JP2010247144A - Oil separation tank - Google Patents

Oil separation tank Download PDF

Info

Publication number
JP2010247144A
JP2010247144A JP2010000400A JP2010000400A JP2010247144A JP 2010247144 A JP2010247144 A JP 2010247144A JP 2010000400 A JP2010000400 A JP 2010000400A JP 2010000400 A JP2010000400 A JP 2010000400A JP 2010247144 A JP2010247144 A JP 2010247144A
Authority
JP
Japan
Prior art keywords
oil
water
porous member
oil separation
separation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010000400A
Other languages
Japanese (ja)
Inventor
Shin Yoshino
伸 吉野
Kenji Kamahara
健志 鎌原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2010000400A priority Critical patent/JP2010247144A/en
Publication of JP2010247144A publication Critical patent/JP2010247144A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Floating Material (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oil separation tank which is in a compact and simple structure and has high oil separation efficiency. <P>SOLUTION: Inside the oil separation tank for separating oil from water to be treated by a specific gravity difference, a porous member through which the water to be treated passes and which arranges the flow, and a partition plate which is disposed on the downstream side of the porous member and has a passing path of the water to be treated formed at the lower end, are provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被処理水から比重差により油分を分離する重力式の油分離槽に関する。   The present invention relates to a gravity-type oil separation tank that separates oil from water to be treated by specific gravity difference.

水力発電所構内の排水には、機械設備の潤滑油などの油が含まれている。排水を構外に放出する際に、油が含まれたまま放出すると外部の自然環境に悪影響を及ぼす恐れがあるため、油を分離してから放出する必要がある。そのため、排水を放出する前に油分離槽を通過させ、槽内で油を浮上させて分離捕集することで、構外への油の漏出を防いでいる。   The drainage water in the hydroelectric power station contains oil such as lubricating oil for machinery. When draining wastewater outside the premises, if it is released while containing oil, it may adversely affect the external natural environment. Therefore, it is necessary to release the oil after separating it. For this reason, the oil separation tank is passed before discharging the waste water, and the oil is floated and separated and collected in the tank to prevent the oil from leaking outside the premises.

一般の産業で使用されている油分離槽としては、米国石油協会(以下APIとする、American Petroleum Institute)などの規格がある。API方式の油分離槽は、被処理水から比重差により油分を分離する重力式の油分離槽である。   As oil separation tanks used in general industries, there are standards such as the American Petroleum Institute (hereinafter referred to as API). The API-type oil separation tank is a gravity-type oil separation tank that separates oil from water to be treated by specific gravity difference.

図10に、代表的な重力式の油分離槽の縦断面図を示す。槽内に仕切り板14を設置し、仕切り板14の下端と槽底面17との間を被処理水が通過するようにしている。被処理水は、流入口11から油分離槽に注入された後、仕切り板14に到達するまでに油分が浮上して、仕切り板14の上流側(点線で囲った油浮上域13)に捕集されて油が分離される。処理後の水は、排水口16から油濃度が高ければ2次処理(油フィルタによる除去、薬液処理等)に送られ、油濃度が低ければそのまま系外に放出される。   FIG. 10 shows a longitudinal sectional view of a typical gravity oil separation tank. A partition plate 14 is installed in the tank so that the water to be treated passes between the lower end of the partition plate 14 and the tank bottom surface 17. After the water to be treated is injected into the oil separation tank from the inflow port 11, the oil component rises before reaching the partition plate 14, and is collected upstream of the partition plate 14 (oil floating area 13 surrounded by a dotted line). Collected and oil separated. If the oil concentration is high, the treated water is sent to secondary treatment (removal by an oil filter, chemical treatment, etc.) if the oil concentration is high, and is discharged out of the system as it is if the oil concentration is low.

重力式の油分離槽は構造が簡単である反面、油の分離効率が低いため、油濃度が高い場合等には油分離槽の延長が数10mに及ぶことがある。そのため、少しでも分離槽の延長を短くする試みが行われてきた。   Although the gravity type oil separation tank has a simple structure, the oil separation efficiency is low. Therefore, when the oil concentration is high, the oil separation tank may be extended to several tens of meters. Therefore, attempts have been made to shorten the separation tank as much as possible.

例えば、油分離槽で仕切り板の下端側を通過した被処理水の油濃度を測定して、油濃度が高い場合には再度油分離槽へと循環させる再循環ラインを設けた油分離槽がある(特許文献1参照)。   For example, an oil separation tank provided with a recirculation line that measures the oil concentration of the treated water that has passed the lower end side of the partition plate in the oil separation tank and circulates it back to the oil separation tank when the oil concentration is high. Yes (see Patent Document 1).

特開平11−197403号公報JP 11-197403 A

しかし、特許文献1のような改良をしても、油分離槽の延長は従来の40%程度にしかならず、依然として10m以上の延長になり、狭隘な水力発電所の構内には入らない。   However, even if the improvement as in Patent Document 1 is made, the oil separation tank is only about 40% longer than the conventional one, and is still longer than 10 m, and does not enter the narrow hydroelectric power station.

また、図10の油分離槽を、水力発電所の構内に入るような短い延長にすると、油分離効率が低くなり、2次処理のためのコスト、時間がかかってしまう。   Moreover, if the oil separation tank of FIG. 10 is extended so as to enter the premises of the hydroelectric power plant, the oil separation efficiency is lowered, and the cost and time for the secondary treatment are increased.

さらに、油分離効率が高くても、既存の油分離槽を大幅に改良したり、複雑な別構造の油分離槽に置き換えたりすることは、設備コストおよびメンテナンスコストが増大するため好ましくない。既存の油分離槽ベースに、簡易な改良で済むことが求められている。   Furthermore, even if the oil separation efficiency is high, it is not preferable to greatly improve the existing oil separation tank or replace it with an oil separation tank having a complicated separate structure because the equipment cost and the maintenance cost increase. A simple improvement is required for an existing oil separation tank base.

以上から本発明の目的は、コンパクト、かつ簡易な構造で、高い油分離効率を有する油分離槽を提供することにある。   As described above, an object of the present invention is to provide an oil separation tank having a compact and simple structure and high oil separation efficiency.

