JP2013130252A - Fluid pipe drilling method - Google Patents

Fluid pipe drilling method Download PDF

Info

Publication number
JP2013130252A
JP2013130252A JP2011280561A JP2011280561A JP2013130252A JP 2013130252 A JP2013130252 A JP 2013130252A JP 2011280561 A JP2011280561 A JP 2011280561A JP 2011280561 A JP2011280561 A JP 2011280561A JP 2013130252 A JP2013130252 A JP 2013130252A
Authority
JP
Japan
Prior art keywords
fluid pipe
end mill
cutting
translating
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011280561A
Other languages
Japanese (ja)
Inventor
Shunichi Fujimoto
俊一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Koki Co Ltd
Original Assignee
Cosmo Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Koki Co Ltd filed Critical Cosmo Koki Co Ltd
Priority to JP2011280561A priority Critical patent/JP2013130252A/en
Publication of JP2013130252A publication Critical patent/JP2013130252A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluid pipe drilling method, by which a cutting groove with high dimensional accuracy can be easily drilled in a fluid pipe, a load to a cutting edge of a cutting tool is averaged, and durability of the cutting tool is improved.SOLUTION: The cutting groove 1c is formed which penetrates in a circumferential direction in a substantially rectangular shape in a plane view from above to a part of the fluid pipe 1 through a process of advancing an end mill 9b provided at a front edge of a shaft member 9a rotating around the shaft toward a direction orthogonal to a center axis line of the fluid pipe 1 to drill through a pipe wall of the fluid pipe 1, and thereafter a process of parallel-shifting the shaft of the end mill 9a in a cross direction of the fluid pipe 1.

Description

本発明は、流体管内の流れを閉塞可能な弁筐体の内部に設けた弁体を不断流状態で流体管に設置するためにエンドミルにより流体管を穿設する流体管穿設方法に関する。   The present invention relates to a fluid pipe drilling method in which a fluid pipe is drilled by an end mill so that a valve body provided inside a valve housing capable of closing a flow in the fluid pipe is installed in the fluid pipe in an uninterrupted state.

従来の流体管内の流れを閉塞可能な弁筐体の内部に設けた弁体を不断流状態で既設管として埋設された流体管に設置するための流体管穿設方法は、切削工具が取り付けられた密閉ケースを流体管の周囲に回動自在に取り付けた後、流体管に向けて切削工具を進行させて流体管に貫通孔を形成し、この状態から切削工具が取り付けられた密閉ケースを流体管の周方向に回動させることで流体管に周方向略半周にわたり貫通した切削溝を形成し、その後この切削溝からゲート(弁体)を流体管内に挿入することで、流体管内の流路を制したものがある(例えば、特許文献1参照)。   A conventional method for drilling a fluid pipe for installing a valve body provided inside a valve housing capable of closing a flow in a fluid pipe in a fluid pipe embedded as an existing pipe in an uninterrupted state is provided with a cutting tool. After mounting the sealed case around the fluid pipe so as to rotate freely, the cutting tool is advanced toward the fluid pipe to form a through hole in the fluid pipe. From this state, the sealed case to which the cutting tool is attached is fluidized. By turning in the circumferential direction of the pipe, a cutting groove penetrating the fluid pipe over almost the entire circumference in the circumferential direction is formed. After that, a gate (valve element) is inserted into the fluid pipe from the cutting groove, whereby the flow path in the fluid pipe (For example, see Patent Document 1).

特許4516666号公報(段落[0023],[0024]、及び第4,5図)Japanese Patent No. 4516666 (paragraphs [0023], [0024] and FIGS. 4 and 5)

しかしながら、特許文献1にあっては、回転駆動する切削工具が取り付けられた状態で重量のある密閉ケースを流体管の周方向に回動させているので、寸法精度の高い切削溝を形成するために正確な芯合わせや、大掛かりな密閉ケース駆動装置を要するだけでなく、密閉ケースの流体管に対する周方向への回動量に応じて切削溝の端部形状(端部の開き角度)が変化するため、弁体の設置部分の形状に合わせて切削溝の端部形状を再加工する等の付加作業が必要となり、切削溝の形成に時間や手間が掛かるという問題がある。   However, in Patent Document 1, since the heavy sealed case is rotated in the circumferential direction of the fluid pipe in a state where the cutting tool to be rotated is attached, a cutting groove with high dimensional accuracy is formed. In addition to precise center alignment and a large sealed case drive device, the end shape (opening angle of the end portion) of the cutting groove changes according to the amount of rotation of the sealed case in the circumferential direction with respect to the fluid pipe. For this reason, additional work such as reworking the shape of the end of the cutting groove in accordance with the shape of the installation portion of the valve body is required, and there is a problem that it takes time and labor to form the cutting groove.

本発明は、このような問題点に着目してなされたもので、流体管に容易且つ寸法精度の高い切削溝を穿設可能であり、かつ切削工具の切削刃に対する負荷が平均化され、切削工具の耐久性の向上を図った流体管穿設方法を提供することを目的とする。   The present invention has been made paying attention to such problems, and it is possible to make a cutting groove easily and with high dimensional accuracy in the fluid pipe, and the load on the cutting blade of the cutting tool is averaged, and the cutting is performed. It is an object of the present invention to provide a fluid pipe drilling method that improves the durability of a tool.

前記課題を解決するために、本発明の流体管穿設方法は、
流体管内の流れを閉塞可能な弁筐体の内部に設けた弁体を不断流状態で流体管に設置するためにエンドミルにより流体管を穿設する流体管穿設方法であって、
軸回りに回転する軸部材の先端に設けたエンドミルを流体管の中心軸線に直交する方向に向かって進行させて流体管の管壁を貫通穿孔する工程と、その後エンドミルの軸を流体管の横断方向に平行移動させる送り工程を経ることで、流体管の一部に上面視略矩形状の周方向に貫通した切削溝を形成することを特徴としている。
この特徴によれば、エンドミルにより流体管の管壁を貫通穿孔した後は、エンドミルに設けた軸回りに回転する軸部材を平行移動させるだけで、流体管の一部に上面視略矩形状の周方向に貫通した切削溝を形成することができるので、穿設作業が容易に行え且つ正確な切削溝の寸法精度が得られる。またエンドミルの流体管を切削する部位が平行移動中にエンドミルの軸方向にずれるので、エンドミルの切削刃に対する負荷が平均化され、エンドミルの耐久性が向上する。
In order to solve the above problems, the fluid pipe drilling method of the present invention comprises:
A fluid pipe drilling method for drilling a fluid pipe by an end mill in order to install a valve body provided inside a valve housing capable of closing a flow in the fluid pipe in the fluid pipe in an uninterrupted state,
An end mill provided at the tip of a shaft member rotating about the axis is advanced in a direction perpendicular to the central axis of the fluid pipe to penetrate through the pipe wall of the fluid pipe, and then the end mill shaft is crossed over the fluid pipe. A cutting groove penetrating in a circumferential direction having a substantially rectangular shape in a top view is formed in a part of the fluid pipe by performing a feeding step of translating in the direction.
According to this feature, after penetrating and drilling the pipe wall of the fluid pipe by the end mill, a part of the fluid pipe having a substantially rectangular shape in top view can be obtained by simply translating a shaft member that rotates around the axis provided in the end mill. Since the cutting groove penetrating in the circumferential direction can be formed, the drilling operation can be easily performed, and accurate dimensional accuracy of the cutting groove can be obtained. In addition, since the part of the end mill that cuts the fluid pipe is displaced in the axial direction of the end mill during translation, the load on the cutting blade of the end mill is averaged, and the durability of the end mill is improved.

本発明の流体管穿設方法は、
前記エンドミルの軸を流体管の横断方向に平行移動させる送り工程において、貫通穿孔した軸部材を一方向に平行移動させる第1のステップと、前記貫通穿孔した箇所を経て他方向に平行移動させる第2のステップと、再び該貫通穿孔した箇所まで戻るように前記一方向に平行移動させる第3のステップを経るようにしたことを特徴としている。
この特徴によれば、切削溝を穿設するに際し、エンドミルの回転方向と送り方向とが同じ向きとなる穿設工程と逆になる穿設工程とが交互に均等になるように切削溝を穿設するので、切削溝の内面全体を均質に仕上げることができる。
The fluid pipe drilling method of the present invention includes:
In the feeding step of translating the shaft of the end mill in the transverse direction of the fluid pipe, a first step of translating the shaft member drilled and drilled in one direction, and a first step of translating the shaft member in the other direction via the through drilled portion The second step and the third step of translating in the one direction so as to return to the portion where the through hole has been drilled are performed.
According to this feature, when the cutting groove is drilled, the cutting groove is drilled so that the drilling process in which the rotation direction and the feed direction of the end mill are the same direction and the drilling process in the opposite direction are alternately equal. Therefore, the entire inner surface of the cutting groove can be finished uniformly.

本発明の流体管穿設方法は、
前記エンドミルの軸を流体管の横断方向に平行移動させる送り工程において、平行移動するエンドミルの平行移動終了端における前記エンドミルの切削は、その側面刃により流体管に壁が残るようにして切削溝の端部を形成することを特徴としている。
この特徴によれば、流体管に壁が残っているので、流体管の剛性の低下が軽減されると共に、壁を利用することで弁体の設置が容易となる。
The fluid pipe drilling method of the present invention includes:
In the feeding step of translating the end mill shaft in the transverse direction of the fluid pipe, the end mill is cut at the end of the parallel movement of the end mill to be moved so that a wall is left in the fluid pipe by the side edge of the cutting groove. An end portion is formed.
According to this feature, since the wall remains in the fluid pipe, a decrease in rigidity of the fluid pipe is reduced, and the valve body can be easily installed by using the wall.

本発明の流体管穿設方法は、
前記エンドミルの軸を流体管の横断方向に平行移動させる送り工程において、エンドミルの平行移動させる範囲は、流体管の中心と前記切削溝の周方向両端部との成す角度が90°から150°の範囲となるように移動させることを特徴としている。
この特徴によれば、流体管の中心と切削溝の周方向両端部が成す角度を90°から150°とすることで、流体管の剛性を確保しながら、切削溝の周方向の長さを半円周よりも短かい範囲に抑えることで、穿設作業の簡略化が図れる。
The fluid pipe drilling method of the present invention includes:
In the feeding step of translating the end mill shaft in the transverse direction of the fluid pipe, the range of translation of the end mill is such that the angle formed between the center of the fluid pipe and both circumferential ends of the cutting groove is 90 ° to 150 °. It is characterized by being moved so as to be within a range.
According to this feature, by setting the angle formed by the center of the fluid pipe and both circumferential ends of the cutting groove to 90 ° to 150 °, the circumferential length of the cutting groove can be increased while ensuring the rigidity of the fluid pipe. By limiting the length to a range shorter than the semicircular circumference, the drilling operation can be simplified.

実施例における筐体に切削装置が取り付けられた状態を示す側断面図である。It is a sectional side view which shows the state by which the cutting device was attached to the housing | casing in an Example. 図1における切削装置を示すA−A断面図である。It is AA sectional drawing which shows the cutting device in FIG. エンドミルによる流体管への貫通穿孔を示す側断面図である。It is a sectional side view which shows the penetration drilling to the fluid pipe | tube by an end mill. 流体管へ貫通穿孔したエンドミルを示す正面断面図である。It is front sectional drawing which shows the end mill penetrated to the fluid pipe | tube. 流体管の径方向の一方へ平行移動するエンドミルを示す正面断面図である。It is front sectional drawing which shows the end mill which translates to one of the radial directions of a fluid pipe | tube. 流体管の径方向の他方へ平行移動するエンドミルを示す正面断面図である。It is front sectional drawing which shows the end mill which translates to the other of the radial direction of a fluid pipe | tube. 切削溝の穿設が完了した状態の流体管を示す正面断面図である。It is front sectional drawing which shows the fluid pipe | tube of the state which the drilling of the cutting groove was completed. (a)は、図5におけるエンドミルの流体管の切削状況を示すB−B断面図であり、(b)は、図6におけるエンドミルの流体管の切削状況を示すC−C断面図である。(A) is BB sectional drawing which shows the cutting condition of the fluid pipe of the end mill in FIG. 5, (b) is CC sectional drawing which shows the cutting condition of the fluid pipe of the end mill in FIG. 切削溝に防錆コアを嵌着した状態を示す側断面図である。It is a sectional side view which shows the state which fitted the antirust core in the cutting groove. 筐体から切削装置が取り外された状態を示す側断面図である。It is a sectional side view which shows the state from which the cutting device was removed from the housing | casing. 筐体に弁筐体を取り付けた状態を示す側断面図である。It is a sectional side view which shows the state which attached the valve housing | casing to the housing | casing. 分岐口を開放し弁体の先端部を流体管内に配置した状態を示す側断面図である。It is a sectional side view which shows the state which open | released the branch port and has arrange | positioned the front-end | tip part of the valve body in the fluid pipe | tube. 弁体により流体管の流路を遮断した状態を示す側断面図である。It is a sectional side view which shows the state which interrupted | blocked the flow path of the fluid pipe | tube with the valve body.

