JP2013133272A - METHOD FOR PRODUCING SiC/Si COMPOSITE MATERIAL BODY AND SiC/Si COMPOSITE MATERIAL BODY - Google Patents

METHOD FOR PRODUCING SiC/Si COMPOSITE MATERIAL BODY AND SiC/Si COMPOSITE MATERIAL BODY Download PDF

Info

Publication number
JP2013133272A
JP2013133272A JP2011286605A JP2011286605A JP2013133272A JP 2013133272 A JP2013133272 A JP 2013133272A JP 2011286605 A JP2011286605 A JP 2011286605A JP 2011286605 A JP2011286605 A JP 2011286605A JP 2013133272 A JP2013133272 A JP 2013133272A
Authority
JP
Japan
Prior art keywords
sic
composite material
material body
tube
preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011286605A
Other languages
Japanese (ja)
Other versions
JP5863447B2 (en
Inventor
Ryoichi Suematsu
諒一 末松
Mamoru Ishii
守 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
NTK Ceratec Co Ltd
Original Assignee
Nihon Ceratec Co Ltd
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Ceratec Co Ltd, Taiheiyo Cement Corp filed Critical Nihon Ceratec Co Ltd
Priority to JP2011286605A priority Critical patent/JP5863447B2/en
Publication of JP2013133272A publication Critical patent/JP2013133272A/en
Application granted granted Critical
Publication of JP5863447B2 publication Critical patent/JP5863447B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a SiC/Si composite material body which can obtain a SiC/Si composite material body having a hollow structure in which the internal space has no possibility to be occluded and which has a joint strength similar to that when bonded with an organic binder.SOLUTION: A SiC tube 13 which has internal space and whose porosity is lower than those of preforms 11 and 12 is embedded in a groove 11a formed in the adhesion surface of the preform 11, and metal Si is impregnated after the preforms 11 and 12 are bonded together, so that the SiC/Si composite material body 15 having the hollow structure is obtained.

Description

本発明は、中空構造のSiC/Si複合材料体を製造する方法、及び中空構造のSiC/Si複合材料体に関する。   The present invention relates to a method for producing a hollow structure SiC / Si composite material body and a hollow structure SiC / Si composite material body.

SiC/Si(炭化ケイ素/シリコン)複合材料からなるSiC/Si複合材料体は、軽量で剛性が高く熱膨張が小さいという優れた特性を有し、半導体製造装置や液晶製造装置など精密機器の構成品に使用されている。   A SiC / Si composite material composed of a SiC / Si (silicon carbide / silicon) composite material has excellent characteristics such as light weight, rigidity and low thermal expansion, and is a configuration of precision equipment such as semiconductor manufacturing equipment and liquid crystal manufacturing equipment. It is used for goods.

中空構造のSiC/Si複合材料体を作製する場合には、接合面に溝を形成した部材を接合する必要がある。従来、接合面に溝を形成したSiC多孔質体を有機バインダで接着し、これに溶融Siを含浸させる方法(例えば、特許文献1参照)、金属箔等のろう材を使用して接合面に溝を形成したSiC/Si複合材料体を接合する方法などによって、中空構造のSiC/Si複合材料体を得ていた。   When producing a SiC / Si composite material having a hollow structure, it is necessary to join a member having a groove formed on the joint surface. Conventionally, a porous SiC body having grooves formed on the joint surface is bonded with an organic binder, and this is impregnated with molten Si (see, for example, Patent Document 1). A brazing material such as metal foil is used on the joint surface. A SiC / Si composite material having a hollow structure has been obtained by, for example, a method of joining SiC / Si composite materials having grooves.

特開2008−50181号公報JP 2008-50181 A

しかしながら、有機バインダで接着したSiC多孔質体に金属Siを含浸させる方法では、溶融Siは凝固すると膨張するため、降温時にSiC多孔質体から金属Siが染み出し、SiC/Si複合材料体の内部空間が閉塞される可能性がある。   However, in the method of impregnating the SiC porous body bonded with the organic binder with the metal Si, the molten Si expands when solidified, so that the metal Si exudes from the SiC porous body when the temperature is lowered, and the inside of the SiC / Si composite material body. The space may be blocked.

