JP2013129853A - Rolled copper foil for superconducting film formation - Google Patents

Rolled copper foil for superconducting film formation Download PDF

Info

Publication number
JP2013129853A
JP2013129853A JP2011257748A JP2011257748A JP2013129853A JP 2013129853 A JP2013129853 A JP 2013129853A JP 2011257748 A JP2011257748 A JP 2011257748A JP 2011257748 A JP2011257748 A JP 2011257748A JP 2013129853 A JP2013129853 A JP 2013129853A
Authority
JP
Japan
Prior art keywords
copper foil
superconducting film
rolled
heat treatment
rolled copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011257748A
Other languages
Japanese (ja)
Other versions
JP5650098B2 (en
Inventor
Kaichiro Nakamuro
嘉一郎 中室
Chihiro Izumi
千尋 泉
Takatsugu Hatano
隆紹 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011257748A priority Critical patent/JP5650098B2/en
Publication of JP2013129853A publication Critical patent/JP2013129853A/en
Application granted granted Critical
Publication of JP5650098B2 publication Critical patent/JP5650098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil which controls a shear band adjacent to the copper foil surface and has improved characteristics of a superconducting film formed on the surface itself.SOLUTION: The rolled copper foil for superconducting film formation which forms a film of a superconducting material on the surface itself is provided. In a situation before the following recrystallization heat treatment is performed, the total number of the shear band in the front and back surfaces, which reaches the copper foil surface across a line at a depth of 1/10 of the copper foil thickness in the thickness direction from the copper foil surface, as observed from a rolled parallel section is 0.1/μm or less, and crystal orientation, in which I/I≥50 (I is integrated intensity of diffraction peaks in the surface (200) obtained by X-ray diffraction on the rolling surface of the copper foil, and Iis integrated intensity of diffraction peaks in the surface (200) obtained by X-ray diffraction on fine copper powders), is exhibited by performing the recrystallization heat treatment at 700°C for 30 minutes.

Description

本発明は、自身の表面に直接又は間接的に超電導物質の膜を形成させる超電導膜形成用圧延銅箔に関する。   The present invention relates to a rolled copper foil for forming a superconducting film in which a film of a superconducting material is directly or indirectly formed on its surface.

高温超電導物質が開発されるに伴って、超電導物質を基板上に成膜して線材等に加工することが検討されている(特許文献1)。ここで、優れた高温超電導線材を得るためには、配向性の高い超電導膜を形成する必要があり、特許文献1記載の技術では、金属原子が2軸配向した基板(例えば、Cu箔)を用い、基板上に中間層(例えば、Ni膜)をエピタキシャル成長させ、さらに中間層の上に超電導膜をエピタキシャル成長させている。
また、前記配向性基板として、95%以上の高加工度で冷間圧延し、200℃以上でかつ銅の融点以下で配向加熱処理を行い、立方体集合組織を付与した銅箔を用いることが推奨されている。さらに、この配向性基板をステンレス等の支持体にクラッド接合する技術が開発されている(特許文献2)。
With the development of high-temperature superconducting materials, it has been studied to form a superconducting material on a substrate and process it into a wire or the like (Patent Document 1). Here, in order to obtain an excellent high-temperature superconducting wire, it is necessary to form a highly conductive superconducting film. In the technique described in Patent Document 1, a substrate (for example, Cu foil) in which metal atoms are biaxially oriented is used. The intermediate layer (for example, Ni film) is epitaxially grown on the substrate, and the superconducting film is epitaxially grown on the intermediate layer.
In addition, it is recommended to use a copper foil that is cold rolled at a high workability of 95% or more, subjected to orientation heat treatment at 200 ° C. or higher and below the melting point of copper, and has a cubic texture as the orientation substrate. Has been. Furthermore, a technique for clad bonding the orientation substrate to a support such as stainless steel has been developed (Patent Document 2).

特開2006-127847号公報JP 2006-127847 JP 特開2008-266686号公報JP 2008-266686 A

しかしながら、自身の表面に直接又は間接的に超電導膜を形成させるための銅箔の表面性状についての検討は、未だ十分とはいえず、超電導膜の特性(臨界電流密度等)の向上も十分でないという問題がある。例えば、立方体集合組織を付与するために高加工度の冷間圧延を施すと、銅箔の表面近傍にせん断帯が発達する。このせん断帯は超電導膜の特性を低下させることがある。
すなわち、本発明は上記の課題を解決するためになされたものであり、銅箔の表面性状を改善し、その表面に形成される超電導膜の特性が向上する超電導膜形成用圧延銅箔の提供を目的とする。
However, the investigation of the surface properties of the copper foil for forming a superconducting film directly or indirectly on its surface is not yet sufficient, and the characteristics of the superconducting film (critical current density, etc.) are not sufficiently improved. There is a problem. For example, when a high degree of cold rolling is applied to give a cubic texture, a shear band develops near the surface of the copper foil. This shear band may degrade the properties of the superconducting film.
That is, the present invention has been made to solve the above problems, and provides a rolled copper foil for forming a superconducting film that improves the surface properties of the copper foil and improves the properties of the superconducting film formed on the surface. With the goal.

本発明者らは種々検討した結果、最終冷間圧延での総加工度と、最終冷間圧延でのパスごとの加工度を調整することで、銅箔表面近傍のせん断帯を抑制し、その表面に形成される超電導膜の特性が向上することを見出した。
上記の目的を達成するために、本発明の超電導膜形成用圧延銅箔は、自身の表面に超電導物質の膜を形成させる超電導膜形成用圧延銅箔であって、以下の再結晶熱処理を施す前の状態において、圧延平行断面から見て、銅箔表面から厚み方向に銅箔厚みの1/10の深さの線を横切って該表面に到達するせん断帯が表裏面の合計値で0.1本/μm以下であり、700℃で30分間の再結晶熱処理を施すことによりI/I≧50(I:銅箔の圧延面のX線回折で求めた(200)面の回折ピーク積分強度、I:微粉末銅のX線回折で求めた(200)面の回折ピーク積分強度)なる結晶方位が発現する。
As a result of various studies, the present inventors have suppressed the shear band near the copper foil surface by adjusting the total workability in the final cold rolling and the workability for each pass in the final cold rolling, It has been found that the properties of the superconducting film formed on the surface are improved.
In order to achieve the above object, the rolled copper foil for forming a superconducting film of the present invention is a rolled copper foil for forming a superconducting material on its surface, and is subjected to the following recrystallization heat treatment. In the previous state, when viewed from the rolling parallel cross section, the total thickness of the front and back surfaces is 0.1 shear bands that reach the surface across the thickness of 1/10 of the copper foil thickness in the thickness direction from the copper foil surface. I / I 0 ≧ 50 (I: (200) plane diffraction peak integrated intensity determined by X-ray diffraction of the rolled surface of the copper foil, by performing recrystallization heat treatment at 700 ° C. for 30 minutes, A crystal orientation expressed as I 0 : (200) plane diffraction peak integrated intensity obtained by X-ray diffraction of fine powder copper appears.

