JP2013125661A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2013125661A
JP2013125661A JP2011273961A JP2011273961A JP2013125661A JP 2013125661 A JP2013125661 A JP 2013125661A JP 2011273961 A JP2011273961 A JP 2011273961A JP 2011273961 A JP2011273961 A JP 2011273961A JP 2013125661 A JP2013125661 A JP 2013125661A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
mass
lif
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011273961A
Other languages
Japanese (ja)
Inventor
Kazui Soeda
和位 副田
Hiroyuki Minami
博之 南
Naoki Imachi
直希 井町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011273961A priority Critical patent/JP2013125661A/en
Publication of JP2013125661A publication Critical patent/JP2013125661A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve storage characteristics of a battery by reducing dissolution of an electrolyte and an effect of cobalt and manganese eluted from a positive electrode with an increase in capacity of a nonaqueous electrolyte secondary battery.SOLUTION: A nonaqueous electrolyte secondary battery includes: a positive electrode including a positive electrode mixture layer which contains a positive electrode active material and is formed on a surface of a positive electrode collector; a negative electrode including a negative electrode mixture layer which contains a negative electrode active material and is formed on a surface of a negative electrode collector; a separator provided between the positive electrode and the negative electrode; and a nonaqueous electrolyte containing a solvent and a solute. An inorganic particle layer containing an inorganic particle and lithium fluoride is formed at least one of between the positive electrode and the separator and between the negative electrode and the separator.

Description

本発明は、非水電解質二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、携帯電話、ノートパソコン、PDAなどの移動情報端末の駆動電源として用いられる非水電解質二次電池には高容量化が求められており、この要求に応えるべく、非水電解質二次電池の高容量化が進められている。   In recent years, non-aqueous electrolyte secondary batteries used as driving power sources for mobile information terminals such as mobile phones, notebook computers, and PDAs have been required to have higher capacities. To meet this demand, non-aqueous electrolyte secondary batteries High capacity is being promoted.

また、非水電解質二次電池の高容量化が進められる上で、非水電解質二次電池の安全性や信頼性を担保するような要素技術も開発されている。例えば、特定の電極表面に無機粒子層を形成することで、非水電解質二次電池の安全性等を担保することが提案されている(特許文献1、2参照)。   In addition, as the capacity of nonaqueous electrolyte secondary batteries is increased, elemental technologies that ensure the safety and reliability of nonaqueous electrolyte secondary batteries have been developed. For example, it has been proposed to ensure the safety of a nonaqueous electrolyte secondary battery by forming an inorganic particle layer on a specific electrode surface (see Patent Documents 1 and 2).

特開2007−280917号公報JP 2007-280171 A 特開2007−280918号公報JP 2007-280918 A

非水電解質二次電池の充電終止電圧を、現状の4.2Vよりも高い電圧まで充電することにより、電池の高容量化を図りうることが知られている(特許文献1,2参照)。   It is known that the capacity of the battery can be increased by charging the end-of-charge voltage of the nonaqueous electrolyte secondary battery to a voltage higher than the current 4.2 V (see Patent Documents 1 and 2).

非水電解質二次電池の充電終止電圧を高めると、充電された正極活物質の酸化力が強まる。このため、電解液の分解が促進されるのみならず、充電により脱リチウムされた正極活物質の結晶構造の安定性が失われる。例えば、コバルト酸リチウム、マンガン酸リチウム、或いは、ニッケル−コバルト−マンガンのリチウム複合酸化物等の正極活物質を用いた非水電解質二次電池を、現状の4.2Vよりも高い電圧まで充電し、高温環境下で保存すると、コバルトやマンガンがイオンとなって正極から溶出する。これは、例えば、コバルト酸リチウムのような層状の正極活物質の場合、リチウムイオンの引き抜きによりコバルトの価数が増加するが、4価のコバルトは不安定であることから結晶構造が安定しないため、安定な構造に変化しようとして、コバルトイオンが結晶から溶出する。また、例えば、スピネル型マンガン酸リチウムを正極活物質として用いた場合には、3価のマンガンイオンが不均化して2価のマンガンイオンとして溶出する。   When the end-of-charge voltage of the nonaqueous electrolyte secondary battery is increased, the oxidizability of the charged positive electrode active material is increased. For this reason, not only the decomposition of the electrolytic solution is promoted, but also the stability of the crystal structure of the positive electrode active material delithiated by charging is lost. For example, a non-aqueous electrolyte secondary battery using a positive electrode active material such as lithium cobaltate, lithium manganate, or nickel-cobalt-manganese lithium composite oxide is charged to a voltage higher than the current 4.2V. When stored in a high temperature environment, cobalt and manganese are ionized and eluted from the positive electrode. This is because, for example, in the case of a layered positive electrode active material such as lithium cobaltate, the valence of cobalt increases by extracting lithium ions, but since tetravalent cobalt is unstable, the crystal structure is not stable. Cobalt ions elute from the crystals in an attempt to change to a stable structure. For example, when spinel type lithium manganate is used as the positive electrode active material, trivalent manganese ions are disproportionated and eluted as divalent manganese ions.

これらの溶出した元素が負極で還元されることにより、負極やセパレータ上に、コバルトやマンガンが析出する。この析出により、電池の内部抵抗が増加し、これに伴い電池の保存特性が低下するという課題があった。   By reducing these eluted elements at the negative electrode, cobalt and manganese are deposited on the negative electrode and the separator. Due to this precipitation, the internal resistance of the battery is increased, and as a result, there is a problem that the storage characteristics of the battery are deteriorated.

本発明に係る非水電解質二次電池は、正極集電体の表面に、正極活物質を含む正極合剤層が形成された正極と、負極集電体の表面に、負極活物質を含む負極合剤層が形成された負極と、正極と負極との間に設けられたセパレータと、溶媒と溶質とを含む水電解質と、を備え、正極とセパレータとの間と負極とセパレータとの間との少なくとも一方に、無機粒子とフッ化リチウムを含んで構成される無機粒子層が形成されている。   The nonaqueous electrolyte secondary battery according to the present invention includes a positive electrode in which a positive electrode mixture layer containing a positive electrode active material is formed on the surface of a positive electrode current collector, and a negative electrode containing a negative electrode active material on the surface of the negative electrode current collector A negative electrode on which a mixture layer is formed, a separator provided between the positive electrode and the negative electrode, and a water electrolyte containing a solvent and a solute, and between the positive electrode and the separator and between the negative electrode and the separator. At least one of these is formed with an inorganic particle layer including inorganic particles and lithium fluoride.

本発明によれば、非水電解質二次電池の保存特性を改善することができる。   According to the present invention, the storage characteristics of the nonaqueous electrolyte secondary battery can be improved.

以下、本発明を具体的な実施例に基づいて詳細に説明するが、本発明は下記実施例によって何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。   Hereinafter, the present invention will be described in detail based on specific examples. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications without departing from the scope of the present invention. It is a thing.

(実施例1)
正極の作製について、説明する。
Example 1
The production of the positive electrode will be described.

正極活物質としてのコバルト酸リチウムと、炭素導電剤としてのアセチレンブラックと、バインダーとしてのPVdF(ポリフッ化ビニリデン)とを、NMP(N−メチルー2−ピロリドン)を希釈溶媒として、プライミクス製コンビミックスを用いて攪拌し、正極合剤スラリーを調製した。なお、正極活物質と炭素導電剤とバインダーの質量比を、正極活物質:炭素導電剤:バインダー=95:2.5:2.5とした。そして、正極集電体としてのアルミニウム箔の両面に正極合剤スラリーを塗布し、これを乾燥させ、そして圧延することにより、正極集電体上に正極合剤層を作製し、これを正極とした。正極合剤層の厚みを、127μmとした。正極合剤層の充填密度を、3.60g/ccとした。   Limix Cobalt made by Primes using lithium cobaltate as a positive electrode active material, acetylene black as a carbon conductive agent, PVdF (polyvinylidene fluoride) as a binder, NMP (N-methyl-2-pyrrolidone) as a diluent solvent The mixture was stirred to prepare a positive electrode mixture slurry. The mass ratio of the positive electrode active material, the carbon conductive agent, and the binder was positive electrode active material: carbon conductive agent: binder = 95: 2.5: 2.5. Then, a positive electrode mixture slurry is applied to both surfaces of an aluminum foil as a positive electrode current collector, dried and rolled to produce a positive electrode mixture layer on the positive electrode current collector. did. The thickness of the positive electrode mixture layer was 127 μm. The packing density of the positive electrode mixture layer was 3.60 g / cc.

負極の作製について、説明する。   The production of the negative electrode will be described.

溶剤としての水に、負極活物質としての人造黒鉛と、分散剤としてのCMC(カルボキシメチルセルロース)と、結着剤としてのSBR(スチレンブタジエンゴム)とを混合し、負極合剤スラリーを調製した。負極活物質とフッ化リチウムとCMCとSBRの質量比を、負極活物質:フッ化リチウム:CMC:SBR=97.3:0.2:1:1.5とした。なお、負極合剤スラリーを調整する際に、CMCは、CMCを純水に1質量%溶解させた状態のものを、負極活物質や分散剤に添加した。調整された負極合剤スラリーを、負極集電体としての銅箔の両面に塗布し、これを乾燥させ、そして圧延することにより、負極集電体上に負極合剤層を作製し、これを負極とした。負極合剤層の厚みを、142μmとした。負極合剤層の充填密度を、1.60g/ccとした。   Artificial graphite as a negative electrode active material, CMC (carboxymethylcellulose) as a dispersant, and SBR (styrene butadiene rubber) as a binder were mixed in water as a solvent to prepare a negative electrode mixture slurry. The mass ratio of the negative electrode active material, lithium fluoride, CMC, and SBR was negative electrode active material: lithium fluoride: CMC: SBR = 97.3: 0.2: 1: 1.5. When preparing the negative electrode mixture slurry, CMC having 1% by mass of CMC dissolved in pure water was added to the negative electrode active material and the dispersant. The prepared negative electrode mixture slurry is applied to both sides of a copper foil as a negative electrode current collector, dried and rolled to produce a negative electrode mixture layer on the negative electrode current collector. A negative electrode was obtained. The thickness of the negative electrode mixture layer was 142 μm. The packing density of the negative electrode mixture layer was 1.60 g / cc.

無機粒子層の作製について、説明する。   The production of the inorganic particle layer will be described.

溶剤としての水に、無機粒子とフッ化リチウム(LiF)とバインダーと分散剤とを混合し、水系スラリーa1を調整した。無機粒子は、アルミナ(Al、平均粒子径0.6μm)を用いた。水系スラリーa1における無機粒子の固形分濃度を25質量%とした。LiFは100μmのふるいにかけたものを用いた。LiFの添加量は、無機粒子100質量%に対して0.5質量%とした。バインダーとしてはアクリロニトリル構造(単位)を含む共重合体(ゴム性状高分子)を用いた。バインダーの添加量は、無機粒子100質量%に対して3.75質量%とした。分散剤としては、CMC(カルボキシメチルセルロース)を用いた。分散剤の添加量は、無機粒子100質量%に対して0.5質量%とした。 Inorganic particles, lithium fluoride (LiF), a binder, and a dispersant were mixed in water as a solvent to prepare an aqueous slurry a1. As the inorganic particles, alumina (Al 2 O 3 , average particle diameter 0.6 μm) was used. The solid content concentration of the inorganic particles in the aqueous slurry a1 was 25% by mass. LiF used was passed through a 100 μm sieve. The addition amount of LiF was 0.5 mass% with respect to 100 mass% of inorganic particles. As the binder, a copolymer (rubbery polymer) containing an acrylonitrile structure (unit) was used. The addition amount of the binder was 3.75% by mass with respect to 100% by mass of the inorganic particles. CMC (carboxymethylcellulose) was used as the dispersant. The addition amount of the dispersant was 0.5% by mass with respect to 100% by mass of the inorganic particles.

水系スラリーa1を、正極の両面にディップコート方式で塗布し、溶剤である水を乾燥することにより除去した。これにより、正極の両面上に無機粒子を含有する無機粒子層を形成した。尚、無機粒子層の厚みは両面で4μm(片面2μm)とした。   The aqueous slurry a1 was applied to both sides of the positive electrode by a dip coating method, and the solvent water was removed by drying. This formed the inorganic particle layer containing an inorganic particle on both surfaces of a positive electrode. In addition, the thickness of the inorganic particle layer was 4 μm on both sides (2 μm on one side).

非水電解液の調製について、説明する。   The preparation of the nonaqueous electrolytic solution will be described.

電解液は、EC(エチレンカーボネート)とMEC(メチルエチルカーボネート)が混
合された混合溶媒に、LiPF(六フッ化燐酸リチウム)が1.0mol/Lの割合となるように溶解したものを非水電解液として用いた。なお、ECとMECの体積比を、EC:MEC=を30:70とした。
The electrolyte solution is non-dissolved in a mixed solvent in which EC (ethylene carbonate) and MEC (methyl ethyl carbonate) are mixed so that LiPF 6 (lithium hexafluorophosphate) has a ratio of 1.0 mol / L. Used as a water electrolyte. The volume ratio of EC to MEC was EC: MEC = 30: 70.

電池の組み立てについて、説明する。   The assembly of the battery will be described.

まず、正極タブを正極内における最外周部に位置するように配置し、負極タブを負極内における最外周部に位置するように配置した。そして、正極と負極とを、ポリエチレン製のシート状セパレータ(膜厚16μm、空孔率47%)を介して、対向するように配置した。これを、渦巻き状に捲回した後、押し潰して、扁平型の電極体を作製した。扁平型の電極体を、アルミニウムラミネートで形成された電池外装体に入れ、非水電解液の注液を行い、封止して、電池A1を作製した。尚、電池A1の設計容量は、4.35Vまでの充電終止電圧を基準として、800mAhである。   First, the positive electrode tab was disposed so as to be positioned on the outermost peripheral portion in the positive electrode, and the negative electrode tab was disposed so as to be positioned on the outermost peripheral portion in the negative electrode. And the positive electrode and the negative electrode were arrange | positioned so that it might oppose through the sheet-like separator made from polyethylene (film thickness of 16 micrometers, porosity 47%). This was wound in a spiral shape and then crushed to produce a flat electrode body. A flat electrode body was placed in a battery exterior body formed of an aluminum laminate, and a nonaqueous electrolytic solution was injected and sealed to prepare a battery A1. The design capacity of the battery A1 is 800 mAh on the basis of the end-of-charge voltage up to 4.35V.

(実施例2)
実施例2では、LiFの添加量が無機粒子100質量%に対して1質量%となるようにして、水系スラリーa2を調整した。LiFの添加量を変更したことを除いて、水系スラリーa2は、水系スラリーa1と同様の方法にて調整した。そして、実施例2では、水系スラリーa2を用いたことを除いて、電池A1と同様に電池A2を作製した。
(Example 2)
In Example 2, the aqueous slurry a2 was prepared such that the amount of LiF added was 1% by mass with respect to 100% by mass of the inorganic particles. The aqueous slurry a2 was adjusted by the same method as the aqueous slurry a1 except that the amount of LiF added was changed. In Example 2, a battery A2 was produced in the same manner as the battery A1, except that the aqueous slurry a2 was used.

(実施例3)
実施例3では、LiFの添加量が無機粒子100質量%に対して5質量%となるようにして、水系スラリーa3を調整した。LiFの添加量を変更したことを除いて、水系スラリーa3は、水系スラリーa1と同様の方法にて調整した。そして、実施例3では、水系スラリーa3を用いたことを除いて、電池A1と同様に電池A3を作製した。
(Example 3)
In Example 3, the aqueous slurry a3 was prepared such that the amount of LiF added was 5% by mass with respect to 100% by mass of the inorganic particles. Except having changed the addition amount of LiF, the aqueous slurry a3 was adjusted with the method similar to the aqueous slurry a1. In Example 3, a battery A3 was produced in the same manner as the battery A1, except that the aqueous slurry a3 was used.

(実施例4)
実施例4では、LiFの添加量が無機粒子100質量%に対して10質量%となるようにして、水系スラリーa4を調整した。LiFの添加量を変更したことを除いて、水系スラリーa4は、水系スラリーa1と同様の方法にて調整した。そして、実施例4では、水系スラリーa4を用いたことを除いて、電池A1と同様に電池A4を作製した。
Example 4
In Example 4, the aqueous slurry a4 was prepared such that the amount of LiF added was 10% by mass with respect to 100% by mass of the inorganic particles. The aqueous slurry a4 was adjusted by the same method as the aqueous slurry a1 except that the amount of LiF added was changed. In Example 4, a battery A4 was produced in the same manner as the battery A1, except that the aqueous slurry a4 was used.

(実施例5)
実施例5では、LiFの添加量が無機粒子100質量%に対して50質量%となるようにして、水系スラリーa5を調整した。LiFの添加量を変更したことを除いて、水系スラリーa5は、水系スラリーa1と同様の方法にて調整した。そして、実施例5では、水系スラリーa5を用いたことを除いて、電池A1と同様に電池A4を作製した。
(Example 5)
In Example 5, the aqueous slurry a5 was prepared such that the amount of LiF added was 50% by mass with respect to 100% by mass of the inorganic particles. The aqueous slurry a5 was adjusted by the same method as the aqueous slurry a1 except that the amount of LiF added was changed. In Example 5, a battery A4 was produced in the same manner as the battery A1, except that the aqueous slurry a5 was used.

(実施例6)
無機粒子層の作製について、説明する。溶剤としてのNMP(N−メチル−2−ピロリドン)に、無機粒子とフッ化リチウム(LiF)とバインダーとを混合し、スラリーa6を調整した。無機粒子は、アルミナ(Al、平均粒子径0.6μm)を用いた。スラリーa6における無機粒子の固形分濃度を25質量%とした。LiFは100μmのふるいにかけたものを用いた。LiFの添加量は、無機粒子100質量%に対して1.0質量%とした。バインダーとしてはアクリロニトリル構造(単位)を含む共重合体(ゴム性状高分子)を用いた。バインダーの添加量は、無機粒子100質量%に対して3.75質量%とした。スラリーa6を、負極の両面にディップコート方式で塗布し、溶剤を乾燥させて除去した。これにより、負極の表面の両側に無機粒子を含有する無機粒子層を形成した。無機粒子層の厚みは、両面で4μm(片面2μm)とした。
(Example 6)
Production of the inorganic particle layer will be described. A slurry a6 was prepared by mixing NMP (N-methyl-2-pyrrolidone) as a solvent with inorganic particles, lithium fluoride (LiF), and a binder. As the inorganic particles, alumina (Al 2 O 3 , average particle diameter 0.6 μm) was used. The solid content concentration of the inorganic particles in the slurry a6 was 25% by mass. LiF used was passed through a 100 μm sieve. The addition amount of LiF was 1.0 mass% with respect to 100 mass% of inorganic particles. As the binder, a copolymer (rubbery polymer) containing an acrylonitrile structure (unit) was used. The addition amount of the binder was 3.75% by mass with respect to 100% by mass of the inorganic particles. Slurry a6 was applied to both sides of the negative electrode by dip coating, and the solvent was dried and removed. Thereby, the inorganic particle layer containing inorganic particles was formed on both sides of the surface of the negative electrode. The thickness of the inorganic particle layer was 4 μm on each side (2 μm on one side).

尚、実施例6では、正極の表面に無機粒子層を形成しなかった。   In Example 6, no inorganic particle layer was formed on the surface of the positive electrode.

実施例6では、無機粒子層が形成された負極と、無機粒子層が形成されていない正極を用いたことを除いて、電池A1や電池A2と同様に、電池A6を作製した。   In Example 6, a battery A6 was produced in the same manner as the battery A1 and the battery A2, except that a negative electrode on which an inorganic particle layer was formed and a positive electrode on which no inorganic particle layer was formed were used.

(比較例)
比較例では、無機粒子層中にLiFを添加しなかった。これ以外は、電池A1と同様に電池Bを作製した。
(Comparative example)
In the comparative example, LiF was not added in the inorganic particle layer. A battery B was made in the same manner as the battery A1 except for this.

(高温保存試験)
電池A1からA6とB1について、以下の条件にて高温保存試験を行い、評価結果を、表1に示した。
(High temperature storage test)
The batteries A1 to A6 and B1 were subjected to a high-temperature storage test under the following conditions, and the evaluation results are shown in Table 1.

まず、1It(800mA)の電流で、4.4Vまで定電流充電を行い、さらに、4.4Vの定電圧で電流1/50It(16mA)になるまで充電した。充電後、10分間の休止期間を経て、1.0It(800mA)の電流で2.75Vになるまで定電流放電を行った。該放電時に保存前の放電容量を測定した。   First, constant current charging was performed to 4.4 V with a current of 1 It (800 mA), and further charging was performed to a current of 1/50 It (16 mA) with a constant voltage of 4.4 V. After charging, a constant current discharge was performed through a 10-minute rest period until a current of 1.0 It (800 mA) reached 2.75 V. During the discharge, the discharge capacity before storage was measured.

放電の後、上記と同じ条件で充電を行った。充電された電池を、60℃の恒温槽内で5日間保存した。保存後、電池の温度が室温になるまで放置した。電池温度が室温になったら、1.0It(800mA)の電流で2.75Vになるまで定電流放電を行った。この放電時に保存後の放電容量を測定した。   After discharging, charging was performed under the same conditions as described above. The charged battery was stored in a constant temperature bath at 60 ° C. for 5 days. After storage, the battery was allowed to stand until it reached room temperature. When the battery temperature reached room temperature, constant current discharge was performed until the battery temperature reached 2.75 V at a current of 1.0 It (800 mA). The discharge capacity after storage was measured during this discharge.

保存前後の放電容量より、以下の式より、放電容量残存率を求めた。
放電容量残存率(%)=保存後の室温状態における放電容量÷保存前の放電容量×100
From the discharge capacity before and after storage, the discharge capacity residual rate was determined from the following formula.
Discharge capacity remaining rate (%) = discharge capacity at room temperature after storage ÷ discharge capacity before storage × 100

高温保存試験の結果、無機粒子層中にLiFが添加された電池A1からA6は、無機粒子層中にLiFが添加されていない電池Bよりも、放電容量残存率が高かった。したがって、無機粒子層中にLiFを添加すると、放電容量残存率が改善するといえる。これは、無機粒子層中のLiFが、高温保存時に正極から溶出した遷移金属を捕捉したことによるものと考えられる。LiFは極性が大きいため、電気陰性度の大きいフッ素原子が、電子を引き付けて負に帯電する傾向にある。このため、正に帯電した遷移金属イオン(Co2+、Co3+、Mn2+やMn3+など)が、負に帯電したフッ素原子に捕捉されたものと考えられる。 As a result of the high temperature storage test, the batteries A1 to A6 in which LiF was added in the inorganic particle layer had a higher discharge capacity remaining rate than the battery B in which LiF was not added in the inorganic particle layer. Therefore, it can be said that when LiF is added to the inorganic particle layer, the discharge capacity remaining rate is improved. This is presumably because LiF in the inorganic particle layer captured the transition metal eluted from the positive electrode during high temperature storage. Since LiF has a large polarity, fluorine atoms having a high electronegativity tend to attract electrons and become negatively charged. Therefore, it is considered that positively charged transition metal ions (Co 2+ , Co 3+ , Mn 2+ , Mn 3+, etc.) are trapped by negatively charged fluorine atoms.

無機粒子層を正極表面に設けた電池A1からA5(特に電池A2)は、無機粒子層を負極表面に設けた電池A6よりも、放電容量残存率が高かった。したがって、LiFが添加された無機粒子層を、正極の表面に設けた方が、放電容量残存率が改善するといえる。これは、遷移金属は正極より溶出するため、正極付近にLiFを配置したほうが遷移金属の捕捉効果が高いことによるものと考えられる。また、セパレータと負極との間に無機粒子層を設けた場合、遷移金属は、セパレータを通過するため、遷移金属がセパレータ表面にも堆積し、セパレータが目詰まりする恐れがある。   The batteries A1 to A5 (particularly the battery A2) in which the inorganic particle layer was provided on the positive electrode surface had a higher discharge capacity remaining rate than the battery A6 in which the inorganic particle layer was provided on the negative electrode surface. Therefore, it can be said that the discharge capacity remaining rate is improved when the inorganic particle layer to which LiF is added is provided on the surface of the positive electrode. This is presumably because the transition metal is eluted from the positive electrode, and therefore the effect of capturing the transition metal is higher when LiF is arranged near the positive electrode. In addition, when an inorganic particle layer is provided between the separator and the negative electrode, the transition metal passes through the separator, and therefore, the transition metal may be deposited on the separator surface and the separator may be clogged.

また、電池A3、A4、A5の放電容量残存率は、同程度であった。つまり、LiFを添加することにより得られる効果は、LiFを添加すれば添加するほど改善するものではないと考えられる。すなわち、正極より溶出する遷移金属を捕捉する程度のLiFが無機粒子層に添加されていれば、LiFの添加量としては十分であるものと考えられる。   Further, the remaining discharge capacity rates of the batteries A3, A4, and A5 were similar. That is, it is considered that the effect obtained by adding LiF does not improve as LiF is added. That is, it is considered that the amount of LiF added is sufficient if LiF is added to the inorganic particle layer to capture the transition metal eluted from the positive electrode.

なお、電池A3、A4,A5の高温保存試験の結果を具体的に比較すると、無機粒子100質量%に対して5質量%のLiFを添加した電池A3よりも、無機粒子100質量%に対して10質量%以上のLiFを添加した電池A4、A5のほうが、放電容量残存率が0.1%低下した。したがって、無機粒子100質量%に対するLiFの添加量が5質量%から10質量%の範囲において、LiFが遷移金属を捕捉する効果が飽和するものと考えられる。したがって、LiFの添加量は無機粒子100質量%に対して、10質量%以下であることが好ましく、より好ましくは7質量%以下である。   In addition, when the result of the high temperature storage test of batteries A3, A4, and A5 is specifically compared, the battery A3 to which 5% by mass of LiF is added to 100% by mass of the inorganic particles is more than 100% by mass of the inorganic particles. In the batteries A4 and A5 to which 10% by mass or more of LiF was added, the discharge capacity remaining rate decreased by 0.1%. Therefore, it is considered that the effect of LiF capturing the transition metal is saturated when the amount of LiF added to 100% by mass of the inorganic particles is in the range of 5% by mass to 10% by mass. Therefore, the addition amount of LiF is preferably 10% by mass or less, more preferably 7% by mass or less, with respect to 100% by mass of the inorganic particles.

また、電池A1、A2、A3の高温保存試験の結果を比較すると、LiFの添加量が多いほど、放電容量残存率が改善していた。したがって、LiFの添加量が少ないと、溶出した遷移金属の全てを捕捉することができないものと考えられる。したがって、LiFの添加量は無機粒子100質量%に対して、0.1質量%以上であることが好ましく、より好ましくは0.5質量%以上であり、さらに好ましくは1.0質量%以上である。   Moreover, when comparing the results of the high temperature storage tests of the batteries A1, A2, and A3, the discharge capacity remaining rate was improved as the amount of LiF added was increased. Therefore, if the amount of LiF added is small, it is considered that all of the eluted transition metals cannot be captured. Therefore, the addition amount of LiF is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1.0% by mass or more with respect to 100% by mass of the inorganic particles. is there.

なお、LiFは電子伝導性が低いため、正極中または負極中にLiFを添加すると電池特性が低下するものと考えられる。また、正極中または負極中にLiFを添加する場合に、無機粒子層へLiFを添加する場合と同程度のLiFを添加したことによる効果を得るためには、無機粒子層へLiFを添加する場合よりも多量にLiFを添加する必要があると考えられる。   In addition, since LiF has low electronic conductivity, it is considered that the battery characteristics are deteriorated when LiF is added in the positive electrode or the negative electrode. In addition, when LiF is added to the positive electrode or the negative electrode, in order to obtain the same effect as adding LiF to the inorganic particle layer, LiF is added to the inorganic particle layer. It is considered necessary to add LiF in a larger amount than that.

(その他の事項)
(1) 正極について
正極活物質として、コバルト酸リチウムの代わりに、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alの複合酸化物等のコバルト或いはマンガンを含むリチウム複合酸化物や、燐酸鉄リチウムLiFePO4に代表されるオリビン型燐酸リチウム等を正極活物質として用いることができる。これらを正極活物質として用いた場合にも、正極より遷移金属が溶出しうるものであり、このような正極活物質を用いた非水電解質二次電池についても、LiFが添加された無機粒子層を設けることによって、セパレータや負極上に遷移金属が析出することを抑制することができ、電池特性を改善しうる。
(Other matters)
(1) Positive Electrode As a positive electrode active material, instead of lithium cobaltate, a Co—Ni—Mn lithium composite oxide, a Ni—Mn—Al lithium composite oxide, a Ni—Co—Al composite oxide, etc. Lithium composite oxide containing cobalt or manganese, olivine type lithium phosphate represented by lithium iron phosphate LiFePO4, or the like can be used as the positive electrode active material. Even when these are used as a positive electrode active material, transition metals can be eluted from the positive electrode, and the non-aqueous electrolyte secondary battery using such a positive electrode active material also has an inorganic particle layer to which LiF is added. By providing, transition metal can be prevented from being deposited on the separator or the negative electrode, and the battery characteristics can be improved.

なお、正極活物質としては、上述のものを単独で用いることもできるし、複数種類を混合して用いることも可能である。   In addition, as a positive electrode active material, the above-mentioned thing can also be used independently, and it is also possible to mix and use multiple types.

(2)電解液について
電解液としても、特に本実施例に限定されるものではない。リチウム塩としては、例え
ば、LiBF、LiN(SOCF)、LiN(SO)、LiPF6−x(C2n+1) [但し、1<x<6、n=1又は2]等を用いることができ、これらの1種もしくは2種以上を混合したものを用いることができる。リチウム塩の濃度としては、電解液1L当たり1.0−1.8molが望ましい。
(2) Electrolytic Solution The electrolytic solution is not particularly limited to this example. Examples of the lithium salt include LiBF 4 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiPF 6-x (C n F 2n + 1 ) x [where 1 <x <6, n = 1 or 2] can be used, and one or a mixture of two or more of these can be used. The concentration of the lithium salt is desirably 1.0 to 1.8 mol per liter of the electrolytic solution.

また溶媒種としては、EC、FEC、PC、GBL、DEC、EMC、DMC等のカーボネート系溶媒を用いることが好ましく、更に好ましくは、環状カーボネートと鎖状カーボネートとを組み合わせて用いることである。   Moreover, as a solvent seed | species, it is preferable to use carbonate type | system | group solvents, such as EC, FEC, PC, GBL, DEC, EMC, and DMC, More preferably, it is using combining a cyclic carbonate and a chain carbonate.

本発明は、例えば携帯電話、ノートパソコン、PDA等の移動情報端末の駆動電源で、特に高容量が必要とされる用途に適用することができる。また、高温での連続駆動が要求される高出力用途で、HEVや電動工具といった電池の動作環境が厳しい用途にも展開が期待できる。
The present invention can be applied to a drive power source of a mobile information terminal such as a mobile phone, a notebook personal computer, and a PDA, for example, in applications that require a particularly high capacity. In addition, it can be expected to be used in high output applications that require continuous driving at high temperatures and applications where the battery operating environment is severe, such as HEVs and electric tools.

Claims (4)

正極集電体の表面に、正極活物質を含む正極合剤層が形成された正極と、
負極集電体の表面に、負極活物質を含む負極合剤層が形成された負極と、
前記正極と前記負極との間に設けられたセパレータと、
溶媒と溶質を含む非水電解質と、
を備え、
前記正極と前記セパレータとの間と前記負極と前記セパレータとの間との少なくとも一方に、無機粒子とフッ化リチウムを含んで構成される無機粒子層が形成されている、非水電解質二次電池。
A positive electrode in which a positive electrode mixture layer containing a positive electrode active material is formed on the surface of the positive electrode current collector;
A negative electrode in which a negative electrode mixture layer containing a negative electrode active material is formed on the surface of the negative electrode current collector;
A separator provided between the positive electrode and the negative electrode;
A non-aqueous electrolyte containing a solvent and a solute;
With
A non-aqueous electrolyte secondary battery in which an inorganic particle layer including inorganic particles and lithium fluoride is formed between at least one of the positive electrode and the separator and between the negative electrode and the separator. .
前記無機粒子層は、前記正極と前記セパレータとの間に設けられる、請求項1に記載された非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the inorganic particle layer is provided between the positive electrode and the separator. 前記無機粒子層は、前記正極に接するように設けられている、請求項1又は2に記載された非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1, wherein the inorganic particle layer is provided in contact with the positive electrode. 前記フッ化リチウムの添加量は、前記無機粒子100質量%に対して0.1質量%以上5質量%以下である、請求項1から3のいずれかに記載された非水電解質二次電池。
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein an addition amount of the lithium fluoride is 0.1 mass% or more and 5 mass% or less with respect to 100 mass% of the inorganic particles.
JP2011273961A 2011-12-15 2011-12-15 Nonaqueous electrolyte secondary battery Pending JP2013125661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011273961A JP2013125661A (en) 2011-12-15 2011-12-15 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011273961A JP2013125661A (en) 2011-12-15 2011-12-15 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2013125661A true JP2013125661A (en) 2013-06-24

Family

ID=48776795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011273961A Pending JP2013125661A (en) 2011-12-15 2011-12-15 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2013125661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113188A (en) * 2017-01-12 2018-07-19 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113188A (en) * 2017-01-12 2018-07-19 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
CN108370068B (en) Non-aqueous electrolyte additive, non-aqueous electrolyte including the same, and lithium secondary battery including the same
JP4945967B2 (en) Non-aqueous electrolyte secondary battery
CA2792747C (en) Lithium secondary battery using ionic liquid
TWI587562B (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active materiallayer for lithium ion battery
JP2012022794A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2013197091A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including the same
JPWO2014068904A1 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JPWO2012132934A1 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
WO2014119274A1 (en) Lithium-ion battery and lithium-ion battery separator
US20210083336A1 (en) Method of reusing positive electrode material
JP2011192561A (en) Manufacturing method for nonaqueous electrolyte secondary battery
JP2020532846A (en) Manufacturing method of positive electrode active material for secondary battery, and secondary battery using this
JP2006252917A (en) Lithium-ion secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
KR101994912B1 (en) Electrode active material slurry and secondary battery comprising the same
WO2023164794A1 (en) Electrochemical device, and electronic device comprising same
TW201640724A (en) Lithium-cobalt composite oxide, production method therefor, electrochemical device, and lithium ion secondary battery
JP2012252951A (en) Nonaqueous electrolyte secondary battery
JP2008226643A (en) Nonaqueous electrolyte secondary battery
JP5626035B2 (en) Method for pretreatment and use of lithium ion secondary battery
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
JPH10208729A (en) Slurry for electrode
JPWO2014068905A1 (en) Electrode plate for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP2014165038A (en) Electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130628

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141113