JP2013133515A - Aluminum alloy brazing sheet - Google Patents

Aluminum alloy brazing sheet Download PDF

Info

Publication number
JP2013133515A
JP2013133515A JP2011285532A JP2011285532A JP2013133515A JP 2013133515 A JP2013133515 A JP 2013133515A JP 2011285532 A JP2011285532 A JP 2011285532A JP 2011285532 A JP2011285532 A JP 2011285532A JP 2013133515 A JP2013133515 A JP 2013133515A
Authority
JP
Japan
Prior art keywords
brazing
core material
aluminum alloy
heat treatment
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011285532A
Other languages
Japanese (ja)
Other versions
JP5878365B2 (en
JP2013133515A5 (en
Inventor
Sho Ishigami
翔 石上
Michihide Yoshino
路英 吉野
Shu Kuroda
周 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2011285532A priority Critical patent/JP5878365B2/en
Publication of JP2013133515A publication Critical patent/JP2013133515A/en
Publication of JP2013133515A5 publication Critical patent/JP2013133515A5/ja
Application granted granted Critical
Publication of JP5878365B2 publication Critical patent/JP5878365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a brazing sheet made of an aluminum alloy, which has both high strength and formability even if it is a tube material having a thinner wall and is used for making a brazed tube.SOLUTION: In the aluminum alloy brazing sheet for making a brazed tube, a core material, a sacrificial material, and a brazing filler metal have the following chemical components, wherein the clad thickness is 0.20 mm or less; the tensile strength after brazing heat treatment is 170 MPa or more; the average crystal grain size of the core material after brazing heat treatment is 30 to 120 μm; and the core material before brazing has a fibrous structure. The core material includes 1.2 to 1.8% Mn, 0.4 to 1.3% Si, 0.21 to 0.5% Fe, 0.5 to 1.3% Cu, and the balance Al with inevitable impurities. The sacrificial material includes 4.0 to 7.0% Zn, 1.0 to 1.8% Mn, 0.2 to 1.2% Si, and the balance Al with inevitable impurities. The brazing filler metal is an Al-Si brazing filler metal or an Al-Si-Zn brazing filler metal.

Description

本発明は、熱交換器のチューブに用いられるアルミニウム合金製のブレージングシートに関し、特にろう付造管に供されるブレージングシートに関する。   The present invention relates to a brazing sheet made of an aluminum alloy used for a tube of a heat exchanger, and more particularly to a brazing sheet used for a brazed tube.

近年の熱交換器の軽量化・小型化の要求に対して、チューブ材の薄肉化が有効な手段である。チューブ材の薄肉化にあたっては素材の板厚減少分に見合う高強度化が必要となる。従来の高強度化方法としては、アルミニウム合金にMgを添加する方法が提案されているが、Mgの含有によりろう付性が低下するという問題がある。また、チューブ材を薄肉化するとチューブへの成形、特にB型チューブへの成形が困難となるという問題もある。なお、B型チューブとは、犠牲材が内周側に配置されるようにブレージングシートをB型形状に折り曲げて、突き合される両縁をろう付により接合されたチューブである。Mgを添加しない場合の高強度化方法として、Al-Mn-Si-Cu系のアルミニウム合金芯材を使用し、ろう付相当熱処理後の結晶粒組織を微細にすることで、高強度化を図ることができる。しかし、この微細組織を得るためには、最終圧下率を高圧下にする必要があり、最終圧延時の高負荷により素材自体の強度が増加することでチューブの成形性が低下してしまう。この様に従来材では高強度化と成形性の両立が困難であった。   In response to recent demands for reducing the weight and size of heat exchangers, it is an effective means to reduce the thickness of the tube material. In reducing the thickness of the tube material, it is necessary to increase the strength to meet the thickness reduction of the material. As a conventional method for increasing the strength, a method of adding Mg to an aluminum alloy has been proposed, but there is a problem that brazing properties are reduced due to the inclusion of Mg. Further, when the tube material is thinned, there is a problem that it becomes difficult to form into a tube, particularly into a B-type tube. The B-type tube is a tube in which a brazing sheet is bent into a B-type shape so that the sacrificial material is disposed on the inner peripheral side, and both edges to be joined are joined by brazing. As a method for increasing the strength when Mg is not added, an Al-Mn-Si-Cu-based aluminum alloy core material is used, and the grain structure after brazing equivalent heat treatment is refined to increase the strength. be able to. However, in order to obtain this fine structure, it is necessary to make the final reduction ratio high, and the formability of the tube deteriorates due to an increase in strength of the material itself due to a high load during final rolling. As described above, it has been difficult for the conventional material to achieve both high strength and formability.

特開2010−95758号公報JP 2010-95758 A

本発明者等は、以上の背景の中で、ろう付け造管により作製されるB型形状チューブに好適なブレージングシートを特許文献1において提案した。この提案は、芯材を繊維組織にすることに加えて、犠牲材をも繊維組織にすることによって、芯材と犠牲材の変形能をともに高めるとともに、芯材と犠牲材との変形能を均等にすることにより、成形性を向上したものである。
ところが、チューブ材をより薄肉化する場合には、特許文献1の提案では高強度化と成形性の両立の点で不十分であることを知見した。
そこで本発明では、より薄肉化されたチューブ材であっても高強度化と成形性の両立ができるろう付造管に供されるアルミニウム合金製のブレージングシートを提供することを目的とする。
In the background described above, the present inventors have proposed a brazing sheet suitable for a B-shaped tube manufactured by brazing tube in Patent Document 1. This proposal increases the deformability of the core material and the sacrificial material and increases the deformability of the core material and the sacrificial material by making the sacrificial material a fiber structure in addition to making the core material a fiber structure. Formability is improved by equalizing.
However, when the tube material is made thinner, it has been found that the proposal of Patent Document 1 is insufficient in terms of achieving both high strength and formability.
Therefore, an object of the present invention is to provide an aluminum alloy brazing sheet that is used in a brazed tube that can achieve both high strength and formability even with a thinner tube material.

本発明は、芯材の一方の面に犠牲材を、他方の面にろう材をクラッドしたろう付造管用アルミニウム合金ブレージングシートであって、芯材、犠牲材及びろう材が以下のものを用いる。なお、本発明において、芯材などの構成元素の比率は、質量%である。
芯材
Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%、残部Al及び不可避的不純物
犠牲材
Zn:4.0〜7.0%、Mn:1.0〜1.8%、Si:0.2〜1.2%、残部Al及び不可避的不純物
ろう材
Al-Si系またはAl-Si-Zn系ろう材
そして、本発明のろう付造管用アルミニウム合金ブレージングシートは、クラッドした板厚が0.20mm以下であり、さらに、ろう付熱処理後の引張強さが170MPa以上、かつ、ろう付熱処理後の芯材の平均結晶粒径が30〜120μmの範囲、かつ、ろう付前の芯材が繊維状組織であることを特徴とする。
The present invention is an aluminum alloy brazing sheet for brazed tube in which a sacrificial material is clad on one surface of a core material and a brazing material is clad on the other surface, and the core material, the sacrificial material and the brazing material are as follows. . In the present invention, the ratio of the constituent elements such as the core material is mass%.
Core material
Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0.21 to 0.5%, Cu: 0.5 to 1.3%, balance Al and inevitable impurities Sacrificial material
Zn: 4.0-7.0%, Mn: 1.0-1.8%, Si: 0.2-1.2%, balance Al and inevitable impurities Brazing material
Al-Si or Al-Si-Zn brazing material The aluminum alloy brazing sheet for brazing pipes of the present invention has a clad plate thickness of 0.20 mm or less, and further has a tensile strength after brazing heat treatment. 170 MPa or more, the average crystal grain size of the core material after brazing heat treatment is in the range of 30 to 120 μm, and the core material before brazing has a fibrous structure.

本発明のろう付造管用アルミニウム合金ブレージングシートにおいて、ろう付前の0.2%耐力が160〜220MPaの範囲にあることが望ましい。この場合、最終冷間圧延によって製造する強度および成形性に優れたろう付造管用アルミニウム合金ブレージングシートが得られる。   In the aluminum alloy brazing sheet for brazing pipe of the present invention, it is desirable that the 0.2% proof stress before brazing is in the range of 160 to 220 MPa. In this case, an aluminum alloy brazing sheet for brazed pipes excellent in strength and formability produced by final cold rolling can be obtained.

本発明のろう付造管用アルミニウム合金ブレージングシートにおいて、ろう付前の引張強さをσTS,0.2%耐力をσYSとしたときのσYSTSの比が0.80〜0.95の範囲にあることが望ましい。 In the brazing sheet aluminum alloy brazing sheet of the present invention, the ratio of σ YS / σ TS when the tensile strength before brazing is σ TS and the 0.2% proof stress is σ YS is in the range of 0.80 to 0.95. Is desirable.

本発明によれば、より薄肉化されたチューブ材であっても高強度化と成形性の両立ができるろう付造管に供されるアルミニウム合金製のブレージングシートを提供する。   According to the present invention, there is provided a brazing sheet made of an aluminum alloy that is used in a brazed tube that can achieve both high strength and formability even with a thinner tube material.

実施例で用いた芯材の化学成分を示す表である。It is a table | surface which shows the chemical component of the core material used in the Example. 実施例で用いた犠牲材の化学成分を示す表である。It is a table | surface which shows the chemical component of the sacrificial material used in the Example. 実施例で用いたブレージングシートの仕様及び評価結果を示す表である。It is a table | surface which shows the specification and evaluation result of a brazing sheet which were used in the Example. 実施例で用いたブレージングシートの仕様及び評価結果を示す表である。It is a table | surface which shows the specification and evaluation result of a brazing sheet which were used in the Example. 実施例で用いたブレージングシートの仕様及び評価結果を示す表である。It is a table | surface which shows the specification and evaluation result of a brazing sheet which were used in the Example.

以下、本発明のアルミニウム合金ブレージングシートを詳細に説明する。
はじめに、芯材、犠牲材及びろう材の限定理由について説明する。
Hereinafter, the aluminum alloy brazing sheet of the present invention will be described in detail.
First, the reasons for limiting the core material, the sacrificial material, and the brazing material will be described.

(1)芯材
[成分]
[Mn:1.2〜1.8%]
Mnはマトリックス中にAl-Mn-Si系、Al-Mn-Fe系、Al-Mn-Fe-Si系金属間化合物を微細に形成し、材料強度を高める効果がある。しかし、Mn量が1.2%未満ではその効果が充分に発揮されず、1.8%を超えると鋳造時に巨大な金属間化合物を生成するため材料の成形性が低下する。なお、同様の理由から下限を1.4%、上限を1.8%とすることが望ましく、さらには下限を1.5%、上限を1.75%にすることがより望ましい。
(1) Core material [component]
[Mn: 1.2-1.8%]
Mn has the effect of increasing the material strength by forming finely Al—Mn—Si, Al—Mn—Fe, and Al—Mn—Fe—Si intermetallic compounds in the matrix. However, if the amount of Mn is less than 1.2%, the effect is not sufficiently exerted, and if it exceeds 1.8%, a large intermetallic compound is produced at the time of casting, so that the formability of the material is lowered. For the same reason, it is desirable to set the lower limit to 1.4% and the upper limit to 1.8%, and more preferably 1.5% and the upper limit to 1.75%.

[Si:0.4〜1.3%]
Siはマトリックス中にAl-Mn-Si系、Al-Mn-Fe-Si系金属間化合物を微細に形成し、材料強度を高める効果がある。しかし、Si量が0.4%未満ではその効果が充分に発揮されず、1.3%を超えると材料の融点が低下する。なお同様の理由から下限を0.6%、上限を1.2%とすることが望ましく、さらには下限を0.7%、上限を1.1%にすることがより望ましい。
[Si: 0.4 to 1.3%]
Si has the effect of increasing the material strength by forming Al-Mn-Si and Al-Mn-Fe-Si intermetallic compounds finely in the matrix. However, if the Si content is less than 0.4%, the effect is not sufficiently exhibited, and if it exceeds 1.3%, the melting point of the material is lowered. For the same reason, it is desirable to set the lower limit to 0.6% and the upper limit to 1.2%, and it is more desirable to set the lower limit to 0.7% and the upper limit to 1.1%.

[Fe:0.21〜0.5%]
Feはマトリックス中にAl-Mn-Fe系、Al-Mn-Fe-Si系金属間化合物を微細に形成し、材料強度を高める効果や、ろう付熱処理後の結晶粒を微細化することにより、ろう付後の強度を向上させる効果がある。しかし、Fe量が0.21%未満ではその効果が充分に発揮されず、0.5%を超えると耐食性が劣化したり、鋳造時に巨大な金属間化合物を生成して材料の成形性が低下する。なお、同様の理由により下限を0.25%、上限を0.45%とすることが望ましく、さらには、下限を0.28%、上限を0.40%とすることがより望ましい。
[Fe: 0.21-0.5%]
Fe is an Al-Mn-Fe-based and Al-Mn-Fe-Si-based intermetallic compound formed in the matrix to improve the material strength, and by refining the crystal grains after brazing heat treatment, There is an effect of improving the strength after brazing. However, if the amount of Fe is less than 0.21%, the effect is not sufficiently exhibited, and if it exceeds 0.5%, the corrosion resistance is deteriorated, or a huge intermetallic compound is produced at the time of casting and the formability of the material is lowered. For the same reason, it is desirable to set the lower limit to 0.25% and the upper limit to 0.45%, and it is more desirable to set the lower limit to 0.28% and the upper limit to 0.40%.

[Cu:0.5%〜1.3%]
Cuはマトリックス中に固溶し、材料の強度を高める効果や、芯材に添加した場合、芯材の電位を貴として犠牲材との電位差が大きくなるため、耐食性を向上させる効果がある。しかし、Cu量が0.5%未満ではその効果が充分に発揮されず、1.3%を超えると材料の融点が低下する。なお、同様の理由により下限を0.6%、上限を1.2%とすることが望ましく、さらには、下限を0.7%、上限を1.1%とすることがより望ましい。
なお、芯材における上記元素以外は、Al及び不可避不純物である。
[Cu: 0.5% to 1.3%]
Cu is dissolved in the matrix to increase the strength of the material, and when added to the core, the potential of the core is noble and the potential difference from the sacrificial material is increased, thereby improving the corrosion resistance. However, if the amount of Cu is less than 0.5%, the effect is not sufficiently exhibited, and if it exceeds 1.3%, the melting point of the material is lowered. For the same reason, it is desirable to set the lower limit to 0.6% and the upper limit to 1.2%, and it is more desirable to set the lower limit to 0.7% and the upper limit to 1.1%.
Other than the above elements in the core material, Al and unavoidable impurities.

[ろう付熱処理(600℃×3分)後の平均結晶粒径:30〜120μm(芯材)]
芯材の化学成分を適性化することにより強度は向上するものの、特に薄肉材においては最大応力に到達する前に破断してしまうことが多く、材料本来の強度が得られない(引張強さの低下)。すなわち、実質的な高強度化には伸びを向上させることが必要となる。
伸びを向上させるためには、ろう付熱処理後において結晶粒組織が微細であることが有効である。結晶粒が粗大であると結晶粒間で不均一な変形が生じるため伸びが低下する。そこで、ろう付熱処理後の平均結晶粒径を30〜120μmに規制する。ただし、ろう付温度は操業状態によって異なるので、標準的な条件(600℃×3分)において得られる組織を規定している。したがって、ろう付温度が上記条件と異なる条件では平均結晶粒径が30〜120μmの範囲外であって、条件(600℃×3分)で平均結晶粒径が30〜120μmの範囲になるのであれば、本発明の範囲となる。なお、本願発明でいう結晶粒径とは、圧延方向において平行する断面における結晶粒の円相当径をいう。ここで円相当径は、結晶粒子の投影図形の周長に等しい円周をもつ円の直径をいう。
[Average crystal grain size after brazing heat treatment (600 ° C. × 3 min): 30 to 120 μm (core material)]
Although the strength is improved by optimizing the chemical composition of the core material, the thin material often breaks before reaching the maximum stress, and the original strength of the material cannot be obtained (the tensile strength is low). Decline). That is, it is necessary to improve the elongation in order to substantially increase the strength.
In order to improve elongation, it is effective that the grain structure is fine after brazing heat treatment. If the crystal grains are coarse, non-uniform deformation occurs between the crystal grains, resulting in a decrease in elongation. Therefore, the average crystal grain size after brazing heat treatment is regulated to 30 to 120 μm. However, since the brazing temperature varies depending on the operating conditions, the structure obtained under standard conditions (600 ° C x 3 minutes) is specified. Therefore, if the brazing temperature is different from the above conditions, the average crystal grain size is out of the range of 30 to 120 μm, and the average crystal grain size is in the range of 30 to 120 μm under the condition (600 ° C. × 3 minutes). Thus, it is within the scope of the present invention. In addition, the crystal grain diameter as used in this invention means the circle equivalent diameter of the crystal grain in the cross section parallel in a rolling direction. Here, the equivalent circle diameter refers to the diameter of a circle having a circumference equal to the circumference of the projected pattern of crystal grains.

平均結晶粒径が30μm未満であると、ろう付熱処理時にろう侵食を受けやすくなり、耐ろう侵食性が低下する。一方120μmを超えると、上記した理由により材料の伸びが低下する。なお、同様の理由により下限を40μm、上限を110μmにすることが望ましく、さらには下限を45μm、上限を100μmにすることがより望ましい。   If the average crystal grain size is less than 30 μm, it becomes susceptible to wax erosion during brazing heat treatment, and the wax erosion resistance decreases. On the other hand, if it exceeds 120 μm, the elongation of the material is lowered due to the reason described above. For the same reason, it is desirable to set the lower limit to 40 μm and the upper limit to 110 μm, and it is more desirable to set the lower limit to 45 μm and the upper limit to 100 μm.

[ろう付前の芯材:繊維状組織]
薄肉のブレージングシートの高強度化に伴い、最終圧延率を増加させることで、ろう付前の素材の強度が増加し、特にB型チューブにおいて従来よりも成形性が低下することが問題となる。チューブの成形性確保のため単に最終圧延率を低下させた場合、ろう付熱処理後の結晶粒組織が粗大となることでろう付後の強度が低下してしまう。そのため、薄肉のブレージングシートにおいては成形性とろう付熱処理後の高強度の両立が必要となる。
通常の材料作製工程では最終圧延前の中間焼鈍により材料を完全に再結晶させる工程を行なうが、この中間焼鈍時の加熱を材料が再結晶しないような温度で施し、最終圧延後の結晶粒組織を繊維状とすることで、材料内にひずみを残留させることにより、最終圧延率を低下させることが望ましい。さらに、ろう付時の再結晶挙動においても駆動力となるひずみエネルギーが多いことから再結晶が促進され、ろう付熱処理後の結晶粒組織が微細となり高強度化が可能となる。また、マトリックスの結晶粒組織が繊維状であることにより、チューブ成形時の曲げ加工性が良好となる。これが、再結晶組織の場合または再結晶組織と繊維状組織との混合組織の場合には成形時の変形が不均一となり、成形性が低下する。
このことから、ろう付前の結晶粒組織を繊維状とすることで成形性とろう付熱処理後の高強度の両立が可能となる。そこで、ろう付前の芯材の結晶粒組織が繊維状組織であることを要件とした。
[Core material before brazing: fibrous structure]
As the strength of the thin brazing sheet is increased, the final rolling rate is increased, so that the strength of the material before brazing is increased, and in particular, in the B-type tube, the moldability is lowered as compared with the conventional one. If the final rolling rate is simply reduced to ensure the formability of the tube, the strength after brazing is reduced because the crystal grain structure after brazing heat treatment becomes coarse. Therefore, in a thin brazing sheet, both formability and high strength after brazing heat treatment are required.
In the normal material production process, the material is completely recrystallized by intermediate annealing before the final rolling, but the heating during the intermediate annealing is performed at a temperature at which the material does not recrystallize, and the grain structure after the final rolling. It is desirable to reduce the final rolling rate by making the fiber into a strain so that strain remains in the material. Furthermore, since recrystallization behavior during brazing has a large amount of strain energy as a driving force, recrystallization is promoted, and the grain structure after brazing heat treatment becomes fine and high strength can be achieved. Further, since the crystal grain structure of the matrix is fibrous, the bending workability at the time of tube forming becomes good. In the case of a recrystallized structure or a mixed structure of a recrystallized structure and a fibrous structure, the deformation at the time of forming becomes non-uniform, and the formability decreases.
From this fact, it is possible to achieve both formability and high strength after brazing heat treatment by making the crystal grain structure before brazing fibrous. Therefore, the requirement is that the crystal grain structure of the core material before brazing is a fibrous structure.

(2)犠牲材
[成分]
[Zn:4.0〜7.0%]
Znは電位を卑にする作用があり、犠牲材に添加した場合、芯材との電位差が大きくなり、耐食性に有効な電位勾配ができることで、ブレージングシートの耐食性を向上させ、腐食深さを低減する効果がある。しかし、Zn量が4.0%未満ではその効果が充分に発揮されず、7.0%を超えると腐食速度が速くなりすぎることで犠牲材層が早期に消失し、腐食深さが増加する。なお、同様の理由により、下限を4.5%、上限を7.0%とすることが望ましく、さらには下限を4.8%、上限を6.8%とすることがより望ましい。
(2) Sacrificial material [component]
[Zn: 4.0-7.0%]
Zn has the effect of lowering the potential, and when added to the sacrificial material, the potential difference with the core material increases, creating a potential gradient effective for corrosion resistance, improving the corrosion resistance of the brazing sheet and reducing the corrosion depth. There is an effect to. However, if the Zn content is less than 4.0%, the effect is not sufficiently exhibited. If the Zn content exceeds 7.0%, the corrosion rate becomes too fast and the sacrificial material layer disappears early and the corrosion depth increases. For the same reason, it is desirable that the lower limit is 4.5% and the upper limit is 7.0%, and it is more desirable that the lower limit is 4.8% and the upper limit is 6.8%.

[Mn:1.0〜1.8%]
Mnはマトリックス中にAl-Mn-Si系、Al-Mn-Fe系、Al-Mn-Fe-Si系金属間化合物を微細に形成し、材料強度を高める効果がある。しかし、Mn量が1.0%未満ではその効果が充分に発揮されず、1.8%を超えると鋳造時に巨大な金属間化合物を生成するため材料の成形性が低下する。なお、同様の理由から下限を1.2%、上限を1.8%とすることが望ましく、さらには下限を1.3%、上限を1.7%にすることがより望ましい。
[Mn: 1.0-1.8%]
Mn has the effect of increasing the material strength by forming finely Al—Mn—Si, Al—Mn—Fe, and Al—Mn—Fe—Si intermetallic compounds in the matrix. However, if the amount of Mn is less than 1.0%, the effect is not sufficiently exerted, and if it exceeds 1.8%, a large intermetallic compound is produced at the time of casting, so that the formability of the material is lowered. For the same reason, it is desirable to set the lower limit to 1.2% and the upper limit to 1.8%, and it is more desirable to set the lower limit to 1.3% and the upper limit to 1.7%.

[Si:0.2〜1.2%]
Siはマトリックス中にAl-Mn-Si系、Al-Mn-Fe-Si系金属間化合物を微細に形成し、材料強度を高める効果がある。しかし、Si量が0.2%未満ではその効果が充分に発揮されず、1.2%を超えると材料の融点が低下する。なお同様の理由から下限を0.2%、上限を1.2%とすることが望ましく、さらには下限を0.4%、上限を1.0%にすることがより望ましい。
[Si: 0.2-1.2%]
Si has the effect of increasing the material strength by forming Al-Mn-Si and Al-Mn-Fe-Si intermetallic compounds finely in the matrix. However, if the amount of Si is less than 0.2%, the effect is not sufficiently exhibited, and if it exceeds 1.2%, the melting point of the material is lowered. For the same reason, it is desirable to set the lower limit to 0.2% and the upper limit to 1.2%, and it is more desirable to set the lower limit to 0.4% and the upper limit to 1.0%.

[ろう材]
本発明のブレージングシートに使用するろう材は、Al−Si系(JIS 4045合金,4343合金)又はAl−Si−Zn系のアルミニウム合金からなるろう材であればよく、特に限定されるものではない。
ろう材中に含まれるSiは融点を下げると共に流動性を付与する成分であり、その含有量が5%未満では所望の効果が不十分であり、一方、15%を越えて含有するとかえって流動性が低下するので好ましくない。したがって、ろう材中の好ましいSiの含有量は5〜15%が好ましい。ろう材中のSi含有量のより好ましい範囲は7〜12%である。
また、Al−Si−Zn系のろう材は前記Al−Si系ろう材にZnを1.0〜5.0%含有させたものが望ましい。
[Brazing material]
The brazing material used in the brazing sheet of the present invention is not particularly limited as long as it is a brazing material made of an Al—Si based (JIS 4045 alloy, 4343 alloy) or Al—Si—Zn based aluminum alloy. .
Si contained in the brazing filler metal is a component that lowers the melting point and imparts fluidity. If its content is less than 5%, the desired effect is insufficient. On the other hand, if it contains more than 15%, it is rather fluid. Is unfavorable because it decreases. Therefore, the preferable Si content in the brazing material is preferably 5 to 15%. A more preferable range of the Si content in the brazing material is 7 to 12%.
Further, the Al—Si—Zn brazing material is preferably one containing 1.0% to 5.0% Zn in the Al—Si brazing material.

(3)ブレージングシート
[板厚:0.20mm以下]
ブレージングシートの板厚が0.20mmを超えると、熱交換器の軽量化に対する効果が少ない。そのため板厚は0.20mm以下に限定する。なお、熱交換器の軽量化に際しては板厚を0.19mm以下とすることがより望ましい。なお、ブレージングシートの板厚の下限としては0.15mmである。
(3) Brazing sheet [Thickness: 0.20mm or less]
When the thickness of the brazing sheet exceeds 0.20 mm, the effect of reducing the weight of the heat exchanger is small. Therefore, the plate thickness is limited to 0.20 mm or less. It should be noted that the thickness of the heat exchanger is more preferably 0.19 mm or less when the weight is reduced. Note that the lower limit of the thickness of the brazing sheet is 0.15 mm.

[ろう付熱処理(600℃×3分)後の引張強さ:170MPa以上]
ブレージングシートの薄肉化にあたっては、肉厚減少分に見合うろう付後の材料の高強度化が必要となる。そこでろう付熱処理後のブレージングシートとしての引張強さを170MPa以上であることを要件とする。ろう付温度は操業状態によって異なるので、標準的な条件(600℃×3分)において得られる特性として規定している。したがって、実際に行われるろう付温度が上記条件である必要はない。
ろう付熱処理後の引張強さが170MPa未満であると、熱交換器に使用したときに充分な強度が得られず、実用に向かない。
[Tensile strength after brazing heat treatment (600 ° C x 3 min): 170 MPa or more]
In reducing the thickness of the brazing sheet, it is necessary to increase the strength of the brazed material to meet the thickness reduction. Therefore, it is required that the tensile strength as a brazing sheet after brazing heat treatment is 170 MPa or more. Since the brazing temperature varies depending on the operating conditions, it is specified as a characteristic obtained under standard conditions (600 ° C. × 3 minutes). Therefore, the actual brazing temperature does not have to be the above condition.
If the tensile strength after brazing heat treatment is less than 170 MPa, sufficient strength cannot be obtained when used in a heat exchanger, which is not suitable for practical use.

[ろう付前の0.2%耐力:160〜220MPa]
ろう付前の0.2%耐力は成形性に影響を与える因子であり、この値が大きくなるほど材料のスプリングバック量が増加し、成形時に所定の形状が得がたくなる。
0.2%耐力が220MPaを超えると上記の理由からB型チューブの造管が困難となる。また、160MPa未満では材料が早期に塑性変形することで所定の形状が得がたくなる。したがってブレージングシートの0.2%耐力は160〜220MPaであることが望ましい。
[0.2% proof stress before brazing: 160 to 220 MPa]
The 0.2% proof stress before brazing is a factor that affects the moldability. The larger the value, the more the springback amount of the material increases, making it difficult to obtain a predetermined shape during molding.
If the 0.2% proof stress exceeds 220 MPa, it becomes difficult to form a B-type tube for the above reasons. Moreover, if it is less than 160 MPa, it is difficult to obtain a predetermined shape due to plastic deformation of the material at an early stage. Therefore, it is desirable that the 0.2% yield strength of the brazing sheet is 160 to 220 MPa.

[ろう付前の引張強さをσTS,0.2%耐力をσYSとしたときのσYSTSの比:0.80〜0.95]
ブレージングシートの結晶粒組織を繊維状組織にすることで、ろう付前の素材の引張強さを維持したまま0.2%耐力のみを低下できる特徴がある。このとき、ろう付前の引張強さをσTS,0.2%耐力をσYSとしたときのσYSTSの比が0.95を超えると0.2%耐力が引張強さと同等以上と高い値になることで成形性は低下する。また、0.80未満では材料が早期に塑性変形することで所定の形状が得がたくなる。したがってσYSTSの比が0.80〜0.95であることが望ましい。
[Ratio of σ YS / σ TS when the tensile strength before brazing is σ TS and the 0.2% proof stress is σ YS : 0.80 to 0.95]
By making the crystal grain structure of the brazing sheet into a fibrous structure, there is a feature that only 0.2% proof stress can be lowered while maintaining the tensile strength of the material before brazing. At this time, when the ratio of σ YS / σ TS exceeds 0.95 when the tensile strength before brazing is σ TS and the 0.2% proof stress is σ YS , the 0.2% proof stress becomes equal to or higher than the tensile strength. As a result, the moldability decreases. On the other hand, if it is less than 0.80, it is difficult to obtain a predetermined shape due to early plastic deformation of the material. Therefore, it is desirable that the ratio of σ YS / σ TS is 0.80 to 0.95.

[実施例]
以上説明した本発明のブレージングシートの効果確認するために行った具体的な実施例を説明する。
[材料の製造工程]
半連続鋳造により芯材用アルミニウム合金、犠牲材用アルミニウム合金、およびろう材用合金(JIS A4045合金)を鋳造した。なお、芯材用アルミニウム合金の化学組成を図1、犠牲材用アルミニウム合金の化学組成を図2に示す。また、図1、図2において、表記された元素の残部は、Al及び不可避不純物である。
得られた芯材は585℃で8hrの均質化処理を行なった。この均質化処理の条件は一例であり、温度:550〜600℃、保持時間:8〜16hの範囲から選択することができる。犠牲材およびろう材については均質化処理を行わない。なお、ろう材は上記合金に限定されるわけではなく、4343合金、4047合金、また4045合金,4343合金,4047合金等にZnを含有する合金、またMg、Cu、Li等を含有する合金を用いることもできる。
図3〜図5に示すように、芯材の鋳塊の一方の面に犠牲材を、さらに他方の面にろう材を組み合わせて熱間圧延し、クラッド材とした。さらに所定の厚さまで冷間圧延を行った。その後、中間焼鈍を225℃で6hr行い、図3〜図5に示す圧延率とした最終の冷間圧延により厚さ0.18mmのH14調質のクラッド材(試料)を作製した。また、比較材(図5 No.66)として中間焼鈍を330℃×3.5hrの条件で負荷し、その後、上記と同様の最終圧延を行なったクラッド材を作製した。クラッド材の構成は、犠牲材:芯材:ろう材(厚さ)=15%:75%:10%とした。ただし、上記クラッド率はこれに限定されるものではなく、例えば、犠牲材のクラッド率を17%や20%にしてもよい。また、中間焼鈍についても上記は一例であり、温度:200〜300℃、保持時間:1〜6hの範囲から選択することができる。
[Example]
Specific examples performed for confirming the effects of the brazing sheet of the present invention described above will be described.
[Material manufacturing process]
Aluminum alloy for core material, aluminum alloy for sacrificial material, and alloy for brazing material (JIS A4045 alloy) were cast by semi-continuous casting. In addition, the chemical composition of the aluminum alloy for core materials is shown in FIG. 1, and the chemical composition of the aluminum alloy for sacrificial materials is shown in FIG. Moreover, in FIG. 1, FIG. 2, the remainder of the described element is Al and an unavoidable impurity.
The obtained core material was homogenized at 585 ° C. for 8 hours. The conditions for this homogenization treatment are examples, and can be selected from the range of temperature: 550 to 600 ° C. and holding time: 8 to 16 h. The sacrificial material and brazing material are not homogenized. Note that the brazing material is not limited to the above alloy, and alloys such as 4343 alloy, 4047 alloy, 4045 alloy, 4343 alloy, 4047 alloy containing Zn, and Mg, Cu, Li etc. It can also be used.
As shown in FIGS. 3 to 5, a sacrificial material was combined on one surface of the ingot of the core material, and a brazing material was combined on the other surface, and hot rolled to obtain a clad material. Furthermore, cold rolling was performed to a predetermined thickness. Thereafter, intermediate annealing was performed at 225 ° C. for 6 hours, and a H14 tempered clad material (sample) having a thickness of 0.18 mm was produced by final cold rolling with the rolling rates shown in FIGS. Further, as a comparative material (No. 66 in FIG. 5), intermediate annealing was applied under conditions of 330 ° C. × 3.5 hr, and then a clad material was prepared in which the same final rolling as described above was performed. The composition of the clad material was sacrificial material: core material: brazing material (thickness) = 15%: 75%: 10%. However, the cladding rate is not limited to this, and for example, the cladding rate of the sacrificial material may be 17% or 20%. Moreover, the above is also an example for the intermediate annealing, and the temperature can be selected from the range of 200 to 300 ° C. and the holding time of 1 to 6 hours.

得られた試料、比較材について、以下の評価を行った。
[ろう付前の芯材組織]
得られたブレージングシートについて、板厚方向と垂直な断面を研磨してミクロ組織を顕微鏡で観察することにより芯材の組織を調査(倍率:100,視野数:20)した。
The following evaluation was performed about the obtained sample and the comparative material.
[Core structure before brazing]
About the obtained brazing sheet, the cross section perpendicular to the plate thickness direction was polished, and the microstructure of the core material was examined by observing the microstructure with a microscope (magnification: 100, number of fields of view: 20).

[ろう付熱処理後の芯材結晶粒径]
作製した試料を高純度窒素ガス雰囲気中でドロップ形式により600℃×3minのろう付相当熱処理(室温から600℃まで昇温時間は5〜7分)を施した。ろう付相当熱処理を実施した試料は圧延方向に平行な断面を樹脂埋め後、鏡面に研磨した後、エッチング液で結晶粒を現出させ、試料の3箇所について光学顕微鏡を用いて200倍で写真撮影した。撮影した写真から圧延方向について切断法で結晶粒径を測定した。
[Core particle size after brazing heat treatment]
The prepared sample was subjected to a heat treatment equivalent to brazing at 600 ° C. × 3 min in a high-purity nitrogen gas atmosphere (temperature rising time from room temperature to 600 ° C. is 5 to 7 minutes). Samples subjected to brazing equivalent heat treatment were filled with resin in a cross section parallel to the rolling direction, polished to a mirror surface, crystal grains appeared with an etching solution, and photographed at 200 times using an optical microscope at three locations on the sample. I took a picture. From the photograph taken, the crystal grain size was measured by the cutting method in the rolling direction.

[ろう付前強度(ブレージングシート)]
作製した試料から圧延方向と平行にサンプルを切り出し、JIS13号B試験片を作製し、引張試験を実施して引張強さを測定した。
[ろう付後強度(ブレージングシート)]
作製した試料を高純度窒素ガス雰囲気中でドロップ形式により600℃×3minのろう付相当熱処理(室温から600℃まで昇温時間は5〜7分)を施したのち、圧延方向と平行にサンプルを切り出し、JIS13号B試験片を作製し、引張試験を実施して引張強さを測定した。
[成形性(ブレージングシート)]
作製した試料を犠牲材が内側となるようにして、B型チューブ形状に加工した。加工したチューブの断面を樹脂に埋め込んで、光学顕微鏡で内柱の形状を観察し、目的とした形状(寸法)からのズレ量を測定した。
[Strength before brazing (brazing sheet)]
A sample was cut out in parallel to the rolling direction from the prepared sample, a JIS No. 13 B test piece was prepared, and a tensile test was performed to measure the tensile strength.
[Strength after brazing (brazing sheet)]
The prepared sample was subjected to 600 ° C x 3 min brazing equivalent heat treatment (from room temperature to 600 ° C for 5 to 7 minutes) in a high purity nitrogen gas atmosphere in a drop format, and then the sample was parallel to the rolling direction. Cut out, a JIS13B test piece was prepared, and a tensile test was performed to measure the tensile strength.
[Formability (brazing sheet)]
The prepared sample was processed into a B-shaped tube shape with the sacrificial material inside. The cross section of the processed tube was embedded in resin, the shape of the inner pillar was observed with an optical microscope, and the amount of deviation from the intended shape (dimension) was measured.

[耐ろう侵食性(エロージョン深さ)]
作製した試料を高純度窒素ガス雰囲気中でドロップ形式により600℃×3minのろう付相当熱処理(室温から600℃まで昇温時間は5〜7分)を施した。ろう付相当熱処理を実施したサンプルを樹脂埋めし、圧延方向平行断面を鏡面研磨し、バーカー氏液で組織を現出後、光学顕微鏡で観察してろう侵食深さを測定した。
[内部耐食性(腐食深さ)]
ろう付熱処理後の試料から30×40mmのサンプルを切り出し、犠牲材側について、Cl-:195ppm、SO4 2-:60ppm、Cu2+:1ppm、Fe3+:30ppmを含む水溶液中で80℃×8hr→室温×16hrのサイクルで浸漬試験を8週間実施した。腐食試験後のサンプルを沸騰させたリン酸クロム酸混合溶液に浸漬して腐食生成物を除去した後、最大腐食部の断面観察を実施して腐食深さを測定した。
[製造性]
鋳造、熱間圧延、冷間圧延の各工程において、以下の不具合の有無を評価した。
鋳造:鋳造割れ、巨大晶出物の有無
熱間圧延:割れ、剥離、サイドクラック
冷間圧延:サイドクラック
ろう付熱処理時:溶融
[Wax erosion resistance (erosion depth)]
The prepared sample was subjected to a heat treatment equivalent to brazing at 600 ° C. × 3 min in a high-purity nitrogen gas atmosphere (temperature rising time from room temperature to 600 ° C. is 5 to 7 minutes). The sample subjected to brazing equivalent heat treatment was filled with resin, the cross section in the rolling direction was mirror-polished, the structure was revealed with Barker's solution, and then observed with an optical microscope to measure the depth of brazing erosion.
[Internal corrosion resistance (corrosion depth)]
A sample was cut out of the 30 × 40 mm from the sample after the brazing heat treatment, the sacrificial anode material side, Cl -: 195ppm, SO 4 2-: 60ppm, Cu 2+: 1ppm, Fe 3+: 80 ℃ in aqueous solution containing 30ppm The immersion test was carried out for 8 weeks in a cycle of × 8 hr → room temperature × 16 hr. The sample after the corrosion test was immersed in a boiled chromic phosphate mixed solution to remove the corrosion products, and then the cross-section observation of the maximum corrosion portion was performed to measure the corrosion depth.
[Manufacturability]
In each process of casting, hot rolling, and cold rolling, the following defects were evaluated.
Casting: Cast cracks, presence or absence of giant crystals Hot rolling: Cracks, peeling, side cracks Cold rolling: Side cracks During brazing heat treatment: Melting

なお、図3〜図5における評価基準は以下の通りである。
「ろう付前0.2%耐力」
○○○:180〜200MPa ○○:170〜210MPa ○:160〜220MPa ×:159MPa以下、221MPa以上
「ろう付後強度」
○○○:179MPa以上 ○○:175〜178MPa ○:170〜174MPa ×:169MPa以下
「σYSTS0.80〜0.95%」
○○○:0.85〜0.90% ○○:0.83〜0.92% ○:0.80〜0.95% ×:0.79%以下、0.96%以上
「成形性(成形後の目的寸法からのズレ)」
○○○:10μm以下 ○○:11〜15μm ○:16〜20μm ×:21μm以上
「耐ろう侵食性(エロージョン深さ)」
○○:55μm以下 ○:56〜80μm ×:81μm以上
「内部耐食性(腐食深さ)」
○○○:35μm以下 ○○:36〜50μm ○:51〜100μm ×:101μm以上
「総合評価」
○○○:エロージョン深さ以外の項目が○○○以上、かつエロージョン深さが○○以上のもの(全ての項目が最高評価のもの)
○○:全ての項目が○○以上のもの
○:全ての項目が○以上のもの
×:いずれかの項目に×があるもの
―:製造性に難があり、評価不可と判断されたもの
In addition, the evaluation criteria in FIGS. 3-5 are as follows.
"0.2% proof stress before brazing"
○○○: 180 to 200 MPa ○○: 170 to 210 MPa ○: 160 to 220 MPa ×: 159 MPa or less, 221 MPa or more “strength after brazing”
○○○: 179 MPa or more ○○: 175 to 178 MPa ○: 170 to 174 MPa ×: 169 MPa or less “σ YS / σ TS 0.80 to 0.95%”
○○○: 0.85 to 0.90% ○○: 0.83 to 0.92% ○: 0.80 to 0.95% ×: 0.79% or less, 0.96% or more “Formability (deviation from target dimensions after molding)”
○ ○ ○: 10 μm or less ○ ○: 11 to 15 μm ○: 16 to 20 μm ×: 21 μm or more “brazing erosion resistance (erosion depth)”
○○: 55 μm or less ○: 56-80 μm ×: 81 μm or more “Internal corrosion resistance (corrosion depth)”
○○○: 35 μm or less ○○: 36-50 μm ○: 51-100 μm ×: 101 μm or more “Comprehensive evaluation”
XXX: Items other than the erosion depth are XX or higher and the erosion depth is XX or higher (all items have the highest rating)
○ ○: All items are ○○ or more ○: All items are ○ or more ×: Any item has ×-: Productivity is difficult and judged to be unevaluable

Claims (1)

芯材の一方の面に犠牲材を、他方の面にろう材をクラッドしたアルミニウム合金ブレージングシートであって、
前記芯材、前記犠牲材及び前記ろう材が以下の化学成分を有するとともに、
前記クラッドした板厚が0.20mm以下、ろう付熱処理後の引張強さが170MPa以上、ろう付熱処理後の芯材の平均結晶粒径が30〜120μmであり、かつ、ろう付前の前記芯材が繊維状組織であることを特徴とするろう付造管用アルミニウム合金ブレージングシート。
芯材(質量%)
Mn:1.2〜1.8%、Si:0.4〜1.3%、Fe:0.21〜0.5%、Cu:0.5〜1.3%、残部Al及び不可避的不純物
犠牲材(質量%)
Zn:4.0〜7.0%、Mn:1.0〜1.8%、Si:0.2〜1.2%、残部Al及び不可避的不純物
ろう材(質量%)
Al-Si系ろう材またはAl-Si-Zn系ろう材
An aluminum alloy brazing sheet in which a sacrificial material is clad on one surface of a core material and a brazing material is clad on the other surface,
While the core material, the sacrificial material and the brazing material have the following chemical components,
The clad plate thickness is 0.20 mm or less, the tensile strength after brazing heat treatment is 170 MPa or more, the average crystal grain size of the core material after brazing heat treatment is 30 to 120 μm, and the core material before brazing An aluminum alloy brazing sheet for brazed pipes characterized by having a fibrous structure.
Core material (mass%)
Mn: 1.2 to 1.8%, Si: 0.4 to 1.3%, Fe: 0.21 to 0.5%, Cu: 0.5 to 1.3%, balance Al and inevitable impurities Sacrificial material (% by mass)
Zn: 4.0-7.0%, Mn: 1.0-1.8%, Si: 0.2-1.2%, balance Al and inevitable impurities Brazing material (mass%)
Al-Si brazing material or Al-Si-Zn brazing material
JP2011285532A 2011-12-27 2011-12-27 Aluminum alloy brazing sheet Active JP5878365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285532A JP5878365B2 (en) 2011-12-27 2011-12-27 Aluminum alloy brazing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285532A JP5878365B2 (en) 2011-12-27 2011-12-27 Aluminum alloy brazing sheet

Publications (3)

Publication Number Publication Date
JP2013133515A true JP2013133515A (en) 2013-07-08
JP2013133515A5 JP2013133515A5 (en) 2014-08-07
JP5878365B2 JP5878365B2 (en) 2016-03-08

Family

ID=48910417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285532A Active JP5878365B2 (en) 2011-12-27 2011-12-27 Aluminum alloy brazing sheet

Country Status (1)

Country Link
JP (1) JP5878365B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114475A (en) * 2012-12-07 2014-06-26 Uacj Corp Aluminum alloy brazing sheet, method of producing the same, and heat exchanger employing the aluminum alloy brazing sheet
JP2016003357A (en) * 2014-06-16 2016-01-12 三菱アルミニウム株式会社 Heat exchanger
WO2016076263A1 (en) * 2014-11-10 2016-05-19 三菱アルミニウム株式会社 Aluminium alloy brazing sheet having high strength, high corrosion resistance, and high material elongation
JP2016169412A (en) * 2015-03-12 2016-09-23 三菱アルミニウム株式会社 Brazing sheet excellent in corrosion resistance after brazing
JP2016186096A (en) * 2015-03-27 2016-10-27 株式会社神戸製鋼所 Aluminum alloy brazing sheet
CN107429333A (en) * 2015-03-12 2017-12-01 三菱铝株式会社 The outstanding soldering lug of corrosion resistance after soldering
CN110205524A (en) * 2019-06-26 2019-09-06 江苏鼎胜新能源材料股份有限公司 A kind of high extension power battery aluminium foil and preparation method thereof
CN114657425A (en) * 2016-07-13 2022-06-24 古河电气工业株式会社 Aluminum alloy material, and conductive member, battery member, fastening component, spring component, and structural component using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232507A (en) * 2004-02-18 2005-09-02 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger
JP2007216283A (en) * 2006-02-20 2007-08-30 Sumitomo Light Metal Ind Ltd Method for producing aluminum alloy clad plate having excellent face joinability by brazing on sacrificial anode material face
JP2010095758A (en) * 2008-10-16 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for automotive heat exchanger for brazed tube making
JP2010255014A (en) * 2009-04-21 2010-11-11 Sumitomo Light Metal Ind Ltd Clad material for welded tube of heat exchanger made from aluminum alloy, and method for manufacturing the same
JP2011224656A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Aluminum alloy brazing sheet and heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232507A (en) * 2004-02-18 2005-09-02 Sumitomo Light Metal Ind Ltd Aluminum alloy clad material for heat exchanger
JP2007216283A (en) * 2006-02-20 2007-08-30 Sumitomo Light Metal Ind Ltd Method for producing aluminum alloy clad plate having excellent face joinability by brazing on sacrificial anode material face
JP2010095758A (en) * 2008-10-16 2010-04-30 Mitsubishi Alum Co Ltd Brazing sheet for automotive heat exchanger for brazed tube making
JP2010255014A (en) * 2009-04-21 2010-11-11 Sumitomo Light Metal Ind Ltd Clad material for welded tube of heat exchanger made from aluminum alloy, and method for manufacturing the same
JP2011224656A (en) * 2010-03-31 2011-11-10 Kobe Steel Ltd Aluminum alloy brazing sheet and heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014114475A (en) * 2012-12-07 2014-06-26 Uacj Corp Aluminum alloy brazing sheet, method of producing the same, and heat exchanger employing the aluminum alloy brazing sheet
JP2016003357A (en) * 2014-06-16 2016-01-12 三菱アルミニウム株式会社 Heat exchanger
WO2016076263A1 (en) * 2014-11-10 2016-05-19 三菱アルミニウム株式会社 Aluminium alloy brazing sheet having high strength, high corrosion resistance, and high material elongation
JP2016089243A (en) * 2014-11-10 2016-05-23 三菱アルミニウム株式会社 Aluminum alloy brazing sheet having high strength, high corrosion resistance and high elongation of raw material
US10518363B2 (en) 2014-11-10 2019-12-31 Mitsubishi Aluminum Co., Ltd. Aluminum alloy brazing sheet having high strength, high corrosion resistance and high material elongation, and method of manufacturing heat exchanger
JP2016169412A (en) * 2015-03-12 2016-09-23 三菱アルミニウム株式会社 Brazing sheet excellent in corrosion resistance after brazing
CN107429333A (en) * 2015-03-12 2017-12-01 三菱铝株式会社 The outstanding soldering lug of corrosion resistance after soldering
US10384312B2 (en) 2015-03-12 2019-08-20 Mitsubishi Aluminum Co., Ltd. Brazing sheet having improved corrosion resistance after brazing
CN107429333B (en) * 2015-03-12 2019-12-27 三菱铝株式会社 Brazing sheet having excellent corrosion resistance after brazing
JP2016186096A (en) * 2015-03-27 2016-10-27 株式会社神戸製鋼所 Aluminum alloy brazing sheet
CN114657425A (en) * 2016-07-13 2022-06-24 古河电气工业株式会社 Aluminum alloy material, and conductive member, battery member, fastening component, spring component, and structural component using same
CN110205524A (en) * 2019-06-26 2019-09-06 江苏鼎胜新能源材料股份有限公司 A kind of high extension power battery aluminium foil and preparation method thereof

Also Published As

Publication number Publication date
JP5878365B2 (en) 2016-03-08

Similar Documents

Publication Publication Date Title
JP5878365B2 (en) Aluminum alloy brazing sheet
US11408690B2 (en) Method for producing aluminum alloy clad material
US9976201B2 (en) Aluminum-alloy clad material and production method therefor, and heat exchanger using said aluminum-alloy clad material and production method therefor
JP6106748B2 (en) Aluminum alloy brazing sheet and method for producing the same
US9976200B2 (en) Cladded aluminum-alloy material and production method therefor, and heat exchanger using said cladded aluminum-alloy material and production method therefor
JP5913853B2 (en) Aluminum alloy brazing sheet and method for producing the same
JP6557476B2 (en) Aluminum alloy fin material
JP2009024221A (en) Aluminum alloy brazing sheet having high-strength
JP6219770B2 (en) Aluminum alloy laminate
JP5737798B2 (en) Aluminum alloy brazing sheet excellent in strength and formability and method for producing the same
US9714799B2 (en) Ultra sagging and melting resistant fin material with very high strength
US20130156634A1 (en) Aluminum fin alloy and method of making the same
WO2016143119A1 (en) Brazing sheet with excellent corrosion resistance after brazing
JP5840941B2 (en) Brazing sheet
WO2019181768A1 (en) Aluminum alloy fin material for heat exchanger, production method therefor, and heat exchanger
JP5702982B2 (en) Aluminum alloy clad material
JP6178483B1 (en) Aluminum alloy brazing sheet
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JP6624417B2 (en) Brazing sheet with excellent corrosion resistance after brazing
JP6095976B2 (en) Aluminum alloy clad material for heat exchanger and manufacturing method thereof
JP6091806B2 (en) Aluminum alloy brazing sheet for ERW welded tube
JP2018178170A (en) Thin wall fin material excellent in erosion resistance, manufacturing method of thin wall fin material excellent in erosion resistance, and manufacturing method of heat exchanger
JP6526434B2 (en) Aluminum alloy fin material
JP2014077181A (en) Aluminum alloy clad material for heat exchanger
JP2016196670A (en) Aluminum alloy brazing sheet excellent in corrosion resistance and age hardenability

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160128

R150 Certificate of patent or registration of utility model

Ref document number: 5878365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250