JP2013127998A - Semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing method Download PDF

Info

Publication number
JP2013127998A
JP2013127998A JP2011275997A JP2011275997A JP2013127998A JP 2013127998 A JP2013127998 A JP 2013127998A JP 2011275997 A JP2011275997 A JP 2011275997A JP 2011275997 A JP2011275997 A JP 2011275997A JP 2013127998 A JP2013127998 A JP 2013127998A
Authority
JP
Japan
Prior art keywords
underfill material
semiconductor
adherend
semiconductor element
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011275997A
Other languages
Japanese (ja)
Other versions
JP5907717B2 (en
Inventor
Hisahide Takamoto
尚英 高本
Kosuke Morita
浩介 盛田
Hiroyuki Chitose
裕之 千歳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2011275997A priority Critical patent/JP5907717B2/en
Priority to CN2012105368928A priority patent/CN103165474A/en
Priority to KR1020120145058A priority patent/KR20130069438A/en
Priority to TW101147674A priority patent/TW201334127A/en
Priority to US13/715,996 priority patent/US20130157415A1/en
Publication of JP2013127998A publication Critical patent/JP2013127998A/en
Application granted granted Critical
Publication of JP5907717B2 publication Critical patent/JP5907717B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device manufacturing method which inhibits an occurrence of voids at an interface between a semiconductor element and an underfill sheet thereby to enable manufacturing of a highly reliable semiconductor device.SOLUTION: A manufacturing method of a semiconductor device including an attached body, a semiconductor element electrically connected to the attached body and an underfill material with which a space between the attached body and the semiconductor element is filled, comprises: a preparation step of preparing an encapsulation sheet including a dicing tape and an underfill material laminated on the dicing tape; a bonding step of bonding a circuit surface on which a connection member of a semiconductor wafer is formed and the underfill material of the encapsulation sheet under reduced pressure of not exceeding 1000 Pa; a dicing step of dicing the semiconductor wafer to form semiconductor elements with the underfill materials; and a connection step of electrically connecting the semiconductor element and the attached body via the connection member while filling a space between the attached body and the semiconductor element with the underfill material.

Description

本発明は、半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device.

電子機器の小型・薄型化による高密度実装の要求が、近年、急激に増加している。このため、半導体パッケージは、従来のピン挿入型に代わり、高密度実装に適した表面実装型が主流になっている。この表面実装型は、リードをプリント基板等に直接はんだ付けする。加熱方法としては、赤外線リフローやベーパーフェーズリフロー、はんだディップなどにより、パッケージ全体を加熱して実装される。   In recent years, the demand for high-density packaging due to the miniaturization and thinning of electronic devices has increased rapidly. For this reason, the surface mount type suitable for high-density mounting is the mainstream of the semiconductor package instead of the conventional pin insertion type. In this surface mount type, the lead is soldered directly to a printed circuit board or the like. As a heating method, the entire package is heated and mounted by infrared reflow, vapor phase reflow, solder dipping, or the like.

表面実装後には、半導体素子表面の保護や半導体素子と基板との間の接続信頼性を確保するために、半導体素子と基板との間の空間への封止樹脂の充填が行われている。このような封止樹脂としては、液状の封止樹脂が広く用いられているものの、液状の封止樹脂では注入位置や注入量の調節が困難である。そこで、シート状の封止樹脂を用いて半導体素子と基板との間の空間を充填する技術も提案されている(特許文献1)。   After the surface mounting, the space between the semiconductor element and the substrate is filled with a sealing resin in order to protect the surface of the semiconductor element and to ensure the connection reliability between the semiconductor element and the substrate. As such a sealing resin, although a liquid sealing resin is widely used, it is difficult to adjust the injection position and the injection amount with the liquid sealing resin. Therefore, a technique for filling a space between a semiconductor element and a substrate using a sheet-shaped sealing resin has also been proposed (Patent Document 1).

一般的に、シート状の封止樹脂(アンダーフィルシート)を用いるプロセスとしては、アンダーフィルシートを半導体ウェハに貼り付けた後、半導体ウェハのダイシングを行って半導体素子を形成し、半導体素子を被着体に接続して実装しながら半導体素子と一体となっているアンダーフィルシートにて基板等の被着体と半導体素子の間の空間を充填するという手順が採用されている。上記プロセスでは、被着体と半導体素子との間の空間の充填が容易となる。   In general, as a process using a sheet-shaped sealing resin (underfill sheet), after bonding an underfill sheet to a semiconductor wafer, the semiconductor wafer is diced to form a semiconductor element, and the semiconductor element is covered. A procedure is adopted in which a space between an adherend such as a substrate and the semiconductor element is filled with an underfill sheet integrated with the semiconductor element while being connected and mounted on the adherend. In the above process, the space between the adherend and the semiconductor element can be easily filled.

特許第4438973号Patent No. 4438973

一方、本願発明者らは、半導体ウェハのダイシングから半導体素子−被着体間の空間の充填までの一連の工程を効率化すべく、ダイシングテープとアンダーフィルシートとを組み合わせた技術の展開を試みている。この技術では、半導体ウェハの回路面とアンダーフィルシートとが貼り合わされることになることから、アンダーフィルシートには半導体ウェハ表面の凹凸に追従して密着することが求められる。しかしながら、半導体ウェハ上のバンプ等の立体構造物の数の増加や回路の狭小化に伴い、アンダーフィルシートの半導体ウェハへの密着の度合いが低下し、半導体ウェハとアンダーフィルシートとの間にボイド(気泡)が発生する場合がある。半導体ウェハとアンダーフィル材との界面に気泡が存在すると、以降の工程において減圧処理や加熱処理を行った場合に気泡が膨張して半導体ウェハとアンダーフィル材との間の密着性が低下することがあり、その結果、半導体素子を被着体に実装した際の半導体素子と被着体との接続信頼性が低下することになる。また、半導体ウェハの裏面研削やダイシングの際の水分が気泡に混入した場合、その後に加熱工程を行うと該水分が蒸発して気泡が拡大ないし膨張することになり、やはり半導体素子と被着体との接続信頼性が低下することになる。   On the other hand, the inventors of the present application have tried to develop a technology combining a dicing tape and an underfill sheet in order to improve the efficiency of a series of processes from dicing a semiconductor wafer to filling a space between a semiconductor element and an adherend. Yes. In this technique, since the circuit surface of the semiconductor wafer and the underfill sheet are bonded together, the underfill sheet is required to adhere to the undersurface of the semiconductor wafer following the irregularities. However, as the number of three-dimensional structures such as bumps on the semiconductor wafer increases and the circuit becomes narrower, the degree of adhesion of the underfill sheet to the semiconductor wafer decreases, and voids (bubbles) are formed between the semiconductor wafer and the underfill sheet. ) May occur. If air bubbles are present at the interface between the semiconductor wafer and the underfill material, the bubbles will expand and the adhesion between the semiconductor wafer and the underfill material will decrease when decompression or heat treatment is performed in the subsequent steps. As a result, the connection reliability between the semiconductor element and the adherend when the semiconductor element is mounted on the adherend is lowered. In addition, when moisture in the backside grinding or dicing of the semiconductor wafer is mixed in the bubbles, the heating process is performed after that, the moisture evaporates and the bubbles expand or expand. Connection reliability will be reduced.

本発明は、半導体素子とアンダーフィルシートとの界面でのボイドの発生を抑制し、信頼性の高い半導体装置を製造可能な半導体装置の製造方法を提供することを目的とする。   An object of the present invention is to provide a semiconductor device manufacturing method capable of suppressing the generation of voids at the interface between a semiconductor element and an underfill sheet and manufacturing a highly reliable semiconductor device.

本願発明者らは鋭意検討したところ、下記構成を採用することにより前記目的を達成できることを見出して、本発明を完成させるに至った。   The inventors of the present application have conducted intensive studies and found that the object can be achieved by adopting the following configuration, and have completed the present invention.

すなわち、本発明は、被着体と、該被着体と電気的に接続された半導体素子と、該被着体と該半導体素子との間の空間を充填するアンダーフィル材を備える半導体装置の製造方法であって、
ダイシングテープと該ダイシングテープ上に積層されたアンダーフィル材とを備える封止シートを準備する準備工程と、
半導体ウェハの接続部材が形成された回路面と上記封止シートのアンダーフィル材とを1000Pa以下の減圧下で貼り合わせる貼合せ工程と、
上記半導体ウェハをダイシングして上記アンダーフィル材付きの半導体素子を形成するダイシング工程と、
上記被着体と上記半導体素子の間の空間を上記アンダーフィル材で充填しつつ上記接続部材を介して上記半導体素子と上記被着体とを電気的に接続する接続工程と
を含む。
That is, the present invention relates to a semiconductor device including an adherend, a semiconductor element electrically connected to the adherend, and an underfill material that fills a space between the adherend and the semiconductor element. A manufacturing method comprising:
Preparing a sealing sheet comprising a dicing tape and an underfill material laminated on the dicing tape; and
A bonding step of bonding the circuit surface on which the connecting member of the semiconductor wafer is formed and the underfill material of the sealing sheet under a reduced pressure of 1000 Pa or less;
A dicing step of dicing the semiconductor wafer to form the semiconductor element with the underfill material;
A connecting step of electrically connecting the semiconductor element and the adherend through the connecting member while filling a space between the adherend and the semiconductor element with the underfill material.

当該製造方法では、半導体ウェハの回路面とアンダーフィル材との貼り合わせを1000Pa以下の減圧下で行っているので、両者の界面におけるガスの介在を大幅に低減して密着性を高めることができ、これにより上記界面でのボイドの発生を抑制することができる。その結果、半導体ウェハと被着体との接続信頼性に優れる半導体装置を効率良く製造することができる。また、ダイシングテープとアンダーフィル材とが一体化しているので、ダイシングの際に半導体ウェハ又はチップをしっかりと保持しつつ、半導体素子と被着体との間の空間を簡便に充填することができるので、半導体装置の製造においてダイシングから電気的接続の際の充填まで効率良く行うことができる。   In the manufacturing method, the circuit surface of the semiconductor wafer and the underfill material are bonded together under a reduced pressure of 1000 Pa or less, so that the gas inclusion at the interface between the two can be greatly reduced and the adhesion can be improved. As a result, the generation of voids at the interface can be suppressed. As a result, a semiconductor device having excellent connection reliability between the semiconductor wafer and the adherend can be efficiently manufactured. Moreover, since the dicing tape and the underfill material are integrated, the space between the semiconductor element and the adherend can be easily filled while firmly holding the semiconductor wafer or chip during dicing. Therefore, it is possible to efficiently carry out from dicing to filling at the time of electrical connection in the manufacture of the semiconductor device.

当該製造方法では、上記貼合せ工程後の上記半導体ウェハと上記アンダーフィル材との界面(以下、単に「界面」と称する場合がある)に実質的に気泡が存在しないことが好ましい。これにより、半導体ウェハとアンダーフィル材との間の密着性が高まるので、半導体装置の接続信頼性をより向上させることができる。なお、本明細書において、「実質的に気泡が存在しない」とは、貼合せ工程における貼り合わせのための予定圧力まで減圧した際に目視にて気泡が確認されない状態をいい、最大径が1mm以上の気泡が存在しないことをいう。   In the manufacturing method, it is preferable that substantially no bubbles exist at the interface between the semiconductor wafer and the underfill material after the bonding step (hereinafter, sometimes simply referred to as “interface”). Thereby, since the adhesiveness between a semiconductor wafer and an underfill material improves, the connection reliability of a semiconductor device can be improved more. In the present specification, “substantially no bubbles” means a state in which no bubbles are visually confirmed when the pressure is reduced to a predetermined pressure for bonding in the bonding step, and the maximum diameter is 1 mm. It means that the above bubbles do not exist.

当該製造方法において、上記接続工程は、上記接続部材と上記被着体とを下記条件(1)の温度α下で接触させる工程と、
上記接触した接続部材を上記被着体に下記条件(2)の温度β下で固定する工程と
を含むことが好ましい。
条件(1):接続部材の融点−100℃≦α<接続部材の融点
条件(2):接続部材の融点≦β≦接続部材の融点+100℃
In the manufacturing method, the connecting step is a step of bringing the connecting member and the adherend into contact with each other under a temperature α of the following condition (1):
It is preferable to include a step of fixing the contact member in contact with the adherend at a temperature β of the following condition (2).
Condition (1): melting point of connecting member−100 ° C. ≦ α <melting point of connecting member Condition (2): melting point of connecting member ≦ β ≦ melting point of connecting member + 100 ° C.

上記所定工程を含む接続工程の採用により、半導体素子と被着体との電気的接続の際に、まず接続部材の融点未満の所定温度αの加熱下で半導体素子の接続部材と被着体とを接触させる。これにより、アンダーフィル材が軟化し、接続部材のアンダーフィル材への進入を容易に行うことができるとともに、接続部材と被着体との接触を十分なレベルとすることができる。この状態のまま接続部材の融点以上の所定温度βで接続部材と被着体とを互いに固定して電気的接続を得るので、接続信頼性の高い半導体装置を効率良く製造することができる。   By adopting the connection step including the predetermined step, when the semiconductor element and the adherend are electrically connected, the connection member and the adherend of the semiconductor element are first heated under a predetermined temperature α less than the melting point of the connection member. Contact. As a result, the underfill material is softened, the connection member can easily enter the underfill material, and the contact between the connection member and the adherend can be set to a sufficient level. In this state, the connection member and the adherend are fixed to each other at a predetermined temperature β equal to or higher than the melting point of the connection member to obtain an electrical connection. Therefore, a semiconductor device with high connection reliability can be efficiently manufactured.

当該製造方法では、熱硬化前の上記アンダーフィル材の100〜200℃における最低溶融粘度は、100Pa・s以上20000Pa・s以下であることが好ましい。これにより、接続部材のアンダーフィル材への進入を容易にすることができる。また、半導体素子の電気的接続の際のボイドの発生、及び半導体素子と被着体との間の空間からのアンダーフィル材のはみ出しを防止することができる。なお、最低溶融粘度の測定は、実施例に記載の手順による。   In the said manufacturing method, it is preferable that the minimum melt viscosity in 100-200 degreeC of the said underfill material before thermosetting is 100 Pa.s or more and 20000 Pa.s or less. Thereby, the approach to the underfill material of a connection member can be made easy. In addition, generation of voids during electrical connection of the semiconductor elements and protrusion of the underfill material from the space between the semiconductor elements and the adherend can be prevented. In addition, the measurement of minimum melt viscosity is based on the procedure as described in an Example.

当該製造方法において、熱硬化前の上記アンダーフィル材の23℃における粘度は、0.01MPa・s以上100MPa・s以下であることが好ましい。熱硬化前のアンダーフィル材がこのような粘度を有することで、ダイシングの際の半導体ウェハの保持性や作業の際の取り扱い性を向上させることができる。   In the manufacturing method, the viscosity of the underfill material before thermosetting at 23 ° C. is preferably 0.01 MPa · s or more and 100 MPa · s or less. When the underfill material before thermosetting has such a viscosity, the retention property of the semiconductor wafer during dicing and the handleability during work can be improved.

本発明の一実施形態に係る封止シートを示す断面模式図である。It is a cross-sectional schematic diagram which shows the sealing sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る半導体装置の製造工程を示す断面模式図である。It is a cross-sectional schematic diagram which shows the manufacturing process of the semiconductor device which concerns on one Embodiment of this invention.

本発明は、被着体と、該被着体と電気的に接続された半導体素子と、該被着体と該半導体素子との間の空間を充填するアンダーフィル材を備える半導体装置の製造方法であって、ダイシングテープと該ダイシングテープ上に積層されたアンダーフィル材とを備える封止シートを準備する準備工程と、半導体ウェハの接続部材が形成された回路面と上記封止シートのアンダーフィル材とを1000Pa以下の減圧下で貼り合わせる貼合せ工程と、上記半導体ウェハをダイシングして上記アンダーフィル材付きの半導体素子を形成するダイシング工程と、上記被着体と上記半導体素子の間の空間を上記アンダーフィル材で充填しつつ上記接続部材を介して上記半導体素子と上記被着体とを電気的に接続する接続工程とを含む。以下、本発明の一実施形態について説明する。   The present invention relates to a method of manufacturing a semiconductor device comprising an adherend, a semiconductor element electrically connected to the adherend, and an underfill material that fills a space between the adherend and the semiconductor element. A preparation step of preparing a sealing sheet comprising a dicing tape and an underfill material laminated on the dicing tape, a circuit surface on which a semiconductor wafer connecting member is formed, and an underfill of the sealing sheet A bonding step of bonding materials to each other under a reduced pressure of 1000 Pa or less, a dicing step of dicing the semiconductor wafer to form the semiconductor element with the underfill material, and a space between the adherend and the semiconductor element A connection step of electrically connecting the semiconductor element and the adherend through the connection member while filling the substrate with the underfill material. Hereinafter, an embodiment of the present invention will be described.

[封止シート準備工程]
封止シート準備工程では、ダイシングテープと該ダイシングテープ上に積層されたアンダーフィル材とを備える封止シートを準備する。
[Encapsulation sheet preparation process]
In the sealing sheet preparation step, a sealing sheet including a dicing tape and an underfill material laminated on the dicing tape is prepared.

(封止シート)
図1に示すように、封止シート10は、ダイシングテープ1と、ダイシングテープ1上に積層されたアンダーフィル材2とを備えている。なお、アンダーフィル材2は、図1に示したようにダイシングテープ1の全面に積層されていなくてもよく、半導体ウェハ3(図2(a)参照)との貼り合わせに十分なサイズで設けられていればよい。
(Sealing sheet)
As shown in FIG. 1, the sealing sheet 10 includes a dicing tape 1 and an underfill material 2 laminated on the dicing tape 1. The underfill material 2 does not have to be laminated on the entire surface of the dicing tape 1 as shown in FIG. 1 and is provided in a size sufficient for bonding to the semiconductor wafer 3 (see FIG. 2A). It only has to be done.

(ダイシングテープ)
ダイシングテープ1は、基材1aと、基材1a上に積層された粘着剤層1bとを備えている。なお、アンダーフィル材2は、粘着剤層1b上に積層されている。
(Dicing tape)
The dicing tape 1 includes a substrate 1a and an adhesive layer 1b laminated on the substrate 1a. In addition, the underfill material 2 is laminated | stacked on the adhesive layer 1b.

(基材)
上記基材1aは封止シート10の強度母体となるものである。例えば、低密度ポリエチレン、直鎖状ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超低密度ポリエチレン、ランダム共重合ポリプロピレン、ブロック共重合ポリプロピレン、ホモポリプロレン、ポリブテン、ポリメチルペンテン等のポリオレフィン、エチレン−酢酸ビニル共重合体、アイオノマー樹脂、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル(ランダム、交互)共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体、ポリウレタン、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミド、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、全芳香族ポリアミド、ポリフェニルスルフイド、アラミド(紙)、ガラス、ガラスクロス、フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、セルロース系樹脂、シリコーン樹脂、金属(箔)、紙等が挙げられる。粘着剤層1bが紫外線硬化型である場合、基材1aは紫外線に対し透過性を有するものが好ましい。
(Base material)
The base material 1 a is a strength matrix of the sealing sheet 10. For example, polyolefins such as low density polyethylene, linear polyethylene, medium density polyethylene, high density polyethylene, ultra low density polyethylene, random copolymer polypropylene, block copolymer polypropylene, homopolyprolene, polybutene, polymethylpentene, ethylene-acetic acid Vinyl copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, ethylene- (meth) acrylic acid ester (random, alternating) copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, Polyester such as polyurethane, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, polyetheretherketone, polyimide, polyetherimide, polyamide, wholly aromatic polyamide, polyphenylsulfur De, aramid (paper), glass, glass cloth, fluorine resin, polyvinyl chloride, polyvinylidene chloride, cellulose resin, silicone resin, metal (foil), paper, and the like. In the case where the pressure-sensitive adhesive layer 1b is of an ultraviolet curable type, the substrate 1a is preferably transparent to ultraviolet rays.

また基材1aの材料としては、上記樹脂の架橋体等のポリマーが挙げられる。上記プラスチックフィルムは、無延伸で用いてもよく、必要に応じて一軸又は二軸の延伸処理を施したものを用いてもよい。   Examples of the material for the substrate 1a include polymers such as a crosslinked body of the above resin. The plastic film may be used unstretched or may be uniaxially or biaxially stretched as necessary.

基材1aの表面は、隣接する層との密着性、保持性等を高めるため、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理等の化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。   The surface of the substrate 1a is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high-voltage impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers. Alternatively, a physical treatment or a coating treatment with a primer (for example, an adhesive substance described later) can be performed.

上記基材1aは、同種又は異種のものを適宜に選択して使用することができ、必要に応じて数種をブレンドしたものを用いることができる。また、基材1aには、帯電防止能を付与するため、上記の基材1a上に金属、合金、これらの酸化物等からなる厚さが30〜500Å程度の導電性物質の蒸着層を設けることができる。基材1aは単層又は2種以上の複層でもよい。   As the base material 1a, the same kind or different kinds can be appropriately selected and used, and if necessary, a blend of several kinds can be used. In addition, in order to impart antistatic ability to the base material 1a, a conductive material vapor deposition layer having a thickness of about 30 to 500 mm made of metal, alloy, oxides thereof, or the like is provided on the base material 1a. be able to. The substrate 1a may be a single layer or a multilayer of two or more.

基材1aの厚さは適宜に決定でき、一般的には5μm以上200μm以下程度であり、好ましくは35μm以上120μm以下である。   The thickness of the substrate 1a can be determined as appropriate, and is generally about 5 μm to 200 μm, preferably 35 μm to 120 μm.

なお、基材1aには、本発明の効果等を損なわない範囲で、各種添加剤(例えば、着色剤、充填剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、難燃剤等)が含まれていてもよい。   In addition, various additives (for example, a colorant, a filler, a plasticizer, an anti-aging agent, an antioxidant, a surfactant, a flame retardant, etc.) are added to the substrate 1a as long as the effects of the present invention are not impaired. May be included.

(粘着剤層)
粘着剤層1bの形成に用いる粘着剤は、ダイシングの際にアンダーフィル材を介して半導体ウェハ又は半導体チップをしっかり保持し、ピックアップ時にアンダーフィル材付きの半導体チップを剥離可能に制御できるものであれば特に制限されない。例えば、アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性接着剤を用いることができる。上記感圧性接着剤としては、半導体ウェハやガラス等の汚染をきらう電子部品の超純水やアルコール等の有機溶剤による清浄洗浄性などの点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。
(Adhesive layer)
The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 1b can be controlled so that the semiconductor wafer or the semiconductor chip can be firmly held via the underfill material during dicing and the semiconductor chip with the underfill material can be peeled off during pick-up. There is no particular limitation. For example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used. As the pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive having an acrylic polymer as a base polymer from the viewpoint of cleanability of an electronic component that is difficult to contaminate semiconductor wafers, glass, etc., with an organic solvent such as ultrapure water or alcohol. Is preferred.

上記アクリル系ポリマーとしては、アクリル酸エステルを主モノマー成分として用いたものが挙げられる。上記アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s−ブチルエステル、t−ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2−エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステル等のアルキル基の炭素数1〜30、特に炭素数4〜18の直鎖状又は分岐鎖状のアルキルエステル等)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステル等)の1種又は2種以上を単量体成分として用いたアクリル系ポリマー等が挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。   Examples of the acrylic polymer include those using an acrylic ester as a main monomer component. Examples of the acrylic ester include (meth) acrylic acid alkyl ester (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Isopentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester , Octadecyl esters, eicosyl esters, etc., alkyl groups having 1 to 30 carbon atoms, especially 4 to 18 carbon linear or branched alkyl esters, etc.) and Meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, acrylic polymers such as one or more was used as a monomer component of the cyclohexyl ester etc.). In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of the present invention has the same meaning.

上記アクリル系ポリマーは、凝集力、耐熱性などの改質を目的として、必要に応じ、上記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。このようなモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリル、(4−ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2−ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;アクリルアミド、アクリロニトリルなどがあげられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。   The acrylic polymer includes units corresponding to the other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance, and the like. You may go out. Examples of such monomer components include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; The Sulfonic acid groups such as lensulfonic acid, allylsulfonic acid, 2- (meth) acrylamide-2-methylpropanesulfonic acid, (meth) acrylamidepropanesulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalenesulfonic acid Containing monomers; Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate; acrylamide, acrylonitrile and the like. One or more of these copolymerizable monomer components can be used. The amount of these copolymerizable monomers used is preferably 40% by weight or less based on the total monomer components.

さらに、上記アクリル系ポリマーは、架橋させるため、多官能性モノマーなども、必要に応じて共重合用モノマー成分として含むことができる。このような多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどがあげられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性等の点から、全モノマー成分の30重量%以下が好ましい。   Furthermore, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary. Examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) Examples include acrylates. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight or less of the total monomer components from the viewpoint of adhesive properties and the like.

上記アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合等の何れの方式で行うこともできる。清浄な被着体への汚染防止等の点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、さらに好ましくは40万〜300万程度である。   The acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization can be performed by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, the content of the low molecular weight substance is preferably small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3,000,000.

また、上記粘着剤には、ベースポリマーであるアクリル系ポリマー等の数平均分子量を高めるため、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤などのいわゆる架橋剤を添加し反応させる方法があげられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、さらには、粘着剤としての使用用途によって適宜決定される。一般的には、上記ベースポリマー100重量部に対して、5重量部程度以下、さらには0.1〜5重量部配合するのが好ましい。さらに、粘着剤には、必要により、上記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤などの添加剤を用いてもよい。   Moreover, in order to increase the number average molecular weight of the acrylic polymer or the like as the base polymer, an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive. Specific examples of the external crosslinking method include a method in which a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent is added and reacted. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked, and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, and further 0.1 to 5 parts by weight with respect to 100 parts by weight of the base polymer. Furthermore, additives such as various conventionally known tackifiers and anti-aging agents may be used for the pressure-sensitive adhesive, if necessary, in addition to the above components.

粘着剤層1bは放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線等の放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができ、ピックアップを容易に行うことができる。放射線としては、X線、紫外線、電子線、α線、β線、中性子線等が挙げられる。   The pressure-sensitive adhesive layer 1b can be formed of a radiation curable pressure-sensitive adhesive. The radiation curable pressure-sensitive adhesive can increase the degree of crosslinking by irradiation with radiation such as ultraviolet rays, and can easily reduce its adhesive strength, and can be easily picked up. Examples of radiation include X-rays, ultraviolet rays, electron beams, α rays, β rays, and neutron rays.

放射線硬化型粘着剤は、炭素−炭素二重結合等の放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、上記アクリル系粘着剤、ゴム系粘着剤等の一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化性粘着剤を例示できる。   As the radiation-curable pressure-sensitive adhesive, those having a radiation-curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation. Examples of the radiation curable pressure-sensitive adhesive include additive-type radiation curable pressure-sensitive adhesives in which radiation-curable monomer components and oligomer components are blended with general pressure-sensitive pressure-sensitive adhesives such as the above-mentioned acrylic pressure-sensitive adhesives and rubber-based pressure-sensitive adhesives. An agent can be illustrated.