本発明に係る流体管穿設方法を実施するための形態を実施例に基づいて以下に説明する。   The form for implementing the fluid pipe | tube drilling method which concerns on this invention is demonstrated below based on an Example.

実施例に係る弁筐体設置方法につき、図1から図13を参照して説明する。図1に示すように、本実施例の流体管1は、例えば、地中に埋設される上水道用のダクタイル鋳鉄製であり、断面視略円形状に形成され、内周面がモルタル層1bで被覆されている。尚、本発明に係る流体管は、その他鋳鉄、鋼等の金属製、あるいは塩化ビニール、ポリエチレン若しくはポリオレフィン製等であってもよい。更に尚、本実施例では流体管1内の流体は上水であるが、流体管の内部を流れる流体は必ずしも上水に限らず、例えば工業用水や農業用水、下水等の他、ガスやガスと液体との気液混合体であっても構わない。   The valve housing installation method according to the embodiment will be described with reference to FIGS. As shown in FIG. 1, the fluid pipe 1 of the present embodiment is made of, for example, ductile cast iron for waterworks buried in the ground, is formed in a substantially circular shape in cross section, and the inner peripheral surface is a mortar layer 1b. It is covered. The fluid pipe according to the present invention may be made of metal such as cast iron or steel, or made of vinyl chloride, polyethylene or polyolefin. Furthermore, in the present embodiment, the fluid in the fluid pipe 1 is clean water, but the fluid flowing in the fluid pipe is not necessarily limited to clean water. For example, in addition to industrial water, agricultural water, sewage, etc., gas or gas It may be a gas-liquid mixture of liquid and liquid.

本実施例では、図11及び図12に示すように、このように構成された流体管1に内部に弁体14を有する弁筐体13を設置するとともに、弁体14を操作することで流体管1内の流体の流路を遮断するようになっている。以下、本実施例では流体管1への弁筐体13の設置について工程順に説明していく。   In this embodiment, as shown in FIGS. 11 and 12, a valve housing 13 having a valve body 14 is installed in the fluid pipe 1 configured as described above, and the valve body 14 is operated to operate the fluid. The flow path of the fluid in the pipe 1 is blocked. Hereinafter, in the present embodiment, the installation of the valve housing 13 in the fluid pipe 1 will be described in the order of steps.

先ず、図1及び図2に示すように、流体管1の外周面1aには、筐体2が密封状に取り付けられる。この筐体2はいわゆる割T字管であって、流体管1に対して上方から配設され、流体管1の外周の上側を被覆する第1ケース3と、流体管1に対して下方から配設され、流体管1の外周の下側を被覆する第2ケース4と、から構成されている。これら第1ケース3及び第2ケース4は、鋳鉄等の金属材により構成されている。尚、筐体は、3体以上のケースからなる分割構造であっても構わない。更に尚、筐体の材質は、当該筐体が取り付けられる流体管の材質に応じて適用されるものであれば、上記で説明した流体管と同様に種々の材質であってもよい。   First, as shown in FIGS. 1 and 2, a housing 2 is attached to the outer peripheral surface 1 a of the fluid pipe 1 in a sealed manner. The housing 2 is a so-called split T-shaped tube, which is disposed from above with respect to the fluid pipe 1, and covers a first case 3 that covers the upper side of the outer periphery of the fluid pipe 1 and the fluid pipe 1 from below. The second case 4 is disposed and covers the lower side of the outer periphery of the fluid pipe 1. The first case 3 and the second case 4 are made of a metal material such as cast iron. Note that the housing may have a divided structure including three or more cases. Furthermore, the material of the casing may be various materials like the fluid pipe described above as long as it is applied according to the material of the fluid pipe to which the casing is attached.

このうち第1ケース3は、内壁の一部で流体管1の外周面1aに当接するようになっているとともに、第1ケース3の流体管1における管軸方向の略中央部には、上方に向けて分岐口3aが形成されている。この分岐口3aは、平面視で流体管1の径方向を向く幅寸法が、流体管1の管軸方向を向く幅寸法よりも長寸な非円形状に形成されている。   Among these, the first case 3 is configured to abut on the outer peripheral surface 1a of the fluid pipe 1 at a part of the inner wall, and at the substantially central portion of the fluid pipe 1 of the first case 3 in the tube axis direction, A branch port 3a is formed toward the head. The branch port 3 a is formed in a noncircular shape in which the width dimension facing the radial direction of the fluid pipe 1 in a plan view is longer than the width dimension facing the pipe axis direction of the fluid pipe 1.

また、分岐口3a内には、作業弁8aが配設されている。この作業弁8aは、流体管1の径方向である水平方向を向く枢軸8bに回動可能に枢支されており、筐体2の外方から枢軸8bに取り付けられた図示しないハンドルを回動操作することで、分岐口3aを閉塞可能となっている。一方、第2ケース4は、第1ケース3と略同一の流体管1における管軸方向の寸法に形成されており、内壁で流体管1の外周面1aに当接するようになっている。   A work valve 8a is provided in the branch port 3a. The work valve 8a is pivotally supported by a pivot 8b that faces the horizontal direction, which is the radial direction of the fluid pipe 1, and pivots a handle (not shown) attached to the pivot 8b from the outside of the housing 2. By operating, the branch port 3a can be closed. On the other hand, the second case 4 is formed to have a dimension in the tube axis direction of the fluid pipe 1 that is substantially the same as that of the first case 3, and comes into contact with the outer peripheral surface 1 a of the fluid pipe 1 on the inner wall.

このように構成された第1ケース3は、内周面に止水部材を配した状態で流体管1に対して上方から配設されるとともに、第2ケース4は、内周面に止水部材を配した状態で流体管1に対して下方から配設されており、第1ケース3と第2ケース4の図示しないフランジ同士を締結することで、両第1ケース3及び第2ケース4の内周面に配された止水部材を流体管1の外周面1aに密着させて流体管1に取り付けられる。   The first case 3 configured as described above is disposed from above with respect to the fluid pipe 1 in a state in which a water stop member is disposed on the inner peripheral surface, and the second case 4 has a water stop on the inner peripheral surface. With the members arranged, the fluid pipe 1 is disposed from below, and the first case 3 and the second case 4 are fastened by fastening flanges (not shown) of the first case 3 and the second case 4 together. The water stop member disposed on the inner peripheral surface of the fluid pipe 1 is attached to the fluid pipe 1 in close contact with the outer peripheral face 1 a of the fluid pipe 1.

また、筐体2の流体管1における管軸方向の両端部からは、押輪等の固定部材が筐体2と流体管1とに亘って取り付けられることで、筐体2が流体管1に対して管軸方向及び周方向に移動不能に固定される。   Further, a fixing member such as a push ring is attached across the casing 2 and the fluid pipe 1 from both ends in the pipe axis direction of the fluid pipe 1 of the casing 2, so that the casing 2 is attached to the fluid pipe 1. Thus, it is fixed so as not to move in the tube axis direction and the circumferential direction.

次に、図1及び図2に示すように、流体管1に後述する切削溝1cを穿設するための切削装置9を筐体2の上方から配設する。切削装置9について詳述すると、切削装置9は、上下方向に貫通形成され分岐口3aの上端部に密封状に取り付けられるとともに、分岐口3aの上端部上を水平方向にスライド移動可能なスライド台9fと、スライド台9f上に取り付けられる切削ケース9dと、切削ケース9dの上端部に立設している複数の支柱9hに挿通され、これら支柱9hに沿って上下動可能な枢支台9iと、上端部が枢支台9iに回動可能に枢支されているとともに、図示しない駆動手段に接続され切削ケース9d内から分岐口3a内を流体管1に向け軸方向に進行する軸部材9aと、軸部材9aの下端部に接続されたエンドミル9bと、切削装置9の外部から操作することで軸部材9a及びエンドミル9bを、流体管1を横断するように平行移動させることが可能なハンドリング部9cと、から主として構成されている。   Next, as shown in FIGS. 1 and 2, a cutting device 9 for drilling a later-described cutting groove 1 c in the fluid pipe 1 is disposed from above the housing 2. The cutting device 9 will be described in detail. The cutting device 9 is formed so as to penetrate in the vertical direction and is hermetically attached to the upper end portion of the branch port 3a, and is slidable in the horizontal direction on the upper end portion of the branch port 3a. 9f, a cutting case 9d mounted on the slide base 9f, and a pivot base 9i which is inserted into a plurality of support posts 9h standing on the upper end of the cutting case 9d and can move up and down along the support posts 9h. The shaft member 9a is pivotally supported on the pivot base 9i so as to be pivotable, and is connected to a driving means (not shown) and advances in the branch port 3a from the cutting case 9d toward the fluid pipe 1 in the axial direction. And the end mill 9b connected to the lower end of the shaft member 9a, and the shaft member 9a and the end mill 9b can be translated in parallel across the fluid pipe 1 by operating from the outside of the cutting device 9. And a handling portion 9c, and is mainly comprised.

このうちエンドミル9bは円筒形状に形成されているとともに、底部及び側面に切削刃9g(図8(a)参照)が設けられた穿孔軸であり、前記駆動手段により軸部材9aが軸部材9aの軸周りに回動することによって、これら切削刃9gにより流体管1の切削が可能となっている。特にエンドミル9bの側面に設けられた切削刃9gは、本発明における側面刃を構成している。また、切削ケース9dには、切削装置9の外方に連通する連通口9jが貫通形成されている。   Among them, the end mill 9b is a perforated shaft having a cylindrical shape and provided with cutting blades 9g (see FIG. 8A) on the bottom and side surfaces, and the shaft member 9a of the shaft member 9a is driven by the driving means. By rotating around the axis, the fluid pipe 1 can be cut by these cutting blades 9g. In particular, the cutting blade 9g provided on the side surface of the end mill 9b constitutes the side blade in the present invention. Further, a communication port 9j that communicates with the outside of the cutting device 9 is formed through the cutting case 9d.

このように構成された切削装置9は、図3及び図4に示すように、先ず、枢支台9iを支柱9hに沿って下方に移動させることでエンドミル9bを分岐口3a内における流体管1の上端部近傍まで移動させる。そして、流体管1の管壁を貫通穿孔する工程として、軸周りに回動する軸部材9aを介してエンドミル9bを流体管1の管軸に直交する方向と平行となるように流体管1に向けて軸部材9aの軸方向に進行させることで、不断流状態にて筐体2内においてエンドミル9bの底部の切削刃により流体管1の上端部の一部を切削していく。この切削の際には、連通口9jから切削時に発生する切粉を筐体2外に排出する。尚、切粉を排出するための連通口を分岐口3aの近傍に設けてもよい。   As shown in FIGS. 3 and 4, the cutting device 9 configured in this way first moves the pivot base 9 i downward along the column 9 h to move the end mill 9 b to the fluid pipe 1 in the branch port 3 a. Move to the vicinity of the upper end of. Then, as a step of drilling through the tube wall of the fluid tube 1, the end mill 9 b is made parallel to the direction perpendicular to the tube axis of the fluid tube 1 via the shaft member 9 a that rotates about the axis. By proceeding in the axial direction of the shaft member 9a, a part of the upper end portion of the fluid pipe 1 is cut by the cutting blade at the bottom portion of the end mill 9b in the casing 2 in a continuous flow state. At the time of this cutting, the chips generated at the time of cutting are discharged out of the housing 2 from the communication port 9j. A communication port for discharging chips may be provided in the vicinity of the branch port 3a.

そして、エンドミル9bの底部の切削刃により流体管1の上端部を所定量切削して貫通穿孔した後、本発明における送り工程の第1のステップとして、作業者がハンドリング部9cを操作することで、スライド台9fを流体管1の径方向の一方側に向けて平行移動させる。図5に示すように、このスライド台9fのスライド移動によって、エンドミル9bの高さ位置を維持したまま、流体管1を横断するように平行移動させ、エンドミル9bの側面の切削刃9gにより流体管1を切削していく。   Then, after cutting the upper end portion of the fluid pipe 1 by a predetermined amount with a cutting blade at the bottom of the end mill 9b and penetrating through, the operator operates the handling portion 9c as the first step of the feeding process in the present invention. The slide base 9f is translated toward one side in the radial direction of the fluid pipe 1. As shown in FIG. 5, the sliding movement of the slide table 9f causes the end mill 9b to move in parallel while maintaining the height position of the end mill 9b, and the fluid pipe is cut by the cutting blade 9g on the side of the end mill 9b. Cut 1

このように切削刃9gを流体管1の径方向の一方側に向けて平行移動させることで、流体管1の管壁の一部が残るように垂直面である切削面1dが形成されていく。このとき、図8(a)に示すように、切削面1dの流体管1の周方向における一方側は、切削刃9gの平行移動方向と切削刃9gの回転方向が同一方向を向くため、バリ1e等の切削残しが生じ難くなっている。一方、切削面1dの流体管1の周方向における他方側は、切削刃9gの平行移動方向と切削刃9gの回転方向が反対方向を向くため、バリ1e等の切削残しが生じ易くなっている。   In this way, the cutting blade 9g is translated toward one side in the radial direction of the fluid pipe 1 to form a vertical cutting surface 1d so that a part of the pipe wall of the fluid pipe 1 remains. . At this time, as shown in FIG. 8 (a), on one side of the cutting surface 1d in the circumferential direction of the fluid pipe 1, the parallel movement direction of the cutting blade 9g and the rotation direction of the cutting blade 9g face the same direction. It is difficult to leave a cutting residue such as 1e. On the other hand, on the other side of the cutting surface 1d in the circumferential direction of the fluid pipe 1, the parallel movement direction of the cutting blade 9g and the rotation direction of the cutting blade 9g are opposite to each other. .

次に、図5に示す流体管1の径方向の一方側におけるエンドミル9bの平行移動終了端から、本発明における送り工程の第2のステップとして、作業者がハンドリング部9cを操作することで、スライド台9fを流体管1の径方向の他方側に向けて平行移動させる。図6に示すように、このスライド台9fのスライド移動によって、エンドミル9bの高さ位置を維持したまま、流体管1を横断するように平行移動させ、エンドミル9bの側面の切削刃9gにより流体管1を流体管1の平行移動終了端まで切削していくことで切削溝1cが穿設される。   Next, from the end of parallel movement of the end mill 9b on one side in the radial direction of the fluid pipe 1 shown in FIG. 5, the operator operates the handling unit 9c as the second step of the feeding process in the present invention. The slide base 9f is translated toward the other side in the radial direction of the fluid pipe 1. As shown in FIG. 6, the slide movement of the slide table 9f causes the end mill 9b to move parallel to the fluid pipe 1 while maintaining the height position of the end mill 9b, and the fluid pipe is cut by the cutting blade 9g on the side of the end mill 9b. By cutting 1 to the end of parallel movement of the fluid pipe 1, a cutting groove 1c is formed.

このとき、図8(b)に示すように、切削面1dの流体管1の周方向における他方側は、切削刃9gの平行移動方向と切削刃9gの回転方向が反対方向を向くため、バリ1e等の切削残しが生じ難くなっている。一方、切削面1dの流体管1の周方向における一方側は、切削刃9gの平行移動方向と切削刃9gの回転方向が反対方向を向くため、最初に貫通穿孔した箇所から平行移動終了端まではバリ1e等の切削残しが生じ易くなっている。   At this time, as shown in FIG. 8 (b), the other side of the cutting surface 1d in the circumferential direction of the fluid pipe 1 has a variable direction because the parallel movement direction of the cutting blade 9g and the rotation direction of the cutting blade 9g are opposite to each other. It is difficult to leave a cutting residue such as 1e. On the other hand, since the parallel movement direction of the cutting blade 9g and the rotation direction of the cutting blade 9g face in opposite directions on one side of the cutting surface 1d in the circumferential direction of the fluid pipe 1, from the first through hole to the end of the parallel movement In this case, uncut parts such as burrs 1e are easily generated.

また、図5に示す流体管1の径方向の一方側におけるエンドミル9bの平行移動終了端から、エンドミル9bを流体管1の径方向の他方側に向けて平行移動させることで、切削溝1cを穿設しつつ、切削面1dの流体管1の周方向における他方側に生じたバリ1e等を切削していく。   Further, the end mill 9b is translated from the end of the parallel movement of the end mill 9b on one side in the radial direction of the fluid pipe 1 shown in FIG. While drilling, the burr 1e generated on the other side of the cutting surface 1d in the circumferential direction of the fluid pipe 1 is cut.

更に、図6に示す流体管1の径方向の他方側におけるエンドミル9bの平行移動終了端から、本発明における送り工程の第3のステップとして、作業者がハンドリング部9cを操作することで、スライド台9fをエンドミル9bが底部の切削刃により流体管1を貫通穿孔した箇所に向けて平行移動させる。このとき、エンドミル9bは、流体管1の径方向の一方側に向けて移動するため、切削面1dの周方向の一方側に生じたバリ1e等の切削残しを切削する。   Further, as a third step of the feeding process in the present invention, the operator operates the handling portion 9c from the end of parallel movement of the end mill 9b on the other radial side of the fluid pipe 1 shown in FIG. The stage 9f is moved in parallel toward a position where the end mill 9b penetrates the fluid pipe 1 with a cutting blade at the bottom. At this time, since the end mill 9b moves toward one side in the radial direction of the fluid pipe 1, it cuts a cutting residue such as a burr 1e generated on one side in the circumferential direction of the cutting surface 1d.

以上の送り工程における第1のステップから第3のステップまでを経ることで、切削面1dにバリ1e等の切削残しを余すことなく切削溝1cの穿設が完了する。尚、この切削溝1cは、エンドミル9bによって穿設されることで、流体管1の正面断面視において、流体管1の管軸と切削面1dの流体管1の周方向側両端上部とが成す角度αが、90°から150°の範囲で形成される。尚、エンドミル9bによる平行移動中は、流体管1における切削刃9gによって切削される部位がエンドミル9bの軸方向にずれるので、エンドミル9bの同一箇所で流体管1の切削が行われることが防止され、エンドミル9bの同一箇所に継続して負荷がかかることが防止される。   By going through the first step to the third step in the above feeding process, the drilling of the cutting groove 1c is completed without leaving any cutting residue such as burrs 1e on the cutting surface 1d. The cutting groove 1c is formed by the end mill 9b, so that the tube axis of the fluid tube 1 and the upper ends of both ends of the cutting surface 1d in the circumferential direction of the fluid tube 1 are formed in a front sectional view of the fluid tube 1. The angle α is formed in the range of 90 ° to 150 °. During parallel movement by the end mill 9b, the portion of the fluid pipe 1 that is cut by the cutting blade 9g is displaced in the axial direction of the end mill 9b, so that the fluid pipe 1 is prevented from being cut at the same location of the end mill 9b. Further, it is possible to prevent a load from being continuously applied to the same portion of the end mill 9b.

このようにエンドミル9bにより切削溝1cを穿設した後、軸部材9a及びエンドミル9bを筐体2内から退行させるとともに、作業弁8aを操作した上で分岐口3aから切削装置9を取り外す。   After the cutting groove 1c is drilled by the end mill 9b in this manner, the shaft member 9a and the end mill 9b are retracted from the inside of the housing 2, and the cutting valve 9 is removed from the branch port 3a after operating the work valve 8a.

次に、図9に示すように、切削溝1cを閉塞可能な防錆コア15を内部に配設した防錆装置16を分岐口3aの上端部に弁筐体13に替えて取り付ける。防錆装置16は、分岐口3aの上端部に直接取り付けられる防錆筐体16aと、この防錆筐体16a内を上下方向に移動可能であり下端部に防錆コア15が取り付けられた軸部材16bと、から主に構成されている。   Next, as shown in FIG. 9, a rust prevention device 16 in which a rust prevention core 15 capable of closing the cutting groove 1c is disposed is attached to the upper end portion of the branch port 3a in place of the valve housing 13. The rust preventive device 16 is a rust preventive casing 16a that is directly attached to the upper end of the branch port 3a, and a shaft that can move up and down in the rust preventive casing 16a and has a rust preventive core 15 attached to the lower end. The member 16b is mainly composed of.

このうち、防錆コア15は、防錆コア15の周方向の全周に亘って配設された弾性変形可能な防錆部材15aと、外周面に亘り防錆部材15aを設けた環状の環状体と、から主に構成されている。この防錆コア15が取付けられた防錆装置16は、図9に示すように、作業弁8aが開放された後に軸部材16bを流体管1に向けて移動させることで防錆コア15を切削溝1c内に配置させた後、防錆部材15aの下方に配置され、軸部材16b側から操作されることで防錆部材15aを軸部材16bの下端部との間で挟圧する挟圧部16cを操作することで防錆部材15aを弾性変形させる。この防錆部材15aの弾性変形によって防錆部材15aが切削溝1cの切削面1dの全周に亘って密着するため、切削面1dが防錆される。図10に示されるように、防錆コア15を切削溝1cに残して防錆装置16を取り外した後、分岐口3aの上端部に蓋体10を取り付けることで、一時的に分岐口3aを密封する。   Among these, the rust preventive core 15 is an annular ring provided with an elastically deformable rust preventive member 15a disposed over the entire circumference in the circumferential direction of the rust preventive core 15 and a rust preventive member 15a over the outer peripheral surface. The body is mainly composed of. As shown in FIG. 9, the rust prevention device 16 to which the rust prevention core 15 is attached cuts the rust prevention core 15 by moving the shaft member 16 b toward the fluid pipe 1 after the work valve 8 a is opened. After being arranged in the groove 1c, the clamping part 16c is arranged below the rust prevention member 15a, and is clamped between the lower end part of the shaft member 16b by being operated from the shaft member 16b side. Is operated to elastically deform the rust preventive member 15a. Since the rust preventive member 15a comes into close contact with the entire circumference of the cutting surface 1d of the cutting groove 1c by the elastic deformation of the rust preventing member 15a, the cutting surface 1d is rusted. As shown in FIG. 10, after removing the rust preventive device 16 while leaving the rust preventive core 15 in the cutting groove 1c, the cover 10 is attached to the upper end of the branch port 3a, so that the branch port 3a is temporarily attached. Seal.

そして、図11に示すように、分岐口3aの上端部に蓋体10に替えて弁筐体13を密封状に取り付ける。この弁筐体13は、内部が上下方向に貫通する筒状に形成され、分岐口3aの上端部に直接取り付けられる基台部13aと、この基台部13a内に密封状に挿入されるとともに、基台部13a内を上下方向に褶動可能な褶動部13cと、から主に構成されている。また、褶動部13c内には、予め切削溝1cを介して流体管1の管路を遮断若しくは開放するための弁体14が内部に配設されている。   And as shown in FIG. 11, it replaces with the cover body 10 at the upper end part of the branch port 3a, and the valve housing | casing 13 is attached in a sealing form. The valve housing 13 is formed in a cylindrical shape that penetrates in the vertical direction, and a base portion 13a that is directly attached to the upper end portion of the branch port 3a, and is inserted into the base portion 13a in a sealed manner. The base part 13a is mainly composed of a rocking part 13c capable of rocking in the vertical direction. In addition, a valve body 14 for blocking or opening the conduit of the fluid pipe 1 through the cutting groove 1c is disposed inside the peristaltic part 13c in advance.

回転ネジ13dは、褶動部13cの頂部に穿設された図示しない挿通孔に回転自在に貫通して、上端部を褶動部13cの外部に突出して取り付けられている。押え板13eは、褶動部13cの上端面にボルトで固定され、回転ネジ13dの前記挿通孔からの抜出しを阻止している。上記構成により、回転ネジ13dは褶動部13cに対し正逆両方向に回転自在であるが上下動はしない。   The rotating screw 13d is rotatably attached to an insertion hole (not shown) drilled in the top of the peristaltic part 13c, and has an upper end protruding from the peristaltic part 13c. The holding plate 13e is fixed to the upper end surface of the swinging portion 13c with a bolt, and prevents the rotation screw 13d from being pulled out from the insertion hole. With the above configuration, the rotating screw 13d can rotate in both forward and reverse directions with respect to the swinging portion 13c, but does not move up and down.

13fは、回転ネジ13dの上端部を除いて略全長に亘ってその周面が螺設されたネジ部である。このネジ部13fは、弁体14の上端部に設けられ、褶動部13cの内部形状と略同一形状に形成されたガイド部14aに螺合している。このため、弁体14は、回転ネジ13dの上端部に形成された回転操作部13bの回転に応じネジ部13fが回転することで、ネジ部13fに沿ってガイド部14aを有する弁体14が上下動可能となる。   Reference numeral 13f denotes a screw portion having a circumferential surface screwed over substantially the entire length except for the upper end portion of the rotating screw 13d. The screw portion 13f is provided at the upper end portion of the valve body 14, and is screwed into a guide portion 14a formed in substantially the same shape as the internal shape of the swinging portion 13c. For this reason, the valve body 14 has the guide portion 14a along the screw portion 13f because the screw portion 13f rotates according to the rotation of the rotation operation portion 13b formed at the upper end portion of the rotary screw 13d. Can move up and down.

そして、図12に示すように、作業弁8aを開放した後に基台部13a内において褶動部13cを流体管1に向けて褶動させることで、弁体14の下端部を切削溝1c内の上端部に配置させる。そして、基台部13aと褶動部13cとをボルト・ナットにより締結することで褶動部13cを基台部13aに対して上下動不能に固定する。   Then, as shown in FIG. 12, the lower end portion of the valve body 14 is moved into the cutting groove 1c by swinging the swinging portion 13c toward the fluid pipe 1 in the base portion 13a after opening the work valve 8a. It is arranged at the upper end of the. And the base part 13a and the rocking | fluctuation part 13c are fastened with a volt | bolt and a nut, and the rocking | fluctuation part 13c is fixed to the base part 13a so that a vertical movement is impossible.

以後、弁体14は、図13に示すように、図示しないハンドルによる回転操作部13bの回転によって下方に移動することで流体管1の内周面に弾性変形しながら密封状に当接して流体管1の流路を遮断するとともに、前記ハンドルによる回転操作部13bの回転によって上方に移動することで流体管1の管路を開放するようになる。   Thereafter, as shown in FIG. 13, the valve body 14 moves downward by the rotation of the rotation operation portion 13 b by a handle (not shown), thereby elastically deforming the inner peripheral surface of the fluid pipe 1 and sealingly contacting the fluid pipe 1. The flow path of the pipe 1 is blocked, and the pipe of the fluid pipe 1 is opened by moving upward by the rotation of the rotation operation unit 13b by the handle.

以上、本実施例における流体管穿設方法にあっては、軸回りに回転する軸部材9aの先端に設けたエンドミル9bを流体管1の中心軸線に直交する方向に向かって進行させて流体管1の管壁を貫通穿孔する工程と、その後エンドミル9bの軸を流体管1の横断方向に平行移動させる送り工程を経ることで、流体管1の一部に上面視略矩形状の周方向に貫通した切削溝1cを形成するので、エンドミル9bにより流体管1の管壁を貫通穿孔した後は、エンドミル9bに設けた軸回りに回転する軸部材9aを平行移動させるだけで、流体管1の一部に上面視略矩形状の周方向に貫通した切削溝1cを形成することができるので、穿設作業が容易に行え且つ正確な切削溝1cの寸法精度が得られる。またエンドミル9bの流体管1を切削する部位が平行移動中にエンドミル9bの軸方向にずれるので、エンドミル9bの切削刃9gに対する負荷が平均化され、エンドミル9bの耐久性が向上する。   As described above, in the fluid pipe drilling method according to the present embodiment, the end mill 9b provided at the tip of the shaft member 9a rotating around the axis is advanced in the direction perpendicular to the central axis of the fluid pipe 1 to make the fluid pipe 1 through a tube wall and a feed step in which the shaft of the end mill 9b is translated in the transverse direction of the fluid tube 1 in the circumferential direction in a substantially rectangular shape when viewed from above. Since the penetrating cutting groove 1c is formed, after the end mill 9b penetrates the tube wall of the fluid pipe 1, the shaft member 9a that rotates about the axis provided in the end mill 9b is simply moved in parallel, so that the fluid pipe 1 Since the cutting groove 1c penetrating in the circumferential direction having a substantially rectangular shape in a top view can be formed in a part, the drilling operation can be easily performed and the accurate dimensional accuracy of the cutting groove 1c can be obtained. Further, since the portion of the end mill 9b that cuts the fluid pipe 1 is displaced in the axial direction of the end mill 9b during translation, the load on the cutting blade 9g of the end mill 9b is averaged, and the durability of the end mill 9b is improved.

また、エンドミル9bの軸を流体管の横断方向に平行移動させる送り工程において、貫通穿孔した軸部材9aを一方向に平行移動させる第1のステップと、貫通穿孔した箇所を経て他方向に平行移動させる第2のステップと、再び貫通穿孔した箇所まで戻るように一方向に平行移動させる第3のステップを経るようにしたので、切削溝1cを穿設するに際し、エンドミル9bの回転方向と送り方向とが同じ向きとなる穿設工程と逆になる穿設工程とが交互に均等になるように切削溝1cを穿設するので、切削溝1cの内面全体を均質に仕上げることができる。   Further, in the feeding step of translating the shaft of the end mill 9b in the transverse direction of the fluid pipe, the first step of translating the shaft member 9a that has been drilled and drilled in one direction, and the translation in the other direction through the site of drilling and drilling. Since the second step to be performed and the third step to translate in one direction so as to return to the through-drilled portion again, when the cutting groove 1c is drilled, the rotation direction and feed direction of the end mill 9b Since the cutting grooves 1c are drilled so that the drilling process in which they are in the same direction and the drilling processes in the opposite direction are alternately equal, the entire inner surface of the cutting groove 1c can be finished uniformly.

また、エンドミル9bの軸を流体管1の横断方向に平行移動させる送り工程において、平行移動するエンドミル9bの平行移動終了端におけるエンドミル9bの切削は、その切削刃9gにより流体管1に壁が残るようにして切削溝1cの端部を形成するので、流体管1に壁が残っているので、流体管1の剛性の低下が軽減されると共に、壁を利用することで弁体14の設置が容易となる。   Further, in the feeding step in which the axis of the end mill 9b is translated in the transverse direction of the fluid pipe 1, the end mill 9b is cut at the end of the parallel movement of the end mill 9b to be translated, and a wall remains in the fluid pipe 1 by the cutting blade 9g. Thus, since the end of the cutting groove 1c is formed, a wall remains in the fluid pipe 1, so that a decrease in rigidity of the fluid pipe 1 is reduced and the valve body 14 can be installed by using the wall. It becomes easy.

また、エンドミル9bの軸を流体管1の横断方向に平行移動させる送り工程において、エンドミル9bの平行移動させる範囲は、流体管1の中心と切削溝1cの周方向両端部との成す角度αが90°から150°の範囲となるように移動させるので、流体管1の中心と切削溝1cの周方向両端部が成す角度αを90°から150°とすることで、流体管1の剛性を確保しながら、切削溝1cの周方向の長さを半円周よりも短かい範囲に抑えることで、穿設作業の簡略化が図れる。   Further, in the feeding step in which the axis of the end mill 9b is translated in the transverse direction of the fluid pipe 1, the range in which the end mill 9b is translated is such that the angle α formed between the center of the fluid pipe 1 and both ends in the circumferential direction of the cutting groove 1c. Since it moves so that it may be in the range of 90 ° to 150 °, the angle α formed by the center of the fluid pipe 1 and both ends in the circumferential direction of the cutting groove 1c is set to 90 ° to 150 °, whereby the rigidity of the fluid pipe 1 is increased. The drilling operation can be simplified by keeping the circumferential length of the cutting groove 1c within a range shorter than the semicircular circumference while ensuring it.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.

例えば、前記実施例では、弁体14は、図示しないハンドルによる回転操作部13bの回転によって下方に移動することで流体管1の内周面に弾性変形しながら密封状に当接して流体管1の管路を遮断し、前記ハンドルによる回転操作部13bの回転によって上方に移動することで流体管1の管路を開放する切換弁として説明したが、弁体は、バタフライ弁、ゲート弁、プラグ、緊急遮断弁等であってもよい。   For example, in the above-described embodiment, the valve body 14 moves downward by the rotation of the rotation operation unit 13b by a handle (not shown), thereby elastically deforming the inner peripheral surface of the fluid pipe 1 and sealingly contacting the fluid pipe 1. The switch body is described as a switching valve that opens the conduit of the fluid pipe 1 by moving upward by the rotation of the rotation operation unit 13b by the handle, but the valve body includes a butterfly valve, a gate valve, a plug It may be an emergency shutoff valve or the like.

1 流体管
1c 切削溝
1d 切削面
2 筐体
9a 軸部材
9b エンドミル
9g 切削刃(側面刃)
13 弁筐体
14 弁体
DESCRIPTION OF SYMBOLS 1 Fluid pipe 1c Cutting groove 1d Cutting surface 2 Housing | casing 9a Shaft member 9b End mill 9g Cutting blade (side blade)
13 Valve housing 14 Valve body

Claims (4)

流体管内の流れを閉塞可能な弁筐体の内部に設けた弁体を不断流状態で流体管に設置するためにエンドミルにより流体管を穿設する流体管穿設方法であって、
軸回りに回転する軸部材の先端に設けたエンドミルを流体管の中心軸線に直交する方向に向かって進行させて流体管の管壁を貫通穿孔する工程と、その後エンドミルの軸を流体管の横断方向に平行移動させる送り工程を経ることで、流体管の一部に上面視略矩形状の周方向に貫通した切削溝を形成することを特徴とする流体管穿設方法。
A fluid pipe drilling method for drilling a fluid pipe by an end mill in order to install a valve body provided inside a valve housing capable of closing a flow in the fluid pipe in the fluid pipe in an uninterrupted state,
An end mill provided at the tip of a shaft member rotating about the axis is advanced in a direction perpendicular to the central axis of the fluid pipe to penetrate through the pipe wall of the fluid pipe, and then the end mill shaft is crossed over the fluid pipe. A fluid pipe drilling method comprising forming a cutting groove penetrating in a circumferential direction having a substantially rectangular shape in a top view in a part of a fluid pipe by passing through a feeding step of translating in a direction.
前記エンドミルの軸を流体管の横断方向に平行移動させる送り工程において、貫通穿孔した軸部材を一方向に平行移動させる第1のステップと、前記貫通穿孔した箇所を経て他方向に平行移動させる第2のステップと、再び該貫通穿孔した箇所まで戻るように前記一方向に平行移動させる第3のステップを経るようにしたことを特徴とする請求項1に記載の流体管穿設方法。   In the feeding step of translating the shaft of the end mill in the transverse direction of the fluid pipe, a first step of translating the shaft member drilled and drilled in one direction, and a first step of translating the shaft member in the other direction via the through drilled portion 2. The fluid pipe drilling method according to claim 1, wherein the fluid pipe drilling method includes a step of 2 and a third step of translating in one direction so as to return to the through-piercing portion again. 3. 前記エンドミルの軸を流体管の横断方向に平行移動させる送り工程において、平行移動するエンドミルの平行移動終了端における前記エンドミルの切削は、その側面刃により流体管に壁が残るようにして切削溝の端部を形成することを特徴とする請求項1または2に記載の流体管穿設方法。   In the feeding step of translating the end mill shaft in the transverse direction of the fluid pipe, the end mill is cut at the end of the parallel movement of the end mill to be moved so that a wall is left in the fluid pipe by the side edge of the cutting groove. The fluid pipe drilling method according to claim 1, wherein an end portion is formed. 前記エンドミルの軸を流体管の横断方向に平行移動させる送り工程において、エンドミルの平行移動させる範囲は、流体管の中心と前記切削溝の周方向両端部との成す角度が90°から150°の範囲となるように移動させることを特徴とする請求項1ないし3のいずれかに記載の流体管穿設方法。   In the feeding step of translating the end mill shaft in the transverse direction of the fluid pipe, the range of translation of the end mill is such that the angle formed between the center of the fluid pipe and both circumferential ends of the cutting groove is 90 ° to 150 °. 4. The fluid pipe drilling method according to claim 1, wherein the fluid pipe is moved so as to fall within a range.
JP2011280561A 2011-12-21 2011-12-21 Fluid pipe drilling method Pending JP2013130252A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280561A JP2013130252A (en) 2011-12-21 2011-12-21 Fluid pipe drilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280561A JP2013130252A (en) 2011-12-21 2011-12-21 Fluid pipe drilling method

Publications (1)

Publication Number Publication Date
JP2013130252A true JP2013130252A (en) 2013-07-04

Family

ID=48907966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280561A Pending JP2013130252A (en) 2011-12-21 2011-12-21 Fluid pipe drilling method

Country Status (1)

Country Link
JP (1) JP2013130252A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101839729B1 (en) 2017-08-30 2018-03-16 김제현 Punching device for construction of non-closing valve and construction method of valve using the same
KR101862092B1 (en) * 2017-04-14 2018-05-29 주식회사 영인 Electric drill for water supply
CN111774919A (en) * 2015-07-09 2020-10-16 伊利诺斯工具制品有限公司 Pipe fitting end machining device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111774919A (en) * 2015-07-09 2020-10-16 伊利诺斯工具制品有限公司 Pipe fitting end machining device
CN111774919B (en) * 2015-07-09 2022-03-08 伊利诺斯工具制品有限公司 Pipe fitting end machining device
KR101862092B1 (en) * 2017-04-14 2018-05-29 주식회사 영인 Electric drill for water supply
KR101839729B1 (en) 2017-08-30 2018-03-16 김제현 Punching device for construction of non-closing valve and construction method of valve using the same

Similar Documents

Publication Publication Date Title
US9638336B2 (en) Systems and methods for valve insertion and linestopping
KR102023538B1 (en) Boring machine for installing resilient seated gate valve
US6622747B2 (en) Cutting, valve insertion and corrosion-resistant works without fluid supply interruption
JP2013130252A (en) Fluid pipe drilling method
JP6556502B2 (en) Installation body mounting method
JP5813492B2 (en) Rust prevention device
JP6118881B2 (en) Mounting structure
JP5913961B2 (en) Fluid pipe drilling method
JP6396140B2 (en) Valve body mounting structure
JP5843389B2 (en) Mounting structure
JP4086838B2 (en) Existing pipe valve installation equipment
JP5944705B2 (en) Branch opening communication method
JP2019070445A (en) Valve device
JP5845074B2 (en) Valve housing installation method
JP2004286228A (en) Valve installation method for existing pipe and valve used for the method
JP2013130253A (en) Fluid pipe drilling rust preventing method and fluid pipe drilling rust preventing device
JP2013117295A (en) Method for installing valve casing
JP2013137043A (en) Fluid pipe drilling method
JP2011169426A (en) Flow control valve
JP2014084965A (en) Boring device
JP6291105B2 (en) Mounting structure
JP6896470B2 (en) How to install the butterfly valve in the flow path switchgear, and the flow path switchgear
JP7061004B2 (en) A branch path forming device used for a method for forming a hole in a fluid pipe and a method for forming a hole.
JP6896461B2 (en) How to install the butterfly valve in the flow path switchgear, and the flow path switchgear
JP2013174312A (en) Fluid branching method