一方、ろう材を使用して接合する方法では、SiC/Si複合材料体とろう材との熱膨張差が大きく濡れ性も良好ではないので、接合強度が著しく低下するという問題がある。   On the other hand, the method of joining using a brazing material has a problem that the joining strength is remarkably lowered because the difference in thermal expansion between the SiC / Si composite material and the brazing material is large and the wettability is not good.

本発明は、これらの問題に鑑みてなされたものであり、内部空間が閉塞する可能性がなく、有機バインダで接着した場合と接合強度が同程度である、中空構造のSiC/Si複合材料体を得ることが可能なSiC/Si複合材料体の製造方法、及びSiC/Si複合材料体を提供することを目的とする。   The present invention has been made in view of these problems, and there is no possibility that the internal space is clogged, and the SiC / Si composite material having a hollow structure that has the same bonding strength as when bonded with an organic binder. It is an object of the present invention to provide a method for producing a SiC / Si composite material body and a SiC / Si composite material body.

本発明のSiC/Si複合材料体の製造方法は、SiC多孔質体の接着面に形成した溝に、内部空間を有し、前記SiC多孔質体より気孔率が低いSiC体を埋め込み、前記SiC多孔質体同士を接着させた後、溶融Siを含浸させて中空構造のSiC/Si複合材料体を得ることを特徴とする。   In the method for producing a SiC / Si composite material according to the present invention, a SiC body having an internal space and having a lower porosity than the SiC porous body is embedded in a groove formed on the bonding surface of the SiC porous body. After bonding the porous bodies, molten SiC is impregnated to obtain a SiC / Si composite material body having a hollow structure.

本発明のSiC/Si複合材料体の製造方法によれば、内部空間を有するSiC体を埋め込んだSiC多孔質体を接着させた後、溶融Siを含浸させるので、SiC体が埋め込まれて中空構造を有するSiC/Si複合材料体を得ることができる。   According to the manufacturing method of the SiC / Si composite material body of the present invention, the SiC porous body in which the SiC body having the internal space is embedded is adhered, and then the molten Si is impregnated. A SiC / Si composite material body having the following can be obtained.

SiC体はSiC多孔質体より気孔率が低いため、Si含浸時に、SiC体の内部空間にSiC体を介して溶融Siが浸入し難いので、SiC体の内部空間が閉塞される可能性が少ない。なお、SiC体の気孔率が5%を超えると、SiC体の気孔に含浸した溶融Siが凝固する際に膨張してSiC体の内部空間を閉塞する可能性がある。よって、SiC体の気孔率は5%以下であることが好ましい。   Since the SiC body has a lower porosity than the SiC porous body, it is difficult for molten Si to enter the internal space of the SiC body through the SiC body when impregnated with the Si body, so that the internal space of the SiC body is less likely to be blocked. . If the porosity of the SiC body exceeds 5%, the molten Si impregnated in the SiC body pores may expand when solidified to close the internal space of the SiC body. Therefore, the porosity of the SiC body is preferably 5% or less.

さらに、SiCとSiとは濡れ性が良好であるので、SiC/Si複合材料体とSiC体との界面の接合は強固である。さらに、SiC/Si複合材料とSiCの熱膨張係数は同程度であるので、SiC/Si複合材料体とSiC体との界面に熱膨張差によるクラックが発生しない。さらに、ろう材を使用して接合されたものと比較して接合強度は優れている。   Furthermore, since SiC and Si have good wettability, the bonding at the interface between the SiC / Si composite material body and the SiC body is strong. Furthermore, since the thermal expansion coefficients of the SiC / Si composite material and SiC are approximately the same, cracks due to the thermal expansion difference do not occur at the interface between the SiC / Si composite material body and the SiC body. Furthermore, the bonding strength is superior compared to those bonded using a brazing material.

また、本発明のSiC/Si複合材料体の製造方法において、前記SiC/Si複合材料体のSiC充填率が30体積%〜95体積%であることが好ましい。   Moreover, in the manufacturing method of the SiC / Si composite material body of this invention, it is preferable that the SiC filling rate of the said SiC / Si composite material body is 30 volume%-95 volume%.

SiC充填率が30体積%未満では、熱膨張係数が小さく、SiC/Si複合材料体とSiC体との界面に熱膨張差によるクラックが生じる。一方、SiC充填率が95%体積を超えると、溶融SiがSiC多孔質体の空隙全体に染み込まず、SiC/Si複合材料体の主に中心部に空隙が残存するので、良好なSiC/Si複合材料体を製造すること自体が困難である。   When the SiC filling rate is less than 30% by volume, the thermal expansion coefficient is small, and a crack due to a thermal expansion difference occurs at the interface between the SiC / Si composite material body and the SiC body. On the other hand, when the SiC filling rate exceeds 95% volume, the molten Si does not soak into the entire voids of the SiC porous body, and the voids remain mainly in the center of the SiC / Si composite material. It is difficult to manufacture a composite material itself.

本発明のSiC/Si複合材料体は、内部空間を有するSiC体が内部に埋め込まれていることを特徴とする。   The SiC / Si composite material of the present invention is characterized in that a SiC body having an internal space is embedded therein.

本発明のSiC/Si複合材料体によれば、SiCとSiとは濡れ性が良好であるので、SiC/Si複合材料体とSiC体との界面の接合は強固である。さらに、SiC/Si複合材料とSiCの熱膨張係数は同程度であるので、SiC/Si複合材料体とSiC体との界面に熱膨張差によるクラックが発生しない。   According to the SiC / Si composite material body of the present invention, since SiC and Si have good wettability, the bonding at the interface between the SiC / Si composite material body and the SiC body is strong. Furthermore, since the thermal expansion coefficients of the SiC / Si composite material and SiC are approximately the same, cracks due to the thermal expansion difference do not occur at the interface between the SiC / Si composite material body and the SiC body.

(a)は接着前のプリフォーム、(b)は接着後のプリフォーム、(c)はSi含浸後のSiC/Si複合材料体のそれぞれの断面を概略的に示す説明図。(A) is preform before adhesion, (b) is preform after adhesion, (c) is explanatory drawing which shows each section of a SiC / Si composite material body after Si impregnation roughly.

本発明は、図1(a)から図1(c)に示すように、プリフォーム(SiC多孔質体)11,12の接着面にSiCチューブ13の外形に合せて形成した溝11aにSiCチューブ13を埋め込み、接着剤14によるプリフォーム11,12同士の接着を行った後、溶融Siを含浸させることによって、中空構造のSiC/Si複合材料体15を製造する方法、及びこれにより得られたSiC/Si複合材料体15に関する。   In the present invention, as shown in FIGS. 1 (a) to 1 (c), an SiC tube is formed in a groove 11a formed on the bonding surface of preforms (SiC porous bodies) 11 and 12 in accordance with the outer shape of the SiC tube 13. 13, after the preforms 11, 12 are bonded to each other with the adhesive 14, and thereafter, the SiC / Si composite material 15 having a hollow structure is manufactured by impregnating with molten Si, and obtained thereby The SiC / Si composite material 15 is related.

まず、複数のプリフォーム11,12を準備する。プリフォーム11,12の原料は、SiC粉末と有機バインダとからなる。なお、原料にカーボン(C)を添加してもよい。これらの原料を、ボールミル、ヘンシェルミキサー等を用いて乾式混合する。そして、得られた混合物を熱プレス成形して有機バインダを熱硬化させ、プリフォーム11,12を作製する。   First, a plurality of preforms 11 and 12 are prepared. The raw materials for the preforms 11 and 12 are composed of SiC powder and an organic binder. Carbon (C) may be added to the raw material. These raw materials are dry-mixed using a ball mill, a Henschel mixer or the like. Then, the obtained mixture is subjected to hot press molding to thermally cure the organic binder, and the preforms 11 and 12 are produced.

なお、原材料の配合は、SiC/Si複合材料体15のSiC充填率が30体積%〜95体積%となるように調整する。なお、SiC充填率とは、SiC/Si複合材料中のSiCの占有率を意味する。   In addition, the mixing | blending of a raw material is adjusted so that the SiC filling rate of the SiC / Si composite material body 15 may be 30 volume%-95 volume%. In addition, a SiC filling rate means the occupation rate of SiC in a SiC / Si composite material.

SiC充填率が30体積%未満では、熱膨張係数が小さく、SiCチューブ13とSiC/Si複合材料体15との界面に熱膨張差によるクラックが生じる。一方、SiC充填率が95%体積を超えると、溶融Siがプリフォーム11,12の空隙全体に行き渡らず、SiC/Si複合材料体15の主に中心部に空隙が生じるので、良好なSiC/Si複合材料体15を製造すること自体が困難である。   When the SiC filling rate is less than 30% by volume, the thermal expansion coefficient is small, and a crack due to the thermal expansion difference occurs at the interface between the SiC tube 13 and the SiC / Si composite material 15. On the other hand, when the SiC filling rate exceeds 95% volume, the molten Si does not reach the entire gaps of the preforms 11 and 12, and a void is generated mainly in the center of the SiC / Si composite material 15. It is difficult to manufacture the Si composite material body 15 itself.

ただし、SiC/Si複合材料体15のSiC充填率は50体積%〜95体積%であることがより好ましい。SiC充填率が50体積%以上であれば、熱膨張差によるクラックがより生じ難くなる共に、高剛性となり精密機器の構成品として使用することが可能となる。   However, the SiC filling rate of the SiC / Si composite material 15 is more preferably 50% by volume to 95% by volume. When the SiC filling rate is 50% by volume or more, cracks due to a difference in thermal expansion are less likely to occur, and the rigidity becomes high and can be used as a component of a precision instrument.

次に、プリフォーム11,12に適宜な形状に研削、切断加工を施す。このとき、プリフォーム11の接着面側にSiCチューブ13が埋め込み可能な溝11aを切削加工などによって形成する。   Next, the preforms 11 and 12 are ground and cut into appropriate shapes. At this time, the groove 11a in which the SiC tube 13 can be embedded is formed on the bonding surface side of the preform 11 by cutting or the like.

図1(a)では、下方のプリフォーム11にのみ溝11aを形成しているが、これに限定されず、上方のプリフォーム12のみに溝を形成しても、上方のプリフォーム11にSiCチューブ13の上側が埋め込み可能な溝を形成すると共に、下方のプリフォーム11にSiCチューブ13の下側が埋め込み可能な溝を形成してもよい。   In FIG. 1A, the groove 11 a is formed only in the lower preform 11, but the present invention is not limited to this. Even if the groove is formed only in the upper preform 12, SiC is formed in the upper preform 11. The upper side of the tube 13 may be formed with a groove that can be embedded, and the lower preform 11 may be formed with a groove that can be embedded with the lower side of the SiC tube 13.

SiCチューブ13の気孔率はプリフォーム11,12の気孔率より低い。これにより、Si含浸時にSiCチューブ13の内部空間内に溶融Siが侵入し難くなる。ただし、より好ましくは、SiCチューブ13の気孔率は5%以下である。SiCチューブ13の気孔率が5%を超えると、気孔に含浸した溶融Siが凝固する際に膨張し内部空間を塞ぐ可能性がある。   The porosity of the SiC tube 13 is lower than the porosity of the preforms 11 and 12. This makes it difficult for molten Si to enter the internal space of the SiC tube 13 during Si impregnation. However, more preferably, the porosity of the SiC tube 13 is 5% or less. If the porosity of the SiC tube 13 exceeds 5%, the molten Si impregnated in the pores may expand when solidified and block the internal space.

SiCチューブ13は、コバレントマテリアル株式会社製のCERASIC(登録商標)などの市販品からなるものであっても、適宜な形状に加工したSiC成形体を焼結したものであってもよい。   The SiC tube 13 may be a commercially available product such as CERASIC (registered trademark) manufactured by Covalent Materials Corporation, or may be a sintered product of an SiC molded body processed into an appropriate shape.

なお、SiCチューブ13のような管状のものに限定されず、内部空間を有しSiCからなる任意形状のSiC体をプリフォームに埋め込むことができる。SiC体の内部空間は、SiC体の内部で閉じていても、外部と連通していてもよい。さらに、2枚のプリフォーム間に複数のSiC体を埋め込んでもよく、3枚以上のプリフォームを積層して、それぞれのプリフォーム間にSiC体を埋め込んでもよい。   In addition, it is not limited to a tubular thing like the SiC tube 13, The SiC body which has internal space and which consists of SiC can be embedded in a preform. The internal space of the SiC body may be closed inside the SiC body or may communicate with the outside. Further, a plurality of SiC bodies may be embedded between two preforms, or three or more preforms may be stacked, and an SiC body may be embedded between the respective preforms.

プリフォーム11の溝11aにSiCチューブ13を埋め込んだ後、図1(b)に示すように、接着剤14を接着面に塗布して、プリフォーム11,12の同士を張り合わせる。なお、接着剤14は、液体フェノールなどの有機バインダにSiC粉末を添加して調製したものからなる。その後、張り合わせたプリフォーム11,12を150℃に加熱した状態で1〜20時間程度保持し、有機バインダを硬化させ、プリフォーム接着体を得る。   After embedding the SiC tube 13 in the groove 11a of the preform 11, as shown in FIG. 1B, an adhesive 14 is applied to the bonding surface, and the preforms 11 and 12 are bonded together. The adhesive 14 is prepared by adding SiC powder to an organic binder such as liquid phenol. Thereafter, the bonded preforms 11 and 12 are maintained at 150 ° C. for about 1 to 20 hours, the organic binder is cured, and a preform bonded body is obtained.

次に、このプリフォーム接着体にSi含浸を行う。具体的には、プリフォーム接着体と高純度Si塊を入れた炉内を650℃〜1400℃に加熱してプリフォーム接着体の有機バインダを脱脂する。その後、1550℃に加熱した真空雰囲気下で1時間〜10時間保持してプリフォーム接着体中の空孔に溶融Siを毛細管現象により含浸させる。次に、雰囲気を不活性ガス雰囲気とし1645℃で24時間〜48時間保持し、SiとCを反応させる。その後、炉内でゆっくり冷却(炉冷)して降温させる。   Next, this preform adhesive body is impregnated with Si. Specifically, the inside of the furnace containing the preform bonded body and the high purity Si lump is heated to 650 ° C. to 1400 ° C. to degrease the organic binder of the preform bonded body. Then, it hold | maintains for 1 hour-10 hours in the vacuum atmosphere heated at 1550 degreeC, and the molten Si is impregnated by the capillary phenomenon in the void | hole in a preform adhesive body. Next, the atmosphere is changed to an inert gas atmosphere and held at 1645 ° C. for 24 to 48 hours to react Si and C. Then, it cools slowly in a furnace (furnace cooling) and falls.

これにより、中空構造を有するSiC/Si複合材料体15を得る。なお、非加圧浸透法の代わりに加圧浸透法等によってSi含浸を行ってもよい。   Thereby, the SiC / Si composite material body 15 having a hollow structure is obtained. In addition, Si impregnation may be performed by a pressure infiltration method or the like instead of the non-pressure infiltration method.

SiCチューブ13の気孔率はプリフォーム11,12の気孔率より低いので、Si含浸時に、SiCチューブ13の内部空間にSiCチューブ13を介して溶融Siが浸入し難く、SiCチューブ13の内部空間が閉塞される可能性が少ない。なお、Si含浸時に、SiCチューブ13の両端面から溶融SiがSiCチューブ13の内部空間内に侵入するが、さほどの量ではなく、問題はない。好ましくは、SiCチューブ13の両端面をSiC製の部材で閉塞しておけばよい。   Since the porosity of the SiC tube 13 is lower than the porosity of the preforms 11, 12, when Si is impregnated, it is difficult for molten Si to enter the internal space of the SiC tube 13 via the SiC tube 13, and the internal space of the SiC tube 13 is Less likely to be blocked. When Si is impregnated, molten Si enters the internal space of the SiC tube 13 from both end faces of the SiC tube 13, but the amount is not so large and there is no problem. Preferably, both end surfaces of the SiC tube 13 may be closed with SiC members.

以上のように、プリフォーム11にSiCチューブ13を埋め込み、プリフォーム11,12同士を接着した後、Si含浸を行うことで、SiCチューブ13が埋め込まれて中空構造を有するSiC/Si複合材料体15を得ることができる。   As described above, the SiC tube 13 is embedded in the preform 11, the preforms 11 and 12 are bonded to each other, and then impregnated with Si, whereby the SiC tube 13 is embedded and the SiC / Si composite material having a hollow structure. 15 can be obtained.

そして、プリフォーム11,12同士を接着剤14で接着した後にSi含浸しているので、接合強度は優れている。また、SiCとSiとは濡れ性が良好であるので、SiCチューブ13とSiC/Si複合材料体15との界面の接合は強固である。また、SiC/Si複合材料とSiCの熱膨張係数は同程度であるので、SiCチューブ13とSiC/Si複合材料体15との界面に熱膨張差によるクラックが発生しない。   Since the preforms 11 and 12 are bonded together with the adhesive 14 and then impregnated with Si, the bonding strength is excellent. Further, since SiC and Si have good wettability, the interface bonding between the SiC tube 13 and the SiC / Si composite material 15 is strong. Further, since the thermal expansion coefficients of the SiC / Si composite material and SiC are approximately the same, cracks due to the thermal expansion difference do not occur at the interface between the SiC tube 13 and the SiC / Si composite material body 15.

以下、本発明の実施例及び比較例を具体的に挙げ、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with specific examples and comparative examples of the present invention.

〔実施例1〕
SiC粉末(信濃電気製錬株式会社製のGP#500、 平均粒径30μm)100質量%に有機バインダとしてフェノール樹脂粉末(DIC株式会社製のOI−305A)を15質量%添加し、ヘンシェルミキサーを毎分1500回転で4分間運転させて混合した。
[Example 1]
15% by mass of phenol resin powder (OI-305A manufactured by DIC Corporation) as an organic binder is added to 100% by mass of SiC powder (GP # 500 manufactured by Shinano Denki Smelting Co., Ltd., average particle size 30 μm), and a Henschel mixer is used. The mixture was run at 1500 rpm for 4 minutes and mixed.

次に、この混合物を成形型に充填して、150℃に加熱してプレス圧力30kg/cmを印加した状態を1時間保持して熱プレス成形を行った。これにより、200mm×100mm、厚さ20mmの長方形板状のプリフォーム(SiC多孔質体)を2枚作製した。プリフォームの気孔率は20%であった。 Next, this mixture was filled in a mold, heated to 150 ° C., and a press pressure of 30 kg / cm 2 was applied for 1 hour to perform hot press molding. Thus, two rectangular plate-shaped preforms (SiC porous bodies) having a size of 200 mm × 100 mm and a thickness of 20 mm were produced. The preform porosity was 20%.

次に、外形長さ170mm、外形幅20mm、外形高さ10mm、肉厚3mmの矩形管状で気孔率0.1%のSiCチューブを準備した。そして、一方のプリフォームの接着面にこのSiCチューブの外形に合せた溝を加工し、この溝にSiCチューブを埋め込んだ。   Next, a SiC tube having a rectangular tubular shape having an outer length of 170 mm, an outer width of 20 mm, an outer height of 10 mm, and a wall thickness of 3 mm was prepared. And the groove | channel according to the external shape of this SiC tube was processed in the adhesion surface of one preform, and the SiC tube was embedded in this groove | channel.

他方のプリフォームの接着面には、液体フェノールにSiC粉末(信濃電気製錬株式会社製のGP#500、 平均粒径30μm)を添加して調製した接着剤を適量塗布した。そして、2枚のプリフォームを接着面で張り合わせ、150℃に加熱した状態を12時間保持して接着剤を熱硬化させ、SiCチューブが内部に埋め込まれたプリフォーム接着体を得た。   An appropriate amount of an adhesive prepared by adding SiC powder (GP # 500 manufactured by Shinano Denki Smelting Co., Ltd., average particle size of 30 μm) to liquid phenol was applied to the adhesive surface of the other preform. Then, the two preforms were bonded to each other on the adhesive surface, and the adhesive was heat-cured while maintaining the state heated to 150 ° C. for 12 hours to obtain a preform adhesive body in which the SiC tube was embedded.