配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレートなどがあげられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系など種々のオリゴマーがあげられ、その重量平均分子量が100〜30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、上記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば5〜500重量部、好ましくは40〜150重量部程度である。   Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Examples include stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, and the like. Examples of the radiation curable oligomer component include various oligomers such as urethane, polyether, polyester, polycarbonate, and polybutadiene, and those having a weight average molecular weight in the range of about 100 to 30000 are suitable. The compounding amount of the radiation curable monomer component or oligomer component can be appropriately determined in such an amount that the adhesive force of the pressure-sensitive adhesive layer can be reduced depending on the type of the pressure-sensitive adhesive layer. Generally, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.

また、放射線硬化型粘着剤としては、上記説明した添加型の放射線硬化性粘着剤のほかに、ベースポリマーとして、炭素−炭素二重結合をポリマー側鎖または主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化性粘着剤があげられる。内在型の放射線硬化性粘着剤は、低分子成分であるオリゴマー成分等を含有する必要がなく、または多くは含まないため、経時的にオリゴマー成分等が粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができるため好ましい。   In addition to the additive-type radiation-curable adhesive described above, the radiation-curable adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer. Intrinsic radiation curable adhesives using Intrinsic radiation curable adhesives do not need to contain oligomer components, which are low molecular components, or do not contain many, so they are stable without the oligomer components, etc. moving through the adhesive over time. This is preferable because an adhesive layer having a layered structure can be formed.

上記炭素−炭素二重結合を有するベースポリマーは、炭素−炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。このようなベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、上記例示したアクリル系ポリマーがあげられる。   As the base polymer having a carbon-carbon double bond, those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation. As such a base polymer, an acrylic polymer having a basic skeleton is preferable. Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.

上記アクリル系ポリマーへの炭素−炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素−炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基および炭素−炭素二重結合を有する化合物を、炭素−炭素二重結合の放射線硬化性を維持したまま縮合または付加反応させる方法があげられる。   The method for introducing a carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, it is easy to design a molecule by introducing a carbon-carbon double bond into a polymer side chain. . For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. Examples of the method include condensation or addition reaction while maintaining the above.

これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基などがあげられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、上記炭素−炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと上記化合物のいずれの側にあってもよいが、上記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、上記化合物がイソシアネート基を有する場合が好適である。この場合、炭素−炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2−メタクリロイルオキシエチルイソシアネート、m−イソプロペニル−α,α−ジメチルベンジルイソシアネートなどがあげられる。また、アクリル系ポリマーとしては、上記例示のヒドロキシ基含有モノマーや2−ヒドロキシエチルビニルエーテル、4−ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物などを共重合したものが用いられる。   Examples of combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups. Among these combinations of functional groups, a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction. In addition, the functional group may be on either side of the acrylic polymer and the compound as long as the acrylic polymer having the carbon-carbon double bond is generated by a combination of these functional groups. In the above preferred combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group. In this case, examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and the like. As the acrylic polymer, those obtained by copolymerizing the above-exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like are used.

上記内在型の放射線硬化性粘着剤は、上記炭素−炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に上記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分等は、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0〜10重量部の範囲である。   As the internal radiation curable pressure-sensitive adhesive, the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer is not deteriorated. Components and oligomer components can also be blended. The radiation-curable oligomer component or the like is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight with respect to 100 parts by weight of the base polymer.

上記放射線硬化型粘着剤には、紫外線等により硬化させる場合には光重合開始剤を含有させることが好ましい。光重合開始剤としては、例えば、4−(2−ヒドロキシエトキシ)フェニル(2−ヒドロキシ−2−プロピル)ケトン、α−ヒドロキシ−α,α´−ジメチルアセトフェノン、2−メチル−2−ヒドロキシプロピオフェノン、1−ヒドロキシシクロヘキシルフェニルケトンなどのα−ケトール系化合物;メトキシアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフエノン、2,2−ジエトキシアセトフェノン、2−メチル−1−[4−(メチルチオ)−フェニル]−2−モルホリノプロパン−1などのアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどのケタール系化合物;2−ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1−フェノン−1,1―プロパンジオン−2−(o−エトキシカルボニル)オキシムなどの光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3′−ジメチル−4−メトキシベンゾフェノンなどのベンゾフェノン系化合物;チオキサンソン、2−クロロチオキサンソン、2−メチルチオキサンソン、2,4−ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4−ジクロロチオキサンソン、2,4−ジエチルチオキサンソン、2,4−ジイソプロピルチオキサンソンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどがあげられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマー等のベースポリマー100重量部に対して、例えば0.05〜20重量部程度である。   The radiation curable pressure-sensitive adhesive preferably contains a photopolymerization initiator when cured by ultraviolet rays or the like. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α′-dimethylacetophenone, 2-methyl-2-hydroxypropio Α-ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalenesulfo D Aromatic sulfonyl chloride compounds such as luchloride; Photoactive oxime compounds such as 1-phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone compounds such as -4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2 Thioxanthone compounds such as 1,4-diethylthioxanthone and 2,4-diisopropylthioxanthone; camphorquinone; halogenated ketone; acyl phosphinoxide; acyl phosphonate. The compounding quantity of a photoinitiator is about 0.05-20 weight part with respect to 100 weight part of base polymers, such as an acryl-type polymer which comprises an adhesive.

なお、放射線照射の際に、酸素による硬化阻害が起こる場合は、放射線硬化型の粘着剤層1bの表面よりなんらかの方法で酸素(空気)を遮断するのが望ましい。例えば、上記粘着剤層1bの表面をセパレータで被覆する方法や、窒素ガス雰囲気中で紫外線等の放射線の照射を行う方法等が挙げられる。   In addition, when curing inhibition by oxygen occurs during irradiation, it is desirable to block oxygen (air) from the surface of the radiation curable pressure-sensitive adhesive layer 1b by some method. For example, a method of covering the surface of the pressure-sensitive adhesive layer 1b with a separator, a method of irradiating radiation such as ultraviolet rays in a nitrogen gas atmosphere, and the like can be mentioned.

なお、粘着剤層1bには、本発明の効果等を損なわない範囲で、各種添加剤(例えば、着色剤、増粘剤、増量剤、充填剤、粘着付与剤、可塑剤、老化防止剤、酸化防止剤、界面活性剤、架橋剤等)が含まれていてもよい。   In the pressure-sensitive adhesive layer 1b, various additives (for example, a colorant, a thickener, a bulking agent, a filler, a tackifier, a plasticizer, an antiaging agent, Antioxidants, surfactants, crosslinking agents, etc.) may be included.

粘着剤層1bの厚さは特に限定されないが、チップ切断面の欠け防止、アンダーフィル材2の固定保持の両立性等の観点から1〜80μm程度であるのが好ましい。好ましくは2〜50μm、さらには好ましくは5〜35μmである。   The thickness of the pressure-sensitive adhesive layer 1 b is not particularly limited, but is preferably about 1 to 80 μm from the viewpoint of preventing chipping of the chip cut surface and compatibility of fixing and holding the underfill material 2. Preferably it is 2-50 micrometers, More preferably, it is 5-35 micrometers.

(アンダーフィル材)
本実施形態におけるアンダーフィル材2は、表面実装された半導体素子と被着体との間の空間を充填する封止用フィルムとして用いることができる。アンダーフィル材の構成材料としては、熱可塑性樹脂と熱硬化性樹脂とを併用したものが挙げられる。又、熱可塑性樹脂や熱硬化性樹脂単独でも使用可能である。
(Underfill material)
The underfill material 2 in the present embodiment can be used as a sealing film that fills a space between a surface-mounted semiconductor element and an adherend. As a constituent material of the underfill material, a combination of a thermoplastic resin and a thermosetting resin can be used. A thermoplastic resin or a thermosetting resin alone can also be used.

前記熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6−ナイロンや6,6−ナイロン等のポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBT等の飽和ポリエステル樹脂、ポリアミドイミド樹脂、又はフッ素樹脂等が挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。これらの熱可塑性樹脂のうち、イオン性不純物が少なく耐熱性が高く、半導体素子の信頼性を確保できるアクリル樹脂が特に好ましい。   Examples of the thermoplastic resin include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, heat Examples thereof include plastic polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. These thermoplastic resins can be used alone or in combination of two or more. Of these thermoplastic resins, an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor element is particularly preferable.

前記アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4〜18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体等が挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、イソブチル基、アミル基、イソアミル基、へキシル基、へプチル基、シクロヘキシル基、2−エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基等が挙げられる。   The acrylic resin is not particularly limited, and includes one or two or more esters of acrylic acid or methacrylic acid having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms. Examples include polymers as components. Examples of the alkyl group include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2 -Ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, dodecyl group and the like.

また、前記重合体を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸等の様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸等の様な酸無水物モノマー、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸6−ヒドロキシヘキシル、(メタ)アクリル酸8−ヒドロキシオクチル、(メタ)アクリル酸10−ヒドロキシデシル、(メタ)アクリル酸12−ヒドロキシラウリル若しくは(4−ヒドロキシメチルシクロヘキシル)−メチルアクリレート等の様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸等の様なスルホン酸基含有モノマー、又は2−ヒドロキシエチルアクリロイルホスフェート等の様な燐酸基含有モノマーが挙げられる。   In addition, the other monomer forming the polymer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid. Carboxyl group-containing monomers such as acid anhydride monomers such as maleic anhydride or itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4- (meth) acrylic acid 4- Hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl) -Methyla Hydroxyl group-containing monomers such as relate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate or (meth) Examples thereof include sulfonic acid group-containing monomers such as acryloyloxynaphthalene sulfonic acid, and phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate.

前記熱硬化性樹脂としては、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、又は熱硬化性ポリイミド樹脂等が挙げられる。これらの樹脂は、単独で又は2種以上を併用して用いることができる。特に、半導体素子を腐食させるイオン性不純物等の含有が少ないエポキシ樹脂が好ましい。また、エポキシ樹脂の硬化剤としてはフェノール樹脂が好ましい。   Examples of the thermosetting resin include phenol resin, amino resin, unsaturated polyester resin, epoxy resin, polyurethane resin, silicone resin, and thermosetting polyimide resin. These resins can be used alone or in combination of two or more. In particular, an epoxy resin containing a small amount of ionic impurities or the like that corrode semiconductor elements is preferable. Moreover, as a hardening | curing agent of an epoxy resin, a phenol resin is preferable.

前記エポキシ樹脂は、接着剤組成物として一般に用いられるものであれば特に限定は無く、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型等の二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型等のエポキシ樹脂が用いられる。これらは単独で、又は2種以上を併用して用いることができる。これらのエポキシ樹脂のうちノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスヒドロキシフェニルメタン型樹脂又はテトラフェニロールエタン型エポキシ樹脂が特に好ましい。これらのエポキシ樹脂は、硬化剤としてのフェノール樹脂との反応性に富み、耐熱性等に優れるからである。   The epoxy resin is not particularly limited as long as it is generally used as an adhesive composition, for example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type. Biphenyl type, naphthalene type, fluorene type, phenol novolak type, orthocresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type, etc., bifunctional epoxy resin or polyfunctional epoxy resin, or hydantoin type, trisglycidyl isocyanurate Type or glycidylamine type epoxy resin is used. These can be used alone or in combination of two or more. Of these epoxy resins, novolac type epoxy resins, biphenyl type epoxy resins, trishydroxyphenylmethane type resins or tetraphenylolethane type epoxy resins are particularly preferred. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance and the like.

さらに、前記フェノール樹脂は、前記エポキシ樹脂の硬化剤として作用するものであり、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert−ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレン等のポリオキシスチレン等が挙げられる。これらは単独で、又は2種以上を併用して用いることができる。これらのフェノール樹脂のうちフェノールノボラック樹脂、フェノールアラルキル樹脂が特に好ましい。半導体装置の接続信頼性を向上させることができるからである。   Further, the phenol resin acts as a curing agent for the epoxy resin, for example, a novolac type phenol resin such as a phenol novolac resin, a phenol aralkyl resin, a cresol novolac resin, a tert-butylphenol novolac resin, a nonylphenol novolac resin, Examples include resol-type phenolic resins and polyoxystyrenes such as polyparaoxystyrene. These can be used alone or in combination of two or more. Of these phenol resins, phenol novolac resins and phenol aralkyl resins are particularly preferred. This is because the connection reliability of the semiconductor device can be improved.

前記エポキシ樹脂とフェノール樹脂の配合割合は、例えば、前記エポキシ樹脂成分中のエポキシ基1当量当たりフェノール樹脂中の水酸基が0.5〜2.0当量になるように配合することが好適である。より好適なのは、0.8〜1.2当量である。すなわち、両者の配合割合が前記範囲を外れると、十分な硬化反応が進まず、エポキシ樹脂硬化物の特性が劣化し易くなるからである。   The mixing ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured epoxy resin are likely to deteriorate.

なお、本発明においては、エポキシ樹脂、フェノール樹脂及びアクリル樹脂を用いたアンダーフィル材が特に好ましい。これらの樹脂は、イオン性不純物が少なく耐熱性が高いので、半導体素子の信頼性を確保できる。この場合の配合比は、アクリル樹脂成分100重量部に対して、エポキシ樹脂とフェノール樹脂の混合量が10〜200重量部である。   In the present invention, an underfill material using an epoxy resin, a phenol resin and an acrylic resin is particularly preferable. Since these resins have few ionic impurities and high heat resistance, the reliability of the semiconductor element can be ensured. In this case, the mixing ratio of the epoxy resin and the phenol resin is 10 to 200 parts by weight with respect to 100 parts by weight of the acrylic resin component.

エポキシ樹脂とフェノール樹脂の熱硬化促進触媒としては、特に制限されず、公知の熱硬化促進触媒の中から適宜選択して用いることができる。熱硬化促進触媒は単独で又は2種以上を組み合わせて用いることができる。熱硬化促進触媒としては、例えば、アミン系硬化促進剤、リン系硬化促進剤、イミダゾール系硬化促進剤、ホウ素系硬化促進剤、リン−ホウ素系硬化促進剤などを用いることができる。   The thermosetting acceleration catalyst for epoxy resin and phenol resin is not particularly limited, and can be appropriately selected from known thermosetting acceleration catalysts. A thermosetting acceleration | stimulation catalyst can be used individually or in combination of 2 or more types. As the thermosetting acceleration catalyst, for example, an amine curing accelerator, a phosphorus curing accelerator, an imidazole curing accelerator, a boron curing accelerator, a phosphorus-boron curing accelerator, or the like can be used.

アンダーフィル材2には、半田バンプの表面の酸化膜を除去して半導体素子の実装を容易にするために、フラックスを添加してもよい。フラックスとしては特に限定されず、従来公知のフラックス作用を有する化合物を用いることができ、例えば、ジフェノール酸、アジピン酸、アセチルサリチル酸、安息香酸、ベンジル酸、アゼライン酸、ベンジル安息香酸、マロン酸、2,2−ビス(ヒドロキシメチル)プロピオン酸、サリチル酸、o−メトキシ安息香酸、m−ヒドロキシ安息香酸、コハク酸、2,6−ジメトキシメチルパラクレゾール、安息香酸ヒドラジド、カルボヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、サリチル酸ヒドラジド、イミノジ酢酸ジヒドラジド、イタコン酸ジヒドラジド、クエン酸トリヒドラジド、チオカルボヒドラジド、ベンゾフェノンヒドラゾン、4,4’−オキシビスベンゼンスルホニルヒドラジド及びアジピン酸ジヒドラジド等が挙げられる。フラックスの添加量は上記フラックス作用が発揮される程度であればよく、通常、アンダーフィル材に含まれる樹脂成分100重量部に対して0.1〜20重量部程度である。   A flux may be added to the underfill material 2 in order to remove the oxide film on the surface of the solder bump and facilitate mounting of the semiconductor element. The flux is not particularly limited, and a conventionally known compound having a flux action can be used.For example, diphenolic acid, adipic acid, acetylsalicylic acid, benzoic acid, benzylic acid, azelaic acid, benzylbenzoic acid, malonic acid, 2,2-bis (hydroxymethyl) propionic acid, salicylic acid, o-methoxybenzoic acid, m-hydroxybenzoic acid, succinic acid, 2,6-dimethoxymethylparacresol, benzoic hydrazide, carbohydrazide, malonic dihydrazide, succinic acid Acid dihydrazide, glutaric acid dihydrazide, salicylic acid hydrazide, iminodiacetic acid dihydrazide, itaconic acid dihydrazide, citric acid trihydrazide, thiocarbohydrazide, benzophenone hydrazone, 4,4'-oxybisbenzenesulfonylhydrazide and Adipic acid dihydrazide, and the like. The addition amount of the flux is only required to exhibit the above flux effect, and is usually about 0.1 to 20 parts by weight with respect to 100 parts by weight of the resin component contained in the underfill material.

本実施形態では、アンダーフィル材2は、必要に応じて着色しても良い。アンダーフィル材2において、着色により呈している色としては特に制限されないが、例えば、黒色、青色、赤色、緑色などが好ましい。着色に際しては、顔料、染料などの公知の着色剤の中から適宜選択して用いることができる。   In the present embodiment, the underfill material 2 may be colored as necessary. In the underfill material 2, the color exhibited by coloring is not particularly limited. For example, black, blue, red, green, and the like are preferable. In coloring, it can be appropriately selected from known colorants such as pigments and dyes.

本実施形態のアンダーフィル材2を予めある程度架橋をさせておく場合には、作製に際し、重合体の分子鎖末端の官能基等と反応する多官能性化合物を架橋剤として添加させておくのがよい。これにより、高温下での接着特性を向上させ、耐熱性の改善を図ることができる。   When the underfill material 2 of the present embodiment is previously crosslinked to some extent, a polyfunctional compound that reacts with a functional group at the molecular chain end of the polymer is added as a crosslinking agent during the production. Good. Thereby, the adhesive property under high temperature can be improved and heat resistance can be improved.

前記架橋剤としては、特に、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、p−フェニレンジイソシアネート、1,5−ナフタレンジイソシアネート、多価アルコールとジイソシアネートの付加物等のポリイソシアネート化合物がより好ましい。架橋剤の添加量としては、前記の重合体100重量部に対し、通常0.05〜7重量部とするのが好ましい。架橋剤の量が7重量部より多いと、接着力が低下するので好ましくない。その一方、0.05重量部より少ないと、凝集力が不足するので好ましくない。また、この様なポリイソシアネート化合物と共に、必要に応じて、エポキシ樹脂等の他の多官能性化合物を一緒に含ませるようにしてもよい。   As the crosslinking agent, polyisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, p-phenylene diisocyanate, 1,5-naphthalene diisocyanate, an adduct of polyhydric alcohol and diisocyanate are more preferable. The addition amount of the crosslinking agent is usually preferably 0.05 to 7 parts by weight with respect to 100 parts by weight of the polymer. When the amount of the cross-linking agent is more than 7 parts by weight, the adhesive force is lowered, which is not preferable. On the other hand, if it is less than 0.05 parts by weight, the cohesive force is insufficient, which is not preferable. Moreover, you may make it include other polyfunctional compounds, such as an epoxy resin, together with such a polyisocyanate compound as needed.

また、アンダーフィル材2には、無機充填剤を適宜配合することができる。無機充填剤の配合は、導電性の付与や熱伝導性の向上、貯蔵弾性率の調節等を可能にする。   The underfill material 2 can be appropriately mixed with an inorganic filler. The blending of the inorganic filler makes it possible to impart conductivity, improve thermal conductivity, adjust the storage elastic modulus, and the like.

前記無機充填剤としては、例えば、シリカ、クレー、石膏、炭酸カルシウム、硫酸バリウム、酸化アルミナ、酸化ベリリウム、炭化珪素、窒化珪素等のセラミック類、アルミニウム、銅、銀、金、ニッケル、クロム、鉛、錫、亜鉛、パラジウム、半田等の金属、又は合金類、その他カーボン等からなる種々の無機粉末が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。なかでも、シリカ、特に溶融シリカが好適に用いられる。   Examples of the inorganic filler include silica, clay, gypsum, calcium carbonate, barium sulfate, alumina, beryllium oxide, silicon carbide, silicon nitride, and other ceramics, aluminum, copper, silver, gold, nickel, chromium, lead. And various inorganic powders made of metals such as tin, zinc, palladium, solder, or alloys, and other carbons. These can be used alone or in combination of two or more. Among these, silica, particularly fused silica is preferably used.

無機充填剤の平均粒径は特に限定されないものの、0.005〜10μmの範囲内であることが好ましく、0.01〜5μmの範囲内であることがより好ましく、さらに好ましくは0.1〜2.0μmである。無機充填剤の平均粒径が0.005μm未満であると、アンダーフィル材の可とう性が低下する原因となる。その一方、前記平均粒径が10μmを超えると、アンダーフィル材が封止するギャップに対して粒径が大きく封止性が低下する要因となる。なお、本発明においては、平均粒径が相互に異なる無機充填剤同士を組み合わせて使用してもよい。また、平均粒径は、光度式の粒度分布計(HORIBA製、装置名;LA−910)により求めた値である。   Although the average particle diameter of the inorganic filler is not particularly limited, it is preferably in the range of 0.005 to 10 μm, more preferably in the range of 0.01 to 5 μm, and still more preferably 0.1 to 2. 0.0 μm. When the average particle size of the inorganic filler is less than 0.005 μm, the flexibility of the underfill material is reduced. On the other hand, when the average particle size exceeds 10 μm, the particle size is large with respect to the gap sealed by the underfill material, which causes a decrease in sealing performance. In the present invention, inorganic fillers having different average particle sizes may be used in combination. The average particle size is a value determined by a photometric particle size distribution meter (manufactured by HORIBA, apparatus name: LA-910).

前記無機充填剤の配合量は、有機樹脂成分100重量部に対し10〜400重量部であることが好ましく、50〜250重量部がより好ましい。無機充填剤の配合量が10重量部未満であると、貯蔵弾性率が低下しパッケージの応力信頼性が大きく損なわれる場合がある。一方、400重量部を超えると、アンダーフィル材2の流動性が低下し基板や半導体素子の凹凸に十分に埋まり込まずにボイドやクラックの原因となる場合がある。   The blending amount of the inorganic filler is preferably 10 to 400 parts by weight, more preferably 50 to 250 parts by weight with respect to 100 parts by weight of the organic resin component. If the blending amount of the inorganic filler is less than 10 parts by weight, the storage elastic modulus may be lowered and the stress reliability of the package may be greatly impaired. On the other hand, if it exceeds 400 parts by weight, the fluidity of the underfill material 2 may be reduced, and may not be sufficiently embedded in the irregularities of the substrate or semiconductor element, causing voids or cracks.

なお、アンダーフィル材2には、前記無機充填剤以外に、必要に応じて他の添加剤を適宜に配合することができる。他の添加剤としては、例えば難燃剤、シランカップリング剤又はイオントラップ剤等が挙げられる。前記難燃剤としては、例えば、三酸化アンチモン、五酸化アンチモン、臭素化エポキシ樹脂等が挙げられる。これらは、単独で、又は2種以上を併用して用いることができる。前記シランカップリング剤としては、例えば、β−(3、4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン等が挙げられる。これらの化合物は、単独で又は2種以上を併用して用いることができる。前記イオントラップ剤としては、例えばハイドロタルサイト類、水酸化ビスマス等が挙げられる。これらは、単独で又は2種以上を併用して用いることができる。   In addition to the said inorganic filler, other additives can be suitably mix | blended with the underfill material 2 as needed. Examples of other additives include flame retardants, silane coupling agents, ion trapping agents, and the like. Examples of the flame retardant include antimony trioxide, antimony pentoxide, brominated epoxy resin, and the like. These can be used alone or in combination of two or more. Examples of the silane coupling agent include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and the like. These compounds can be used alone or in combination of two or more. Examples of the ion trapping agent include hydrotalcites and bismuth hydroxide. These can be used alone or in combination of two or more.

本実施形態において、熱硬化前の上記アンダーフィル材2の100〜200℃における最低溶融粘度は、100Pa・s以上20000Pa・s以下であることが好ましく、1000Pa・s以上10000Pa・s以下であることがより好ましい。最低溶融粘度を上記範囲とすることにより、接続部材4(図2(a)参照)のアンダーフィル材2への進入を容易にすることができる。また、半導体素子5の電気的接続の際のボイドの発生、及び半導体素子5と被着体6との間の空間からのアンダーフィル材2のはみ出しを防止することができる(図2(e)参照)。   In this embodiment, the minimum melt viscosity at 100 to 200 ° C. of the underfill material 2 before thermosetting is preferably 100 Pa · s or more and 20000 Pa · s or less, and is 1000 Pa · s or more and 10,000 Pa · s or less. Is more preferable. By setting the minimum melt viscosity within the above range, the connection member 4 (see FIG. 2A) can easily enter the underfill material 2. In addition, generation of voids during electrical connection of the semiconductor element 5 and protrusion of the underfill material 2 from the space between the semiconductor element 5 and the adherend 6 can be prevented (FIG. 2E). reference).

また、熱硬化前の上記アンダーフィル材2の23℃における粘度は、0.01MPa・s以上100MPa・s以下であることが好ましく、0.1MPa・s以上10MPa・s以下であることがより好ましい。熱硬化前のアンダーフィル材が上記範囲の粘度を有することで、ダイシングの際の半導体ウェハ3(図2(b)参照)の保持性や作業の際の取り扱い性を向上させることができる。なお、粘度の測定は、最低溶融粘度の測定法に準じて行うことができる。   Further, the viscosity at 23 ° C. of the underfill material 2 before thermosetting is preferably 0.01 MPa · s or more and 100 MPa · s or less, and more preferably 0.1 MPa · s or more and 10 MPa · s or less. . Since the underfill material before thermosetting has a viscosity in the above range, the holding property of the semiconductor wafer 3 (see FIG. 2B) during dicing and the handleability during work can be improved. In addition, the measurement of a viscosity can be performed according to the measuring method of minimum melt viscosity.

さらに、熱硬化前の上記アンダーフィル材2の温度23℃、湿度70%の条件下における吸水率は、1重量%以下であることが好ましく、0.5重量%以下であることがより好ましい。アンダーフィル材2が上記のような吸水率を有することにより、アンダーフィル材2への水分の吸収が抑制され、半導体素子5の実装時のボイドの発生をより効率的に抑制することができる。なお、上記吸水率の下限は小さいほど好ましく、実質的に0重量%が好ましく、0重量%であることがより好ましい。   Further, the water absorption rate of the underfill material 2 before thermosetting under the conditions of a temperature of 23 ° C. and a humidity of 70% is preferably 1% by weight or less, and more preferably 0.5% by weight or less. When the underfill material 2 has a water absorption rate as described above, absorption of moisture into the underfill material 2 is suppressed, and generation of voids when the semiconductor element 5 is mounted can be more efficiently suppressed. The lower limit of the water absorption rate is preferably as small as possible, substantially 0% by weight is preferable, and 0% by weight is more preferable.

アンダーフィル材2の厚さ(複層の場合は総厚)は特に限定されないものの、アンダーフィル材2の強度や半導体素子5と被着体6との間の空間の充填性を考慮すると10μm以上100μm以下程度であってもよい。なお、アンダーフィル材2の厚さは、半導体素子5と被着体6との間のギャップや接続部材の高さを考慮して適宜設定すればよい。   Although the thickness of the underfill material 2 (total thickness in the case of multiple layers) is not particularly limited, considering the strength of the underfill material 2 and the filling property of the space between the semiconductor element 5 and the adherend 6, it is 10 μm or more. It may be about 100 μm or less. Note that the thickness of the underfill material 2 may be appropriately set in consideration of the gap between the semiconductor element 5 and the adherend 6 and the height of the connection member.

封止シート10のアンダーフィル材2は、セパレータにより保護されていることが好ましい(図示せず)。セパレータは、実用に供するまでアンダーフィル材2を保護する保護材としての機能を有している。セパレータは封止シートのアンダーフィル材2上に半導体ウェハ3を貼着する際に剥がされる。セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤等の剥離剤により表面コートされたプラスチックフィルムや紙等も使用可能である。   The underfill material 2 of the sealing sheet 10 is preferably protected by a separator (not shown). The separator has a function as a protective material that protects the underfill material 2 until it is practically used. The separator is peeled off when the semiconductor wafer 3 is stuck on the underfill material 2 of the sealing sheet. As the separator, a plastic film or paper surface-coated with a release agent such as polyethylene terephthalate (PET), polyethylene, polypropylene, a fluorine release agent, or a long-chain alkyl acrylate release agent can be used.

(封止シートの製造方法)
本実施の形態に係る封止シート10は、例えばダイシングテープ1及びアンダーフィル材2を別々に作製しておき、最後にこれらを貼り合わせることにより作成することができる。具体的には、以下のような手順に従って作製することができる。
(Method for producing sealing sheet)
The encapsulating sheet 10 according to the present embodiment can be produced, for example, by preparing the dicing tape 1 and the underfill material 2 separately and finally bonding them together. Specifically, it can be produced according to the following procedure.

まず、基材1aは、従来公知の製膜方法により製膜することができる。当該製膜方法としては、例えばカレンダー製膜法、有機溶媒中でのキャスティング法、密閉系でのインフレーション押出法、Tダイ押出法、共押出し法、ドライラミネート法等が例示できる。   First, the base material 1a can be formed by a conventionally known film forming method. Examples of the film forming method include a calendar film forming method, a casting method in an organic solvent, an inflation extrusion method in a closed system, a T-die extrusion method, a co-extrusion method, and a dry lamination method.

次に、粘着剤層形成用の粘着剤組成物を調製する。粘着剤組成物には、粘着剤層の項で説明したような樹脂や添加物等が配合されている。調製した粘着剤組成物を基材1a上に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ(必要に応じて加熱架橋させて)、粘着剤層1bを形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度80〜150℃、乾燥時間0.5〜5分間の範囲内で行われる。また、セパレータ上に粘着剤組成物を塗布して塗布膜を形成した後、上記乾燥条件で塗布膜を乾燥させて粘着剤層1bを形成してもよい。その後、基材1a上に粘着剤層1bをセパレータと共に貼り合わせる。これにより、基材1a及び粘着剤層1bを備えるダイシングテープ1が作製される。   Next, a pressure-sensitive adhesive composition for forming a pressure-sensitive adhesive layer is prepared. Resin, additive, etc. which were demonstrated by the term of the adhesive layer are mix | blended with the adhesive composition. After the prepared pressure-sensitive adhesive composition is applied on the substrate 1a to form a coating film, the coating film is dried under predetermined conditions (heat-crosslinked as necessary) to form the pressure-sensitive adhesive layer 1b. . It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. As drying conditions, for example, the drying temperature is 80 to 150 ° C. and the drying time is 0.5 to 5 minutes. Moreover, after apply | coating an adhesive composition on a separator and forming a coating film, the coating film may be dried on the said dry conditions, and the adhesive layer 1b may be formed. Then, the adhesive layer 1b is bonded together with a separator on the base material 1a. Thereby, the dicing tape 1 provided with the base material 1a and the adhesive layer 1b is produced.

アンダーフィル材2は、例えば、以下のようにして作製される。まず、アンダーフィル材2の形成材料である接着剤組成物を調製する。当該接着剤組成物には、アンダーフィル材の項で説明した通り、熱可塑性成分やエポキシ樹脂、各種の添加剤等が配合されている。   The underfill material 2 is produced as follows, for example. First, an adhesive composition that is a material for forming the underfill material 2 is prepared. As described in the section of the underfill material, the adhesive composition contains a thermoplastic component, an epoxy resin, various additives, and the like.

次に、調製した接着剤組成物を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させ、アンダーフィル材を形成する。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度70〜160℃、乾燥時間1〜5分間の範囲内で行われる。また、セパレータ上に接着剤組成物を塗布して塗布膜を形成した後、上記乾燥条件で塗布膜を乾燥させてアンダーフィル材を形成してもよい。その後、基材セパレータ上にアンダーフィル材をセパレータと共に貼り合わせる。   Next, after applying the prepared adhesive composition on the base separator so as to have a predetermined thickness to form a coating film, the coating film is dried under predetermined conditions to form an underfill material. It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. As drying conditions, for example, the drying temperature is 70 to 160 ° C. and the drying time is 1 to 5 minutes. Moreover, after apply | coating an adhesive composition on a separator and forming a coating film, an underfill material may be formed by drying a coating film on the said drying conditions. Then, an underfill material is bonded together with a separator on a base material separator.

続いて、ダイシングテープ1及びアンダーフィル材2からそれぞれセパレータを剥離し、アンダーフィル材と粘着剤層とが貼り合わせ面となる様にして両者を貼り合わせる。貼り合わせは、例えば圧着により行うことができる。このとき、ラミネート温度は特に限定されず、例えば30〜100℃が好ましく、40〜80℃がより好ましい。また、線圧は特に限定されず、例えば0.98〜196N/cmが好ましく、9.8〜98N/cmがより好ましい。次に、アンダーフィル材上の基材セパレータを剥離し、本実施の形態に係る封止シートが得られる。   Subsequently, the separator is peeled off from each of the dicing tape 1 and the underfill material 2, and both are bonded so that the underfill material and the pressure-sensitive adhesive layer become a bonding surface. Bonding can be performed by, for example, pressure bonding. At this time, the lamination temperature is not particularly limited, and for example, 30 to 100 ° C is preferable, and 40 to 80 ° C is more preferable. Further, the linear pressure is not particularly limited, and for example, 0.98 to 196 N / cm is preferable, and 9.8 to 98 N / cm is more preferable. Next, the base material separator on the underfill material is peeled off, and the sealing sheet according to the present embodiment is obtained.

[貼合せ工程]
貼合せ工程では、半導体ウェハ3の接続部材4が形成された回路面3aと上記封止シート10のアンダーフィル材2とを1000Pa以下の減圧下で貼り合わせる(図2(a)参照)。
[Lamination process]
In the bonding step, the circuit surface 3a on which the connecting member 4 of the semiconductor wafer 3 is formed and the underfill material 2 of the sealing sheet 10 are bonded under reduced pressure of 1000 Pa or less (see FIG. 2A).

(半導体ウェハ)
半導体ウェハ3の回路面3aには、複数の接続部材4が形成されている(図2(a)参照)。バンプや導電材等の接続部材の材質としては、特に限定されず、例えば、錫−鉛系金属材、錫−銀系金属材、錫−銀−銅系金属材、錫−亜鉛系金属材、錫−亜鉛−ビスマス系金属材等の半田類(合金)や、金系金属材、銅系金属材などが挙げられる。接続部材の高さも用途に応じて定められ、一般的には15〜100μm程度である。もちろん、半導体ウェハ3における個々の接続部材の高さは同一でも異なっていてもよい。
(Semiconductor wafer)
A plurality of connection members 4 are formed on the circuit surface 3a of the semiconductor wafer 3 (see FIG. 2A). The material of the connection member such as a bump or a conductive material is not particularly limited. For example, a tin-lead metal material, a tin-silver metal material, a tin-silver-copper metal material, a tin-zinc metal material, Examples thereof include solders (alloys) such as a tin-zinc-bismuth metal material, a gold metal material, and a copper metal material. The height of the connecting member is also determined according to the application, and is generally about 15 to 100 μm. Of course, the height of each connection member in the semiconductor wafer 3 may be the same or different.

本実施形態に係る半導体装置の製造方法において、アンダーフィル材の厚さとしては、半導体ウェハ表面に形成された接続部材の高さX(μm)と前記アンダーフィル材の厚さY(μm)とが、下記の関係を満たすことが好ましい。
0.5≦Y/X≦2
In the method for manufacturing a semiconductor device according to the present embodiment, the thickness of the underfill material includes a height X (μm) of the connecting member formed on the surface of the semiconductor wafer and a thickness Y (μm) of the underfill material. However, it is preferable to satisfy | fill the following relationship.
0.5 ≦ Y / X ≦ 2

前記接続部材の高さX(μm)と前記硬化フィルムの厚さY(μm)とが上記関係を満たすことにより、半導体素子と被着体との間の空間を十分に充填することができると共に、当該空間からのアンダーフィル材の過剰のはみ出しを防止することができ、アンダーフィル材による半導体素子の汚染等を防止することができる。なお、各接続部材の高さが異なる場合は、最も高い接続部材の高さを基準とする。   When the height X (μm) of the connecting member and the thickness Y (μm) of the cured film satisfy the above relationship, the space between the semiconductor element and the adherend can be sufficiently filled. Further, excessive protrusion of the underfill material from the space can be prevented, and contamination of the semiconductor element by the underfill material can be prevented. In addition, when the height of each connection member differs, the height of the highest connection member is used as a reference.

(貼り合わせ)
図2(a)に示すように、まず、封止シート10のアンダーフィル材2上に任意に設けられたセパレータを適宜に剥離し、前記半導体ウェハ3の接続部材4が形成された回路面3aとアンダーフィル材2とを対向させ、前記アンダーフィル材2と前記半導体ウェハ3とを貼り合わせる(マウント工程)。
(Lamination)
As shown in FIG. 2 (a), first, a separator arbitrarily provided on the underfill material 2 of the sealing sheet 10 is appropriately peeled off, and the circuit surface 3a on which the connecting member 4 of the semiconductor wafer 3 is formed. And the underfill material 2 are opposed to each other, and the underfill material 2 and the semiconductor wafer 3 are bonded together (mounting process).

貼り合わせの方法は特に限定されないが、圧着による方法が好ましい。圧着は通常、圧着ロール等の公知の押圧手段により、好ましくは0.1〜1MPa、より好ましくは0.3〜0.7MPaの圧力を負荷して押圧しながら行われる。この際、40〜100℃程度に加熱しながら圧着させてもよい。   The method of bonding is not particularly limited, but a method by pressure bonding is preferable. The crimping is usually performed by a known pressing means such as a crimping roll while applying a pressure of 0.1 to 1 MPa, more preferably 0.3 to 0.7 MPa. Under the present circumstances, you may make it press-fit, heating at about 40-100 degreeC.

貼り合わせの方法は特に限定されないが、圧着による方法が好ましい。圧着は通常、圧着ロール等の公知の押圧手段により、好ましくは0.1〜1MPa、より好ましくは0.2〜0.7MPaの圧力を負荷して押圧しながら行われる。この際、40〜100℃程度に加熱しながら圧着させてもよい。     The method of bonding is not particularly limited, but a method by pressure bonding is preferable. The crimping is usually performed by a known pressing means such as a crimping roll while applying a pressure of 0.1 to 1 MPa, more preferably 0.2 to 0.7 MPa. Under the present circumstances, you may make it press-fit, heating at about 40-100 degreeC.

本実施形態では、半導体ウェハとアンダーフィル材との貼り合わせを1000Pa以下の減圧下で行う。減圧条件の上限は、好ましくは500Pa以下、より好ましくは300Pa以下である。なお、減圧条件の下限は特に限定されないものの、生産性の点から10Pa以上であればよい。所定の減圧条件下で貼り合わせを行うことにより、半導体ウェハとアンダーフィル材との界面での気泡を大幅に低減して密着性を高めることができ、これにより上記界面でのボイドの発生を抑制することができる。その結果、半導体ウェハと被着体との接続信頼性に優れる半導体装置を効率良く製造することができる。   In this embodiment, the semiconductor wafer and the underfill material are bonded together under a reduced pressure of 1000 Pa or less. The upper limit of the decompression condition is preferably 500 Pa or less, more preferably 300 Pa or less. In addition, although the minimum of pressure reduction conditions is not specifically limited, What is necessary is just 10 Pa or more from the point of productivity. By bonding together under the specified decompression conditions, it is possible to significantly reduce bubbles at the interface between the semiconductor wafer and the underfill material, thereby improving adhesion, thereby suppressing the generation of voids at the interface. can do. As a result, a semiconductor device having excellent connection reliability between the semiconductor wafer and the adherend can be efficiently manufactured.

[研削工程]
研削工程では、上記半導体ウェハ3の回路面3aとは反対側の面(すなわち、裏面)3bを研削する(図2(b)参照)。半導体ウェハ3の裏面研削に用いる薄型加工機としては特に限定されず、例えば研削機(バックグラインダー)、研磨パッド等を例示できる。また、エッチング等の化学的方法にて裏面研削を行ってもよい。裏面研削は、半導体ウェハが所望の厚さ(例えば、700〜25μm)になるまで行われる。
[Grinding process]
In the grinding step, the surface (that is, the back surface) 3b opposite to the circuit surface 3a of the semiconductor wafer 3 is ground (see FIG. 2B). The thin processing machine used for back surface grinding of the semiconductor wafer 3 is not particularly limited, and examples thereof include a grinding machine (back grinder) and a polishing pad. Further, the back surface grinding may be performed by a chemical method such as etching. The back surface grinding is performed until the semiconductor wafer has a desired thickness (for example, 700 to 25 μm).

[ダイシング工程」
ダイシング工程では、図2(c)に示すように半導体ウェハ3をダイシングしてアンダーフィル材付きの半導体素子5を形成する。ダイシング工程を経ることで、半導体ウェハ3を所定のサイズに切断して個片化(小片化)し、半導体チップ(半導体素子)5を製造する。ここで得られる半導体チップ5は同形状に切断されたアンダーフィル材2と一体になっている。ダイシングは、半導体ウェハ3のアンダーフィル材2を貼り合わせた回路面3aと反対側の面3bから常法に従い行われる。切断箇所の位置合わせは直射光もしくは間接光を用いた画像認識により行うことができる。
[Dicing process]
In the dicing step, as shown in FIG. 2C, the semiconductor wafer 3 is diced to form the semiconductor element 5 with an underfill material. By passing through a dicing process, the semiconductor wafer 3 is cut into a predetermined size and divided into pieces (small pieces), and a semiconductor chip (semiconductor element) 5 is manufactured. The semiconductor chip 5 obtained here is integrated with the underfill material 2 cut into the same shape. Dicing is performed according to a conventional method from the surface 3b opposite to the circuit surface 3a on which the underfill material 2 of the semiconductor wafer 3 is bonded. The alignment of the cut portion can be performed by image recognition using direct light or indirect light.

なお、ダイシング工程に続いて封止シートのエキスパンドを行う場合、該エキスパンドは従来公知のエキスパンド装置を用いて行うことができる。エキスパンド装置は、ダイシングリングを介して封止シートを下方へ押し下げることが可能なドーナッツ状の外リングと、外リングよりも径が小さく封止シートを支持する内リングとを有している。このエキスパンド工程により、後述のピックアップ工程において、隣り合う半導体チップ同士が接触して破損するのを防ぐことが出来る。   In addition, when expanding a sealing sheet following a dicing process, this expansion can be performed using a conventionally well-known expanding apparatus. The expanding device includes a donut-shaped outer ring that can push down the sealing sheet through a dicing ring, and an inner ring that has a smaller diameter than the outer ring and supports the sealing sheet. By this expanding process, it is possible to prevent adjacent semiconductor chips from coming into contact with each other and being damaged in a pickup process described later.

[ピックアップ工程]
封止シートに接着固定された半導体チップ5を回収するために、図2(c)に示すように、アンダーフィル材2付きの半導体チップ5のピックアップを行って、半導体チップ5とアンダーフィル材3との積層体Aをダイシングテープ1より剥離する。
[Pickup process]
In order to collect the semiconductor chip 5 adhered and fixed to the sealing sheet, as shown in FIG. 2C, the semiconductor chip 5 with the underfill material 2 is picked up, and the semiconductor chip 5 and the underfill material 3 are picked up. The laminate A is peeled from the dicing tape 1.

ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、個々の半導体チップを封止シートの基材側からニードルによって突き上げ、突き上げられた半導体チップをピックアップ装置によってピックアップする方法等が挙げられる。なお、ピックアップされた半導体チップ5は、回路面3aに貼り合わされたアンダーフィル材2と一体となって積層体Aを構成している。   The pickup method is not particularly limited, and various conventionally known methods can be employed. For example, a method of pushing up individual semiconductor chips from the base material side of the sealing sheet with a needle and picking up the pushed-up semiconductor chips with a pickup device can be mentioned. The picked-up semiconductor chip 5 constitutes a laminate A integrally with the underfill material 2 bonded to the circuit surface 3a.

ここでピックアップは、粘着剤層1bが紫外線硬化型の場合、該粘着剤層1bに紫外線を照射した後に行う。これにより、粘着剤層1bのアンダーフィル材2に対する粘着力が低下し、半導体チップ5の剥離が容易になる。その結果、半導体チップ5を損傷させることなくピックアップが可能となる。紫外線照射の際の照射強度、照射時間等の条件は特に限定されず、適宜必要に応じて設定すればよい。また、紫外線照射に使用する光源としては、例えば低圧水銀ランプ、低圧高出力ランプ、中圧水銀ランプ、無電極水銀ランプ、キセノン・フラッシュ・ランプ、エキシマ・ランプ、紫外LED等を用いることができる。   Here, when the pressure-sensitive adhesive layer 1b is an ultraviolet curable type, the pickup is performed after the pressure-sensitive adhesive layer 1b is irradiated with ultraviolet rays. Thereby, the adhesive force with respect to the underfill material 2 of the adhesive layer 1b falls, and peeling of the semiconductor chip 5 becomes easy. As a result, the pickup can be performed without damaging the semiconductor chip 5. Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary. Moreover, as a light source used for ultraviolet irradiation, for example, a low-pressure mercury lamp, a low-pressure high-power lamp, a medium-pressure mercury lamp, an electrodeless mercury lamp, a xenon flash lamp, an excimer lamp, an ultraviolet LED, or the like can be used.

[実装工程]
実装工程では、被着体6と半導体素子5の間の空間をアンダーフィル材2で充填しつつ接続部材4を介して半導体素子5と被着体6とを電気的に接続する(図2(d)参照)。具体的には、積層体Aの半導体チップ5を、半導体チップ5の回路面3aが被着体6と対向する形態で、被着体6に常法に従い固定させる。例えば、半導体チップ5に形成されているバンプ(接続部材)4を、被着体6の接続パッドに被着された接合用の導電材7(半田など)に接触させて押圧しながら導電材を溶融させることにより、半導体チップ5と被着体6との電気的接続を確保し、半導体チップ5を被着体6に固定させることができる。半導体チップ5の回路面3aにはアンダーフィル材2が貼り付けられているので、半導体チップ5と被着体6との電気的接続と同時に、半導体チップ5と被着体6との間の空間がアンダーフィル材2により充填されることになる。
[Mounting process]
In the mounting process, the semiconductor element 5 and the adherend 6 are electrically connected via the connecting member 4 while filling the space between the adherend 6 and the semiconductor element 5 with the underfill material 2 (FIG. 2 ( d)). Specifically, the semiconductor chip 5 of the stacked body A is fixed to the adherend 6 according to a conventional method with the circuit surface 3a of the semiconductor chip 5 facing the adherend 6. For example, bumps (connection members) 4 formed on the semiconductor chip 5 are brought into contact with a bonding conductive material 7 (solder or the like) attached to the connection pads of the adherend 6 while pressing the conductive material. By melting, the electrical connection between the semiconductor chip 5 and the adherend 6 can be secured, and the semiconductor chip 5 can be fixed to the adherend 6. Since the underfill material 2 is affixed to the circuit surface 3 a of the semiconductor chip 5, the space between the semiconductor chip 5 and the adherend 6 as well as the electrical connection between the semiconductor chip 5 and the adherend 6. Is filled with the underfill material 2.

一般的に、実装工程における加熱条件としては100〜300℃であり、加圧条件としては0.5〜500Nである。また、実装工程での熱圧着処理を多段階で行ってもよい。例えば、150℃、100Nで10秒間処理した後、300℃、100〜200Nで10秒間処理するという手順を採用することができる。多段階で熱圧着処理を行うことにより、接続部材とパッド間の樹脂を効率よく除去し、より良好な金属間接合を得ることが出来る。   Generally, the heating condition in the mounting process is 100 to 300 ° C., and the pressurizing condition is 0.5 to 500 N. Moreover, you may perform the thermocompression-bonding process in a mounting process in multistep. For example, it is possible to adopt a procedure in which treatment is performed at 150 ° C. and 100 N for 10 seconds and then treatment is performed at 300 ° C. and 100 to 200 N for 10 seconds. By performing thermocompression bonding in multiple stages, the resin between the connection member and the pad can be efficiently removed, and a better metal-to-metal bond can be obtained.

被着体6としては、リードフレームや回路基板(配線回路基板など)等の各種基板、他の半導体素子を用いることができる。基板の材質としては、特に限定されるものではないが、セラミック基板や、プラスチック基板が挙げられる。プラスチック基板としては、例えば、エポキシ基板、ビスマレイミドトリアジン基板、ポリイミド基板、ガラスエポキシ基板等が挙げられる。   As the adherend 6, various substrates such as a lead frame and a circuit board (such as a wiring circuit board), and other semiconductor elements can be used. The material of the substrate is not particularly limited, and examples thereof include a ceramic substrate and a plastic substrate. Examples of the plastic substrate include an epoxy substrate, a bismaleimide triazine substrate, a polyimide substrate, and a glass epoxy substrate.

なお、実装工程では、接続部材及び導電材の一方又は両方を溶融させて、半導体チップ5の接続部材形成面3aのバンプ4と、被着体6の表面の導電材7とを接続させているが、このバンプ4及び導電材7の溶融時の温度としては、通常、260℃程度(例えば、250℃〜300℃)となっている。本実施形態に係る封止シートは、アンダーフィル材2をエポキシ樹脂等により形成することにより、この実装工程における高温にも耐えられる耐熱性を有するものとすることができる。   In the mounting process, one or both of the connection member and the conductive material are melted to connect the bumps 4 on the connection member forming surface 3a of the semiconductor chip 5 and the conductive material 7 on the surface of the adherend 6. However, the temperature at the time of melting of the bumps 4 and the conductive material 7 is usually about 260 ° C. (for example, 250 ° C. to 300 ° C.). The sealing sheet according to the present embodiment can have heat resistance that can withstand high temperatures in the mounting process by forming the underfill material 2 with an epoxy resin or the like.

[アンダーフィル材硬化工程]
半導体素子5と被着体6との電気的接続を行った後は、アンダーフィル材2を加熱により硬化させる。これにより、半導体素子5の表面を保護することができるとともに、半導体素子5と被着体6との間の接続信頼性を確保することができる。アンダーフィル材の硬化のための加熱温度としては特に限定されず、150〜250℃程度であればよい。なお、実装工程の加熱によりアンダーフィル材も併せて硬化する場合、本工程を省略することができる。
[Underfill material curing process]
After the electrical connection between the semiconductor element 5 and the adherend 6 is performed, the underfill material 2 is cured by heating. Thereby, the surface of the semiconductor element 5 can be protected, and the connection reliability between the semiconductor element 5 and the adherend 6 can be ensured. It does not specifically limit as heating temperature for hardening of an underfill material, What is necessary is just about 150-250 degreeC. Note that this step can be omitted when the underfill material is also cured by heating in the mounting step.

[封止工程]
次に、実装された半導体チップ5を備える半導体装置20全体を保護するために封止工程を行ってもよい。封止工程は、封止樹脂を用いて行われる。このときの封止条件としては特に限定されないが、通常、175℃で60秒間〜90秒間の加熱を行うことにより、封止樹脂の熱硬化が行われるが、本発明はこれに限定されず、例えば165℃〜185℃で、数分間キュアすることができる。
[Sealing process]
Next, a sealing step may be performed in order to protect the entire semiconductor device 20 including the mounted semiconductor chip 5. The sealing step is performed using a sealing resin. Although it does not specifically limit as sealing conditions at this time, Usually, the thermosetting of the sealing resin is performed by heating at 175 ° C. for 60 seconds to 90 seconds, but the present invention is not limited thereto, For example, it can be cured at 165 ° C. to 185 ° C. for several minutes.

前記封止樹脂としては、絶縁性を有する樹脂(絶縁樹脂)であれば特に制限されず、公知の封止樹脂等の封止材から適宜選択して用いることができるが、弾性を有する絶縁樹脂がより好ましい。封止樹脂としては、例えば、エポキシ樹脂を含む樹脂組成物等が挙げられる。エポキシ樹脂としては、前記に例示のエポキシ樹脂等が挙げられる。また、エポキシ樹脂を含む樹脂組成物による封止樹脂としては、樹脂成分として、エポキシ樹脂以外に、エポキシ樹脂以外の熱硬化性樹脂(フェノール樹脂など)や、熱可塑性樹脂などが含まれていてもよい。なお、フェノール樹脂としては、エポキシ樹脂の硬化剤としても利用することができ、このようなフェノール樹脂としては、前記に例示のフェノール樹脂などが挙げられる。   The sealing resin is not particularly limited as long as it is an insulating resin (insulating resin), and can be appropriately selected from sealing materials such as known sealing resins. Is more preferable. As sealing resin, the resin composition containing an epoxy resin etc. are mentioned, for example. Examples of the epoxy resin include the epoxy resins exemplified above. Moreover, as a sealing resin by the resin composition containing an epoxy resin, in addition to an epoxy resin, a thermosetting resin other than an epoxy resin (such as a phenol resin) or a thermoplastic resin may be included as a resin component. Good. In addition, as a phenol resin, it can utilize also as a hardening | curing agent of an epoxy resin, As such a phenol resin, the phenol resin illustrated above etc. are mentioned.

[半導体装置]
次に、当該封止シートを用いて得られる半導体装置について図面を参照しつつ説明する(図2(d)参照)。本実施形態に係る半導体装置20では、半導体素子5と被着体6とが、半導体素子5上に形成されたバンプ(接続部材)4及び被着体6上に設けられた導電材7を介して電気的に接続されている。また、半導体素子5と被着体6との間には、その空間を充填するようにアンダーフィル材2が配置されている。半導体装置20は、封止シート10を用いる上記製造方法にて得られるので、半導体素子5とアンダーフィル材2との間においてボイドの発生が抑制されている。従って、半導体素子5表面保護、及び半導体素子5と被着体6との間の空間の充填が十分なレベルとなり、半導体装置20として高い信頼性を発揮することができる。
[Semiconductor device]
Next, a semiconductor device obtained using the sealing sheet will be described with reference to the drawing (see FIG. 2D). In the semiconductor device 20 according to the present embodiment, the semiconductor element 5 and the adherend 6 are connected via the bump (connection member) 4 formed on the semiconductor element 5 and the conductive material 7 provided on the adherend 6. Are electrically connected. An underfill material 2 is disposed between the semiconductor element 5 and the adherend 6 so as to fill the space. Since the semiconductor device 20 is obtained by the above manufacturing method using the sealing sheet 10, generation of voids is suppressed between the semiconductor element 5 and the underfill material 2. Therefore, the surface protection of the semiconductor element 5 and the filling of the space between the semiconductor element 5 and the adherend 6 are at a sufficient level, and the semiconductor device 20 can exhibit high reliability.

以下に、この発明の好適な実施例を例示的に詳しく説明する。但し、この実施例に記載されている材料や配合量等は、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。また、部とあるのは、重量部を意味する。   Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified. The term “parts” means parts by weight.

[実施例1]
(封止シートの作製)
アクリル酸エチル−メチルメタクリレートを主成分とするアクリル酸エステル系ポリマー(商品名「パラクロンW−197CM」根上工業株式会社製):100部に対して、エポキシ樹脂1(商品名「エピコート1004」JER株式会社製):56部、エポキシ樹脂2(商品名「エピコート828」JER株式会社製):19部、フェノール樹脂(商品名「ミレックスXLC−4L」三井化学株式会社製):75部、球状シリカ(商品名「SO−25R」株式会社アドマテックス製):167部、有機酸(商品名「オルトアニス酸」東京化成株式会社製):1.3部、イミダゾール触媒(商品名「2PHZ−PW」四国化成株式会社製):1.3部をメチルエチルケトンに溶解して、固形分濃度が23.6重量%となる接着剤組成物の溶液を調製した。
[Example 1]
(Preparation of sealing sheet)
Acrylic ester polymer based on ethyl acrylate-methyl methacrylate (trade name “Paracron W-197CM” manufactured by Negami Kogyo Co., Ltd.): 100 parts, epoxy resin 1 (trade name “Epicoat 1004” JER stock 56 parts, epoxy resin 2 (trade name “Epicoat 828” manufactured by JER Corporation): 19 parts, phenol resin (trade name “Millex XLC-4L” manufactured by Mitsui Chemicals): 75 parts, spherical silica ( Product name “SO-25R” manufactured by Admatechs Co., Ltd.): 167 parts, organic acid (trade name “Orthoanisic acid” manufactured by Tokyo Chemical Industry Co., Ltd.): 1.3 parts, imidazole catalyst (trade name “2PHZ-PW” Shikoku Chemicals) (Manufactured by Co., Ltd.): A solution of an adhesive composition in which 1.3 parts are dissolved in methyl ethyl ketone and the solid content concentration becomes 23.6% by weight. It was prepared.

この接着剤組成物の溶液を、剥離ライナ(セパレータ)としてシリコーン離型処理した厚さが50μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、130℃で2分間乾燥させることにより、厚さ45μmのアンダーフィル材を作製した。   By applying this adhesive composition solution on a release film made of a polyethylene terephthalate film having a thickness of 50 μm subjected to silicone release treatment as a release liner (separator), and then drying at 130 ° C. for 2 minutes, An underfill material having a thickness of 45 μm was produced.

上記アンダーフィル材をダイシングテープ(商品名「V−8−T」、日東電工株式会社製)の粘着剤層上にハンドローラーを用いて貼り合わせ、封止シートを作製した。   The said underfill material was bonded together on the adhesive layer of the dicing tape (Brand name "V-8-T", Nitto Denko Corporation make) using the hand roller, and the sealing sheet was produced.

(半導体装置の作製)
片面にバンプが形成されている片面バンプ付きシリコンウェハを用意し、この片面バンプ付きシリコンウェハのバンプが形成されている側の面に、作製した封止シートを、アンダーフィル材を貼り合わせ面として貼り合わせた。片面バンプ付きシリコンウェハとしては、以下のものを用いた。また、貼り合わせ条件は以下の通りである。アンダーフィル材の厚さY(=45μm)の接続部材の高さX(=45μm)に対する比(Y/X)は、1であった。
(Fabrication of semiconductor devices)
Prepare a silicon wafer with single-sided bumps with bumps formed on one side, and bond the prepared sealing sheet to the surface on which the bumps of the silicon wafer with single-sided bumps are formed, with an underfill material as the bonding surface Pasted together. As a silicon wafer with a single-sided bump, the following was used. The bonding conditions are as follows. The ratio (Y / X) of the thickness Y (= 45 μm) of the underfill material to the height X (= 45 μm) of the connecting member was 1.

<片面バンプ付きシリコンウェハ>
シリコンウェハの直径:8インチ
シリコンウェハの厚さ:0.2mm(200μm)
バンプの高さ:45μm
バンプのピッチ:50μm
バンプの材質:ハンダ+銅ピラー
<Silicon wafer with single-sided bump>
Silicon wafer diameter: 8 inches Silicon wafer thickness: 0.2 mm (200 μm)
Bump height: 45μm
Bump pitch: 50 μm
Bump material: Solder + Copper pillar

<貼り合わせ条件>
貼り付け装置:商品名「DSA840−WS」日東精機株式会社製
貼り付け速度:5mm/min
貼り付け圧力:0.25MPa
貼り付け時のステージ温度:80℃
貼り付け時の減圧度:150Pa
<Bonding conditions>
Pasting device: Product name “DSA840-WS” manufactured by Nitto Seiki Co., Ltd. Pasting speed: 5 mm / min
Pasting pressure: 0.25 MPa
Stage temperature at the time of pasting: 80 ° C
Decompression degree when pasting: 150 Pa

次に、上記手順に従って片面バンプ付きシリコンウェハと封止シートとを貼り合わせた後、下記条件にて半導体ウェハのダイシングを行った。ダイシングは7.3mm角のチップサイズとなる様にフルカットした。   Next, after bonding the single-sided bumped silicon wafer and the sealing sheet according to the above procedure, the semiconductor wafer was diced under the following conditions. Dicing was fully cut so as to obtain a chip size of 7.3 mm square.

<ダイシング条件>
ダイシング装置:商品名「DFD−6361」ディスコ社製
ダイシングリング:「2−8−1」(ディスコ社製)
ダイシング速度:30mm/sec
ダイシングブレード:
Z1;ディスコ社製「203O−SE 27HCDD」
Z2;ディスコ社製「203O−SE 27HCBB」
ダイシングブレード回転数:
Z1;40,000rpm
Z2;45,000rpm
カット方式:ステップカット
ウェハチップサイズ:7.3mm角
<Dicing conditions>
Dicing machine: Trade name “DFD-6361” manufactured by Disco Corporation Dicing ring: “2-8-1” (manufactured by Disco Corporation)
Dicing speed: 30mm / sec
Dicing blade:
Z1; "203O-SE 27HCDD" manufactured by DISCO
Z2: “203O-SE 27HCBB” manufactured by Disco Corporation
Dicing blade rotation speed:
Z1; 40,000 rpm
Z2; 45,000 rpm
Cut method: Step cut Wafer chip size: 7.3mm square

次に、各封止シートの基材側からニードルによる突き上げ方式で、アンダーフィル材と片面バンプ付き半導体チップとの積層体をピックアップした。ピックアップ条件は下記のとおりである。   Next, the laminated body of the underfill material and the semiconductor chip with single-sided bumps was picked up by a push-up method using a needle from the base material side of each sealing sheet. The pickup conditions are as follows.

<ピックアップ条件>
ピックアップ装置:商品名「SPA−300」株式会社新川社製
ニードル本数:9本
ニードル突き上げ量:500μm(0.5mm)
ニードル突き上げ速度:20mm/秒
ピックアップ時間:1秒
エキスパンド量:3mm
<Pickup conditions>
Pickup device: Brand name “SPA-300” manufactured by Shinkawa Co., Ltd. Number of needles: 9 Needle push-up amount: 500 μm (0.5 mm)
Needle push-up speed: 20 mm / second Pickup time: 1 second Expanding amount: 3 mm

最後に、下記の熱圧着条件により、半導体チップのバンプ形成面とBGA基板とを対向させた状態で半導体チップをBGA基板に熱圧着して半導体チップの実装を行った。これにより、半導体チップがBGA基板に実装された半導体装置を得た。なお、本工程では、熱圧着条件1に続いて熱圧着条件2により熱圧着を行う2段階の処理を行った。   Finally, under the following thermocompression bonding conditions, the semiconductor chip was mounted on the BGA substrate by thermocompression bonding with the bump forming surface of the semiconductor chip facing the BGA substrate. Thus, a semiconductor device in which the semiconductor chip was mounted on the BGA substrate was obtained. In this step, a two-step process of performing thermocompression bonding under thermocompression bonding condition 2 following thermocompression bonding condition 1 was performed.

<熱圧着条件1>
ピックアップ装置:商品名「FCB−3」パナソニック製
加熱温度:150℃
荷重:98N
保持時間:10秒
<Thermocompression condition 1>
Pickup device: Product name “FCB-3” manufactured by Panasonic Heating temperature: 150 ° C.
Load: 98N
Holding time: 10 seconds

<熱圧着条件2>
ピックアップ装置:商品名「FCB−3」パナソニック製
加熱温度:260℃
荷重:98N
保持時間:10秒
<Thermocompression condition 2>
Pickup device: Product name “FCB-3” manufactured by Panasonic Heating temperature: 260 ° C.
Load: 98N
Holding time: 10 seconds

[実施例2]
下記の貼り合わせ条件で半導体ウェハとアンダーフィル材とを貼り合わせたこと以外は、実施例1と同様に半導体装置を作製した。
<貼り合わせ条件>
貼り付け装置:商品名「DSA840−WS」日東精機株式会社製
貼り付け速度:5mm/min
貼り付け圧力:0.25MPa
貼り付け時のステージ温度:80℃
貼り付け時の減圧度:1000Pa
[Example 2]
A semiconductor device was fabricated in the same manner as in Example 1 except that the semiconductor wafer and the underfill material were bonded together under the following bonding conditions.
<Bonding conditions>
Pasting device: Product name “DSA840-WS” manufactured by Nitto Seiki Co., Ltd. Pasting speed: 5 mm / min
Pasting pressure: 0.25 MPa
Stage temperature at the time of pasting: 80 ° C
Decompression degree at the time of pasting: 1000 Pa

[実施例3]
下記の貼り合わせ条件で半導体ウェハとアンダーフィル材とを貼り合わせたこと以外は、実施例1と同様に半導体装置を作製した。
<貼り合わせ条件>
貼り付け装置:商品名「DSA840−WS」日東精機株式会社製
貼り付け速度:5mm/min
貼り付け圧力:0.25MPa
貼り付け時のステージ温度:80℃
貼り付け時の減圧度:100Pa
[Example 3]
A semiconductor device was fabricated in the same manner as in Example 1 except that the semiconductor wafer and the underfill material were bonded together under the following bonding conditions.
<Bonding conditions>
Pasting device: Product name “DSA840-WS” manufactured by Nitto Seiki Co., Ltd. Pasting speed: 5 mm / min
Pasting pressure: 0.25 MPa
Stage temperature at the time of pasting: 80 ° C
Decompression degree when pasting: 100 Pa

[比較例1]
下記の貼り合わせ条件で半導体ウェハとアンダーフィル材とを貼り合わせたこと以外は、実施例1と同様に半導体装置を作製した。
<貼り合わせ条件>
貼り付け装置:商品名「DSA840−WS」日東精機株式会社製
貼り付け速度:5mm/min
貼り付け圧力:0.25MPa
貼り付け時のステージ温度:80℃
貼り付け時の減圧度:1100Pa
[Comparative Example 1]
A semiconductor device was fabricated in the same manner as in Example 1 except that the semiconductor wafer and the underfill material were bonded together under the following bonding conditions.
<Bonding conditions>
Pasting device: Product name “DSA840-WS” manufactured by Nitto Seiki Co., Ltd. Pasting speed: 5 mm / min
Pasting pressure: 0.25 MPa
Stage temperature at the time of pasting: 80 ° C
Decompression degree when pasting: 1100 Pa

[比較例2]
半導体ウェハとアンダーフィル材との貼り合わせの際に減圧しなかった(すなわち、大気圧下で貼り合わせた)こと以外は、実施例1と同様に半導体装置を作製した。
[Comparative Example 2]
A semiconductor device was fabricated in the same manner as in Example 1 except that the pressure was not reduced during the bonding of the semiconductor wafer and the underfill material (that is, bonding was performed under atmospheric pressure).

(最低溶融粘度の測定)
アンダーフィル材(熱硬化前)の最低溶融粘度を測定した。最低溶融粘度の測定は、レオメーター(HAAKE社製、RS−1)を用いて、パラレルプレート法により測定した値である。より詳細には、ギャップ100μm、回転コーン直径20mm、回転速度10s−1、昇温速度10℃/分の条件にて、60℃から200℃の範囲で溶融粘度を測定し、その際に得られる100℃から200℃までの範囲での溶融粘度の最低値を最低溶融粘度とした。結果を表1に示す。
(Measurement of minimum melt viscosity)
The minimum melt viscosity of the underfill material (before thermosetting) was measured. The measurement of the minimum melt viscosity is a value measured by a parallel plate method using a rheometer (manufactured by HAAKE, RS-1). More specifically, the melt viscosity is measured in the range of 60 ° C. to 200 ° C. under the conditions of a gap of 100 μm, a rotating cone diameter of 20 mm, a rotating speed of 10 s −1 , and a heating rate of 10 ° C./min, and is obtained at that time. The lowest melt viscosity in the range from 100 ° C. to 200 ° C. was defined as the lowest melt viscosity. The results are shown in Table 1.

(ダイシング時のチップ飛び評価)
サンプル数を20個とし、ダイシングの際に半導体チップのチップ飛びが発生しなかった場合を「○」とし、チップ飛びが発生した場合を「×」として、チップ飛びの有無を基準として半導体チップの保持性を評価した。結果を表1に示す。
(Evaluation of chip skipping during dicing)
The number of samples is set to 20, and when the chip jump of the semiconductor chip does not occur during dicing, “◯” is given, and when the chip jump occurs, “X” is given. Retention was evaluated. The results are shown in Table 1.

(ピックアップ性評価)
サンプル数を20個とし、ピックアップの際に全てピックアップできた場合を「○」とし、1個でもピックアップできなかった場合を「×」として、ピックアップ性を評価した。結果を表1に示す。
(Pickup evaluation)
The pick-up property was evaluated by setting the number of samples to 20, and “○” when all the samples could be picked up and “×” when one could not be picked up. The results are shown in Table 1.

(ボイドの発生の評価)
ボイドの発生の評価は、実施例及び比較例で作製した半導体装置の半導体チップとアンダーフィル材との間で切断し、切断面を画像認識装置(浜松ホトニクス社製、商品名「C9597−11」)を用いて観察し、アンダーフィル材の面積に対するボイド部分の合計面積の割合を算出することで行った。切断面の観察像におけるアンダーフィル材の面積に対して、ボイド部分の合計面積が0〜5%の場合を「○」、5%超25%以下の場合を「△」、25%超の場合を「×」として評価した。結果を表1に示す。
(Evaluation of void generation)
Evaluation of the generation of voids is performed by cutting between the semiconductor chip and the underfill material of the semiconductor device manufactured in the example and the comparative example, and the cut surface is an image recognition device (product name “C9597-1” manufactured by Hamamatsu Photonics). ) And calculating the ratio of the total area of the void portion to the area of the underfill material. When the total area of the void portion is 0 to 5% of the area of the underfill material in the observation image of the cut surface, “◯”, when over 5% and below 25%, “△”, when over 25% Was evaluated as “×”. The results are shown in Table 1.

Figure 2013127998
Figure 2013127998

表1から分かるように、実施例に係る半導体装置の製造過程では、ダイシング時のチップ飛びが抑制され、良好なピックアップ性を示すとともに、ボイドの発生が抑制されていた。一方、比較例1〜2の半導体装置の製造過程では、チップ飛び及びピックアップ性評価は良好であったものの、ボイドが発生していた。比較例1では減圧条件が1000Paを超えており、また、比較例2では減圧処理を行わなかったことから、半導体ウェハとアンダーフィル材との間の気泡が十分低減されず、最終的にボイドが発生したと考えられる。以上より、半導体装置の製造工程として、半導体ウェハとアンダーフィル材との貼り合わせを1000Pa以下の減圧下で行うことにより、ボイドの発生が抑制された高信頼性の半導体装置を製造することができることが分かる。   As can be seen from Table 1, in the manufacturing process of the semiconductor device according to the example, chip skipping during dicing was suppressed, good pickup performance was exhibited, and generation of voids was suppressed. On the other hand, in the manufacturing process of the semiconductor devices of Comparative Examples 1 and 2, although chip fly and pickup evaluation were good, voids were generated. In Comparative Example 1, the depressurization condition exceeds 1000 Pa, and in Comparative Example 2, since the depressurization treatment was not performed, bubbles between the semiconductor wafer and the underfill material were not sufficiently reduced, and eventually voids were formed. It is thought that it occurred. As described above, as a semiconductor device manufacturing process, by bonding the semiconductor wafer and the underfill material under a reduced pressure of 1000 Pa or less, a highly reliable semiconductor device in which generation of voids is suppressed can be manufactured. I understand.

1 ダイシングテープ
1a 基材
1b 粘着剤層
2 アンダーフィル材
3 半導体ウェハ
3a 半導体ウェハの回路面
3b 半導体ウェハの回路面とは反対側の面
4 バンプ(接続部材)
5 半導体チップ(半導体素子)
6 被着体
7 導通材
10 封止シート
20 半導体装置
DESCRIPTION OF SYMBOLS 1 Dicing tape 1a Base material 1b Adhesive layer 2 Underfill material 3 Semiconductor wafer 3a Circuit surface of a semiconductor wafer 3b Surface opposite to the circuit surface of a semiconductor wafer 4 Bump (connection member)
5 Semiconductor chip (semiconductor element)
6 adherend 7 conductive material 10 sealing sheet 20 semiconductor device

Claims (5)

被着体と、該被着体と電気的に接続された半導体素子と、該被着体と該半導体素子との間の空間を充填するアンダーフィル材を備える半導体装置の製造方法であって、
ダイシングテープと該ダイシングテープ上に積層されたアンダーフィル材とを備える封止シートを準備する準備工程と、
半導体ウェハの接続部材が形成された回路面と上記封止シートのアンダーフィル材とを1000Pa以下の減圧下で貼り合わせる貼合せ工程と、
上記半導体ウェハをダイシングして上記アンダーフィル材付きの半導体素子を形成するダイシング工程と、
上記被着体と上記半導体素子の間の空間を上記アンダーフィル材で充填しつつ上記接続部材を介して上記半導体素子と上記被着体とを電気的に接続する接続工程と
を含む半導体装置の製造方法。
A method for manufacturing a semiconductor device comprising an adherend, a semiconductor element electrically connected to the adherend, and an underfill material that fills a space between the adherend and the semiconductor element,
Preparing a sealing sheet comprising a dicing tape and an underfill material laminated on the dicing tape; and
A bonding step of bonding the circuit surface on which the connecting member of the semiconductor wafer is formed and the underfill material of the sealing sheet under a reduced pressure of 1000 Pa or less;
A dicing step of dicing the semiconductor wafer to form the semiconductor element with the underfill material;
A connection step of electrically connecting the semiconductor element and the adherend through the connection member while filling a space between the adherend and the semiconductor element with the underfill material. Production method.
上記貼合せ工程後の上記半導体ウェハと上記アンダーフィル材との界面に実質的に気泡が存在しない請求項1に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein bubbles are not substantially present at an interface between the semiconductor wafer and the underfill material after the bonding step. 上記接続工程は、上記接続部材と上記被着体とを下記条件(1)の温度α下で接触させる工程と、
上記接触した接続部材を上記被着体に下記条件(2)の温度β下で固定する工程と
を含む請求項1又は2に記載の半導体装置の製造方法。
条件(1):接続部材の融点−100℃≦α<接続部材の融点
条件(2):接続部材の融点≦β≦接続部材の融点+100℃
The connecting step is a step of bringing the connecting member and the adherend into contact with each other under a temperature α of the following condition (1):
The method for manufacturing a semiconductor device according to claim 1, further comprising: fixing the contact member in contact with the adherend at a temperature β of the following condition (2).
Condition (1): melting point of connecting member−100 ° C. ≦ α <melting point of connecting member Condition (2): melting point of connecting member ≦ β ≦ melting point of connecting member + 100 ° C.
熱硬化前の上記アンダーフィル材の100〜200℃における最低溶融粘度は、100Pa・s以上20000Pa・s以下である請求項1〜3のいずれか1項に記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein a minimum melt viscosity at 100 to 200 ° C. of the underfill material before thermosetting is 100 Pa · s or more and 20000 Pa · s or less. 熱硬化前の上記アンダーフィル材の23℃における粘度は、0.01MPa・s以上100MPa・s以下である請求項1〜4のいずれか1項に記載の半導体装置の製造方法。



The method for manufacturing a semiconductor device according to claim 1, wherein the underfill material before thermosetting has a viscosity at 23 ° C. of 0.01 MPa · s to 100 MPa · s.



JP2011275997A 2011-12-16 2011-12-16 Manufacturing method of semiconductor device Expired - Fee Related JP5907717B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011275997A JP5907717B2 (en) 2011-12-16 2011-12-16 Manufacturing method of semiconductor device
CN2012105368928A CN103165474A (en) 2011-12-16 2012-12-12 Method for producing semiconductor device
KR1020120145058A KR20130069438A (en) 2011-12-16 2012-12-13 Method for manufacturing semiconductor device
TW101147674A TW201334127A (en) 2011-12-16 2012-12-14 Method for manufacturing semiconductor device
US13/715,996 US20130157415A1 (en) 2011-12-16 2012-12-14 Method for producing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011275997A JP5907717B2 (en) 2011-12-16 2011-12-16 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2013127998A true JP2013127998A (en) 2013-06-27
JP5907717B2 JP5907717B2 (en) 2016-04-26

Family

ID=48778385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011275997A Expired - Fee Related JP5907717B2 (en) 2011-12-16 2011-12-16 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP5907717B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035964A (en) * 2014-08-01 2016-03-17 リンテック株式会社 Individual piece manufacturing method
WO2021199771A1 (en) * 2020-03-31 2021-10-07 株式会社オリジン Method for producing affixing member, and affixing member production device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237268A (en) * 2000-02-22 2001-08-31 Nec Corp Method for mounting semiconductor element and apparatus for manufacturing the same
JP2004319823A (en) * 2003-04-17 2004-11-11 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, semiconductor device and method for manufacturing the same
JP2004327623A (en) * 2003-04-23 2004-11-18 Three M Innovative Properties Co Film adhesive for sealing, film laminate for sealing and method for sealing
JP2005264109A (en) * 2004-03-22 2005-09-29 Hitachi Chem Co Ltd Film-shaped adhesive and manufacturing method of semiconductor device using the same
JP2006049482A (en) * 2004-08-03 2006-02-16 Furukawa Electric Co Ltd:The Semiconductor device manufacturing method and wafer processing tape
JP2011009711A (en) * 2009-05-29 2011-01-13 Nitto Denko Corp Dicing tape-integrated film for semiconductor back surface
JP2011029350A (en) * 2009-07-24 2011-02-10 Sumitomo Bakelite Co Ltd Method for manufacturing electronic component, and electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001237268A (en) * 2000-02-22 2001-08-31 Nec Corp Method for mounting semiconductor element and apparatus for manufacturing the same
JP2004319823A (en) * 2003-04-17 2004-11-11 Sumitomo Bakelite Co Ltd Adhesive film for semiconductor, semiconductor device and method for manufacturing the same
JP2004327623A (en) * 2003-04-23 2004-11-18 Three M Innovative Properties Co Film adhesive for sealing, film laminate for sealing and method for sealing
JP2005264109A (en) * 2004-03-22 2005-09-29 Hitachi Chem Co Ltd Film-shaped adhesive and manufacturing method of semiconductor device using the same
JP2006049482A (en) * 2004-08-03 2006-02-16 Furukawa Electric Co Ltd:The Semiconductor device manufacturing method and wafer processing tape
JP2011009711A (en) * 2009-05-29 2011-01-13 Nitto Denko Corp Dicing tape-integrated film for semiconductor back surface
JP2011029350A (en) * 2009-07-24 2011-02-10 Sumitomo Bakelite Co Ltd Method for manufacturing electronic component, and electronic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035964A (en) * 2014-08-01 2016-03-17 リンテック株式会社 Individual piece manufacturing method
WO2021199771A1 (en) * 2020-03-31 2021-10-07 株式会社オリジン Method for producing affixing member, and affixing member production device
JP2021161186A (en) * 2020-03-31 2021-10-11 株式会社オリジン Sticking member production method and sticking member production device
JP7031830B2 (en) 2020-03-31 2022-03-08 株式会社オリジン Manufacturing method of bonding member and bonding member manufacturing equipment
US11685127B2 (en) 2020-03-31 2023-06-27 Origin Company, Limited Method for manufacturing bonded object and bonded object manufacturing apparatus

Also Published As

Publication number Publication date
JP5907717B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP6157890B2 (en) Underfill material, sealing sheet, and method for manufacturing semiconductor device
JP5976573B2 (en) Reinforcing sheet and method for manufacturing secondary mounting semiconductor device
WO2014171404A1 (en) Thermosetting resin composition and semiconductor device manufacturing method
JP6280400B2 (en) Underfill material, laminated sheet, and method of manufacturing semiconductor device
JP6222941B2 (en) Underfill sheet, back-grinding tape-integrated underfill sheet, dicing tape-integrated underfill sheet, and semiconductor device manufacturing method
US20130157415A1 (en) Method for producing semiconductor device
JP2014003274A (en) Method for manufacturing semiconductor device and underfill material
JP5961015B2 (en) Underfill material and method for manufacturing semiconductor device
KR20130059292A (en) Method for manufacturing semiconductor device
WO2015174184A1 (en) Method for producing semiconductor device
JP5827878B2 (en) Manufacturing method of semiconductor device
JP6407684B2 (en) Sheet-like resin composition, laminated sheet, and method for manufacturing semiconductor device
JP5907717B2 (en) Manufacturing method of semiconductor device
JP6502026B2 (en) Sheet-like resin composition, laminated sheet and method of manufacturing semiconductor device
JP2013127997A (en) Semiconductor device manufacturing method
JP5889625B2 (en) Manufacturing method of semiconductor device
JP6147103B2 (en) Underfill material, laminated sheet, and method of manufacturing semiconductor device
WO2016084707A1 (en) Sheet-like resin composition, laminate sheet, and semiconductor device production method
WO2015046073A1 (en) Semiconductor device manufacturing method
JP5715681B1 (en) Adhesive film, dicing die-bonding film, semiconductor device manufacturing method
JP2015122427A (en) Method for manufacturing semiconductor device, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160322

R150 Certificate of patent or registration of utility model

Ref document number: 5907717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees