JP2013126762A - Palladium metal film laminated film - Google Patents

Palladium metal film laminated film Download PDF

Info

Publication number
JP2013126762A
JP2013126762A JP2013006921A JP2013006921A JP2013126762A JP 2013126762 A JP2013126762 A JP 2013126762A JP 2013006921 A JP2013006921 A JP 2013006921A JP 2013006921 A JP2013006921 A JP 2013006921A JP 2013126762 A JP2013126762 A JP 2013126762A
Authority
JP
Japan
Prior art keywords
metal film
film
palladium
palladium metal
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013006921A
Other languages
Japanese (ja)
Other versions
JP5597733B2 (en
Inventor
Yuichi Ninomiya
裕一 二宮
Kiyohiko Ito
喜代彦 伊藤
Kazunori Shibata
和則 柴田
Kazuhiro Fukushima
和宏 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013006921A priority Critical patent/JP5597733B2/en
Publication of JP2013126762A publication Critical patent/JP2013126762A/en
Application granted granted Critical
Publication of JP5597733B2 publication Critical patent/JP5597733B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a palladium metal film laminated film which shows a surface resistance value stabilized with time.SOLUTION: The palladium metal film laminated film is a laminate in which the palladium metal film is laminated at least one side of a base material film, and a concentration of rare gas contained in the metal film is 0.03-0.1 atm% or lower. In the other way, the palladium metal film laminated film is the a laminate in which the palladium metal film is laminated at least at one side of a base material film, and the palladium surface density A of the palladium metal film immediately after film formation and the surface resistance value B of the palladium metal film immediately after the film formation satisfy a formula (1): A×B≤7,000×10(1).

Description

本発明は、基材フィルムの少なくとも片面に、パラジウム金属膜が形成されたパラジウム金属膜積層フィルムに関するものである。本発明のパラジウム金属膜積層フィルムは、経時的に安定した表面抵抗値を示し、電極や回路などの目的で好ましく用いることができ、特に液体試料の測定対象物質と試薬との反応により得られる電流値を計測するセンサの電極材料に好適に用いることができる。   The present invention relates to a palladium metal film laminated film in which a palladium metal film is formed on at least one surface of a base film. The palladium metal film laminated film of the present invention exhibits a stable surface resistance value over time, and can be preferably used for the purpose of electrodes, circuits, and the like. It can use suitably for the electrode material of the sensor which measures a value.

パラジウムは、金などと同様に優れた特性を持つめっき材料として知られている。パラジウムは、硬質で耐摩耗性や耐食性に優れ、銀などで生じやすい表面の変色が起こりにくいなどのことから、コネクタの接点や電極などに対するめっき材料として優れている。パラジウムは、基材フィルムとの密着性も良好であるため、基材フィルム上にパラジウムを積層したパラジウム金属膜積層フィルムは、フレキシブルプリント配線板に用いられる場合や(特許文献1参照)、フィルムコンデンサの電極フィルムとして用いられる場合がある(特許文献2参照)。また、近年ではパラジウム金属膜積層フィルムの用途も広がり、センサ用のリードおよび電極材料等にも好ましく用いられるようになった。   Palladium is known as a plating material having excellent characteristics like gold. Palladium is excellent as a plating material for contacts and electrodes of connectors because it is hard and has excellent wear resistance and corrosion resistance, and is unlikely to cause surface discoloration, which is likely to occur with silver. Since palladium has good adhesion to a base film, a palladium metal film laminated film obtained by laminating palladium on a base film may be used for a flexible printed wiring board (see Patent Document 1) or a film capacitor. It may be used as an electrode film (see Patent Document 2). In recent years, the use of a palladium metal film laminated film has expanded, and it has come to be preferably used for a lead for a sensor and an electrode material.

ところで、パラジウム金属膜積層フィルムは、通常の真空蒸着法やめっき法でも成膜は可能であるが、融点が高いこと、膜厚を精度よく制御することができること、基材フィルムとの密着性がよいこと、パラジウムという貴金属を効率よく利用できるという理由で、スパッタリング法が適した方法である。製造方法としては、直流マグネトロンスパッタリング法、直流パルスマグネトロンスパッタリング法、高周波マグネトロンスパッタリング法等があげられ、任意に選ばれている。   By the way, the palladium metal film laminated film can be formed by a normal vacuum deposition method or a plating method, but has a high melting point, can control the film thickness with high accuracy, and has an adhesive property with the base film. Fortunately, the sputtering method is a suitable method because it can efficiently use a noble metal called palladium. Examples of the production method include a direct current magnetron sputtering method, a direct current pulse magnetron sputtering method, and a high frequency magnetron sputtering method, which are arbitrarily selected.

スパッタリング法は、放電室内を一旦高真空雰囲気にした後、アルゴン、ネオン、ヘリウム、クリプトン、キセノン等の希ガスをスパッタガスとして導入し、所定圧力で安定したところで電圧を印加してグロー放電することで前記スパッタガスをプラズマ状態としイオン化させ、パラジウムに衝突させることで、パラジウムの原子をたたき出し、基材フィルム表面に薄膜が形成されるものである。   In the sputtering method, after the discharge chamber is once made into a high vacuum atmosphere, a rare gas such as argon, neon, helium, krypton, or xenon is introduced as a sputtering gas, and a glow discharge is performed by applying a voltage when stable at a predetermined pressure. The sputtering gas is ionized into a plasma state and collides with palladium, so that palladium atoms are knocked out and a thin film is formed on the surface of the base film.

一方、液体試料の測定対象物質と試薬との反応により得られる電流値を計測するセンサの電極材料として、パラジウム金属膜積層フィルムが好適に用いられている。
特開平5−299820号公報 特開平5−275276号公報
On the other hand, a palladium metal film laminated film is suitably used as an electrode material of a sensor that measures a current value obtained by a reaction between a measurement target substance of a liquid sample and a reagent.
JP-A-5-299820 JP-A-5-275276

しかしながら、前記液体試料の測定対象物質と試薬との反応により得られる電流値を計測するセンサにおいて、パラジウム金属膜積層フィルムの表面抵抗値が常温においても経時的に低下することによって、特定成分の定量測定値にバラツキが生じる問題がある。   However, in the sensor for measuring the current value obtained by the reaction between the substance to be measured in the liquid sample and the reagent, the surface resistance value of the palladium metal film laminated film decreases with time even at room temperature, thereby quantifying the specific component. There is a problem that variations occur in measured values.

従って本発明の目的は、経時的に安定した所定の表面抵抗値を示すパラジウム金属膜積層フィルムを提供するものである。   Accordingly, an object of the present invention is to provide a palladium metal film laminated film exhibiting a predetermined surface resistance value which is stable over time.


本願発明者らは、パラジウム金属膜積層フィルムの表面抵抗値が常温においても経時的に低下する原因について検討したところ、後述する推定の下に、パラジウム金属膜中に含まれる希ガスの濃度が特定の範囲になるようにスパッタリング法によりパラジウム金属膜を形成したところ、パラジウム金属膜積層フィルムの表面抵抗値を経時的に安定させられることを見出した。すなわち、本発明のパラジウム金属膜積層フィルムは、基材フィルムの少なくとも片面に、スパッタリング法によりパラジウム金属膜が形成された積層体であって、該金属膜が希ガス分圧0.03〜0.1Paの雰囲気下でスパッタリングされ、該パラジウム金属膜中に含まれる希ガスの濃度が0.1〜10atm%以下の範囲であることを特徴とするものである。

The inventors of the present application have examined the cause of the surface resistance value of the palladium metal film laminated film decreasing over time even at room temperature. Under the estimation described later, the concentration of the rare gas contained in the palladium metal film is specified. When a palladium metal film was formed by a sputtering method so as to be in the above range, it was found that the surface resistance value of the palladium metal film laminated film can be stabilized over time. That is, the palladium metal film laminated film of the present invention is a laminate in which a palladium metal film is formed on at least one surface of a base film by a sputtering method, and the metal film has a rare gas partial pressure of 0.03 to 0.00. Sputtering is performed in an atmosphere of 1 Pa, and the concentration of the rare gas contained in the palladium metal film is in the range of 0.1 to 10 atm% or less.

また、同様の推定の下に、パラジウム金属膜の密度を9.00g/cm以上となるように希ガス分圧0.03〜0.1Paの雰囲気下でスパッタリングによりパラジウム金属膜を形成しても、パラジウム金属膜積層フィルムの表面抵抗値を経時的に安定させられることを見出した。 また、同様の推定の下に、パラジウム金属膜の形成直後のパラジウム面密度A(atoms/cm)と形成直後の表面抵抗値B(Ω/□)とが、下記式(1)を満たしても、パラジウム金属膜積層フィルムの表面抵抗値を経時的に安定させられることを見出した。
A×B≦7000×1015 (1)
かかるパラジウム金属膜積層フィルムの好ましい態様は、
(i)前記パラジウム金属膜の膜厚が5〜30nmであること、
(ii)前記パラジウム金属膜形成直後の表面抵抗値B(Ω/□)と、積層体を大気雰囲気で、70℃、150時間暴露した後の表面抵抗値C(Ω/□)とが、下記式(2)を満たすこと、
|B−C|/B×100≦15 (2)
(iii)前記パラジウム金属膜が0.03〜0.1Paの雰囲気下でスパッタリング法により形成されたこと、
である。
Under the same assumption, a palladium metal film is formed by sputtering in an atmosphere of a rare gas partial pressure of 0.03 to 0.1 Pa so that the density of the palladium metal film is 9.00 g / cm 3 or more. Has also found that the surface resistance value of the palladium metal film laminated film can be stabilized over time. Under the same estimation, the palladium surface density A (atoms / cm 2 ) immediately after formation of the palladium metal film and the surface resistance value B (Ω / □) immediately after formation satisfy the following formula (1). Has also found that the surface resistance value of the palladium metal film laminated film can be stabilized over time.
A × B ≦ 7000 × 10 15 (1)
A preferred embodiment of such a palladium metal film laminated film is:
(I) The palladium metal film has a thickness of 5 to 30 nm,
(Ii) The surface resistance value B (Ω / □) immediately after the formation of the palladium metal film and the surface resistance value C (Ω / □) after the laminate was exposed to the atmosphere at 70 ° C. for 150 hours are as follows: Satisfying equation (2),
| B-C | / B × 100 ≦ 15 (2)
(Iii) The palladium metal film was formed by a sputtering method in an atmosphere of 0.03 to 0.1 Pa,
It is.

また、上記の表面抵抗値を経時的に安定させられるパラジウム金属膜は、希ガス分圧0.03〜0.1Paの雰囲気下でスパッタリングすることを特徴とする製造方法で得られることを見出した。   Moreover, it discovered that the palladium metal film | membrane which can stabilize said surface resistance value with time is obtained with the manufacturing method characterized by sputtering in the atmosphere of a noble gas partial pressure 0.03-0.1Pa. .

本発明によれば、経時的に安定した表面抵抗値を示すパラジウム金属膜積層フィルムを提供できる。本発明にかかるパラジウム金属膜積層フィルムを電極として用いることで、センサ、特に液体試料の測定対象物質と試薬との反応により得られる電流値を計測するセンサの測定精度を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the palladium metal film laminated | multilayer film which shows the surface resistance value stabilized with time can be provided. By using the palladium metal film laminated film according to the present invention as an electrode, it is possible to improve the measurement accuracy of a sensor, particularly a sensor that measures a current value obtained by a reaction between a measurement target substance of a liquid sample and a reagent.

前記のようなスパッタリング法は、スパッタガスのプラズマを安定に維持するために高真空雰囲気にされた放電室にスパッタガスを導入後、圧力を10−2〜10Pa程度に上昇させる必要がある。そのため、パラジウム金属膜はスパッタガス雰囲気中で成長するため、形成された金属膜中にスパッタガス分子が取り込まれる。パラジウムは原子半径が大きいため水素吸蔵合金にも用いられる様に原子間にガス分子を取り込む性質がある。このため、アルゴンガスも膜中に取り込まれ易く、パラジウム膜の電気的特性などの物性に影響を及ぼしていると考えられる。また、パラジウムは貴金属として知られるようにそれ自体は非常に不活性であるため膜中に取り込んだガスを補足する力は弱く、経時的あるいは熱的な影響により取り込まれたアルゴンなどのガス分子が放出され易いと考えられる。その結果、スパッタ法により成膜されたパラジウムの膜物性は成膜直後に対して経時的あるいは熱的な影響により変化し易いと推定される。 In the sputtering method as described above, in order to stably maintain the plasma of the sputtering gas, it is necessary to increase the pressure to about 10 −2 to 10 1 Pa after introducing the sputtering gas into the discharge chamber in a high vacuum atmosphere. . Therefore, since the palladium metal film grows in the sputtering gas atmosphere, the sputtering gas molecules are taken into the formed metal film. Since palladium has a large atomic radius, it has the property of taking in gas molecules between atoms as used in hydrogen storage alloys. For this reason, argon gas is also easily taken into the film, which is considered to affect the physical properties such as the electrical characteristics of the palladium film. In addition, as palladium is known as a precious metal, palladium itself is very inactive, so the force of capturing the gas taken into the film is weak, and gas molecules such as argon taken in due to temporal or thermal influences are weak. It is thought that it is easily released. As a result, it is presumed that the film properties of palladium formed by the sputtering method are likely to change with time or thermal influence immediately after the film formation.

つまり、スパッタガスとして用いる希ガスがパラジウム金属膜中に取り込まれ、成膜後の大気雰囲気中において前記希ガスが放出され、膜物性、特に金属膜の表面抵抗値に与える影響が小さくないことを突き止め、自己スパッタリング法によりパラジウム金属膜中の希ガス濃度を制御することによって特性改善できることを見出した。すなわち本発明は、パラジウム金属膜中に含まれる希ガスを特定範囲の濃度にしたところ、かかる課題を一挙に解決することを究明したものである。   That is, the rare gas used as the sputtering gas is taken into the palladium metal film, and the rare gas is released in the air atmosphere after film formation, so that the influence on the film physical properties, particularly the surface resistance value of the metal film is not small. We have found out that the characteristics can be improved by controlling the rare gas concentration in the palladium metal film by the self-sputtering method. That is, the present invention has been devised to solve such problems all at once when the concentration of the rare gas contained in the palladium metal film is adjusted to a specific range.

本発明にかかるパラジウム金属とは、パラジウム成分を99.9重量%以上含む金属であって、パラジウム成分以外の物質として、金、銀、白金、ロジウム、イリジウム、ルテニウム、オスミウム、鉄、銅、アルミニウム、マグネシウム、チタン、コバルト、ニッケル、クロム、亜鉛、鉛、ゲルマニウム、マンガン、カドミウム、ルテニウム、その他の公知の金属成分、および、水素、炭素、酸素、ケイ素、その他の公知の非金属成分を任意の割合で含む合金であっても良い。   The palladium metal according to the present invention is a metal containing 99.9% by weight or more of a palladium component, and as a material other than the palladium component, gold, silver, platinum, rhodium, iridium, ruthenium, osmium, iron, copper, aluminum , Magnesium, titanium, cobalt, nickel, chromium, zinc, lead, germanium, manganese, cadmium, ruthenium, other known metal components, and hydrogen, carbon, oxygen, silicon, other known non-metallic components An alloy may be included in a proportion.

本発明のパラジウム金属膜積層フィルムは、基材フィルムの少なくとも片面に希ガス分圧0.03〜0.1Paの雰囲気下でスパッタリング法によりパラジウム金属膜が形成された積層体であって、金属膜中に含まれる希ガスの濃度が0.1〜10atm%の範囲である。好ましくは0.5〜8atm%の範囲である。本発明者らの実験によれば、希ガスの濃度が0.1〜10atm%の範囲であると、前記金属膜の表面抵抗値が、経時的に安定した値を示すことが実証されている。これは、前記金属膜が、スパッタガス雰囲気中で成長して形成された膜であるため、前記金属膜中にスパッタガス分子が取り込まれており、このスパッタガスが前記金属膜より経時で離脱することで、金属膜中に間隙が生じ、パラジウム金属成分で埋まることで導電性が向上し、表面抵抗値が下がるものと考えられ、この間隙を少なくすること、つまり希ガスの濃度を0.1〜10atm%の範囲にすることにより、経時的に安定した表面抵抗値を示すパラジウム金属薄膜が得られる。   The palladium metal film laminated film of the present invention is a laminate in which a palladium metal film is formed on at least one side of a base film by a sputtering method in an atmosphere of a rare gas partial pressure of 0.03 to 0.1 Pa. The concentration of the rare gas contained therein is in the range of 0.1 to 10 atm%. Preferably it is the range of 0.5-8 atm%. According to the experiments by the present inventors, it has been proved that the surface resistance value of the metal film shows a stable value with time when the concentration of the rare gas is in the range of 0.1 to 10 atm%. . This is because the metal film is a film formed by growing in a sputtering gas atmosphere, so that sputtering gas molecules are taken into the metal film, and the sputtering gas is detached from the metal film over time. Therefore, it is considered that a gap is generated in the metal film, and the conductivity is improved by filling the metal film with the palladium metal component, and the surface resistance value is lowered. The gap is reduced, that is, the concentration of the rare gas is 0.1. By setting the content in the range of -10 atm%, a palladium metal thin film showing a stable surface resistance value with time can be obtained.

また、本発明のパラジウム金属膜積層フィルムは、基材フィルムの少なくとも片面に希ガス分圧0.03〜0.1Paの雰囲気下でスパッタリング法によりパラジウムパラジウム金属膜が形成された積層体であって、パラジウム金属膜の密度が9.00g/cm以上のものである。パラジウム金属膜の密度は好ましくは10.00g/cm以上のものある。本発明者らの実験によれば、金属膜の密度が9.00g/cm以上であれば、パラジウム金属膜の表面抵抗値が経時的に安定した値を示すことが実証されている。これは、パラジウム金属膜中にスパッタガスおよび/または基材やスパッタ装置内壁からのアウトガス等が取り込まれている、あるいは取り込まれたスパッタガス等が脱離した間隙がある状態、すなわちパラジウム金属膜の密度が低い状態では、その間隙がパラジウム金属成分で埋まることで導電性が高くなってしまうと考えられる。従って、取り込みスパッタガスや間隙を少なくすること、つまりパラジウム金属膜密度が9.00g/cm以上とすることで表面抵抗値が経時的にも安定なパラジウム金属膜が得られる。パラジウム金属層の密度が9.00より低い場合は表面抵抗値が経時的に安定しない。また密度は高ければ高いほど良いが実際はバルク密度である12.02g/cmを超える金属膜は作製することが困難である。 The palladium metal film laminated film of the present invention is a laminate in which a palladium palladium metal film is formed on at least one surface of a base film by a sputtering method in an atmosphere of a rare gas partial pressure of 0.03 to 0.1 Pa. The density of the palladium metal film is 9.00 g / cm 3 or more. The density of the palladium metal film is preferably 10.00 g / cm 3 or more. According to the experiments by the present inventors, it has been demonstrated that when the density of the metal film is 9.00 g / cm 3 or more, the surface resistance value of the palladium metal film shows a stable value over time. This is because the sputtering metal and / or the outgas from the substrate or the inner wall of the sputtering apparatus is taken into the palladium metal film, or there is a gap in which the taken sputtering gas etc. is desorbed, that is, the palladium metal film. In a state where the density is low, it is considered that the conductivity is increased by filling the gap with a palladium metal component. Accordingly, a palladium metal film having a stable surface resistance with time can be obtained by reducing the amount of sputtering gas and gaps, that is, by setting the palladium metal film density to 9.00 g / cm 3 or more. When the density of the palladium metal layer is lower than 9.00, the surface resistance value is not stable over time. Further, the higher the density, the better, but it is difficult to produce a metal film exceeding the bulk density of 12.02 g / cm 3 in practice.

また、本発明のパラジウム金属膜積層フィルムは、基材フィルムの少なくとも片面に希ガス分圧0.03〜0.1Paの雰囲気下でスパッタリング法によりパラジウムパラジウム金属膜が形成された積層体であって、パラジウム金属の形成直後の面密度A(atoms/cm)と形成直後の表面抵抗値B(Ω/□)とが、下記式(1)を満たすものである。
A×B≦7000×1015 (1)。
The palladium metal film laminated film of the present invention is a laminate in which a palladium palladium metal film is formed on at least one surface of a base film by a sputtering method in an atmosphere of a rare gas partial pressure of 0.03 to 0.1 Pa. The surface density A (atoms / cm 2 ) immediately after the formation of palladium metal and the surface resistance value B (Ω / □) immediately after the formation satisfy the following formula (1).
A × B ≦ 7000 × 10 15 (1).

ここで、本発明でいう「形成直後の面密度」とは、スパッタリング後40℃以下の雰囲気で保管し30日以内に測定したパラジウム面密度のことをいう。同様に「形成直後の表面抵抗値」とは、スパッタリング後40℃以下の雰囲気で保管し30日以内に測定した表面抵抗値のことをいう。本発明者らの実験によれば、パラジウム金属膜積層フィルムをスパッタリング後40℃以下の雰囲気に保管しておけば、30日間はパラジウム金属膜の面密度と表面抵抗値は変化せずに一定であるという知見が得られている。   Here, the “surface density immediately after formation” in the present invention refers to the palladium surface density measured within 30 days after storing in an atmosphere of 40 ° C. or lower. Similarly, the “surface resistance value immediately after formation” refers to a surface resistance value measured within 30 days after being stored in an atmosphere of 40 ° C. or lower after sputtering. According to the experiments by the present inventors, if the palladium metal film laminated film is stored in an atmosphere of 40 ° C. or lower after sputtering, the surface density and the surface resistance value of the palladium metal film remain constant for 30 days. The knowledge that there is.

パラジウム金属の形成直後の面密度Aは、パラジウム金属膜の1cmあたり原子数である。よってパラジウム面密度Aが大きいと、より多数のパラジウム原子から成る金属膜ということになる。表面抵抗値Bは膜平面方向の電気の流れにくさを示すため、A×Bは、原子数を基準としたときの膜平面方向の電気の伝えにくさに表す。同じ原子数からなるパラジウム金属膜でも、A×Bが大きい場合は膜の平面方向に電気が流れ易い膜であり、逆にA×Bが小さい場合は膜の平面方向に電気が流れ難い膜である。A×Bが7000×1015を超える、膜平面方向に電気が流れ難い膜は、パラジウム金属膜中にスパッタガスまたは基材やスパッタ装置内壁からのアウトガス等が取り込まれている、あるいは取り込まれたスパッタガス等が脱離した間隙がある状態と考えられる。従って取り込みスパッタガスや間隙を少なくすること、つまりA×Bが7000×1015以下にすることで表面抵抗値が経時的に安定なパラジウム金属膜が得られる。A×Bは低ければ低いほど良いが実際はパラジウムのバルク密度、バルク抵抗率および原子量から計算される値、すなわち714×1015以下のパラジウム金属膜を作製することは困難である。 The surface density A immediately after the formation of palladium metal is the number of atoms per cm 2 of the palladium metal film. Therefore, when the palladium surface density A is large, the metal film is composed of a larger number of palladium atoms. Since the surface resistance value B indicates a difficulty in the flow of electricity in the film plane direction, A × B represents the difficulty in transmitting electricity in the film plane direction when the number of atoms is used as a reference. Even a palladium metal film having the same number of atoms is a film in which electricity easily flows in the plane direction of the film when A × B is large, and conversely, it is a film in which electricity does not easily flow in the plane direction of the film when A × B is small is there. In the film where A × B exceeds 7000 × 10 15 and electricity does not easily flow in the film plane direction, the sputtering gas or the outgas from the substrate or the inner wall of the sputtering apparatus is taken in or taken into the palladium metal film. It is considered that there is a gap where the sputtering gas and the like are desorbed. Accordingly, a palladium metal film having a stable surface resistance with time can be obtained by reducing the incorporated sputtering gas and the gap, that is, A × B is 7000 × 10 15 or less. AxB is preferably as low as possible, but it is actually difficult to produce a palladium metal film having a value calculated from the bulk density, bulk resistivity and atomic weight of palladium, that is, 714 × 10 15 or less.

本発明のパラジウム金属膜積層フィルムを製造する手段について、以下に説明する。放電装置の放電室内にパラジウムターゲットと基材フィルムを一定間隔以上離間させて配置し、放電室内を高真空雰囲気とする。次いでスパッタガス(例えば、アルゴンガス)を導入し、放電室内が所定圧力で安定したところで材料パラジウム(ターゲット)に負電圧を印加してグロー放電すると、前記ターゲット表面近傍に、スパッタガスのプラズマが発生する。すると、スパッタガスイオンが発生し、スパッタガスイオンが前記ターゲットに加速、衝突し、表面からパラジウム粒子(パラジウム原子やパラジウムクラスタ)が飛び出し、その一部はスパッタガスと同様にイオン化される。すなわち、放電装置内にはスパッタガスとパラジウムの各イオンが混在するプラズマ雰囲気となる。従って、ターゲットのパラジウムはスパッタガスイオンとパラジウムイオンのそれぞれによってスパッタされる状態となる。次いでスパッタガスの供給量を減少させて放電室内の前記パラジウムターゲットがパラジウムイオンで自己スパッタリングされる比率を高めることにより、成膜速度すなわち生産性を低下されることなく本発明のパラジウム金属膜積層フィルムを得ることができる。   The means for producing the palladium metal film laminated film of the present invention will be described below. A palladium target and a base film are arranged apart from each other in a discharge chamber of the discharge device by a predetermined distance or more, and a high vacuum atmosphere is set in the discharge chamber. Next, when sputtering gas (for example, argon gas) is introduced and glow discharge is performed by applying a negative voltage to the material palladium (target) when the discharge chamber is stabilized at a predetermined pressure, sputtering gas plasma is generated in the vicinity of the target surface. To do. Then, sputter gas ions are generated, the sputter gas ions are accelerated and collide with the target, and palladium particles (palladium atoms and palladium clusters) are ejected from the surface, and a part thereof is ionized in the same manner as the sputter gas. In other words, the discharge device has a plasma atmosphere in which sputtering gas and palladium ions are mixed. Therefore, the target palladium is sputtered by the sputtering gas ions and the palladium ions. Next, by reducing the supply amount of the sputtering gas and increasing the ratio at which the palladium target in the discharge chamber is self-sputtered with palladium ions, the deposition rate of the palladium metal film of the present invention is not reduced without reducing the productivity. Can be obtained.

ここで自己スパッタリングを更に詳しく説明する。自己スパッタリングとは、スパッタリングによってパラジウムターゲットからたたき出されたパラジウム粒子がプラズマ中で電離し、パラジウムイオンとなってパラジウムターゲットに再突入し、パラジウム粒子をたたき出す現象である。十分な量のパラジウムイオンが存在すると、スパッタガスの供給量を減少させてスパッタガスイオンが極端に少なくなっても、プラズマ放電は持続され、スパッタリング現象が持続されて成膜速度を維持できるものである。自己スパッタのし易さはターゲット材料によって異なり、銀や銅で実現し易いことは知られている。パラジウムも貴金属の一種でスパッタ率が高いことから自己スパッタを実現し易い元素であると考えられる。ただし、グロー放電の安定性は装置や電源の機能に依存するところも大きい。原理的にはアルゴンなどのスパッタガスを停止するまで減少させても自己スパッタは維持できるが、僅かにスパッタガスを導入することによりグロー放電を安定させることができる。これは、希ガスのイオン化エネルギーあるいは準安定状態エネルギーよりもパラジウムのイオン化エネルギーの方が小さいため、希ガスイオンまたはラジカルに衝突したパラジウム原子がイオン化されることによると考えられる。安定化に必要なスパッタガスの量は放電雰囲気中に1atm%以上であるが50atm%以上になると希ガスプラズマが支配的となり、膜中に取り込まれる希ガスの量も増加するので好ましくない。   Here, self-sputtering will be described in more detail. Self-sputtering is a phenomenon in which palladium particles knocked out of a palladium target by sputtering are ionized in plasma, become palladium ions, reenter the palladium target, and knock out the palladium particles. If a sufficient amount of palladium ions are present, the plasma discharge is sustained and the film formation rate can be maintained even if the amount of sputter gas ions is reduced and the sputter gas ions are extremely reduced. is there. It is known that the easiness of self-sputtering varies depending on the target material and is easily realized with silver or copper. Palladium is also a kind of noble metal and has a high sputtering rate. However, the stability of glow discharge is highly dependent on the functions of the device and the power supply. In principle, self-sputtering can be maintained even if the sputtering gas such as argon is reduced until it is stopped, but glow discharge can be stabilized by slightly introducing the sputtering gas. This is presumably because the ionization energy of palladium is smaller than the ionization energy or metastable state energy of the rare gas, and the palladium atoms colliding with the rare gas ions or radicals are ionized. The amount of sputtering gas necessary for stabilization is 1 atm% or more in the discharge atmosphere, but if it is 50 atm% or more, the rare gas plasma becomes dominant, and the amount of the rare gas taken into the film is also not preferable.

前記金属膜積層フィルムの製造方法において、放電装置の放電電流密度値は、0.2〜10mA/cmの範囲でスパッタリングにより形成される。放電電流密度が0.2mA/cm未満では放電を持続することが困難になる。また、10mA/cmを越えるとターゲット電圧が600V以上と高くなりアーク放電によりグロー放電が不安定になり易くなる。 In the manufacturing method of the metal film laminated film, the discharge current density value of the discharge device is formed by sputtering in the range of 0.2 to 10 mA / cm 2 . If the discharge current density is less than 0.2 mA / cm 2 , it is difficult to sustain the discharge. On the other hand, if it exceeds 10 mA / cm 2 , the target voltage becomes as high as 600 V or more, and glow discharge tends to become unstable due to arc discharge.

前記金属膜積層フィルムの製造方法において、放電装置の放電圧力は、おおよそ0.03〜0.1Paの範囲でスパッタリングにより形成される。実際には、放電開始前にスパッタガスの導入量と排気量を調整することでスパッタガス分圧(スパッタガスとして希ガスを用いた場合は希ガス分圧)を0.03〜0.1Paの範囲で設定した後、放電を開始するので、放電後に放電空間に存在するパラジウムの量やパラジウム膜中に取り込まれるスパッタガスの量により全圧は僅かに上下する場合がある。スパッタ膜中のスパッタガス取り込み影響を考慮する場合は、放電全圧よりもスパッタガス分圧を管理することが好ましい。放電圧力が0.03Pa未満ではターゲット電圧が600V以上と高くなりアーク放電によりグロー放電が不安定になり易くなる。放電圧力が0.1Paを越えても成膜は可能であるが、スパッタされたパラジウムが、スパッタガスや不純物ガスなどの放電雰囲気ガスとの衝突により散乱されて基材に到達する確率が低下することにより成膜速度が低下してしまう。また、放電圧力が0.1Paを越えると成膜中のパラジウム膜表面に入射するスパッタガスの比率が高くなるために膜中にスパッタガスが取り込まれ易くなる。その結果、表面抵抗値が経時的に安定なパラジウム金属膜が得られなくなる。同様に、スパッタガス分圧が0.03Pa未満ではターゲット電圧が600V以上と高くなりアーク放電によりグロー放電が不安定になり易くなる。スパッタガス分圧が0.1Paを越えても成膜は可能であるが、スパッタされたパラジウムがスパッタガスとの衝突により散乱されて基材に到達する確率が低下することにより成膜速度が低下する。また、スパッタガス分圧が0.1Paを越えると成膜中のパラジウム膜表面に入射するスパッタガスの比率が高くなるため膜中にスパッタガスが取り込まれ易くなる。その結果、表面抵抗値が経時的に安定なパラジウム金属膜が得られなくなる。   In the manufacturing method of the metal film laminated film, the discharge pressure of the discharge device is formed by sputtering in the range of about 0.03 to 0.1 Pa. Actually, the sputtering gas partial pressure (or a rare gas partial pressure when a rare gas is used as the sputtering gas) is adjusted to 0.03 to 0.1 Pa by adjusting the introduction amount and the exhaust amount of the sputtering gas before the start of discharge. Since the discharge is started after setting the range, the total pressure may slightly increase or decrease depending on the amount of palladium existing in the discharge space after discharge or the amount of sputtering gas taken into the palladium film. When considering the influence of the sputtering gas incorporation in the sputtered film, it is preferable to manage the sputtering gas partial pressure rather than the total discharge pressure. When the discharge pressure is less than 0.03 Pa, the target voltage becomes as high as 600 V or more, and glow discharge tends to become unstable due to arc discharge. Although the film can be formed even when the discharge pressure exceeds 0.1 Pa, the probability that the sputtered palladium is scattered by collision with a discharge atmosphere gas such as a sputtering gas or an impurity gas and reaches the substrate is lowered. As a result, the film forming speed is lowered. Further, when the discharge pressure exceeds 0.1 Pa, the ratio of the sputtering gas incident on the surface of the palladium film being formed becomes high, so that the sputtering gas is easily taken into the film. As a result, a palladium metal film whose surface resistance value is stable with time cannot be obtained. Similarly, when the sputtering gas partial pressure is less than 0.03 Pa, the target voltage becomes as high as 600 V or more, and the glow discharge tends to become unstable due to arc discharge. Film formation is possible even when the sputtering gas partial pressure exceeds 0.1 Pa, but the film formation speed is reduced by reducing the probability that the sputtered palladium is scattered by collision with the sputtering gas and reaches the substrate. To do. Further, when the sputtering gas partial pressure exceeds 0.1 Pa, the ratio of the sputtering gas incident on the surface of the palladium film being formed increases, so that the sputtering gas is easily taken into the film. As a result, a palladium metal film whose surface resistance value is stable with time cannot be obtained.

スパッタガス分圧は好ましくは0.1Pa以下とすると、より経時的に安定な表面抵抗値のパラジウム金属膜を得やすいのでよい。また、ターゲットと基材の間の空間の圧力Pは1.0Pa以下にすると、経時的に安定な表面抵抗値のパラジウム金属膜を得やすいのでよい。また、ターゲットと基材表面の距離Lt−sとPt−sの積を0.5(cm・Pa)〜5.0(cm・Pa)の範囲とすると、経時的に安定な表面抵抗値のパラジウム金属膜を得やすいのでよい。さらに、スパッタリング法としては磁界を用いたマグネトロン方式を採用すると、0.1Pa以下の低いスパッタガス分圧でも安定にスパッタリングを実現し易いのでよい。また、希ガスはパラジウムターゲット表面近傍に供給すると、より安定なスパッタを行いやすいので好ましい。 If the sputtering gas partial pressure is preferably 0.1 Pa or less, a palladium metal film having a more stable surface resistance over time can be easily obtained. Further, when the pressure P in the space between the target and the substrate is 1.0 Pa or less, it is easy to obtain a palladium metal film having a stable surface resistance value over time. Further, when the product of the distance L t-s and P t-s of the target and the substrate surface in the range of 0.5 (cm · Pa) ~5.0 ( cm · Pa), over time stable surface resistivity It is easy to obtain a palladium metal film having a value. Further, when a magnetron method using a magnetic field is employed as the sputtering method, it is easy to stably realize sputtering even with a low sputtering gas partial pressure of 0.1 Pa or less. Further, it is preferable to supply a rare gas in the vicinity of the surface of the palladium target because it is easy to perform more stable sputtering.

このように、スパッタガスが少ない雰囲気中でパラジウム金属膜が形成されるので、パラジウム金属膜中にスパッタガスが取り込まれることなく、またパラジウム金属膜には、スパッタガスイオンが入射することもないので、本発明の金属膜中に含まれる希ガスの濃度が0.1〜10atm%の範囲であるパラジウム金属膜を得ることができる。   As described above, since the palladium metal film is formed in an atmosphere with a small amount of sputtering gas, no sputtering gas is taken into the palladium metal film, and no sputtering gas ions are incident on the palladium metal film. A palladium metal film in which the concentration of the rare gas contained in the metal film of the present invention is in the range of 0.1 to 10 atm% can be obtained.

本発明のパラジウム金属膜積層フィルムは、前記金属膜の形成直後の表面抵抗値B(Ω/□)と、前記積層体を大気中で、70℃、150時間暴露した後の表面抵抗値C(Ω/□)とが、下記式(2)を満たすことが好ましい。
|B−C|/B×100≦15 (2)。
The palladium metal film laminated film of the present invention has a surface resistance value B (Ω / □) immediately after the formation of the metal film and a surface resistance value C (after exposure of the laminate to 70 ° C. for 150 hours in the atmosphere. (Ω / □) preferably satisfies the following formula (2).
| B−C | / B × 100 ≦ 15 (2).

本発明のパラジウム金属膜積層フィルムは、例えば、液体試料中の特定の成分を、化学反応させたあと、一定電圧を印加して得られる電流値を計測することにより定量するセンサ電極として用いられる場合、前記金属膜の表面抵抗値が、前記式(2)を満たすことで、安定した電流値を得ることができる。すなわち、液体試料中の特定成分をバラツキ無く安定した精度で定量することが可能となる。   The palladium metal film laminated film of the present invention is used, for example, as a sensor electrode for quantifying by measuring a current value obtained by applying a constant voltage after chemically reacting a specific component in a liquid sample. When the surface resistance value of the metal film satisfies the formula (2), a stable current value can be obtained. That is, the specific component in the liquid sample can be quantified with stable accuracy without variation.

本発明のパラジウム金属膜積層フィルムは、前記センサの感度および前記金属膜積層フィルムの生産タクトの向上ならびに材料費の削減による低コスト化を可能とする点で、膜厚が5〜30nmの範囲であることが好ましい。膜厚が5nmより小さいと、わずかな膜厚分布でも前記金属膜の表面抵抗値の面内バラツキが大きくなることが多く、センサ電極としては適さないことがある。また、前記金属膜の表面抵抗値が大きくなってしまうため、一定電圧を印加したときに得られる電流値が小さくなり、センサ感度が鈍くなってしまう場合がある。また、構造が島状となりやすく、前記金属膜面内に連続する電流経路を形成しにくくなる場合がある。一方、前記金属膜の膜厚が30nmより大きいと、前記金属膜表面において酸化還元反応等により表層部のシート抵抗が変化しても、電流は前記金属膜内部の抵抗値変化の少ない部分を流れてしまうため信号を検出しにくくなり、センサ電極としては適さないことがある。また、生産タクトおよび材料費の面においても経済的に不利となってしまう。   The palladium metal film laminated film of the present invention has a film thickness in the range of 5 to 30 nm in that the sensitivity of the sensor and the production tact of the metal film laminated film can be improved and the cost can be reduced by reducing the material cost. Preferably there is. When the film thickness is smaller than 5 nm, even in a slight film thickness distribution, the in-plane variation of the surface resistance value of the metal film often increases, and may not be suitable as a sensor electrode. Moreover, since the surface resistance value of the metal film is increased, the current value obtained when a constant voltage is applied is decreased, and the sensor sensitivity may be reduced. In addition, the structure tends to be island-shaped, and it may be difficult to form a continuous current path in the metal film surface. On the other hand, if the thickness of the metal film is greater than 30 nm, even if the sheet resistance of the surface layer portion changes due to oxidation-reduction reaction or the like on the surface of the metal film, the current flows through a portion where the resistance value change in the metal film is small. Therefore, it may be difficult to detect the signal, and may not be suitable as a sensor electrode. Further, it is economically disadvantageous in terms of production tact and material cost.

本発明で用いられる基材フィルムとしては、プラスチックフィルム、合成紙、紙または表面処理が施された複合シートが好ましく用いられるが、中でも寸法安定性や耐久性等の点からプラスチックフィルムが好ましい。   As the base film used in the present invention, a plastic film, synthetic paper, paper, or a composite sheet subjected to surface treatment is preferably used, and among them, a plastic film is preferable from the viewpoint of dimensional stability and durability.

プラスチックフィルムの材質としては、ポリエステル、ポリオレフィン、ポリアミド、ポリエステルアミド、ポリエーテル、ポリイミド、ポリアミドイミド、ポリスチレン、ポリカーボネート、ポリ−ρ−フェニレンスルフィド、ポリエーテルエステル、ポリ塩化ビニル、ポリ(メタ)アクリル酸エステルが挙げられる。また、これらの共重合体やブレンド物やさらに架橋した化合物を用いることもできる。   Plastic film materials include polyester, polyolefin, polyamide, polyesteramide, polyether, polyimide, polyamideimide, polystyrene, polycarbonate, poly-ρ-phenylene sulfide, polyether ester, polyvinyl chloride, poly (meth) acrylic acid ester. Is mentioned. Moreover, these copolymers, blends, and further crosslinked compounds can also be used.

さらに、上記プラスチックフィルムの中でも、ポリエステル、例えば、ポリエチレンテレフタレート、ポリエチレン2,6−ナフタレート、ポリエチレンα,β−ビス(2−クロルフェノキシ)エタン4,4’−ジカルボキシレート、ポリブチレンテレフタレートなどからなるフィルムが好ましく、これらの中で機械的特性、作業性などの品質、経済性などを総合的に勘案すると、ポリエチレンテレフタレートからなるフィルムが特に好ましく用いられる。   Furthermore, among the above plastic films, it is made of polyester, for example, polyethylene terephthalate, polyethylene 2,6-naphthalate, polyethylene α, β-bis (2-chlorophenoxy) ethane 4,4′-dicarboxylate, polybutylene terephthalate, and the like. Films are preferable, and among these, a film made of polyethylene terephthalate is particularly preferably used in consideration of mechanical properties, quality such as workability, and economical efficiency.

基材フィルムの厚みは特に限定されないが、通常10〜500μm、好ましくは20〜300μm、より好ましくは30〜200μmであることが望ましい。   Although the thickness of a base film is not specifically limited, Usually, 10-500 micrometers, Preferably it is 20-300 micrometers, More preferably, it is desirable that it is 30-200 micrometers.

以下に本発明を実施例により具体的に説明を行なうが、本発明はこれらの実施例により限定されたものではない。なお、実施例において、試験片の特性の評価方法は、以下のとおりである。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In addition, in an Example, the evaluation method of the characteristic of a test piece is as follows.

(パラジウム金属膜中の希ガスの濃度)
PHI社製X線光電子分光装置(製品名:Quantera SXM)を用いて、アルゴンイオンエッチングによりパラジウム金属膜深さ方向(厚さ方向)の元素組成プロファイルを測定し、光電子のピーク強度比から求めた希ガスの比率の最大値を希ガス濃度(atm%)とした。測定用試料5枚の測定を行い、平均値をサンプルの希ガス濃度(atm%)とした。
(Concentration of rare gas in palladium metal film)
Using an X-ray photoelectron spectrometer (product name: Quantera SXM) manufactured by PHI, the element composition profile in the depth direction (thickness direction) of the palladium metal film was measured by argon ion etching, and obtained from the peak intensity ratio of photoelectrons. The maximum value of the ratio of the rare gas was defined as the rare gas concentration (atm%). Five samples for measurement were measured, and the average value was defined as the rare gas concentration (atm%) of the sample.

(パラジウム金属膜厚)
アワーズテック(株)製エネルギー分散型蛍光X線分析装置(型番:OURSTEX160)を用いて、蛍光X線の強度(単位:cps)から、パラジウム金属膜の膜厚を算出した。まず、概ね膜厚1μmのパラジウム金属膜を作成し、蛍光X線強度、および、(株)小坂研究所製の表面粗さ計(型番:SE−3400)を用いて基板とパラジウム金属膜表面間の段差からパラジウム金属膜の膜厚を測定した。次に、パラジウム金属膜の蛍光X線の強度が膜厚に比例することから、検量線を作成し、試料のパラジウム金属膜の膜厚を求めた。
(Palladium metal film thickness)
The film thickness of the palladium metal film was calculated from the intensity (unit: cps) of fluorescent X-rays using an energy dispersive X-ray fluorescence analyzer (model number: OURSTEX 160) manufactured by Hours Tech Co., Ltd. First, a palladium metal film having a film thickness of approximately 1 μm was prepared, and the substrate and the surface of the palladium metal film were measured using fluorescent X-ray intensity and a surface roughness meter (model number: SE-3400) manufactured by Kosaka Laboratory. The film thickness of the palladium metal film was measured from the step. Next, since the intensity of the fluorescent X-ray of the palladium metal film was proportional to the film thickness, a calibration curve was created to determine the film thickness of the sample palladium metal film.

(パラジウム金属膜の表面抵抗値)
100mm四方の試験片5枚を用意し、20℃、50%RHの雰囲気下でJIS−C−2151(2006年版)に基づいて、(株)ダイアインスツルメンツ製の表面抵抗計(ロレスタGP、型番:MCP−T600)およびプローブ(型番:TFP)を用いて、5枚の試験片の中心点の抵抗値測定を行い、その平均値を表面抵抗値とした。
(Surface resistance value of palladium metal film)
Five test pieces of 100 mm square were prepared, and a surface resistance meter (Loresta GP, model number) manufactured by Dia Instruments Co., Ltd. based on JIS-C-2151 (2006 version) in an atmosphere of 20 ° C. and 50% RH. Using MCP-T600) and a probe (model number: TFP), the resistance value of the center point of the five test pieces was measured, and the average value was defined as the surface resistance value.

(パラジウム金属膜の密度)
理学電機社製薄膜X線回折装置(型番:RINT−2400)を用いてX線反射率測定法により求めた。入射X線波長は0.1541nm(CuKα1線)で、測定範囲は0.05〜2.0°、0.005°ステップでスキャンスピードは0.025°/minとした。20mm四方の試験片3枚を25℃50%RH条件下で測定し、その平均値をパラジウム金属膜の密度とした。
(Palladium metal film density)
It calculated | required by the X-ray reflectivity measuring method using the thin film X-ray-diffraction apparatus (model number: RINT-2400) by Rigaku Corporation. The incident X-ray wavelength was 0.1541 nm (CuKα1 ray), the measurement range was 0.05 to 2.0 °, and the scan speed was 0.025 ° / min in 0.005 ° steps. Three 20 mm square test pieces were measured under the conditions of 25 ° C. and 50% RH, and the average value was taken as the density of the palladium metal film.

(パラジウム金属膜のパラジウム面密度)
パラジウム面密度はラザフォード後方散乱法(RBS)により求めた。神戸製鋼所製RBS分析装置(型番:HRBS500)を使用し、入射エネルギー450KeV、入射イオンHe+、散乱角77°、入射角51.5°、試料電流20nA、照射量40μC、測定エネルギー範囲260〜440KeVで測定した。
20mm四方の試験片3枚を測定し、その平均値をパラジウム面密度とした。
(Palladium surface density of palladium metal film)
The palladium surface density was determined by Rutherford backscattering method (RBS). Using an RBS analyzer manufactured by Kobe Steel (model number: HRBS500), incident energy 450 KeV, incident ion He +, scattering angle 77 °, incident angle 51.5 °, sample current 20 nA, irradiation dose 40 μC, measurement energy range 260 to 440 KeV Measured with
Three test pieces of 20 mm square were measured, and the average value was defined as the palladium surface density.

(スパッタリング時の希ガス分圧)
スパッタリング時の希ガス分圧はアルバック社製ピラニゲージ(型番:BPR2)およびアルバック社製アナログ電離真空計(型番:GI−TL3RY)とアルバック社製小型分圧モニタ(型番:MA−01)を使用して求めた。
(Partial pressure of rare gas during sputtering)
The rare gas partial pressure during sputtering uses ULVAC's Pirani gauge (model number: BPR2), ULVAC's analog ionization vacuum gauge (model number: GI-TL3RY) and ULVAC's small partial pressure monitor (model number: MA-01). Asked.

まず、スパッタリング装置チャンバー内の全圧力をピラニゲージまたはアナログ電離真空計を用いて求めた。このとき、ピラニゲージで2.0Paよりも高圧であればピラニゲージを使用し、2.0Paよりも低圧であればアナログ電離真空計を使用した。その後小型分圧モニタの各ガスの分圧合計とピラニゲージまたはアナログ電離真空計から求めた全圧力が一致するように各分圧を校正した。希ガスの一つであるアルゴンの分圧を測定する場合は、質量数36のアルゴン同位体(存在比0.336%)の分圧を上記方法で測定した後、その値を0.00336で除してアルゴン分圧とした。   First, the total pressure in the sputtering apparatus chamber was determined using a Pirani gauge or an analog ionization vacuum gauge. At this time, a Pirani gauge was used if the pressure was higher than 2.0 Pa in the Pirani gauge, and an analog ionization vacuum gauge was used if the pressure was lower than 2.0 Pa. After that, each partial pressure was calibrated so that the total partial pressure of each gas of the small partial pressure monitor matched with the total pressure obtained from the Pirani gauge or the analog ionization vacuum gauge. When measuring the partial pressure of argon, which is one of the rare gases, the partial pressure of an argon isotope having a mass number of 36 (abundance ratio: 0.336%) is measured by the above method, and then the value is 0.00336. To obtain an argon partial pressure.

すなわち、注目する分圧に、小型分圧モニタの分圧(アルゴンの場合は同位体存在比で除した値)合計を乗じ、ピラニゲージまたはアナログ電離真空計から求めた全圧力で除した。   That is, the partial pressure of interest was multiplied by the total partial pressure of the small partial pressure monitor (in the case of argon, the value divided by the isotope abundance ratio) and divided by the total pressure obtained from the Pirani gauge or analog ionization vacuum gauge.

(実施例)
パラジウム金属膜積層フィルムは、直流マグネトロンスパッタ法を用いて作成した。ターゲット材料として純度99.95%、直径76mmの円盤状パラジウムを用い、基材には厚み100μmのポリエステルフィルム(東レ(株)製ルミラー(R)E20)を用いた。以下スパッタ成膜手順を示す。先ず、基材をターゲットから100mm離れた位置に対向させて保持し、雰囲気を5×10−3Pa以下まで排気する。次にスパッタガスとして純度99.9999%のアルゴンガスを、マスフローコントローラーを介して成膜雰囲気に導入した。成膜時のアルゴン分圧は、0〜0.6Paの範囲ではアルゴンガスの導入量を0〜10sccmの範囲で調整することで設定した。0.6Pa以上ではアルゴンガスの導入量を10sccmに固定した状態で排気弁の開度を小さくすることで設定した。なお、「sccm」とは、0℃、1.013×10Pa(1気圧(atm))における体積流量をml/min単位で表した数値のことである。アルゴン分圧設定後、ターゲットと基材間に設置したシャッターを閉めた状態でターゲットに直流負電圧を印加しグロー放電を行った。グロー放電は定電流モードで行い、放電電流は50〜250mA(直径76mmの円盤状パラジウムの面積で換算すると、放電電流密度1.1〜5.5mA/cm)の範囲から選んで設定した。放電開始後、1〜5秒程度のプレスパッタを行った後シャッターを開けて成膜を行った。成膜時間は基材横に配置した水晶振動子型膜厚モニタを見ながら設定膜厚になるように調整した。なお、水晶振動子型膜厚モニタは実膜厚の50倍程度に感度を高めて使用することにより、5〜30nm程度の範囲の薄い膜を作成し易くした。なお、基材は故意に加熱も冷却もしなかった。
(Example)
The palladium metal film laminated film was prepared using a direct current magnetron sputtering method. Discoidal palladium having a purity of 99.95% and a diameter of 76 mm was used as the target material, and a polyester film having a thickness of 100 μm (Lumilar (R) E20 manufactured by Toray Industries, Inc.) was used as the base material. The sputter deposition procedure is shown below. First, the base material is held at a position 100 mm away from the target, and the atmosphere is exhausted to 5 × 10 −3 Pa or less. Next, argon gas having a purity of 99.9999% was introduced as a sputtering gas into the film formation atmosphere via a mass flow controller. The argon partial pressure during film formation was set by adjusting the amount of argon gas introduced in the range of 0 to 10 sccm in the range of 0 to 0.6 Pa. At 0.6 Pa or more, it was set by reducing the opening of the exhaust valve while the amount of argon gas introduced was fixed at 10 sccm. “Sccm” is a numerical value representing the volume flow rate in units of ml / min at 0 ° C. and 1.013 × 10 5 Pa (1 atm (atm)). After the argon partial pressure was set, glow discharge was performed by applying a DC negative voltage to the target with the shutter installed between the target and the substrate closed. The glow discharge was performed in a constant current mode, and the discharge current was selected and set from the range of 50 to 250 mA (discharge current density 1.1 to 5.5 mA / cm 2 when converted to the area of discoidal palladium having a diameter of 76 mm). After starting the discharge, pre-sputtering was performed for about 1 to 5 seconds, and then the shutter was opened to form a film. The film formation time was adjusted to the set film thickness while observing the crystal oscillator type film thickness monitor placed beside the substrate. In addition, the crystal oscillator type film thickness monitor was used with a sensitivity increased to about 50 times the actual film thickness, thereby making it easy to produce a thin film in the range of about 5 to 30 nm. The substrate was neither intentionally heated nor cooled.

表1にスパッタガスとしてアルゴンを用いてポリエステルフィルム上にスパッタ作成したパラジウム金属膜のスパッタ時のアルゴン分圧に対するパラジウム金属膜中アルゴン濃度、膜厚、密度、パラジウム面密度A、成膜直後の表面抵抗値B、大気中70℃、150時間暴露後の表面抵抗値C、原子数を基準としたパラジウム膜平面方向の抵抗率A×B/1015、表面抵抗値の変化率|B−C|/B×100、を示す。パラジウムの設定膜厚は10nmとした。結果より、スパッタ時のアルゴン分圧を少なくするとパラジウム金属膜中のアルゴン濃度が減少する傾向のあることがわかる。また、パラジウム金属膜中のアルゴン濃度が減少すると、大気中70℃150時間暴露前後の表面抵抗値の変化率は少なくなる結果となった。特に、成膜中のアルゴン分圧を0.5Pa以下にするとパラジウム金属膜中のアルゴン濃度は10atm%以下となり、表面抵抗値の変化率も15%以下の実用品質範囲内となる良好な結果となった。また、パラジウム金属膜中のアルゴン濃度が減少するに伴い、パラジウム金属膜の密度が増加し、同時にA×Bの値が減少した。このとき大気中70℃150時間曝露前後の表面抵抗値の変化率が小さくなり、実用上問題ない良好な結果となった。なお、アルゴン分圧を0.02Paとすると放電がきわめて不安定となり、所望する比較的薄い膜厚(5〜30nm)のパラジウム膜を得ることはできなかった。 Table 1 shows the argon concentration, film thickness, density, palladium surface density A, and surface immediately after film formation in the palladium metal film with respect to the argon partial pressure during sputtering of the palladium metal film sputtered on the polyester film using argon as the sputtering gas. Resistance value B, surface resistance value C after exposure at 70 ° C. in the atmosphere for 150 hours, resistivity A × B / 10 15 in the palladium film plane direction based on the number of atoms, change rate of surface resistance value | B−C | / B × 100. The set film thickness of palladium was 10 nm. From the results, it can be seen that the argon concentration in the palladium metal film tends to decrease when the argon partial pressure during sputtering is reduced. Further, when the argon concentration in the palladium metal film decreased, the change rate of the surface resistance value before and after exposure in the atmosphere at 70 ° C. for 150 hours decreased. In particular, when the argon partial pressure during film formation is 0.5 Pa or less, the argon concentration in the palladium metal film is 10 atm% or less, and the rate of change of the surface resistance value is 15% or less within the practical quality range. became. Further, as the argon concentration in the palladium metal film decreased, the density of the palladium metal film increased, and at the same time the value of A × B decreased. At this time, the rate of change in the surface resistance value before and after exposure at 70 ° C. for 150 hours in the atmosphere was reduced, and good results with no practical problems were obtained. When the argon partial pressure was 0.02 Pa, the discharge became extremely unstable, and a desired relatively thin palladium film (5 to 30 nm) could not be obtained.

Figure 2013126762
Figure 2013126762

Claims (5)


基材フィルムの少なくとも片面に、スパッタリング法によりパラジウム金属膜が形成された積層体であって、該金属膜が希ガス分圧0.03〜0.1Paの雰囲気下でスパッタリングされ、該金属膜中に含まれる希ガスの濃度が0.1〜10atm%であるパラジウム金属膜積層フィルム。

A laminate in which a palladium metal film is formed on at least one surface of a base film by a sputtering method, and the metal film is sputtered in an atmosphere of a rare gas partial pressure of 0.03 to 0.1 Pa. The palladium metal film laminated film whose density | concentration of the noble gas contained in 0.1-10 atm%.
基材フィルムの少なくとも片面に、スパッタリング法によりパラジウム金属膜が形成された積層体であって、該金属膜が希ガス分圧0.03〜0.1Paの雰囲気下でスパッタリングされ、該パラジウム金属膜の形成直後のパラジウム面密度A(atoms/cm)と形成直後の表面抵抗値B(Ω/□)とが、下記式(1)を満たすパラジウム金属膜積層フィルム。
A×B≦7000×1015 (1)
A laminate in which a palladium metal film is formed on at least one surface of a base film by a sputtering method, and the metal film is sputtered in an atmosphere of a rare gas partial pressure of 0.03 to 0.1 Pa. A palladium metal film laminated film in which the palladium surface density A (atoms / cm 2 ) immediately after the formation of and the surface resistance value B (Ω / □) immediately after the formation satisfy the following formula (1).
A × B ≦ 7000 × 10 15 (1)
前記パラジウム金属膜の膜厚が5〜30nmである請求項1または2に記載のパラジウム金属膜積層フィルム。   The palladium metal film laminated film according to claim 1 or 2, wherein the palladium metal film has a thickness of 5 to 30 nm. 前記パラジウム金属膜の形成直後の表面抵抗値B(Ω/□)と、積層体を大気雰囲気で、70℃、150時間暴露した後の表面抵抗値C(Ω/□)とが、下記式(2)を満たす請求項1から3のいずれかに記載のパラジウム金属膜積層フィルム。
|B−C|/B×100≦15 (2)
The surface resistance value B (Ω / □) immediately after the formation of the palladium metal film and the surface resistance value C (Ω / □) after the laminate is exposed to the atmosphere at 70 ° C. for 150 hours are expressed by the following formula ( The palladium metal film laminated film according to any one of claims 1 to 3, which satisfies 2).
| B-C | / B × 100 ≦ 15 (2)
請求項1から4のいずれかに記載のパラジウム金属積層フィルムを用いたパラジウム金属膜積層回路基板。   A palladium metal film laminated circuit board using the palladium metal laminated film according to claim 1.
JP2013006921A 2007-11-01 2013-01-18 Palladium metal film laminated film Expired - Fee Related JP5597733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006921A JP5597733B2 (en) 2007-11-01 2013-01-18 Palladium metal film laminated film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007284820 2007-11-01
JP2007284820 2007-11-01
JP2013006921A JP5597733B2 (en) 2007-11-01 2013-01-18 Palladium metal film laminated film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008148904A Division JP5384859B2 (en) 2007-11-01 2008-06-06 Palladium metal film laminated film

Publications (2)

Publication Number Publication Date
JP2013126762A true JP2013126762A (en) 2013-06-27
JP5597733B2 JP5597733B2 (en) 2014-10-01

Family

ID=40864508

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008148904A Expired - Fee Related JP5384859B2 (en) 2007-11-01 2008-06-06 Palladium metal film laminated film
JP2013006921A Expired - Fee Related JP5597733B2 (en) 2007-11-01 2013-01-18 Palladium metal film laminated film

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2008148904A Expired - Fee Related JP5384859B2 (en) 2007-11-01 2008-06-06 Palladium metal film laminated film

Country Status (1)

Country Link
JP (2) JP5384859B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192550A1 (en) * 2013-05-29 2014-12-04 東洋紡株式会社 Thin inorganic laminated film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042296A (en) * 2001-07-27 2003-02-13 Suzutora:Kk Antistatic packing material
JP2004087897A (en) * 2002-08-28 2004-03-18 Toray Ind Inc Substrate for printed circuit and printed circuit board using the same
JP2004332084A (en) * 2003-05-12 2004-11-25 Toray Advanced Film Co Ltd Palladium film manufacturing method
JP2006082399A (en) * 2004-09-16 2006-03-30 Toray Advanced Film Co Ltd Method for producing palladium film roll
JP2007021974A (en) * 2005-07-20 2007-02-01 Toray Ind Inc Metallized film
JP2007139582A (en) * 2005-11-18 2007-06-07 Toray Ind Inc Metallized film
JP2008284844A (en) * 2007-05-21 2008-11-27 Toray Ind Inc Film with conductive thin film and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042296A (en) * 2001-07-27 2003-02-13 Suzutora:Kk Antistatic packing material
JP2004087897A (en) * 2002-08-28 2004-03-18 Toray Ind Inc Substrate for printed circuit and printed circuit board using the same
JP2004332084A (en) * 2003-05-12 2004-11-25 Toray Advanced Film Co Ltd Palladium film manufacturing method
JP2006082399A (en) * 2004-09-16 2006-03-30 Toray Advanced Film Co Ltd Method for producing palladium film roll
JP2007021974A (en) * 2005-07-20 2007-02-01 Toray Ind Inc Metallized film
JP2007139582A (en) * 2005-11-18 2007-06-07 Toray Ind Inc Metallized film
JP2008284844A (en) * 2007-05-21 2008-11-27 Toray Ind Inc Film with conductive thin film and manufacturing method thereof

Also Published As

Publication number Publication date
JP5384859B2 (en) 2014-01-08
JP5597733B2 (en) 2014-10-01
JP2009132138A (en) 2009-06-18

Similar Documents

Publication Publication Date Title
Liu et al. In vitro corrosion behavior of multilayered Ti/TiN coating on biomedical AISI 316L stainless steel
Zhu et al. Microstructure and corrosion resistance of Cr/Cr2N multilayer film deposited on the surface of depleted uranium
EP2157645A1 (en) Metallic separator for fuel cell and process for producing the metallic separator
JP6810330B2 (en) Electrode and electrochemical measurement system
Boris et al. Controlling the electron energy distribution function of electron beam generated plasmas with molecular gas concentration: I. Experimental results
Yan et al. Corrosion-resistant and interfacial conductive AlTiVCrMo high-entropy alloy and (AlTiVCrMo) Nx high-entropy ceramics coatings for surface modification of bipolar plates in proton exchange membrane fuel cells
CN107039097B (en) Sputtering target material is used in electronic component-use wiring multilayer film and coating formation
Hippler et al. Angular dependence of plasma parameters and film properties during high power impulse magnetron sputtering for deposition of Ti and TiO2 layers
Hryniewicz et al. SIMS studies of titanium biomaterial hydrogenation after magnetoelectropolishing
Wu et al. Electrochemical characteristics of iridium coating by double glow plasma discharge process on titanium alloy substrates
JP5597733B2 (en) Palladium metal film laminated film
Wu et al. Effects of diamond-like carbon film on the corrosion behavior of NdFeB permanent magnet
JP2019147986A (en) Stainless steel, component, cell and fuel cell stack
Wessling et al. Sputtered Ir films evaluated for electrochemical performance I. Experimental results
JP6706418B2 (en) Sputtering target material for forming laminated wiring film and coating layer for electronic parts
Li et al. TiCr transition layer promoting the growth of high-stability TiCrN coating for titanium bipolar plate
Sugai An application of a new type deposition method to nuclear target preparation
CN104419903B (en) Coating formation sputtering target material and its manufacture method
Tomcik et al. Electrochemical tests on the carbon protective layer of a hard disk
JP5072435B2 (en) Film with conductive thin film and method for producing the same
TW200936790A (en) Sno2-based sputtering target
Bouhtiyya et al. On the characteristics of Pd thin films prepared by pulsed laser deposition under different helium pressures
JP2010045052A (en) Metal separator for fuel cell and method of manufacturing the same
Cuynet et al. An efficient way to evidence and to measure the metal ion fraction in high power impulse magnetron sputtering (HiPIMS) post-discharge with Pt, Au, Pd and mixed targets
TW574394B (en) Method of using hydrogen and oxygen gas in sputter deposition of aluminum-containing films and aluminum-containing films derived therefrom

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130806

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5597733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees