている固体のうち、濾過体16の開口寸法以上のものは各濾過体16で阻止される。各濾過体16で阻止された固体は流入室2内を液体の旋回流に乗って旋回するが、液体より比重の大きい固体は、その比重差および重力により次第に流入室2内を下降し、底部20に堆積して分離される。   On the other hand, among the solids contained in the liquid, those that are larger than the opening size of the filter body 16 are blocked by each filter body 16. The solid blocked by each filter body 16 swirls in the inflow chamber 2 by the swirling flow of the liquid, but the solid having a specific gravity larger than that of the liquid gradually descends in the inflow chamber 2 due to the difference in specific gravity and gravity. 20 is deposited and separated.

上記のように、液体と共に流入室2内に流入し分離されて旋回する固体は、濾過体16の液体流入側16aの面に対してそれと平行して移動するだけなので、衝撃力を有した状態で濾過体16の液体流入側16aの面に向かって直接衝突することはない。そのため濾過体16の摩耗や目詰まりを起こす可能性は極めて低い。   As described above, the solid that flows into the inflow chamber 2 together with the liquid, is separated and swirled moves only in parallel with the surface of the liquid inflow side 16a of the filter body 16, and thus has an impact force. Thus, there is no direct collision with the liquid inflow side 16a of the filter body 16. Therefore, the possibility that the filter body 16 is worn or clogged is extremely low.

図1の例では、液体の供給部9が流入室2の前側部5の上方に形成されているが、供給部9を図1の例における前側部5と上下方向に対照的な位置の前側部5の下方、または該下方に近い底部4に形成することもできる。その場合に形成される旋回流は、図1の例と同様に時計回りになる。そして第1誘導部10または第2誘導部12の配置及びその作用は図1の例と同様になる。   In the example of FIG. 1, the liquid supply portion 9 is formed above the front side portion 5 of the inflow chamber 2, but the supply portion 9 is located in front of the front side portion 5 in the example of FIG. It can also be formed on the bottom 4 below the portion 5 or near the bottom. The swirl flow formed in that case is clockwise as in the example of FIG. The arrangement and operation of the first guide portion 10 or the second guide portion 12 are the same as in the example of FIG.

さらに、供給部9を後側部6の下方またはその下方の延長上に近い底部4に形成することもできる。その場合に形成される旋回流は図1の例とは逆に反時計回りになる。第1誘導部10は図1と同様な位置に設けられ、第2誘導部12は前側部5の上方に設けられる。   Furthermore, the supply part 9 can also be formed in the bottom part 4 close | similar to the downward direction of the rear side part 6, or the extension of the downward direction. The swirl flow formed in that case is counterclockwise as opposed to the example of FIG. The first guide portion 10 is provided at the same position as in FIG. 1, and the second guide portion 12 is provided above the front side portion 5.

前記のように、流入室2の下方領域に開口部を有する仕切板が設けられ、その仕切板の下方に固体の集積室を設ける場合、流入室2内を旋回して次第に重力下降する固体は、その開口部を通して集積室内に徐々に移動し、そこに集積していく。そのため流入室2内を旋回する固体の量を常に低い状態に維持することができる。流入室2内を旋回する固体量が低いと、濾過体16に接近する固体量も常時少なくなるので、固体が濾過体16の液体流入面16aに対し、ときたま平行方向に接触する可能性もさらに低下する。   As described above, when the partition plate having the opening is provided in the lower region of the inflow chamber 2 and the solid accumulation chamber is provided below the partition plate, the solid that swirls in the inflow chamber 2 and gradually descends by gravity is Then, it gradually moves through the opening into the accumulation chamber and accumulates there. Therefore, the amount of the solid swirling in the inflow chamber 2 can always be kept low. When the amount of solid swirling in the inflow chamber 2 is low, the amount of solid approaching the filter body 16 is always reduced, so that there is a possibility that the solid may occasionally contact the liquid inflow surface 16a of the filter body 16 in a parallel direction. descend.

一方、流出室3側に流出した液体は、濾過体16の液体流出側16bの面に連通する下降通路32内を下降し、下方の連通路34を通って排出室31内の上昇通路33を上昇し、排出部26から外部に排出する。下降通路32の下方に設けた気泡供給部36の各気泡孔からは多数の細かい気泡が噴出され、その気泡が下降通路32内を上昇する際に、その上昇力により固体を伴って下降通路32内を上昇し、その上部、すなわち下降通路32内における液体表面領域に滞留する。   On the other hand, the liquid that has flowed out to the outflow chamber 3 descends in the descending passage 32 that communicates with the surface of the filter 16 on the liquid outflow side 16b, passes through the lower communicating passage 34, and passes through the ascending passage 33 in the discharge chamber 31. Ascend and discharge to the outside from the discharge unit 26. A large number of fine bubbles are ejected from each bubble hole of the bubble supply unit 36 provided below the descending passage 32, and when the bubbles ascend in the descending passage 32, the descending passage 32 is accompanied by a solid by the ascending force. It rises inside and stays in the upper part thereof, that is, in the liquid surface region in the descending passage 32.

固体を捕捉した多数の気泡が前記のように液体表面領域に滞留してくると、気泡どうしが互いに引き合って集積する。集積した気泡の一部は空気中に放出されるが、下方から次々と上昇してくる気泡に再付着またはその下方からの押し上げ作用により、液面付近に集積した微細な固体の大部分は、該領域にほとんど滞留し続ける。そしてその領域にある程度の固体が滞留した時点で、流出室3の上方から吸引または汲み取り等の方法により、滞留した固体を外部に取り出す。   When a large number of bubbles trapping solids stay in the liquid surface area as described above, the bubbles attract each other and accumulate. Some of the accumulated bubbles are released into the air, but most of the fine solids accumulated near the liquid surface due to reattachment to the bubbles rising one after the other or pushing up from below, It stays almost in the area. When a certain amount of solid stays in the region, the staying solid is taken out from the upper part of the outflow chamber 3 by a method such as suction or pumping.

本実施例のように、流入室2内で上下旋回流を形成させる場合は、流入室2内の液流はかなりの高速で旋回する。しかし濾過体16を通して流出室3に流出した液体は、濾過体16による比較的大きな流動抵抗と、液体に対する整流化作用を受け、緩やかな整流となって下降通路32内を均一に下降する。   When a vertical swirling flow is formed in the inflow chamber 2 as in this embodiment, the liquid flow in the inflow chamber 2 swirls at a considerably high speed. However, the liquid flowing out into the outflow chamber 3 through the filter body 16 is subjected to a relatively large flow resistance by the filter body 16 and a rectifying action on the liquid, and is gently rectified and descends uniformly in the descending passage 32.

一方、下降通路32内を上昇する細かい気泡群による上昇力は、単位容積当たりの気泡供給量に比例することが実験により確かめられている。下降通路32内を液体中に分散して下降する微細な固体群と、そこを上昇する細かい気泡群は逆方向に対流するが、気泡群による総合的な上昇力が微細な固体を含む液体の下降力より大きければ、液体の下降力に逆らって固体を捕捉した気泡群は容易に上昇することができる。   On the other hand, it has been experimentally confirmed that the ascending force by the fine bubble group rising in the descending passage 32 is proportional to the bubble supply amount per unit volume. The fine solid group that descends dispersed in the liquid in the descending passage 32 and the fine bubble group that rises there are convected in the opposite direction, but the total ascending force by the bubble group is a liquid containing fine solids. If it is greater than the descending force, the bubbles that have captured the solid can easily rise against the descending force of the liquid.

したがって実験等により、下降通路32内に供給する気泡量を調整することにより、その総合的な上昇力を液体の下降力より大きく設定することが望ましい。   Therefore, it is desirable to set the total ascending force to be larger than the descending force of the liquid by adjusting the amount of bubbles supplied into the descending passage 32 by experiments or the like.