前記せん断帯が表裏面の合計値で0.05本/μm以下であることが好ましい。
本発明の超電導膜形成用圧延銅箔は鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延を行って製造され、当該最終冷間圧延の総加工度が90.0〜99.5%以下であることが好ましい。
前記最終冷間圧延において、最終5パスの中で前のパスより加工度が高いパスが存在し、当該5パス中のいずれかのパスの最大加工度が40%以上であり、かつ最終パスでの加工度が前記5パス中で最小となることが好ましい。
It is preferable that the shear band is 0.05 or less per μm in total on the front and back surfaces.
The rolled copper foil for forming a superconducting film of the present invention is manufactured by repeating cold rolling and annealing after hot rolling an ingot, and finally performing final cold rolling, and the total workability of the final cold rolling is It is preferably 90.0 to 99.5% or less.
In the final cold rolling, there is a pass having a higher workability than the previous pass in the final 5 passes, and the maximum workability of any of the 5 passes is 40% or more, and in the final pass It is preferable that the degree of processing becomes the minimum in the five passes.

本発明によれば、銅箔表面近傍のせん断帯を抑制し、銅箔の表面性状を改善し、その表面に形成される超電導膜の特性が向上する超電導膜形成用圧延銅箔が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the rolled copper foil for superconducting film formation which suppresses the shear band of copper foil surface vicinity, improves the surface property of copper foil, and the characteristic of the superconducting film formed in the surface improves is obtained.

超電導膜形成用圧延銅箔を支持体に積層してなる超電導膜形成用配向板、及び超電導膜形成用配向板の表面に超電導膜を形成してなる超電導材を示す図である。It is a figure which shows the superconducting material formed by forming the superconducting film on the surface of the orientation board for superconducting film formation formed by laminating | stacking the rolled copper foil for superconducting film formation on a support body, and the orientation plate for superconducting film formation. せん断帯の本数を測定する方法を示す図である。It is a figure which shows the method of measuring the number of shear bands. 圧延平行方向の断面から見たときの組織のSEM像を示す図である。It is a figure which shows the SEM image of a structure | tissue when it sees from the cross section of a rolling parallel direction.

以下、本発明の実施形態に係る超電導膜形成用圧延銅箔について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。   Hereinafter, the rolled copper foil for superconducting film formation which concerns on embodiment of this invention is demonstrated. In the present invention, “%” means “% by mass” unless otherwise specified.

図1は、本発明の実施形態に係る超電導膜形成用圧延銅箔4を支持体2に積層してなる超電導膜形成用配向板10、及び超電導膜形成用配向板10の表面(超電導膜形成用圧延銅箔4側の面)に超電導膜8を形成してなる超電導材100を示す。
支持体2は、超電導膜形成用配向板10の強度を確保するためのものであり、非磁性金属材料(例えば、ステンレス鋼、ニッケル合金)が好ましい。
銅箔4には、再結晶(配向化)熱処理(以下、適宜「熱処理」ともいう)が施され、その際に銅箔4の立方体方位が発達する。この再結晶(配向化)熱処理の温度は、200℃以上、かつ純銅の融点以下とすることが好ましい。200℃ 未満の熱処理では、十分な配向組織が得られない場合がある。また、熱処理は好ましくは800℃ 以下である。より好ましい熱処理温度は、300〜700℃ である。また、熱処理時間は、1〜30分とするのが好ましい。熱処理温度が700℃より高い、又は熱処理時間が30分より長い場合には、結晶粒界のグルーヴ(溝)が深くなることがあり、配向処理後にこれを除去するための研磨を要することがある。この銅箔4の熱処理は、銅箔4を支持体2に積層する前に行っても良いし、銅箔4を支持体2に積層した後に行っても良い。
圧延銅箔4を支持体2に積層する方法としては、両者の接合面を乾式エッチングによって清浄化した後、両者を無加圧又は加圧して積層し、表面の原子間力によって接合する「表面活性化接合」を用いることができる(特許文献2参照)。
FIG. 1 shows a superconducting film forming orientation plate 10 formed by laminating a rolled copper foil 4 for forming a superconducting film according to an embodiment of the present invention on a support 2, and a surface of the superconducting film forming orientation plate 10 (superconducting film formation). A superconducting material 100 formed by forming a superconducting film 8 on the rolled copper foil 4 side) is shown.
The support 2 is for ensuring the strength of the superconducting film-forming alignment plate 10 and is preferably a nonmagnetic metal material (for example, stainless steel or nickel alloy).
The copper foil 4 is subjected to recrystallization (orientation) heat treatment (hereinafter also referred to as “heat treatment” as appropriate), and the cubic orientation of the copper foil 4 develops at that time. The temperature of this recrystallization (orientation) heat treatment is preferably 200 ° C. or higher and not higher than the melting point of pure copper. A heat treatment at a temperature lower than 200 ° C. may not provide a sufficiently oriented structure. The heat treatment is preferably 800 ° C. or lower. A more preferable heat treatment temperature is 300 to 700 ° C. The heat treatment time is preferably 1 to 30 minutes. When the heat treatment temperature is higher than 700 ° C. or the heat treatment time is longer than 30 minutes, the groove (groove) of the crystal grain boundary may become deep, and polishing for removing this may be required after the orientation treatment. . The heat treatment of the copper foil 4 may be performed before the copper foil 4 is laminated on the support 2 or after the copper foil 4 is laminated on the support 2.
As a method of laminating the rolled copper foil 4 on the support 2, both surfaces are cleaned by dry etching, then both are laminated with no pressure or pressure, and the surfaces are joined by atomic force on the surface. "Activated bonding" can be used (see Patent Document 2).

超電導膜8を構成する超電導物質とは、その物質が特定の温度(臨界温度)以下に冷やされた時に電気抵抗が0になる物質をいう。特に、実用上の観点から、臨界温度が液体窒素の沸点(-196℃)以上である高温超電導物質が好ましい。高温超電導物質としては、例えば、イットリウム系超電導体(YBCO、Y123)、希土類元素系酸化物超電導体(R123)、銅酸化物高温超電導体が挙げられるがこれらに限定されない。
なお、図1の例では、超電導膜形成用圧延銅箔4の表面に、Niめっき層等からなるバリア層6が形成されている。これは、超電導膜形成用圧延銅箔4の表面に超電導膜8を直接形成すると、成膜時に超電導膜8の成分(酸化物等)が銅箔4側へ拡散して酸化銅を形成したり、成膜時の高温によって銅箔4が酸化し易いからである。従って、超電導膜形成用圧延銅箔4の表面にバリア層6を形成することが好ましい。バリア層6としては、ニッケル又はニッケル合金が好適に用いられる。
又、図1の例では、支持体2の片面に超電導膜形成用圧延銅箔4を形成しているが、支持体2の両面にそれぞれ超電導膜形成用圧延銅箔4を形成してもよい。
The superconducting substance constituting the superconducting film 8 is a substance that has an electric resistance of 0 when the substance is cooled below a specific temperature (critical temperature). In particular, from the viewpoint of practical use, a high-temperature superconducting material having a critical temperature equal to or higher than the boiling point (−196 ° C.) of liquid nitrogen is preferable. Examples of the high-temperature superconducting material include, but are not limited to, an yttrium-based superconductor (YBCO, Y123), a rare earth element-based oxide superconductor (R123), and a copper oxide high-temperature superconductor.
In the example of FIG. 1, a barrier layer 6 made of a Ni plating layer or the like is formed on the surface of the rolled copper foil 4 for forming a superconducting film. This is because when the superconducting film 8 is directly formed on the surface of the rolled copper foil 4 for forming a superconducting film, components (oxides, etc.) of the superconducting film 8 are diffused to the copper foil 4 side during the film formation to form copper oxide. This is because the copper foil 4 is easily oxidized by the high temperature during film formation. Therefore, it is preferable to form the barrier layer 6 on the surface of the rolled copper foil 4 for forming a superconducting film. As the barrier layer 6, nickel or a nickel alloy is preferably used.
In the example of FIG. 1, the rolled copper foil 4 for forming a superconducting film is formed on one side of the support 2, but the rolled copper foil 4 for forming a superconducting film may be formed on both sides of the supporting body 2. .

<組成>
超電導膜形成用圧延銅箔の成分組成としては、JIS−H3100(C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(C1020)無酸素銅(OFC)を好適に用いることができる。
又、上記したタフピッチ銅又は無酸素銅に対し、添加元素としてAg、Sn、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、及びVからなる群から選ばれる一種以上を合計で20〜1500質量ppm含有してもよい。例えば、上記したタフピッチ銅又は無酸素銅に対し、添加元素としてSnを10〜500質量ppm、及び/又はAgを10〜500質量ppm含有することができる。
上記元素の合計含有量が20質量ppm未満であると、軟化温度が低く、常温での保管性が低下する場合がある。
なお、圧延銅箔の厚みは100μm以下が好ましく、更には50μm以下が好ましく、20μm以下がより好ましい。また、圧延銅箔の厚みの下限は特には限定されないが、製造性等を考慮すると、圧延銅箔の厚みは4μm以上が好ましく、5μm以上がより好ましく、6μm以上が更に好ましい。
<Composition>
As the component composition of the rolled copper foil for forming a superconducting film, tough pitch copper (TPC) or JIS-H3100 (C1020) oxygen-free copper (OFC) standardized to JIS-H3100 (C1100) can be suitably used.
Further, the additive element is selected from the group consisting of Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, and V as an additive element with respect to the above-described tough pitch copper or oxygen-free copper. You may contain 20-1500 mass ppm in total of 1 or more types. For example, 10 to 500 mass ppm of Sn and / or 10 to 500 mass ppm of Ag can be contained as an additive element with respect to the above-described tough pitch copper or oxygen-free copper.
When the total content of the above elements is less than 20 ppm by mass, the softening temperature is low, and the storability at normal temperature may be deteriorated.
The thickness of the rolled copper foil is preferably 100 μm or less, more preferably 50 μm or less, and more preferably 20 μm or less. Further, the lower limit of the thickness of the rolled copper foil is not particularly limited, but considering the manufacturability and the like, the thickness of the rolled copper foil is preferably 4 μm or more, more preferably 5 μm or more, and further preferably 6 μm or more.

<銅箔の結晶方位>
超導電膜の基板として用いられる銅箔には、再結晶熱処理後に、立方体方位が発達することが求められる。立方体方位の評価方法として、圧延面のX線回折で求めた(200)面の強度(I)の微粉末銅のX線回折で求めた(200)面の強度(I0)に対する比(I/I0)を測定する方法がある。本発明者らの検討によると、例えば特許文献2等で開示されている高加工度の冷間圧延で製造された銅箔では、再結晶熱処理後に50以上の高いI/I0値が発現する
I/I0値が50未満になると、超電導膜の特性が著しく低下する。そこで、I/I0値を50以上に規定する。I/I0値は好ましくは60以上、さらに好ましくは80以上である。
一方、I/I0値の上限値については、超電導膜の特性の点からは規制されず、一般的には高ければ高いほど良いが、後述する工程で製造した本発明の銅箔ではI/I0値が200を超えることはない。
<Crystal orientation of copper foil>
A copper foil used as a substrate for a superconductive film is required to develop a cubic orientation after recrystallization heat treatment. As an evaluation method of the cube orientation, the ratio (I 0 ) of the strength (I) of the (200) plane obtained by X-ray diffraction of the rolled surface to the strength (I 0 ) of the (200) plane obtained by X-ray diffraction of fine powder copper / I 0 ) is measured. According to the study by the present inventors, for example, a copper foil manufactured by cold rolling with a high workability disclosed in Patent Document 2 and the like exhibits a high I / I 0 value of 50 or more after the recrystallization heat treatment. When the I / I 0 value is less than 50, the characteristics of the superconducting film are remarkably deteriorated. Therefore, the I / I 0 value is defined to be 50 or more. The I / I 0 value is preferably 60 or more, more preferably 80 or more.
On the other hand, the upper limit value of the I / I 0 value is not restricted in terms of the characteristics of the superconducting film, and is generally better as it is higher. However, in the copper foil of the present invention manufactured in the process described later, The I 0 value never exceeds 200.

前述したように、上記再結晶熱処理は、超電導膜形成用配向板の製造プロセスにおいて、銅箔を立方体方位に配向させるために行なわれるものであり、熱処理温度は200℃〜純銅の融点の範囲が好ましく、より好ましくは800℃ 以下、さらに好ましくは300〜700℃ である。また、熱処理時間は、1〜30分とするのが好ましい。銅箔が十分に再結晶すれば、熱処理の温度または時間が上記範囲で多少変化しても、I/I0値に及ぼす影響は無視できる程度である。 As described above, the recrystallization heat treatment is performed in order to orient the copper foil in the cubic orientation in the manufacturing process of the orientation plate for forming a superconducting film, and the heat treatment temperature ranges from 200 ° C. to the melting point of pure copper. More preferably, it is 800 degrees C or less, More preferably, it is 300-700 degreeC. The heat treatment time is preferably 1 to 30 minutes. If the copper foil is sufficiently recrystallized, the effect on the I / I 0 value is negligible even if the temperature or time of the heat treatment changes somewhat within the above range.

<せん断帯>
金属材料は圧延加工されるとすべり変形を起こすが、高加工度で変形すると塑性不安定による不均一変形がおこり、せん断帯が発生する。せん断帯とは、圧延板面に対して30〜60度傾いた、薄い面状の組織を言う(例えば「鉄と鋼」第70年(1984)第15号P.18)。せん断帯は周囲の母相とほぼ類似の結晶方位を持っているが、密なセル組織を持っており、再結晶核生成が起こりやすい。そのため、せん断帯が発達した材料ではせん断帯部と母相とで再結晶が不均一に起こり、その結果として再結晶集合組織の発達が妨げられる。
上記再結晶熱処理前の状態において、圧延平行断面から見て、銅箔表面から厚み方向に銅箔厚みの1/10の深さの線を横切って該表面に到達するせん断帯本数を表裏面の合計値で0.1本/μm以下に調整すると、銅箔表面に形成される超電導膜の特性(例えば、臨界電流密度Jc)が向上する。せん断帯本数をこのように規定すると、その後の再結晶熱処理により再結晶が均一に起こり、銅箔表面に超電導膜がエピタキシャル成長し易くなる結果、超電導膜の特性が向上すると考えられる。なお、上記再結晶熱処理後は、せん断帯本数は減少(又は消失)する。せん断帯本数は後述するように最終冷間圧延の条件を調整することで制御できる。
ここで、銅箔厚み中央を横切るせん断帯の本数が少なくても、表面近傍にせん断帯が発達すると超電導膜の特性が低下する。そこで、本発明では、銅箔表面近傍のせん断帯を評価するために、銅箔表面から厚み方向に銅箔厚みの1/10の深さの線を横切って表面に達するものをせん断帯とみなす。
<Shear band>
Metallic materials cause slip deformation when rolled, but when deformed at a high workability, nonuniform deformation due to plastic instability occurs and shear bands occur. The shear band refers to a thin planar structure inclined at 30 to 60 degrees with respect to the surface of the rolled sheet (for example, “Iron and Steel” 70th year (1984) No. 15, p. 18). The shear band has a crystal orientation almost similar to that of the surrounding matrix, but has a dense cell structure and recrystallization nucleation is likely to occur. Therefore, in a material with a developed shear band, recrystallization occurs unevenly between the shear band and the matrix, and as a result, the development of the recrystallized texture is hindered.
In the state before the recrystallization heat treatment, the number of shear bands reaching the surface across the line of the depth of 1/10 of the copper foil thickness in the thickness direction from the copper foil surface in the thickness direction as seen from the rolled parallel cross section When the total value is adjusted to 0.1 / μm or less, the characteristics (for example, critical current density Jc) of the superconducting film formed on the copper foil surface are improved. When the number of shear bands is defined in this way, it is considered that recrystallization occurs uniformly by subsequent recrystallization heat treatment, and the superconducting film is easily epitaxially grown on the surface of the copper foil. As a result, the characteristics of the superconducting film are improved. Note that the number of shear bands decreases (or disappears) after the recrystallization heat treatment. The number of shear bands can be controlled by adjusting the conditions of final cold rolling as will be described later.
Here, even if the number of shear bands crossing the center of the copper foil thickness is small, the characteristics of the superconducting film deteriorate when the shear bands develop near the surface. Therefore, in the present invention, in order to evaluate the shear band in the vicinity of the copper foil surface, what reaches the surface across a line having a depth of 1/10 of the copper foil thickness in the thickness direction from the copper foil surface is regarded as a shear band. .

なお、せん断帯を0.1本/μm以下に少なくすることで、超電導膜の特性(例えば、臨界電流密度Jc)が向上する理由は明確ではないが、例えば、超電導膜としてYBCOを成膜する場合、YBCO膜のc軸配向結晶粒の核発生が促進されると臨界電流密度が向上し、a軸配向結晶粒が多く発生すると臨界電流密度が向上しないので、銅箔の表面性状によって超電導膜の特定の方位に配向した結晶粒が増えるものと考えられる。   The reason why the characteristics of the superconducting film (for example, the critical current density Jc) is improved by reducing the shear band to 0.1 pieces / μm or less is not clear, but for example, when forming YBCO as the superconducting film, The critical current density is improved when nucleation of c-axis oriented grains in the YBCO film is promoted, and the critical current density is not improved when a large number of a-axis oriented grains are generated. Therefore, the superconducting film can be identified by the surface properties of the copper foil. It is thought that the number of crystal grains oriented in the orientation increases.

<せん断帯の特定>
せん断帯は、強加工による塑性不安定によって圧延面と30〜60度傾いた面上でせん断変形が集中的に起こって形成される組織が観察面に現れたものである。したがって、せん断帯は圧延組織の不連続面として観察される。せん断帯部の結晶方位は母相と差がないために、結晶方位測定でせん断帯を規定することはできない。一方、せん断帯は深さ方向に広がっているため、材料の断面を観察して特定することができる。従って、最終圧延後の銅箔の圧延平行方向の断面を観察したとき、圧延面と30〜60度傾いた圧延組織の不連続部分をせん断帯とする。具体的には、上記断面の顕微鏡(金属顕微鏡、走査型電子顕微鏡(SEM)、走査イオン顕微鏡(SIM)等)の像を得て、圧延面と30〜60度傾いた線を画像解析や目視によりせん断帯と判定することができる。銅箔の断面加工はFIBやCPで行うのが好ましいが、機械研磨等の方法を用いても良い。
図3は、圧延平行方向の断面から見たときの組織のSEM像を示す。この図において、符号Shで表した2つの矢印を結ぶ線がせん断帯である。又、白色の矢印は、線Cに到達しないせん断帯である。
<Identification of shear band>
In the shear band, a structure formed by intensive shear deformation on the rolling surface and a surface inclined by 30 to 60 degrees due to plastic instability due to strong processing appears on the observation surface. Therefore, the shear band is observed as a discontinuous surface of the rolled structure. Since the crystal orientation of the shear band portion is not different from the parent phase, the shear band cannot be defined by crystal orientation measurement. On the other hand, since the shear band extends in the depth direction, it can be specified by observing the cross section of the material. Therefore, when the cross section in the rolling parallel direction of the copper foil after the final rolling is observed, a discontinuous portion of the rolled structure inclined by 30 to 60 degrees is defined as a shear band. Specifically, an image of the above-mentioned cross-section microscope (metal microscope, scanning electron microscope (SEM), scanning ion microscope (SIM), etc.) is obtained, and a line inclined by 30 to 60 degrees is subjected to image analysis or visual observation. It can be determined as a shear band. The cross-section processing of the copper foil is preferably performed by FIB or CP, but a method such as mechanical polishing may be used.
FIG. 3 shows an SEM image of the structure as viewed from the cross section in the rolling parallel direction. In this figure, a line connecting two arrows represented by symbol Sh is a shear band. The white arrow is a shear band that does not reach the line C.

<せん断帯の測定>
せん断帯の測定は、図2に示すように、再結晶(配向化)熱処理前の銅箔の圧延平行方向RDの断面Rを研磨し、RD方向の幅W=200μm以上とし、銅箔の厚みtを高さとする観察視野Vを決め、走査型電子顕微鏡(SEM)の像を得る。そして、銅箔表面から厚み方向に銅箔厚みの1/10の深さの線Cを横切って銅箔表面に到達するせん断帯Shの本数を、視野幅Wで除したものをせん断帯の本数(本/μm)とする。又、銅箔の表裏の面からそれぞれ線Cを引くことができるので、せん断帯の本数は、銅箔の表裏につきそれぞれ測定した値の合計値とする。
なお、有意なせん断帯Shは、その一端が銅箔表面に至り、他端が線Cと交差する線であり、これ以外のせん断帯(銅箔表面に到達しないか、又は線Cと交差しないせん断帯)は、再結晶集合組織発達、及び超電導膜の特性への影響が小さいため、本発明ではせん断帯としてカウントしない。
<Measurement of shear band>
As shown in FIG. 2, the shear band is measured by polishing the cross-section R in the rolling parallel direction RD of the copper foil before the recrystallization (orientation) heat treatment so that the width W in the RD direction is 200 μm or more and the thickness of the copper foil. An observation visual field V having a height t is determined, and an image of a scanning electron microscope (SEM) is obtained. And the number of shear bands obtained by dividing the number of shear bands Sh reaching the copper foil surface across the line C having a depth of 1/10 of the copper foil thickness in the thickness direction from the copper foil surface by the visual field width W (Books / μm). Further, since the lines C can be drawn from the front and back surfaces of the copper foil, the number of shear bands is the sum of the values measured for the front and back surfaces of the copper foil.
The significant shear band Sh is a line whose one end reaches the copper foil surface and the other end intersects the line C, and other shear bands (not reaching the copper foil surface or intersecting the line C). The shear band is not counted as a shear band in the present invention because it has a small effect on the recrystallization texture development and the properties of the superconducting film.

次に、本発明の超電導膜形成用圧延銅箔の製造方法の一例について説明する。まず、銅及び必要な合金元素、さらに不可避不純物からなる鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延で所定厚みに仕上げる。
最終冷間圧延では、材料を繰り返し圧延機に通板(パス)することで所定の厚みに仕上げる。本発明の圧延銅箔の製造では、少なくても5パス以上の通板が繰り返される。この最終冷間圧延において、総加工度および各パスの加工度を下記のように調整することにより、せん断帯を0.1本/μm以下に調整できる。ここで、総加工度Rは、最終冷間圧延における板厚減少率であり、R=(T0−T)/T0(T0:最終冷間圧延前の厚み、T:最終冷間圧延後の厚み)で与えられる。また、1パスあたりの加工度rとは、圧延ロールを1回通過したときの板厚減少率であり、r=(t0−t)/t0(t0:圧延ロール通過前の厚み、t:圧延ロール通過後の厚み)で与えられる。
Next, an example of the manufacturing method of the rolled copper foil for superconducting film formation of this invention is demonstrated. First, an ingot made of copper, necessary alloy elements, and inevitable impurities is hot-rolled, and then cold-rolling and annealing are repeated, and finally, it is finished to a predetermined thickness by final cold-rolling.
In the final cold rolling, the material is finished to a predetermined thickness by repeatedly passing (passing) the material through a rolling mill. In the production of the rolled copper foil of the present invention, at least 5 passes are repeated. In this final cold rolling, the shear band can be adjusted to 0.1 or less per μm by adjusting the total workability and the workability of each pass as follows. Here, the total workability R is a sheet thickness reduction rate in the final cold rolling, and R = (T 0 −T) / T 0 (T 0 : thickness before final cold rolling, T: final cold rolling) Later thickness). Further, the processing degree r per pass is a sheet thickness reduction rate when the rolling roll passes once, and r = (t 0 -t) / t 0 (t 0 : thickness before passing the rolling roll, t: thickness after passing through the rolling roll).

最終冷間圧延の総加工度は99.5%以下とすることが好ましく、より好ましくは99.0%以下であり、さらに好ましくは98.0%以下である。総加工度を低くすることで、せん断帯の発達を抑制できる。また、最終圧延での総加工度は90%以上とすることが好ましい、総加工度が90%未満になると再結晶熱処理後の(200)面のI/I0値が50未満になることがある。総加工度がより好ましくは93%以上、さらに好ましくは95%以上である。
上記総加工度の上限の規定に加え、最終冷間圧延の各パスの加工度につき、最終5パス(最終パス前4パスから最終パスまでの5つのパスのことを意味する)の中で前のパスより加工度が高いパスが存在し、当該5パス中の最終パスを除くいずれかのパスの最大加工度が40%以上であり、かつ最終パスでの加工度が前記5パス中で最小となるように設定することで、せん断帯を0.1本/μm以下とすることができる。
最終5パスの中で前のパスより加工度が高いパスが存在し、かつ最終パスを除くいずれかのパスの最大加工度を40%以上とすることで、厚み方向に均一に銅箔を変形させて局部的な変形を抑制し、せん断帯の発達を防止することができる。又、圧延中の材料表面とワークロールとの摩擦によって材料表面にせん断変形組織が発達することから、最終パスを低い加工度で圧延することで、材料表面にせん断加工層ができるのを抑制することができる。ただし、材料が厚い段階で高い加工度をかけると、材料厚み方向に均一に変形せず、材料表面近傍にせん断帯ができやすいため、最大加工度となるパスは最終パスの2〜4パス前が好ましい。
The total degree of work in the final cold rolling is preferably 99.5% or less, more preferably 99.0% or less, and even more preferably 98.0% or less. By reducing the total degree of processing, the development of shear bands can be suppressed. The total workability in the final rolling is preferably 90% or more. When the total workability is less than 90%, the I / I 0 value of the (200) plane after recrystallization heat treatment may be less than 50. is there. The total degree of processing is more preferably 93% or more, and still more preferably 95% or more.
In addition to the above-mentioned upper limit of total workability, the workability of each pass of final cold rolling is the last of the last 5 passes (meaning 5 passes from the 4th pass before the final pass to the final pass). There is a path with a higher degree of machining than the first path, the maximum degree of machining of any of the five paths except the final path is 40% or more, and the degree of machining in the final path is the smallest of the five paths By setting so as to be, the shear band can be 0.1 or less per μm.
In the final 5 passes, there is a pass with a higher processing degree than the previous pass, and the maximum processing degree of any pass excluding the final pass is set to 40% or more, so that the copper foil is uniformly deformed in the thickness direction Thus, local deformation can be suppressed and the development of the shear band can be prevented. In addition, since a shear deformation structure develops on the material surface due to the friction between the material surface and the work roll during rolling, the formation of a shearing layer on the material surface is suppressed by rolling the final pass at a low workability. be able to. However, if a high degree of processing is applied when the material is thick, it does not deform uniformly in the material thickness direction, and a shear band is likely to be formed near the surface of the material, so the maximum processing degree is 2-4 passes before the final pass. Is preferred.

JIS−H3100(合金番号C1100)に規格するタフピッチ銅(TPC)又はJIS−H3100(合金番号C1020)無酸素銅(OFC)に対し、表1に記載の元素を添加してインゴットを鋳造した。作製したインゴットを800℃以上で厚さ10mmまで熱間圧延を行い、表面の酸化スケールを面削した後、冷間圧延と焼鈍とを繰り返した後、さらに最終冷間圧延で厚み0.006〜0.1mm(表1参照)に仕上げた。
最終冷間圧延は10〜15パスで行い、最終冷間圧延の総加工度を表1に示す値とした。又、最終冷間圧延の最終5パス(最終パスの4パス前から最終パスまで)の各加工度を表1に示す値とした。
Ingots were cast by adding the elements shown in Table 1 to tough pitch copper (TPC) standardized to JIS-H3100 (alloy number C1100) or JIS-H3100 (alloy number C1020) oxygen-free copper (OFC). The produced ingot is hot-rolled at a temperature of 800 ° C. or more to a thickness of 10 mm, and after chamfering the oxide scale on the surface, after cold rolling and annealing are repeated, the thickness is further 0.006 to 0.1 mm in the final cold rolling. (See Table 1).
The final cold rolling was performed in 10 to 15 passes, and the total degree of work of the final cold rolling was set to the values shown in Table 1. In addition, the degree of processing in the final 5 passes of the final cold rolling (from 4 passes before the final pass to the final pass) was set to the values shown in Table 1.

このようにして得られた各銅箔試料について、諸特性の評価を行った。
(1)(200)面のI/I0
再結晶(配向化)熱処理を模して、試料を700℃で30分間加熱した後、圧延面のX線回折で求めた(200)面強度の積分値(I)を求めた。この値を、あらかじめ測定しておいた微粉末銅(関東化学株式会社製、325mech、>99.5%銅粉末)の(200)面強度の積分値(I)で割り、I/I値を計算した。測定装置にはRINT2500(株式会社リガク製)を用い、X線源にはCoを用いた。
Various characteristics of each copper foil sample thus obtained were evaluated.
(1) I / I 0 value of (200) plane Simulating recrystallization (orientation) heat treatment, the sample was heated at 700 ° C. for 30 minutes, and then determined by X-ray diffraction of the rolled surface (200) plane strength The integral value (I) of was obtained. This value is divided by the integral value (I 0 ) of the (200) plane strength of finely powdered copper (manufactured by Kanto Chemical Co., Inc., 325 mech,> 99.5% copper powder), and I / I 0 The value was calculated. RINT2500 (manufactured by Rigaku Corporation) was used as the measurement apparatus, and Co was used as the X-ray source.

(2)せん断帯の本数(頻度)
図2に示すように、再結晶(配向化)熱処理前の試料の圧延平行RDの断面Rを研磨(機械研磨またはCP(クロスセクションポリッシャー法)し、RD方向の幅W=200μm以上とし、銅箔の厚みtを高さとする観察視野Vを決め、走査型電子顕微鏡(SEM)の像を得た。そして、図2の線Cを横切って、銅箔表面に到達するせん断帯Shの本数を、視野幅Wで除したものをせん断帯の本数(本/μm)として目視で数えた。
なお、銅箔の表裏の面からそれぞれ線Cを引き、銅箔の表裏につきそれぞれせん断帯の本数を測定し、{(表面のせん断帯の本数)+(裏面のせん断帯の本数)}÷視野幅Wにより、せん断帯の本数を求めた。
(2) Number of shear bands (frequency)
As shown in FIG. 2, the cross section R of the rolling parallel RD of the sample before the recrystallization (orientation) heat treatment is polished (mechanical polishing or CP (cross section polisher method) to obtain a width W = 200 μm or more in the RD direction, and copper An observation field of view V having a height t of the foil was determined, and an image of a scanning electron microscope (SEM) was obtained, and the number of shear bands Sh reaching the copper foil surface across the line C in FIG. The number divided by the visual field width W was visually counted as the number of shear bands (lines / μm).
In addition, draw lines C from the front and back surfaces of the copper foil, and measure the number of shear bands on the front and back surfaces of the copper foil, respectively, {(number of shear bands on the front surface) + (number of shear bands on the back surface)} / field of view. The number of shear bands was determined from the width W.

(3)超電導膜の特性(臨界電流密度Jc)
再結晶(配向化)熱処理として、得られた各銅箔を95%窒素と5%水素からなる雰囲気中で700℃で30分間加熱した。次に、加熱後の銅箔と支持体(SUS316のステンレス鋼、厚み0.1mm)とを、所定の真空装置内に設置し、各接合面にアルゴンイオンビームエッチングを施して清浄化した。その後、真空装置内で銅箔と支持体を積層して加圧し、超電導膜形成用配向板を得た。
(3) Characteristics of superconducting film (critical current density Jc)
As a recrystallization (orientation) heat treatment, each obtained copper foil was heated at 700 ° C. for 30 minutes in an atmosphere consisting of 95% nitrogen and 5% hydrogen. Next, the heated copper foil and the support (SUS316 stainless steel, thickness 0.1 mm) were placed in a predetermined vacuum apparatus, and each joint surface was cleaned by argon ion beam etching. Thereafter, the copper foil and the support were laminated and pressed in a vacuum apparatus to obtain a superconducting film forming alignment plate.

この超電導膜形成用配向板の銅箔面に、バリア層としてNiめっき層を2μm電気めっきし、バリア層上にTFA-MOD(Metal Organic Deposition using Tri Fluoro Acetates)法により、YBCO膜からなる超電導膜を形成した。そして、77K、自己磁界中で直流4端子法により、1μV/cmの電圧基準で臨界電流密度Jcを測定した。
なお、Jcが100000A/cm2を超える場合を◎、10000A/cm2を超えて100000 A/cm2以下の場合を○、100 A/cm2を超えて10000 A/cm2以下の場合を△、100 A/cm2以下の場合を×として表した。
A superconducting film comprising a YBCO film is formed by electroplating a 2 μm Ni plating layer as a barrier layer on the copper foil surface of this orientation plate for forming a superconducting film, and by TFA-MOD (Metal Organic Deposition using Tri Fluoro Acetates) method on the barrier layer. Formed. Then, the critical current density Jc was measured with a voltage reference of 1 μV / cm by a direct current four-terminal method in a self-magnetic field at 77K.
In addition, a case in which Jc is more than 100000A / cm 2 ◎, 10000A / cm 2 Beyond ○ the case of 100000 A / cm 2 or less, 100 more than the A / cm 2 10000 A / cm 2 or less of the case △ The case of 100 A / cm 2 or less was expressed as x.

表1、表2から明らかなように、各実施例の場合、再結晶(配向化)熱処理前に、圧延平行断面から見て、線Cを横切って表面に到達するせん断帯が0.1本/μm以下であり、かつ再結晶(配向化)熱処理後の立方体集合組織の配向度I/I0が50以上であり、超電導膜の特性(臨界電流密度)が向上した。特に、再結晶(配向化)熱処理前に、線Cを横切って表面に到達するせん断帯が0.05本/μm以下である実施例1〜3、5、7〜9、11、12、15〜17の場合、他の実施例に比べて超電導膜の特性(臨界電流密度)がさらに向上した。このことより、線Cを横切って表面に到達するせん断帯が0.05本/μm以下であることがより好ましい。 As is clear from Tables 1 and 2, in each example, the shear band reaching the surface across the line C as viewed from the rolling parallel section before the recrystallization (orientation) heat treatment was 0.1 / μm. The degree of orientation I / I 0 of the cube texture after the recrystallization (orientation) heat treatment was 50 or more, and the characteristics (critical current density) of the superconducting film were improved. In particular, before recrystallization (orientation) heat treatment, Examples 1 to 3, 5, 7 to 9, 11, 12, 15 to 17 have a shear band of 0.05 / μm or less across the line C and reaching the surface. In this case, the characteristics (critical current density) of the superconducting film were further improved as compared with other examples. From this, it is more preferable that the number of shear bands crossing the line C and reaching the surface is 0.05 / μm or less.

一方、最終冷間圧延において、最終5パスのいずれのパスの加工度も40%未満であった比較例1、最終パスの加工度が5パス中で最小とならなかった比較例2、3、最終5パスの中で前のパスより加工度が高いパスが存在しない(つまり、最終パスに向かって加工度が単調減少する)比較例4、総加工度が99.5%を超えた比較例6の場合、及び最終パスの加工度が5パス中で最小とならずかつ総加工度が99.5%を超えた比較例5の場合、再結晶(配向化)熱処理前において線Cを横切るせん断帯が表裏面の合計値で0.1本/μmを超えた。これらの比較例では、再結晶熱処理後の立方体集合組織の(200)面のI/Iが50以上であったものの、超電導膜の特性(臨界電流密度)が劣った。これは、再結晶熱処理の際に再結晶が不均一に起こり、銅箔表面に超電導膜がエピタキシャル成長し難くなったためと考えられる。 On the other hand, in the final cold rolling, Comparative Example 1 in which the degree of processing in any of the final five passes was less than 40%, Comparative Examples 2, 3, in which the degree of processing in the final pass was not minimized in the five passes. In the final 5 passes, there is no pass having a higher processing degree than the previous pass (that is, the processing degree monotonously decreases toward the final pass) of Comparative Example 4 and Comparative Example 6 in which the total processing degree exceeds 99.5% In the case of Comparative Example 5 in which the degree of work in the final pass is not minimum in 5 passes and the total degree of work exceeds 99.5%, a shear band crossing line C appears before the recrystallization (orientation) heat treatment. The total value on the back surface exceeded 0.1 / μm. In these comparative examples, although the I / I 0 of the (200) plane of the cubic texture after the recrystallization heat treatment was 50 or more, the characteristics (critical current density) of the superconducting film were inferior. This is presumably because recrystallization occurred unevenly during the recrystallization heat treatment, and the superconducting film became difficult to epitaxially grow on the copper foil surface.

また、最終冷間圧延の総加工度が90.0%未満であった比較例7の場合、I/Iが50未満となり、超電導膜の特性(臨界電流密度)が劣った。
なお、表1には、銅箔表面から厚み方向の中心線を横切って該表面に到達するせん断帯の表裏面の合計値も表示しているが、厚み方向中心のせん断帯本数では、超電導膜の特性(臨界電流密度)を評価できないことがわかる。
Further, in Comparative Example 7 in which the total degree of work of the final cold rolling was less than 90.0%, I / I 0 was less than 50, and the characteristics (critical current density) of the superconducting film were inferior.
Table 1 also shows the total value of the front and back surfaces of the shear band that reaches the surface across the center line in the thickness direction from the copper foil surface. It can be seen that the characteristics (critical current density) cannot be evaluated.

t 銅箔の厚み
C 銅箔表面から厚み方向に銅箔厚みの1/10の深さの線
Sh せん断帯
t Thickness C of copper foil Line Sh with 1/10 depth of copper foil thickness from the copper foil surface in the thickness direction

Claims (4)

自身の表面に超電導物質の膜を形成させる超電導膜形成用圧延銅箔であって、以下の再結晶熱処理を施す前の状態において、圧延平行断面から見て、銅箔表面から厚み方向に銅箔厚みの1/10の深さの線を横切って該表面に到達するせん断帯が表裏面の合計値で0.1本/μm以下であり、700℃で30分間の再結晶熱処理を施すことによりI/I≧50(I:銅箔の圧延面のX線回折で求めた(200)面の回折ピーク積分強度、I:微粉末銅のX線回折で求めた(200)面の回折ピーク積分強度)なる結晶方位が発現する超電導膜形成用圧延銅箔。 A rolled copper foil for forming a superconducting material on its surface, which is formed from a copper foil in the thickness direction from the surface of the rolled copper foil as viewed from the rolled parallel section in the state before the following recrystallization heat treatment. The shear band reaching the surface across a line having a depth of 1/10 of the thickness is not more than 0.1 / μm in total on the front and back surfaces, and is subjected to a recrystallization heat treatment at 700 ° C. for 30 minutes. I 0 ≧ 50 (I: diffraction peak integrated intensity of (200) plane determined by X-ray diffraction of rolled surface of copper foil, I 0 : diffraction peak integral of (200) plane determined by X-ray diffraction of fine powder copper A rolled copper foil for forming a superconducting film that exhibits a crystal orientation of (strength). 前記せん断帯が表裏面の合計値で0.05本/μm以下である請求項1に記載の超電導膜形成用圧延銅箔。   2. The rolled copper foil for forming a superconducting film according to claim 1, wherein the shear band is 0.05 or less per μm in total on the front and back surfaces. 鋳塊を熱間圧延後、冷間圧延と焼鈍とを繰り返し、最後に最終冷間圧延を行って製造され、当該最終冷間圧延の総加工度が90.0〜99.5%である請求項1又は2に記載の超電導膜形成用圧延銅箔。   The ingot is manufactured by hot rolling, then cold rolling and annealing are repeated, and finally the final cold rolling is performed, and the total degree of work of the final cold rolling is 90.0 to 99.5%. The rolled copper foil for superconducting film formation as described in 2. 前記最終冷間圧延において、最終5パスの中で前のパスより加工度が高いパスが存在し、当該5パス中のいずれかのパスの最大加工度が40%以上であり、かつ最終パスでの加工度が前記5パス中で最小となる請求項3記載の超電導膜形成用圧延銅箔。   In the final cold rolling, there is a pass having a higher workability than the previous pass in the final 5 passes, and the maximum workability of any of the 5 passes is 40% or more, and in the final pass The rolled copper foil for forming a superconducting film according to claim 3, wherein the degree of processing is minimum in the five passes.
JP2011257748A 2011-11-22 2011-11-25 Rolled copper foil for superconducting film formation Active JP5650098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011257748A JP5650098B2 (en) 2011-11-22 2011-11-25 Rolled copper foil for superconducting film formation

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011255328 2011-11-22
JP2011255328 2011-11-22
JP2011255868 2011-11-24
JP2011255868 2011-11-24
JP2011257748A JP5650098B2 (en) 2011-11-22 2011-11-25 Rolled copper foil for superconducting film formation

Publications (2)

Publication Number Publication Date
JP2013129853A true JP2013129853A (en) 2013-07-04
JP5650098B2 JP5650098B2 (en) 2015-01-07

Family

ID=48907648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011257748A Active JP5650098B2 (en) 2011-11-22 2011-11-25 Rolled copper foil for superconducting film formation

Country Status (1)

Country Link
JP (1) JP5650098B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248331A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
JP2011001622A (en) * 2009-06-22 2011-01-06 Hitachi Cable Ltd Rolled copper foil
WO2011007527A1 (en) * 2009-07-17 2011-01-20 東洋鋼鈑株式会社 Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
WO2011061909A1 (en) * 2009-11-20 2011-05-26 東洋鋼鈑株式会社 Substrate for superconducting compound and method for manufacturing the substrate
WO2013069602A1 (en) * 2011-11-07 2013-05-16 Jx日鉱日石金属株式会社 Rolled copper foil
JP2013096006A (en) * 2011-11-07 2013-05-20 Jx Nippon Mining & Metals Corp Rolled copper foil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248331A (en) * 2007-03-30 2008-10-16 Nikko Kinzoku Kk Rolled copper foil
JP2011001622A (en) * 2009-06-22 2011-01-06 Hitachi Cable Ltd Rolled copper foil
WO2011007527A1 (en) * 2009-07-17 2011-01-20 東洋鋼鈑株式会社 Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
WO2011061909A1 (en) * 2009-11-20 2011-05-26 東洋鋼鈑株式会社 Substrate for superconducting compound and method for manufacturing the substrate
JP2011108592A (en) * 2009-11-20 2011-06-02 Toyo Kohan Co Ltd Substrate for superconductive compound, and its manufacturing method
WO2013069602A1 (en) * 2011-11-07 2013-05-16 Jx日鉱日石金属株式会社 Rolled copper foil
JP2013096006A (en) * 2011-11-07 2013-05-20 Jx Nippon Mining & Metals Corp Rolled copper foil

Also Published As

Publication number Publication date
JP5650098B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP4716520B2 (en) Rolled copper foil
US7879161B2 (en) Strong, non-magnetic, cube textured alloy substrates
WO2010055651A1 (en) Method for producing metal laminated substrate for oxide superconducting wire, and oxide superconducting wire using the substrate
EP2455949B1 (en) Metal laminated substrate for use as an oxide superconducting wire material, and manufacturing method therefor
Varanasi et al. Biaxially textured copper and copper–iron alloy substrates for use in YBa2Cu3O7− x coated conductors
Chen et al. On recrystallization texture and magnetic property of Cu-Ni alloys
CN107267900B (en) A kind of preparation method of the high intensity without ferromagnetism texture acid bronze alloy base band
JP5705107B2 (en) Rolled copper foil for superconducting film formation
JP5330725B2 (en) Superconducting wire substrate and manufacturing method thereof
JP5650098B2 (en) Rolled copper foil for superconducting film formation
JP2015050147A (en) Substrate for superconductive wire rod, production method thereof and superconductive wire rod
RU2624564C2 (en) Manufacture method of biaxial textured support plate from triple alloy on copper-nickel basis
JP5904869B2 (en) Method for producing rolled copper foil for superconducting film formation
Nekkanti et al. Development of nickel alloy substrates for Y-Ba-Cu-O coated conductor applications
Ma et al. Study on fabrication of Ni-5 at.% W tapes for coated conductors from cylinder ingots
JP5323444B2 (en) Composite substrate for oxide superconducting wire, manufacturing method thereof, and superconducting wire
KR101975252B1 (en) Substrate for epitaxial growth, manufacturing method therefor, and substrate for superconductor wire
Khlebnikova et al. Creation of a sharp cube texture in ribbon substrates of Cu–40% Ni–M (M= Fe, Cr, V) ternary alloys for high-temperature second generation superconductors
JP5650099B2 (en) Rolled copper foil for superconducting film formation
JP3544781B2 (en) Method for producing Nb-Ti based superconducting multilayer board
RU2759146C1 (en) Method for manufacturing biaxially textured substrate in the form of copper-nickel-based triple alloy tape for epitaxial deposition of buffer and high-temperature superconducting layers on it
RU2481674C1 (en) Method to manufacture substrate for high-temperature thin-film superconductors and substrate
RU2451766C1 (en) Method for biaxial textured substrate production from binary alloy on basis of nickel for epitaxial application of buffer and high-temperature superconductive layers for ribbon superconductors to substrate
Khlebnikova et al. Anticorrosion properties of textured substrates made of copper-based binary alloys
Vorobieva et al. Development of the paramagnetic RABiTS tapes for coated conductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141112

R150 Certificate of patent or registration of utility model

Ref document number: 5650098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250