次に、このプリフォーム接着体を金属Si塊(日本電工株式会社製)とともに炉内に設置し、650℃で有機バインダを脱脂して炭化させた後、炉内を真空雰囲気で1550℃に加熱した状態を3時間保持することにより、プリフォーム接着体の空隙に溶融Siを含浸させた。次に、炉内の雰囲気を不活性ガス雰囲気とし1645℃で24時間保持し、SiとCとを反応させた。その後、炉冷した。   Next, this preform bonded body is placed in a furnace together with a metal Si block (manufactured by NIPPON DENKO), degreased and carbonized with an organic binder at 650 ° C., and then heated in the furnace to 1550 ° C. in a vacuum atmosphere. By maintaining this state for 3 hours, molten Si was impregnated in the voids of the preform adhesive. Next, the atmosphere inside the furnace was changed to an inert gas atmosphere and held at 1645 ° C. for 24 hours to react Si and C. Thereafter, the furnace was cooled.

これにより、SiCチューブが埋め込まれた中空構造のSiC/Si複合材料体を得た。このSiC/Si複合材料体は、SiC充填率が55体積%であり、熱膨張係数が室温から200℃までの測定値で2.85 ×10−6[1/K]であった。 Thereby, a SiC / Si composite material having a hollow structure in which the SiC tube was embedded was obtained. This SiC / Si composite material had a SiC filling rate of 55% by volume and a thermal expansion coefficient of 2.85 × 10 −6 [1 / K] as measured from room temperature to 200 ° C.

〔比較例1〕
比較例1として、フェノール樹脂粉末の添加量を変更してSiC/Si複合材料体のSiC充填率を25体積%とした以外は実施例と同様にして、中空構造のSiC/Si複合材料体の作製を試みた。しかし、SiC/Si複合材料体とSiCチューブとの界面にクラックが発生した。なお、SiC/Si複合材料体の熱膨張係数は2.43×10−6[1/K]であった。
[Comparative Example 1]
As Comparative Example 1, a SiC / Si composite material having a hollow structure was prepared in the same manner as in the example except that the addition amount of the phenol resin powder was changed so that the SiC filling rate of the SiC / Si composite material was 25% by volume. I tried to make it. However, cracks occurred at the interface between the SiC / Si composite material and the SiC tube. The thermal expansion coefficient of the SiC / Si composite material body was 2.43 × 10 −6 [1 / K].

〔比較例2〕
比較例2として、SiCチューブを埋め込まなかったこと以外は実施例と同様にして、中空構造のSiC/Si複合材料体の作製を試みた。しかし、溶融Siの浸入によって、SiC/Si複合材料体の中空部が閉塞した。
[Comparative Example 2]
As Comparative Example 2, an attempt was made to produce a SiC / Si composite material having a hollow structure in the same manner as in the example except that the SiC tube was not embedded. However, the hollow portion of the SiC / Si composite material was blocked by the penetration of molten Si.

11,12…プリフォーム(SiC多孔質体)、 13…SiCチューブ(SiC体)、 14…接着剤、 15…SiC/Si複合材料体。   DESCRIPTION OF SYMBOLS 11, 12 ... Preform (SiC porous body), 13 ... SiC tube (SiC body), 14 ... Adhesive, 15 ... SiC / Si composite material body.

Claims (4)

SiC多孔質体の接着面に形成した溝に、内部空間を有し、前記SiC多孔質体より気孔率が低いSiC体を埋め込み、前記SiC多孔質体同士を接着させた後、金属Siを含浸させて中空構造のSiC/Si複合材料体を得ることを特徴とするSiC/Si複合材料体の製造方法。   In the groove formed on the bonding surface of the SiC porous body, an SiC body having an internal space and having a lower porosity than the SiC porous body is embedded, and the SiC porous bodies are bonded to each other, and then impregnated with metal Si And producing a SiC / Si composite material body having a hollow structure. 前記SiC/Si複合材料体のSiC充填率が30体積%〜95体積%であることを特徴とする請求項1に記載のSiC/Si複合材料体の製造方法。   The SiC / Si composite material manufacturing method according to claim 1, wherein the SiC / Si composite material has a SiC filling rate of 30% by volume to 95% by volume. 前記SiC体の気孔率は5%以下であることを特徴とする請求項1又は2に記載のSiC/Si複合材料体の製造方法。   The method for producing a SiC / Si composite material according to claim 1 or 2, wherein the porosity of the SiC body is 5% or less. 内部空間を有するSiC体が内部に埋め込まれていることを特徴とするSiC/Si複合材料体。
A SiC / Si composite material characterized in that a SiC body having an internal space is embedded therein.
JP2011286605A 2011-12-27 2011-12-27 Method for producing SiC / Si composite material body and SiC / Si composite material body Active JP5863447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011286605A JP5863447B2 (en) 2011-12-27 2011-12-27 Method for producing SiC / Si composite material body and SiC / Si composite material body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011286605A JP5863447B2 (en) 2011-12-27 2011-12-27 Method for producing SiC / Si composite material body and SiC / Si composite material body