濾過体16を通過した微細な固体の中に、比較的比重の大きい金属粉が含まれているような場合は、そのような比重の大きい微細な固体の一部が気泡の捕捉から逃れて下降する場合もある。下降通路32内を下降したそのような比重の大きい固体は、下降通路32の底部領域に滞留して次第に集積する。量は少ないがそのような場合も、その領域にある程度の固体が滞留した時点で、流出室3の上方から吸引または汲み取り等の方法により、滞留したその固体を外部に取り出せばよい。   When metal powder having a relatively large specific gravity is contained in the fine solid that has passed through the filter body 16, a part of the fine solid having a large specific gravity escapes from the trapping of bubbles and descends. There is also a case. Such a solid having a large specific gravity descending in the descending passage 32 stays in the bottom region of the descending passage 32 and gradually accumulates. Even in such a case, when a certain amount of solid stays in that region, the staying solid may be taken out from the upper part of the outflow chamber 3 by suction or pumping.

なお、処理すべき液体に油分が含まれているときは、その油分が流出室3に流出した場合は、前記のように油分は下降通路32で上昇する気泡により捕捉され、下降通路32の上部に滞留した状態で分離される。   When the liquid to be treated contains oil, if the oil flows out to the outflow chamber 3, the oil is captured by the bubbles rising in the descending passage 32 as described above, and the upper portion of the descending passage 32 is reached. In the state where it stays in

本発明の固体分離装置は、下水路や工場排水路などに含まれている固体や油分を分離する装置および方法として利用できる。   The solid separation device of the present invention can be used as a device and a method for separating solids and oils contained in a sewage channel and a factory drainage channel.

1 分離装置
2 流入室
3 流出室
4 底部
5 前側部
6 後側部
7 右側部
8 左側部
9 供給部
10 第1誘導部
11 誘導面
12 第2誘導部
13 誘導面
16 濾過体
16a 液体流入側
16b 面
20 底部
21 前側部
22 後側部
23 右側部
24 左側
25 蓋体
25a 気泡排出部
26 排出部
30 仕切板
31 排出室
32 下降通路
33 上昇通路
34 連通路
35 ガイド板
36 気泡供給部
DESCRIPTION OF SYMBOLS 1 Separator 2 Inflow chamber 3 Outflow chamber 4 Bottom part 5 Front side part 6 Rear side part 7 Right side part 8 Left side part 9 Supply part 10 1st guide part 11 Guide surface 12 2nd guide part 13 Guide surface 16 Filter 16a Liquid inflow side 16b surface 20 bottom portion 21 front side portion 22 rear side portion 23 right side portion 24 left side 25 lid body 25a bubble discharge portion 26 discharge portion 30 partition plate 31 discharge chamber 32 descending passage 33 rising passage 34 communication passage 35 guide plate 36 bubble supply portion

Claims (5)

液体に含まれている固形物を分離する装置において、垂直方向に延長する板状の濾過体で互いに仕切られた流入室と流出室、及びその流出室に連通する排出室とを備え、
流入室には液体の供給部が設けられ、流出室には濾過体の液体排出側に連通する液体の下降通路が設けられ、液体の下降通路の下部で且つ前記濾過体の下端より下方に気泡供給部が設けられ、流出室の上部に気体排出部が設けられ、排出室には液体の上昇通路が設けられ、該上昇通路の上部に液体の排出部が設けられ、前記気泡供給部より低い下降通路の下部と上昇通路の下部が互いに連通していることを特徴とする固体分離装置。
An apparatus for separating solids contained in a liquid, comprising an inflow chamber and an outflow chamber separated from each other by a plate-like filter body extending in a vertical direction, and a discharge chamber communicating with the outflow chamber,
The inflow chamber is provided with a liquid supply section, and the outflow chamber is provided with a liquid descending passage communicating with the liquid discharge side of the filter body. Air bubbles are formed below the lower end of the liquid and below the lower end of the filter body. A supply unit is provided, a gas discharge unit is provided in the upper part of the outflow chamber, a liquid ascending passage is provided in the discharge chamber, and a liquid discharge unit is provided in the upper part of the ascent passage, which is lower than the bubble supply unit A solid separation device characterized in that a lower part of a descending passage and a lower part of an ascending passage communicate with each other.
請求項1において、流入室は平断面が方形に形成され、流入室の対向する2つの垂直な側部に濾過体がそれぞれ形成され、流出室は流入室の縦方向周囲の外側を囲むように設けられ、気泡供給部は、そこから供給する気泡が前記2つの濾過体の液体排出側をそれぞれ上昇するように構成されていることを特徴とする固体分離装置。   2. The inflow chamber according to claim 1, wherein the inflow chamber has a square cross section, the filter bodies are respectively formed on the two opposing vertical sides of the inflow chamber, and the outflow chamber surrounds the outside in the longitudinal direction of the inflow chamber. The solid separator is provided, wherein the bubble supply unit is configured such that bubbles supplied from the bubble supply unit rise on the liquid discharge side of the two filter bodies. 前記1または請求項2において、液体の供給部は濾過体の液体流入側の面に沿って平行に液体流を供給するように形成され、さらに流入室内には前記供給された液体流を濾過体の液体流入側の面に沿って方向転換して上下方向の旋回流を形成させる誘導部が設けられ、供給部から流入室内に供給された液体は、誘導部により流入室内を旋回して上下方向の旋回流を形成し、前記濾過体はその面が該旋回流の回転中心軸に直交する面と平行するように配置されていることを特徴とする固体分離装置。   3. The liquid supply unit according to claim 1 or 2, wherein the liquid supply portion is formed to supply a liquid flow in parallel along a surface of the filter body on the liquid inflow side, and the supplied liquid flow is further filtered into the filter body. A guide unit is provided that changes direction along the surface of the liquid inflow side to form a swirling flow in the vertical direction, and the liquid supplied from the supply unit into the inflow chamber swirls in the inflow chamber by the guide unit and moves up and down. The solid separator is characterized in that the filter body is arranged so that the plane of the filter body is parallel to a plane orthogonal to the rotation center axis of the spiral flow. 液体に含まれる固体を分離装置で分離する方法において、分離装置に設けた濾過体に液体を通過させて固体を分離し、濾過体を通過した液体を下降通路で下降させた後、上昇通路で上昇させて分離装置の外部に排出し、一方、気泡を前記下降通路の下部に供給し、下降通路を下降する液体に含まれる比較的比重の小さい固体を上昇する気泡で捕捉して下降通路の上部に滞留させ、分離装置の外部に排出しないようにしたことを特徴とする固体分離方法。   In a method of separating a solid contained in a liquid with a separation device, the liquid is passed through a filter body provided in the separation device to separate the solid, and after passing through the filter body, the liquid is lowered in the descending passage, and then in the ascending passage. The air is raised and discharged to the outside of the separation device, while the bubbles are supplied to the lower part of the descending passage, and the solid having a relatively small specific gravity contained in the liquid descending the descending passage is captured by the rising bubbles and is captured in the descending passage. A solid separation method characterized by being retained in the upper part and not being discharged to the outside of the separation device. 請求項4において、液体にさらに油分が含まれ、その油分が濾過体から流出室に通過し、液体と共に下降通路に下降した際には、前記上昇する気泡で下降する油分を捕捉し、下降通路の上部に滞留させることを特徴とする固体分離方法。   5. The liquid according to claim 4, wherein the liquid further contains an oil component, and when the oil component passes from the filter body to the outflow chamber and descends together with the liquid to the descending passage, the descending passage captures the oil component descending by the rising bubbles. The solid separation method is characterized in that it is retained at the top of the solid.
JP2013056165A 2013-03-19 2013-03-19 Solid separation apparatus and solid separation method Active JP5318295B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056165A JP5318295B1 (en) 2013-03-19 2013-03-19 Solid separation apparatus and solid separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056165A JP5318295B1 (en) 2013-03-19 2013-03-19 Solid separation apparatus and solid separation method

Publications (2)

Publication Number Publication Date
JP5318295B1 true JP5318295B1 (en) 2013-10-16
JP2014180615A JP2014180615A (en) 2014-09-29

Family

ID=49595794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056165A Active JP5318295B1 (en) 2013-03-19 2013-03-19 Solid separation apparatus and solid separation method

Country Status (1)

Country Link
JP (1) JP5318295B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7072776B2 (en) * 2018-06-28 2022-05-23 ベルテクス株式会社 Separator
JP6944223B1 (en) * 2021-01-12 2021-10-06 Kane International Technology Japan合同会社 strainer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134594U (en) * 1991-05-30 1992-12-15 株式会社大一東亜 grease strap
JP2001025606A (en) * 1999-05-11 2001-01-30 Tokyo Tone Kaihatsu Kk Turbid water cleaning system and apparatus
JP2009248026A (en) * 2008-04-09 2009-10-29 Hanex Co Ltd Separation apparatus
JP2009279485A (en) * 2008-05-20 2009-12-03 Hanex Co Ltd Separation device and separation method
JP2010069350A (en) * 2008-09-16 2010-04-02 Hanex Co Ltd Separator
JP2010095953A (en) * 2008-10-20 2010-04-30 Hanex Co Ltd Separation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134594U (en) * 1991-05-30 1992-12-15 株式会社大一東亜 grease strap
JP2001025606A (en) * 1999-05-11 2001-01-30 Tokyo Tone Kaihatsu Kk Turbid water cleaning system and apparatus
JP2009248026A (en) * 2008-04-09 2009-10-29 Hanex Co Ltd Separation apparatus
JP2009279485A (en) * 2008-05-20 2009-12-03 Hanex Co Ltd Separation device and separation method
JP2010069350A (en) * 2008-09-16 2010-04-02 Hanex Co Ltd Separator
JP2010095953A (en) * 2008-10-20 2010-04-30 Hanex Co Ltd Separation device

Also Published As

Publication number Publication date
JP2014180615A (en) 2014-09-29

Similar Documents

Publication Publication Date Title
JP4395190B2 (en) Separation apparatus and separation method
US7022243B2 (en) Apparatus for treating storm water
US8083937B2 (en) Floating baffle panel and filter apparatus
US8231780B2 (en) Floating skimmer and filter apparatus
JP4719261B2 (en) Separation device
JP3546359B2 (en) Oil-water separator
KR101353039B1 (en) Apparatus for removing non-point source pollution from rainwater
JP5318295B1 (en) Solid separation apparatus and solid separation method
JP4729590B2 (en) Separation device
JP2010247144A (en) Oil separation tank
US10926199B1 (en) Round baffle box water treatment system with at least one sidewall baffle
KR101479462B1 (en) Apparatus of reducing non-point source contaminants
JP4729589B2 (en) Separation device
CN106474830B (en) Gas-solid separating device
JP5318188B2 (en) Solid separation apparatus and solid separation method
KR102123229B1 (en) Screen type non-point contaminants purification apparatus
JP7072776B2 (en) Separator
JP6999914B2 (en) Separator
JP4701258B2 (en) Separation device
JP4421937B2 (en) Solid-liquid separator
JP2005279623A (en) Oil separating and waste water disposing method and apparatus
JP6649550B2 (en) Oil-water soil particle separation and removal equipment
JP6893547B2 (en) Oil separation and recovery device
JP3062561B2 (en) Oil-water separator
CN211635328U (en) Oil-water buffering and filtering device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130709

R150 Certificate of patent or registration of utility model

Ref document number: 5318295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250