上記課題を解決するために発明者らが鋭意検討した結果、仕切り板の上流側に被処理水の整流用の多孔部材を設けることで、油分離効率が向上することを見い出し、本発明を完成するに至った。   As a result of intensive studies by the inventors in order to solve the above problems, it was found that oil separation efficiency is improved by providing a porous member for rectifying water to be treated on the upstream side of the partition plate, and the present invention is completed. It came to do.

すなわち、本発明は、被処理水から比重差により油分を分離する油分離槽の内部に、被処理水が通過してその流れを整える多孔部材と、前記多孔部材の下流側に配設され、下端に被処理水の通過路を形成した仕切り板とを備えたことを特徴とする油分離槽である。   That is, the present invention is disposed in an oil separation tank that separates oil from the water to be treated by specific gravity difference, a porous member through which the water to be treated passes and regulates the flow thereof, and a downstream side of the porous member. An oil separation tank comprising a partition plate formed with a passage for water to be treated at a lower end.

前記多孔部材は、金網のように流れ方向の奥行きを持たない平面的な物体でもよいし、整流格子のように流れ方向の奥行きを持つ立体的な物体でもよい。   The porous member may be a planar object having no depth in the flow direction, such as a wire mesh, or a three-dimensional object having a depth in the flow direction, such as a rectifying grid.

ここで、前記多孔部材は、平面的な物体の場合は、それぞれの孔の大きさが、被処理水に含まれる油分の略最小粒径と同一とすることが好ましい。立体的な物体の場合は、それぞれの孔の大きさが、製作可能な範囲で十分に小さいことが好ましい。   Here, in the case where the porous member is a planar object, the size of each hole is preferably the same as the substantially minimum particle diameter of the oil contained in the water to be treated. In the case of a three-dimensional object, it is preferable that the size of each hole is sufficiently small as long as it can be manufactured.

また、前記多孔部材は、間隔を保って少なくとも2個配設されることが好ましい。   Moreover, it is preferable that at least two of the porous members are arranged at intervals.

また、前記多孔部材は、槽底面から被処理水の水面までをカバーするように配設されることが好ましい。   Moreover, it is preferable that the said porous member is arrange | positioned so that it may cover from the tank bottom surface to the water surface of to-be-processed water.

また、前記仕切り板は、間隔を保って少なくとも2個配設されることが好ましい。この際、前記仕切り板の間の槽底面に、その上端が仕切り板の下端の位置より高くなるように立設された潜り板を追加することが好ましい。   Moreover, it is preferable that at least two of the partition plates are disposed with a space therebetween. Under the present circumstances, it is preferable to add the submerged board erected so that the upper end may become higher than the position of the lower end of a partition plate in the tank bottom face between the said partition plates.

さらに、前記多孔部材は、油吸着効果を持つことが望ましい。   Furthermore, it is desirable that the porous member has an oil adsorption effect.

本発明によれば、仕切り板の上流側に被処理水の整流用の多孔部材を設けただけの簡易な構造により、コンパクトな油分離槽であっても、高い効率で被処理水中の油分を分離できる。   According to the present invention, with a simple structure in which a porous member for rectifying water to be treated is provided on the upstream side of the partition plate, even in a compact oil separation tank, the oil content in the water to be treated can be efficiently obtained. Can be separated.

本発明の第1の実施形態に係わる油分離槽の縦断面図である。It is a longitudinal cross-sectional view of the oil separation tank concerning the 1st Embodiment of this invention. 本発明の第1の実施形態における多孔部材による整流作用の説明図である。It is explanatory drawing of the rectification | straightening effect | action by the porous member in the 1st Embodiment of this invention. 本発明の第1の実施形態における図1とは別種の多孔部材の一例の構成図である。It is a block diagram of an example of the porous member different from FIG. 1 in the 1st Embodiment of this invention. 本発明の第1の実施形態における図1とは別種の多孔部材として整流格子を用いた場合の油分離槽の縦断面図である。It is a longitudinal cross-sectional view of the oil separation tank at the time of using a rectification | straightening grid as a porous member of a kind different from FIG. 1 in the 1st Embodiment of this invention. 本発明の第2の実施形態に係わる油分離槽の縦断面図である。It is a longitudinal cross-sectional view of the oil separation tank concerning the 2nd Embodiment of this invention. 実施例1における金網(多孔部材)の開口面積比と油分離効率の関係を示す線グラフである。3 is a line graph showing the relationship between the opening area ratio of the wire mesh (porous member) and the oil separation efficiency in Example 1. FIG. 実施例2における金網(多孔部材)の枚数、仕切り板の枚数および潜り板の有無と油分離効率の関係を示す線グラフである。6 is a line graph showing the relationship between the number of wire meshes (porous members), the number of partition plates, the presence / absence of a submerged plate, and oil separation efficiency in Example 2. 実施例3における油分離槽の縦断面図である。6 is a longitudinal sectional view of an oil separation tank in Example 3. FIG. 実施例3における油分離槽での分離効率のグラフである。6 is a graph of separation efficiency in an oil separation tank in Example 3. 従来例における重力式の油分離槽の縦断面図である。It is a longitudinal cross-sectional view of the gravity-type oil separation tank in a prior art example.

以下に添付図面を参照しながら、本発明を実施するための形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。   EMBODIMENT OF THE INVENTION The form for implementing this invention is demonstrated in detail, referring an accompanying drawing below. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified.

〔第1の実施形態〕
図1は、本発明の第1の実施形態に係わる油分離槽の縦断面図である。この油分離槽は、被処理水から比重差により油分を分離する重力式の油分離槽であり、その内部に、被処理水が通過してその流れを整える多孔部材12と、その多孔部材12の下流側に配設され、下端に被処理水の通過路15を形成した仕切り板14とを備えている。図1は多孔部材として平面的な物体を使用した場合を示しており、多孔部材として立体的な物体を使用した場合は図4の縦断面図となる。いずれの場合も多孔部材の作用は同じ仕組みであるので、以後、特記がないかぎり図1によって説明を行う。
[First Embodiment]
FIG. 1 is a longitudinal sectional view of an oil separation tank according to the first embodiment of the present invention. This oil separation tank is a gravity-type oil separation tank that separates oil from the water to be treated by a specific gravity difference, and a porous member 12 through which the water to be treated passes and adjusts the flow thereof, and the porous member 12 And a partition plate 14 formed with a passage 15 for water to be treated at the lower end. FIG. 1 shows a case where a planar object is used as the porous member. When a three-dimensional object is used as the porous member, the longitudinal sectional view of FIG. 4 is obtained. Since the action of the porous member is the same mechanism in any case, the description will be made with reference to FIG. 1 unless otherwise specified.