Publications (2)

Publication Number Publication Date
JP2013133272A true JP2013133272A (en) 2013-07-08
JP5863447B2 JP5863447B2 (en) 2016-02-16

Family

ID=48910217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011286605A Active JP5863447B2 (en) 2011-12-27 2011-12-27 Method for producing SiC / Si composite material body and SiC / Si composite material body

Country Status (1)

Country Link
JP (1) JP5863447B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238866A (en) * 1991-01-11 1992-08-26 Shin Etsu Chem Co Ltd Production of tube of sintered material of silicon carbide
JP2002011653A (en) * 2000-04-26 2002-01-15 Ibiden Co Ltd Ceramic member and its manufacturing method, and table for wafer polishing device
JP2005041757A (en) * 2003-07-25 2005-02-17 Taiheiyo Cement Corp SiC STRUCTURE, AND ITS MANUFACTURING METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238866A (en) * 1991-01-11 1992-08-26 Shin Etsu Chem Co Ltd Production of tube of sintered material of silicon carbide
JP2002011653A (en) * 2000-04-26 2002-01-15 Ibiden Co Ltd Ceramic member and its manufacturing method, and table for wafer polishing device
JP2005041757A (en) * 2003-07-25 2005-02-17 Taiheiyo Cement Corp SiC STRUCTURE, AND ITS MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP5863447B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
US8568650B2 (en) Silicon carbide matrix composite material, process for producing the same and process for producing part of silicon carbide matrix composite material
CN106187195B (en) The method that silicon carbide ceramics are prepared using selective laser sintering technique
JP6284114B2 (en) Ceramic member and manufacturing method thereof
CN104962771B (en) Preparation method of directional porous SiC and diamond reinforced Al base composite material
CN102962434B (en) Silicon carbide/copper silicon alloy codual-continuous composite and preparation method thereof
JP2014518832A (en) Method for producing ceramic member combined from a plurality of preforms
US20130084389A1 (en) Method and ceramic component
KR101324952B1 (en) Method for producing ceramic joined body
JP5863447B2 (en) Method for producing SiC / Si composite material body and SiC / Si composite material body
JP5798429B2 (en) B4C / Si composite body bonding method
US20160061492A1 (en) Heat collector for solar thermal power generation
KR101956683B1 (en) Manufacturing method of fiber reinforced ceramic matrix composites containing metal carbide filler
JP5085575B2 (en) Process for producing reaction sintered silicon carbide structure
JP4537669B2 (en) Silicon carbide-based bonded component and method for manufacturing the same
JP4599591B2 (en) Manufacturing method of ceramic structure
KR20110037774A (en) Adhesive materials of wc-fe based hard metal and manufacturing method of the same
KR101064207B1 (en) High purity silicon carbide wafer carrier and manufacturing method of the same
JP6034692B2 (en) Composite material and manufacturing method thereof
CN110272281A (en) A kind of two-phase composite material and preparation method thereof
JP2007153700A (en) Method of joining silicon carbide porous ceramic and joined member
JP5880208B2 (en) Method for producing inorganic fibrous ceramic porous body
KR20130077494A (en) Ceramic composites and method of fabricating the same
JP5856743B2 (en) Method for producing metal-ceramic composite material
JP5859850B2 (en) Composite material and manufacturing method thereof
JP2005041757A (en) SiC STRUCTURE, AND ITS MANUFACTURING METHOD

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140305

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151222

R150 Certificate of patent or registration of utility model

Ref document number: 5863447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250