ここで、被処理水には、油濃度にかかわらず油分を含む排水全般が広く含まれる。例えば、水力発電所構内からの排水があげられる。   Here, the water to be treated includes a wide range of waste water including oil regardless of the oil concentration. For example, drainage from the hydroelectric power station premises.

次に、本実施形態に係わる油分離槽中の被処理水の流れ(図1の実線矢印)について説明する。まず、被処理水は、流入口11から油分離槽内の上流側に注入される。次に、被処理水が、多孔部材12の内部を通過して整流された上で、仕切り板14の下端と槽底面17とで形成される通過路15を通過する。この際、比重の小さい油分が浮上して(図1の点線矢印)、多孔部材12や仕切り板14の上流側(図1の点線で囲った油浮上域13)に捕集され、油分が分離される。通過路15を通過した被処理水はその下流側から排水口16を通って系外に放出される。   Next, the flow of the water to be treated in the oil separation tank according to this embodiment (solid arrow in FIG. 1) will be described. First, the water to be treated is injected from the inlet 11 to the upstream side in the oil separation tank. Next, the water to be treated passes through the passage 15 formed by the lower end of the partition plate 14 and the tank bottom surface 17 after being rectified by passing through the inside of the porous member 12. At this time, the oil component having a small specific gravity floats (dotted line arrow in FIG. 1) and is collected upstream of the porous member 12 and the partition plate 14 (oil floating region 13 surrounded by the dotted line in FIG. 1), and the oil component is separated. Is done. The treated water that has passed through the passage 15 is discharged from the downstream side through the drain port 16 to the outside of the system.

次に、多孔部材12の作用について説明する。多孔部材12は、それ自体が油フィルタとなって油分を分離する作用、多孔部材12に囲まれた領域で被処理水の流れを整え油分を浮上しやすくする作用、および多孔部材12の下流側に流れが滞留する領域を生成して油分を捕集する作用を有する。   Next, the operation of the porous member 12 will be described. The porous member 12 itself acts as an oil filter to separate the oil component, to adjust the flow of water to be treated in the region surrounded by the porous member 12, and to make the oil component easily float, and to the downstream side of the porous member 12 It has the effect | action which produces | generates the area | region where a flow stays in and collects oil.

まず、多孔部材12自体が油フィルタとなって油分を分離する作用について説明する。多孔部材12は油分が通過するだけでなく、その孔径が十分に小さいと多孔部材12に油分が吸着し、もしくは堰き止められて多孔部材上流側に油分が浮上して油分離できる。その結果、油分離量が増加するため、油分離槽全体の分離効率を向上させることができる。   First, the action of the porous member 12 itself acting as an oil filter to separate oil will be described. Not only does the oil component pass through the porous member 12, but if the pore diameter is sufficiently small, the oil component is adsorbed on the porous member 12, or dammed up so that the oil component floats upstream of the porous member and can be separated. As a result, since the amount of oil separation increases, the separation efficiency of the entire oil separation tank can be improved.

次に、図2を参照して、多孔部材12に囲まれた領域で被処理水の流れを整え油分を浮上しやすくする作用について説明する。図2(a)は多孔部材12がない場合における被処理水の流れの説明図、図2(b)は多孔部材12がある場合における被処理水の流れの説明図である。図2(a)に示すように、多孔部材12がない場合における被処理水の流れは、図2(a)中の実線矢印に示すように、槽底面17に近い領域を通過して仕切り板14の下端の通過路15を通過する流れが主流となる。この場合、油分の多くは主流に乗ってそのまま通過路15を通過してしまう。一方、図2(b)に示すように、多孔部材12を設けると、多孔部材12に囲まれた領域における被処理水の流れは、図2(b)中の実線矢印に示すように、高さ方向に流速が均一化した水平方向の流れとなる。多孔部材12がない場合に油分を槽の下方に押し流していた流れがなくなるので、この領域では油分が浮上しやすくなる。   Next, with reference to FIG. 2, the effect | action which arranges the flow of to-be-processed water in the area | region enclosed by the porous member 12, and makes it easy to float an oil component is demonstrated. 2A is an explanatory diagram of the flow of the water to be treated when the porous member 12 is not present, and FIG. 2B is an explanatory diagram of the flow of the water to be treated when the porous member 12 is present. As shown in FIG. 2A, the flow of water to be treated in the absence of the porous member 12 passes through a region close to the tank bottom surface 17 as shown by the solid arrow in FIG. The flow passing through the passage 15 at the lower end of 14 is the mainstream. In this case, much of the oil component passes through the passage 15 as it is on the mainstream. On the other hand, as shown in FIG. 2 (b), when the porous member 12 is provided, the flow of water to be treated in the region surrounded by the porous member 12 increases as shown by the solid line arrow in FIG. 2 (b). It becomes a horizontal flow with uniform flow velocity in the vertical direction. When there is no porous member 12, there is no flow in which the oil component has been pushed down the tank, so that the oil component easily floats in this region.

次に、多孔部材12の下流側に流れが滞留する領域を生成して油分を捕集する作用について説明する。多孔部材12の下流側では、流れは通過路15に向かって集中する流れとなる。流れから外れた領域(図2(b)中のハッチングで示した領域)では流速がほとんどゼロとなる。この領域に油分が到達すれば、流されることなく浮上して捕集される。   Next, the effect | action which produces | generates the area | region where a flow stays in the downstream of the porous member 12, and collects oil is demonstrated. On the downstream side of the porous member 12, the flow is concentrated toward the passage 15. In the region deviated from the flow (the region indicated by hatching in FIG. 2B), the flow velocity is almost zero. If oil reaches this area, it floats and is collected without being swept away.

よって、多孔部材12を設けてこれらの作用を発揮させることにより、コンパクトな油分離槽であっても、一定の油処理量を維持したままで油分離効率を向上させることができる。   Therefore, by providing the porous member 12 to exert these effects, the oil separation efficiency can be improved while maintaining a constant oil treatment amount even in a compact oil separation tank.

なお、これらの作用が発揮できるように、多孔部材12は、槽底面17から被処理水の水面までをカバーするように配設されることが好ましい。   In addition, it is preferable that the porous member 12 is disposed so as to cover from the tank bottom surface 17 to the surface of the water to be treated so that these functions can be exhibited.

多孔部材12の各孔の大きさ(孔径)は、小さい方が好ましい。多孔部材12の孔径が小さい方が、多孔部材12への油の吸着量が増加するとともに被処理水の整流効果が高くなり、油分離効率も高まるためである。   The size (pore diameter) of each hole of the porous member 12 is preferably smaller. This is because a smaller pore diameter of the porous member 12 increases the amount of oil adsorbed on the porous member 12, increases the rectification effect of the water to be treated, and increases the oil separation efficiency.

ただし、多孔部材12の孔径が小さすぎると、油が多孔部材12に吸着しすぎて目詰まりを起こす可能性もある。さらに、多孔部材12を通過した被処理水中の油分が細泡化して浮上しにくくなり、分離が困難となる場合もある。そのため、多孔部材12の各孔の大きさは、油分の略最小粒径と同一とすることが特に好ましい。このような孔の大きさとすることで、被処理水の流速、多孔部材12への油吸着量および油分の細泡化の程度を適切な範囲にすることができる。   However, if the pore diameter of the porous member 12 is too small, the oil may be adsorbed too much on the porous member 12 to cause clogging. Furthermore, the oil in the water to be treated that has passed through the porous member 12 becomes fine and difficult to float, and separation may be difficult. Therefore, it is particularly preferable that the size of each hole of the porous member 12 is the same as the substantially minimum particle size of oil. By setting it as the size of such a hole, the flow rate of to-be-processed water, the oil adsorption amount to the porous member 12, and the grade of the foaming of an oil component can be made into an appropriate range.

前記の通り、多孔部材12は、平面的な物体でも立体的な物体でもよい。以下、平面的な多孔部材と立体的な多孔部材について、それぞれ詳細を述べる。   As described above, the porous member 12 may be a planar object or a three-dimensional object. Hereinafter, details of the planar porous member and the three-dimensional porous member will be described.

平面的な多孔部材12としては、金網やその他細孔フィルタを例示できるが、価格の安さや入手・取扱の容易さから、金網が好ましい。金網の材質はさび防止のためステンレス製が好ましい。また、適切な整流効果が得られるように、金網の各開口部の大きさは、メッシュ数(1インチあたりの開口部の数)で表記して40から80メッシュとするのが好ましい。   Examples of the planar porous member 12 include a wire mesh and other pore filters, but a wire mesh is preferable because of its low price and easy availability and handling. The metal mesh is preferably made of stainless steel to prevent rust. In order to obtain an appropriate rectifying effect, the size of each opening of the wire net is preferably 40 to 80 mesh expressed by the number of meshes (number of openings per inch).

ここで、平面的な多孔部材12の枚数は、図1に示すように2枚とするだけでなく、3枚以上としてもよい。平面的な多孔部材12の枚数を増やすことで整流効果が増大し、油分離効率を向上させることができるためである。ただし、平面的な多孔部材12の枚数が多すぎると油分離効率が低下する傾向にあり、油分離効率を極大化する最適な枚数が存在する。一般には、平面的な多孔部材12の枚数は2から3枚とするのが好ましい。   Here, the number of planar porous members 12 is not limited to two as shown in FIG. 1, but may be three or more. This is because increasing the number of planar porous members 12 increases the rectification effect and improves the oil separation efficiency. However, if the number of planar porous members 12 is too large, the oil separation efficiency tends to decrease, and there is an optimal number that maximizes the oil separation efficiency. In general, the number of planar porous members 12 is preferably 2 to 3.

また、平面的な多孔部材12は、一定長(例えば100mm)以下の間隔を保って配置する必要がある。この配置間隔が広いと、枚数を増加しても十分な整流効果が得られないためである。   Further, the planar porous member 12 needs to be arranged with an interval of a certain length (for example, 100 mm) or less. This is because if this arrangement interval is wide, a sufficient rectifying effect cannot be obtained even if the number of sheets is increased.

ここで、平面的な多孔部材12として金網を用いた場合について説明したが、金網に代えて、ポリプロピレンなどの親油性繊維で製作した整流用の網を平面的な多孔部材12として用い、油分を分離する作用を向上させるようにしてもよい。すなわち、網の素材を親油性繊維とすることにより、網が整流効果に加えて油吸着効果も持つこととなり、油分離槽の分離効率が更に向上する。     Here, the case where a metal mesh is used as the planar porous member 12 has been described, but instead of the metal mesh, a rectifying mesh made of lipophilic fibers such as polypropylene is used as the planar porous member 12, and the oil content is reduced. You may make it improve the effect | action to isolate | separate. That is, when the net material is made of lipophilic fibers, the net has an oil adsorbing effect in addition to the rectifying effect, and the separation efficiency of the oil separation tank is further improved.

また、平面的な多孔部材12として金網を用いる場合には、金網を油吸着材でコーティングして油分を分離する作用を向上させるようにしてもよい。すなわち、金網を油吸着材でコーティングすることにより、金網が整流効果に加えて油吸着効果も持つこととなり、油分離槽の分離効率が更に向上する。   Further, when a metal mesh is used as the planar porous member 12, the action of separating the oil component may be improved by coating the metal mesh with an oil adsorbing material. That is, by coating the wire mesh with the oil adsorbing material, the wire mesh has an oil adsorbing effect in addition to the rectifying effect, and the separation efficiency of the oil separation tank is further improved.

立体的な多孔部材12としては、図3のような整流格子を例示することができる。図3は整流格子で形成された立体的な多孔部材12の構成図であり、図3(a)は斜視図、図3(b)は図3(a)のX部分の拡大図である。図3に示すように、整流格子は格子状に形成され、各々の格子が被処理水の流れ方向に奥行きdを持つ水路19を形成している。従って、縦横方向に水路19が多段に形成された構造となっている。   An example of the three-dimensional porous member 12 is a rectifying grid as shown in FIG. FIGS. 3A and 3B are configuration diagrams of the three-dimensional porous member 12 formed of a rectifying grid. FIG. 3A is a perspective view, and FIG. 3B is an enlarged view of a portion X in FIG. As shown in FIG. 3, the rectifying grids are formed in a grid shape, and each grid forms a water channel 19 having a depth d in the flow direction of the water to be treated. Accordingly, the water channel 19 is formed in multiple stages in the vertical and horizontal directions.

図4は、立体的な多孔部材12として整流格子を用いた場合の油分離槽の縦断面図である。油分離槽の内部には整流格子である立体的な多孔部材12が配置されている。まず、被処理水は流入口11から油分離槽内の上流側に注入され、被処理水は整流格子を用いた立体的な多孔部材12の水路19に流れ込む。これにより、格子状の水路19により整流された上で、仕切り板14の下端と槽底面17とで形成される通過路15を通過する。この際、比重の小さい油分が浮上して(図4の点線矢印)、立体的な多孔部材12や仕切り板14の上流側(図4の点線で囲った油浮上域13)に捕集され、油分が分離される。通過路15を通過した被処理水はその下流側から排水口16を通って系外に放出される。   FIG. 4 is a longitudinal sectional view of an oil separation tank when a rectifying grid is used as the three-dimensional porous member 12. A three-dimensional porous member 12 that is a rectifying grid is disposed inside the oil separation tank. First, the water to be treated is injected from the inflow port 11 to the upstream side in the oil separation tank, and the water to be treated flows into the water channel 19 of the three-dimensional porous member 12 using a rectifying grid. Thereby, after being rectified by the grid-like water channel 19, it passes through the passage 15 formed by the lower end of the partition plate 14 and the tank bottom surface 17. At this time, an oil component having a small specific gravity rises (dotted arrow in FIG. 4) and is collected on the upstream side of the three-dimensional porous member 12 and the partition plate 14 (oil floating region 13 surrounded by a dotted line in FIG. 4). The oil is separated. The treated water that has passed through the passage 15 is discharged from the downstream side through the drain port 16 to the outside of the system.

立体的な多孔部材12の作用は平面的な多孔部材の場合と同じ仕組みであるが、平面的な多孔部材の場合は多孔部材で囲まれた領域で被処理水の流れが整えられるのに対して、立体的な多孔部材の場合は多孔部材内部の水路19において被処理水の流れが整えられることが異なっている。   The action of the three-dimensional porous member 12 is the same as that of the planar porous member. However, in the case of the planar porous member, the flow of water to be treated is adjusted in the region surrounded by the porous member. In the case of a three-dimensional porous member, the difference is that the water to be treated is arranged in the water channel 19 inside the porous member.

また、平面的な多孔部材12として金網や細孔フィルタを用いた場合には、整流効果を得るために複数枚の多孔部材12を用いることが望ましいが、立体的な多孔部材12として整流格子を用いる場合には奥行きdの大きさを適切に選定することで1個の多孔部材12で十分な整流効果を得ることができる。なお、奥行きdの選定に代えて、複数個の整流格子を立体的な多孔部材12として用いてもよいことは言うまでもない。   In addition, when a wire mesh or a pore filter is used as the planar porous member 12, it is desirable to use a plurality of porous members 12 in order to obtain a rectifying effect. In the case of use, a sufficient rectifying effect can be obtained with one porous member 12 by appropriately selecting the size of the depth d. Needless to say, a plurality of rectifying grids may be used as the three-dimensional porous member 12 instead of selecting the depth d.

続いて、仕切り板14について説明する。仕切り板14は、多孔部材12を通過した被処理水の水面側の流れを堰き止め、被処理水が槽底面側の通過路15を流れるようにする役割を有する。油分は被処理水中を浮上して水面近傍に集まるため、水面側の流れを堰き止めることで、下流に油分を流さないようにするためである。   Next, the partition plate 14 will be described. The partition plate 14 has a role of blocking the flow on the water surface side of the water to be treated that has passed through the porous member 12 and allowing the water to be treated to flow through the passage 15 on the bottom surface side of the tank. This is because the oil component floats in the water to be treated and collects in the vicinity of the water surface, so that the oil component does not flow downstream by blocking the flow on the water surface side.

第1の実施形態によれば、仕切り板14の上流側に被処理水の整流用の多孔部材12を設けただけの簡易な構造により、コンパクトな油分離槽であっても、高い効率で被処理水中の油分を分離できる。   According to the first embodiment, a simple structure in which the porous member 12 for rectifying the water to be treated is provided on the upstream side of the partition plate 14 enables high efficiency even in a compact oil separation tank. The oil in the treated water can be separated.

〔第2の実施形態〕
図5は、本発明の第2の実施形態に係わる油分離槽の縦断面図である。本実施形態は、図1に示した第1の実施形態に対し、仕切り板14を1枚追加して間隔を保って2枚とし、その間に新たに潜り板18を設けたものである。図5は多孔部材として平面的な物体を使用した場合を示しており、多孔部材として立体的な物体を使用した場合は図4の縦断面図に仕切り板14を1枚追加して間隔を保って2枚とし、その間に新たに潜り板18を設けた形状(図は省略する)となる。
[Second Embodiment]
FIG. 5 is a longitudinal sectional view of an oil separation tank according to the second embodiment of the present invention. This embodiment is different from the first embodiment shown in FIG. 1 in that one partition plate 14 is added to keep two intervals, and a diving plate 18 is newly provided therebetween. FIG. 5 shows a case where a planar object is used as the porous member. When a three-dimensional object is used as the porous member, one partition plate 14 is added to the longitudinal sectional view of FIG. It becomes a shape (the figure is omitted) in which a diving plate 18 is newly provided between them.

仕切り板14の枚数は、図5に示すように2枚とするだけでなく、3枚以上としてもよい。仕切り板14の枚数を増やすことで、油浮上域13(図5中点線で囲った領域)を広くすることができ、油分離効率を向上させることができるためである。   The number of the partition plates 14 is not limited to two as shown in FIG. 5, but may be three or more. This is because by increasing the number of the partition plates 14, the oil floating region 13 (region surrounded by the dotted line in FIG. 5) can be widened, and the oil separation efficiency can be improved.

仕切り板14を2枚以上設けた場合には、仕切り板14の間に潜り板18を設けることが好ましい。潜り板18とは、その上端が仕切り板14の下端の位置より高くなるように仕切り板14の間の槽底面17に立設された板である。この潜り板18は、仕切り板14の下端側を通過してきた被処理水の流れを上側に変えて、油が上方に浮上し易いようにする役割を有する。   When two or more partition plates 14 are provided, it is preferable to provide a diving plate 18 between the partition plates 14. The diving plate 18 is a plate erected on the tank bottom surface 17 between the partition plates 14 so that the upper end thereof is higher than the position of the lower end of the partition plate 14. The diving plate 18 has a role of changing the flow of the water to be treated that has passed through the lower end side of the partition plate 14 to the upper side so that the oil can easily float upward.

第2の実施形態によれば、仕切り板14の枚数の最適化および潜り板18の追加により、第1の実施形態での効果に加えて、さらに油分離効率を高めることができる。   According to the second embodiment, by optimizing the number of the partition plates 14 and adding the diving plate 18, in addition to the effects of the first embodiment, the oil separation efficiency can be further increased.

実施例として油分離槽の条件を変化させた試験を行い、分離効率を比較した。ここで用いた水槽の縦断面の延長は1000mmであり、ここに水面高さ400mmとなるように被処理水を注水した。被処理水として、流量38L/minの水を注入しながら、油滴を模擬した微粒子10gを同時に油分離槽へ投入した。この微粒子には、比重0.70、直径75〜90μmのフィライト微粒子を使用した。   The test which changed the conditions of the oil separation tank as an Example was done, and the separation efficiency was compared. The extension of the longitudinal section of the water tank used here was 1000 mm, and the water to be treated was poured therein so that the water surface height was 400 mm. While injecting water at a flow rate of 38 L / min as water to be treated, 10 g of fine particles simulating oil droplets were simultaneously introduced into the oil separation tank. As the fine particles, phylite fine particles having a specific gravity of 0.70 and a diameter of 75 to 90 μm were used.

多孔部材12としては、市販の金網(SUS304製、線径0.18〜0.29mm、14〜80メッシュ)を用い、この金網により槽底面17から水面の全てをカバーした。   As the porous member 12, a commercially available wire mesh (manufactured by SUS304, wire diameter 0.18 to 0.29 mm, 14 to 80 mesh) was used, and the entire water surface was covered from the tank bottom surface 17 by this wire mesh.

分離効率は、式(1)により算出した。ここで、分子の「油浮上域で浮上した微粒子の質量」および分母の「投入した微粒子の全質量」には、水槽の底に沈殿するなどして捕集できなかった微粒子の質量は含まれていない。   The separation efficiency was calculated by the formula (1). Here, the “mass of fine particles floating in the oil levitation zone” and the “total mass of charged fine particles” in the denominator include the mass of fine particles that could not be collected due to precipitation at the bottom of the water tank. Not.

[式1]
分離効率=油浮上域に浮上した微粒子の質量/投入した微粒子の全質量(式1)
〔比較例〕
比較例では、図10に示すように金網(多孔部材12)を設けず、仕切り板14を1枚のみ設けた油分離槽を用いた。仕切り板14は槽端面から水平方向に600mm離れた位置に配置し、仕切り板下端の通過路15の高さは50mmとした。
[Formula 1]
Separation efficiency = mass of fine particles floating in oil floating area / total mass of charged fine particles (Formula 1)
[Comparative Example]
In the comparative example, as shown in FIG. 10, an oil separation tank provided with only one partition plate 14 without using a wire mesh (porous member 12) was used. The partition plate 14 was disposed at a position 600 mm away from the tank end surface in the horizontal direction, and the height of the passage 15 at the lower end of the partition plate was 50 mm.

〔実施例1〕
実施例1では、金網(多孔部材12)と仕切り板14を1枚ずつ設けた油分離槽を用いた(図1において多孔部材12の枚数を1枚としたもの)。金網は水槽端面から水平方向に100mm離れた位置に配置し、その他の条件は比較例と同様とした。
[Example 1]
In Example 1, an oil separation tank provided with one metal mesh (porous member 12) and one partition plate 14 was used (the number of porous members 12 in FIG. 1 is one). The wire mesh was placed at a position 100 mm away from the end face of the water tank in the horizontal direction, and other conditions were the same as in the comparative example.

図6は、実施例1における金網(多孔部材12)の開口面積比と分離効率との関係を示す線グラフである。開口面積比は、金網の開口部と金網の全面積との比から求めた。なお、開口面積比100%のデータD0は、金網を設けていない比較例の結果である。図6のラインL1から、金網がない比較例(データD0)と金網を入れた実施例1(データD1からD6)を比較すると、金網を入れることで分離効率が向上することが判る。さらに、金網を入れたケースを比較すると、開口面積比が小さい(メッシュが大きい)金網ほど分離効率が向上することが判る。なお、分離効率が最も高いデータD6(メッシュ80、開口面積比19%)では、金網の各開口部の幅が140μm程度となり、微粒子の粒径に近い大きさであった。   FIG. 6 is a line graph showing the relationship between the opening area ratio of the wire mesh (porous member 12) and the separation efficiency in Example 1. The opening area ratio was determined from the ratio between the opening of the wire mesh and the total area of the wire mesh. Note that data D0 with an opening area ratio of 100% is a result of a comparative example in which no wire mesh is provided. From the line L1 in FIG. 6, comparing the comparative example without the wire mesh (data D0) and Example 1 with the wire mesh (data D1 to D6), it can be seen that the separation efficiency is improved by inserting the wire mesh. Furthermore, when comparing cases with a wire mesh, it can be seen that a wire mesh having a smaller opening area ratio (large mesh) improves the separation efficiency. In the data D6 (mesh 80, opening area ratio 19%) having the highest separation efficiency, the width of each opening of the wire mesh was about 140 μm, which was close to the particle size of the fine particles.

〔実施例2〕
図7は、実施例2における金網(多孔部材)の枚数、仕切り板の枚数および潜り板の有無と油分離効率の関係を示す線グラフである。図7のラインL2では、仕切り板14を1枚としたまま、金網の枚数だけを1枚から4枚に変化させた(データD6〜D9)。金網は実施例1で用いた中で最も開口面積比の小さいもの(メッシュ80)を用い、2枚目以降の金網は一枚目の金網の下流側に間隔が100mmとなるように配置した。その他の条件は実施例1と同様である。なお、金網枚数0枚のデータD0は前述の比較例の結果である。
[Example 2]
FIG. 7 is a line graph showing the relationship between the number of wire meshes (porous members), the number of partition plates, presence / absence of a submerged plate, and oil separation efficiency in Example 2. In the line L2 of FIG. 7, the number of the wire mesh is changed from 1 to 4 with the partition plate 14 being one (data D6 to D9). The wire mesh having the smallest aperture area ratio (mesh 80) used in Example 1 was used, and the second and subsequent wire meshes were arranged on the downstream side of the first wire mesh so that the interval was 100 mm. Other conditions are the same as in the first embodiment. Note that the data D0 for the number of wire meshes of 0 is the result of the comparative example described above.

図7のラインL2から、金網が2枚の時(データD7)に分離効率が最大となることが判る。ただし、より開口面積比が大きい金網(例えばメッシュ40)を使用した試験では金網の枚数が3枚の時に分離効率が最大となる場合があった。最適な金網の枚数は、金網の仕様や被処理水の流れの状態によって異なり、必ずしも2枚が最適とは限らない。   It can be seen from the line L2 in FIG. 7 that the separation efficiency is maximized when there are two metal meshes (data D7). However, in a test using a wire mesh having a larger opening area ratio (for example, mesh 40), the separation efficiency may be maximized when the number of wire meshes is three. The optimal number of wire meshes varies depending on the specifications of the wire mesh and the state of the water to be treated, and two are not necessarily optimal.

図7のデータD10は、図5に示す通り、金網2枚の条件で、仕切り板14を2枚に増やし、仕切り板14の間に潜り板18を設置した条件で試験した結果である。2枚目の仕切り板14は1枚目の下流側に間隔が300mm(槽端面からの水平距離が900mm)となるように設置した。その中間位置(槽端面からの水平距離が750mm)に潜り板18を設置し、潜り板上端から仕切り板下端の長さ(ラップ長)は200mmとした。その他の条件はデータD7での条件と同様である。データD7に比較してデータD10は、分離効率が5%程度増加していることが判る。よって、仕切り板14を増やし、潜り板18を追加することで分離効率をさらに向上させることができる。結果として、比較例のデータD0に対して、実施例2のデータD10では、40%以上も分離効率が向上した。   Data D10 in FIG. 7 is a result of testing under the condition that the number of partition plates 14 is increased to two under the condition of two metal meshes and the diving plate 18 is installed between the partition plates 14 as shown in FIG. The second partition plate 14 was installed on the downstream side of the first sheet so that the distance was 300 mm (the horizontal distance from the tank end surface was 900 mm). The diving plate 18 was installed at the intermediate position (horizontal distance from the tank end surface 750 mm), and the length (wrap length) from the upper end of the diving plate to the lower end of the partition plate was 200 mm. Other conditions are the same as those in the data D7. It can be seen that the separation efficiency of the data D10 is increased by about 5% compared to the data D7. Therefore, the separation efficiency can be further improved by increasing the partition plates 14 and adding the diving plates 18. As a result, the separation efficiency was improved by 40% or more in the data D10 of Example 2 compared to the data D0 of the comparative example.

〔実施例3〕
次に、図8に示すような油分離槽を用意した。すなわち、多孔部材12としての金網が2枚、仕切り板14が1枚であり、延長が1000mmの油分離槽を用意し、1枚目の金網と流入口11側の油分離槽の側壁との間は100mm、2枚の金網間は100mm、仕切り板14の位置は流入口11側の油分離槽の側壁から600mm、仕切り板14の通過路15は50mmとした。また、金網は線径0.18mmで80メッシュである。そして、流入口11から32.3L/minの水を注入しながら、フィライト微粒子に代えて、実際のタービン油100mLを同時に注入した。
Example 3
Next, an oil separation tank as shown in FIG. 8 was prepared. That is, two metal meshes as the porous member 12, one partition plate 14, and an oil separation tank with an extension of 1000 mm are prepared, and the first metal mesh and the side wall of the oil separation tank on the inlet 11 side are provided. The distance between the two metal meshes was 100 mm, the partition plate 14 was positioned 600 mm from the side wall of the oil separation tank on the inlet 11 side, and the passage 15 of the partition plate 14 was 50 mm. The wire mesh is 80 mesh with a wire diameter of 0.18 mm. Then, while injecting 32.3 L / min of water from the inlet 11, 100 mL of actual turbine oil was simultaneously injected instead of the phylite fine particles.

そして、油浮上域13の実際の油を回収し、(1)式により分離効率を求めた。その結果を、2枚の金網を設けなかった比較例とともに図9に示す。   And the actual oil of the oil floating area 13 was collect | recovered, and the separation efficiency was calculated | required by (1) Formula. The result is shown in FIG. 9 together with a comparative example in which two metal meshes are not provided.

図9に示すように、金網を設けない場合には、分離効率は約75%であるが、2枚の金網を設けた場合には、分離効率は約92%に向上した。   As shown in FIG. 9, when no wire mesh is provided, the separation efficiency is about 75%, but when two wire meshes are provided, the separation efficiency is improved to about 92%.

11…流入口、12…多孔部材、13…油浮上域、14…仕切り板、15…通過路、16…排水口、17…槽底面、18…潜り板、19…水路 DESCRIPTION OF SYMBOLS 11 ... Inlet, 12 ... Porous member, 13 ... Oil floating area, 14 ... Partition plate, 15 ... Passage passage, 16 ... Drain port, 17 ... Tank bottom surface, 18 ... Submerged plate, 19 ... Water channel

Claims (7)

被処理水から比重差により油分を分離する油分離槽の内部に、被処理水が通過してその流れを整える多孔部材と、
前記多孔部材の下流側に配設され、下端に被処理水の通過路を形成した仕切り板とを備えたことを特徴とする油分離槽。
A porous member in which the water to be treated passes and regulates its flow inside the oil separation tank that separates the oil component by specific gravity difference from the water to be treated;
An oil separation tank, comprising a partition plate disposed downstream of the porous member and having a passage for water to be treated formed at a lower end thereof.
前記多孔部材は、それぞれの孔の大きさが被処理水に含まれる油分の略最小粒径と同一であることを特徴とする請求項1に記載の油分離槽。   2. The oil separation tank according to claim 1, wherein each of the porous members has the same pore size as a substantially minimum particle size of oil contained in the water to be treated. 前記多孔部材は、間隔を保って少なくとも2個配設されることを特徴とする請求項1または2に記載の油分離槽。   The oil separation tank according to claim 1 or 2, wherein at least two of the porous members are arranged at intervals. 前記多孔部材は、槽底面から被処理水の水面までをカバーするように配設されることを特徴とする請求項1から3に記載の油分離槽。   4. The oil separation tank according to claim 1, wherein the porous member is disposed so as to cover from a tank bottom surface to a water surface of water to be treated. 前記仕切り板は、間隔を保って少なくとも2個配設されることを特徴とする請求項1から4に記載の油分離槽。   5. The oil separation tank according to claim 1, wherein at least two of the partition plates are arranged with a space therebetween. 前記仕切り板の間の槽底面に、その上端が仕切り板の下端の位置より高くなるように立設された潜り板と備えたことを特徴とする請求項5に記載の油分離槽。   The oil separation tank according to claim 5, further comprising a submerged plate erected on the bottom surface of the tank between the partition plates so that an upper end thereof is higher than a position of a lower end of the partition plate. 前記多孔部材は、油吸着効果を持つことを特徴とする請求項1乃至6のいずれか1項に記載の油分離槽。   The oil separation tank according to claim 1, wherein the porous member has an oil adsorption effect.
JP2010000400A 2009-03-27 2010-01-05 Oil separation tank Pending JP2010247144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010000400A JP2010247144A (en) 2009-03-27 2010-01-05 Oil separation tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009078350 2009-03-27
JP2010000400A JP2010247144A (en) 2009-03-27 2010-01-05 Oil separation tank

Publications (1)

Publication Number Publication Date
JP2010247144A true JP2010247144A (en) 2010-11-04

Family

ID=43310108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010000400A Pending JP2010247144A (en) 2009-03-27 2010-01-05 Oil separation tank

Country Status (1)

Country Link
JP (1) JP2010247144A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566628A (en) * 2013-11-09 2014-02-12 七台河宝泰隆圣迈煤化工有限责任公司 Efficient oil-water separation backflow tank at pressure reducing tower top
CN105600876A (en) * 2016-03-04 2016-05-25 苏州晨钟自动化科技有限公司 Oil removing and filtering device for printing and dyeing water liquid
CN106669231A (en) * 2015-11-10 2017-05-17 宜兴市阳洋塑料助剂有限公司 Oil-water separation device for production of plasticizer epoxy soybean oil
WO2017094373A1 (en) * 2015-11-30 2017-06-08 雅 田篭 Floating object recovery vessel
JP2017105423A (en) * 2015-11-30 2017-06-15 雅 田篭 Floating matter collection ship
JP2020058973A (en) * 2018-10-09 2020-04-16 コスモ石油株式会社 Operating condition diagnostic method for oil-water separator and operating condition diagnostic device for oil-water separator
CN114173900A (en) * 2019-05-28 2022-03-11 戈斯林恩通用有限责任公司 Variable flow immiscible liquid separator for subterranean applications

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103566628A (en) * 2013-11-09 2014-02-12 七台河宝泰隆圣迈煤化工有限责任公司 Efficient oil-water separation backflow tank at pressure reducing tower top
CN106669231A (en) * 2015-11-10 2017-05-17 宜兴市阳洋塑料助剂有限公司 Oil-water separation device for production of plasticizer epoxy soybean oil
WO2017094373A1 (en) * 2015-11-30 2017-06-08 雅 田篭 Floating object recovery vessel
JP2017105423A (en) * 2015-11-30 2017-06-15 雅 田篭 Floating matter collection ship
CN105600876A (en) * 2016-03-04 2016-05-25 苏州晨钟自动化科技有限公司 Oil removing and filtering device for printing and dyeing water liquid
CN105600876B (en) * 2016-03-04 2018-10-30 苏州晨钟自动化科技有限公司 A kind of printing and dyeing aqueous oil removing filter device
JP2020058973A (en) * 2018-10-09 2020-04-16 コスモ石油株式会社 Operating condition diagnostic method for oil-water separator and operating condition diagnostic device for oil-water separator
JP7129306B2 (en) 2018-10-09 2022-09-01 コスモ石油株式会社 OIL-WATER SEPARATOR OPERATING CONDITION DIAGNOSTIC METHOD AND OIL-WATER SEPARATOR OPERATING CONDITION DIAGNOSIS DEVICE
CN114173900A (en) * 2019-05-28 2022-03-11 戈斯林恩通用有限责任公司 Variable flow immiscible liquid separator for subterranean applications

Similar Documents

Publication Publication Date Title
JP2010247144A (en) Oil separation tank
US9187890B2 (en) Separator and separation method
JP4719261B2 (en) Separation device
NO322794B1 (en) Underwater equipment for injection of amber water
JP2007113232A (en) Dust removing device
JP4729590B2 (en) Separation device
JP4729589B2 (en) Separation device
CN204996242U (en) Water conservancy diversion baffle and horizontal deareator thereof
KR20120131331A (en) Water treatment structure
JP5944682B2 (en) Oil separation tank
KR102173185B1 (en) high-rate plate settler module
CN207493362U (en) A kind of high-efficiency gas-liquid separator
CN102951703A (en) High throughput and pressure-proof micronet element with gas-liquid separation function
KR20180051305A (en) Method for collecting impaction type micro particulars with wire mesh demister
JP5318295B1 (en) Solid separation apparatus and solid separation method
US8944256B2 (en) Filter
CN212651397U (en) Three-dimensional inclined plate purification device and sedimentation tank with same
CN103272409B (en) A kind of coalescent idetified separation core body of oil-liquid separator
CN210103540U (en) Filler collecting device for water treatment SIFES system
KR20120032753A (en) Liquid separation and auto-drain devices
RU88986U1 (en) CENTRIFUGAL DRINKER
JP5539465B2 (en) Water intake equipment
JP4701258B2 (en) Separation device
JP2020000990A (en) Separation device
JP3062561B2 (en) Oil-water separator