JP2018113188A - Method for manufacturing lithium ion secondary battery - Google Patents

Method for manufacturing lithium ion secondary battery Download PDF

Info

Publication number
JP2018113188A
JP2018113188A JP2017003568A JP2017003568A JP2018113188A JP 2018113188 A JP2018113188 A JP 2018113188A JP 2017003568 A JP2017003568 A JP 2017003568A JP 2017003568 A JP2017003568 A JP 2017003568A JP 2018113188 A JP2018113188 A JP 2018113188A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
battery
electrode active
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017003568A
Other languages
Japanese (ja)
Other versions
JP6658557B2 (en
Inventor
有梨 田畑
Yuri Tabata
有梨 田畑
佑季子 堀
Yukiko Hori
佑季子 堀
慎吾 小村
Shingo Komura
慎吾 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017003568A priority Critical patent/JP6658557B2/en
Publication of JP2018113188A publication Critical patent/JP2018113188A/en
Application granted granted Critical
Publication of JP6658557B2 publication Critical patent/JP6658557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a lithium ion secondary battery, by which the corrosion of a positive electrode collector plate can be prevented, and the increase in resistance in a battery arranged by use of a positive electrode plate can be suppressed.SOLUTION: A method for manufacturing a secondary battery 1 in which an electrode body 20 is encased in a battery container 10, wherein the electrode body is arranged by use of a positive electrode collector plate 22 made of aluminum and a positive electrode plate 21 having a positive electrode active material layer 23 including positive electrode active material particles including, in its composition, Liand Mn, comprises: a coating step S2 of coating the positive electrode collector plate with aqueous positive electrode paste of pH10.0 or less; a drying step S3 of drying the undried positive electrode active material layer to form the positive electrode plate; a step S4 of forming the electrode body by use of the positive electrode plate and others; a step S5 of encasing the electrode body in the battery container; a vacuum drying step S6 of evacuating the battery container containing the electrode body to dry the electrode body including the positive electrode plate under a vacuum condition; a step S7 of injecting an electrolyte solution into the battery container; and a step S9 of hermetically sealing an opening of the battery container. The vacuum drying step is executed for a length of time within 12 hours at a temperature of 60-75°C under a reduced pressure of 0.03 kPa or less in vacuum degree.SELECTED DRAWING: Figure 1

Description

本発明は、Li+及びMn4+をその組成中に含む正極活物質粒子を含む正極活物質層を有する正極板を用いた、リチウムイオン二次電池の製造方法に関する。 The present invention relates to a method for producing a lithium ion secondary battery using a positive electrode plate having a positive electrode active material layer containing positive electrode active material particles containing Li + and Mn 4+ in its composition.

リチウムイオン二次電池(以下、単に電池ともいう)の製造に当たって、正極板、負極板及びセパレータを捲回あるいは積層した電極体(組立体)を電池ケース本体に収容した後、真空乾燥装置を用いて、電池ケース本体に収容した電極体を真空乾燥する。その後、電解液を注液し、封口し、初充電及び所定の検査を行って、電池を完成する(特許文献1,2参照)。   In manufacturing a lithium ion secondary battery (hereinafter also simply referred to as a battery), an electrode body (assembly) in which a positive electrode plate, a negative electrode plate, and a separator are wound or stacked is accommodated in a battery case body, and then a vacuum drying apparatus is used. Then, the electrode body accommodated in the battery case body is vacuum-dried. Thereafter, an electrolytic solution is injected, sealed, and subjected to initial charge and predetermined inspection, thereby completing a battery (see Patent Documents 1 and 2).

特開2007−227310号公報JP 2007-227310 A 特開2016−173973号公報Japanese Patent Laid-Open No. 2006-173974

ところで、電池の正極活物質として、LiNiMn系スピネルをはじめとする、Li+及びMn4+をその組成中に含むLi遷移金属複合酸化物が提案されている。LiNiMn系スピネルの正極活物質は、LiCoO3などの層状リチウム金属酸化物に比して、満充電時の正極電位を比較的高くできる利点が有る。 By the way, as a positive electrode active material of a battery, a Li transition metal composite oxide containing Li + and Mn 4+ in its composition including LiNiMn spinel has been proposed. The positive electrode active material of LiNiMn spinel has an advantage that the positive electrode potential at the time of full charge can be relatively high as compared with a layered lithium metal oxide such as LiCoO 3 .

一方、環境問題等の観点から、正極活物質ペーストに含まれる溶媒として、NMPなどの非水溶媒に代えて、水を溶媒として用いることが望まれている。
しかるに、Li+をその組成中に含む正極活物質粒子と水を含む正極活物質ペーストは、水とLi+との作用により強アルカリ性を呈するので、アルミニウムからなる正極集電板に塗布し乾燥させて正極活物質層を形成すると、正極集電板が正極ペーストに腐食されて、正極活物質層の正極集電板への密着性(接着性)が低下するなどの不具合を生じる場合がある。
On the other hand, from the viewpoint of environmental problems and the like, it is desired to use water as a solvent instead of a non-aqueous solvent such as NMP as a solvent contained in the positive electrode active material paste.
However, since the positive electrode active material paste containing the positive electrode active material particles and water containing Li + in the composition exhibits strong alkalinity due to the action of water and Li +, it is applied to a positive electrode current collector plate made of aluminum and dried. When the positive electrode active material layer is formed, the positive electrode current collector plate may be corroded by the positive electrode paste, resulting in problems such as a decrease in adhesion (adhesiveness) of the positive electrode active material layer to the positive electrode current collector plate.

そこで、酸性を示すポリアクリル酸(PAA)などのpH調整剤の添加により正極活物質ペーストのpHをpH10.0以下として、塗着したアルミニウムからなる正極集電板が腐食されることによる不具合が発生するのを抑制することが考えられる。
但し、このようにして正極活物質ペーストのpHをpH10.0以下に調整すると、pH10.0超とした場合に比して、溶媒(水)中にH+が比較的多く存在することになる。そして、溶媒中のH+と正極活物質粒子表面のLi+との交換反応により、正極活物質粒子の表面に多数のH+が付着した状態となる。
Therefore, there is a problem that the positive electrode current collector plate made of coated aluminum is corroded by adding a pH adjuster such as polyacrylic acid (PAA) showing acidity to set the pH of the positive electrode active material paste to pH 10.0 or lower. It is conceivable to suppress the occurrence.
However, when the pH of the positive electrode active material paste is adjusted to pH 10.0 or lower in this way, a relatively large amount of H + is present in the solvent (water) as compared with the case where the pH is more than 10.0. . Then, due to an exchange reaction between H + in the solvent and Li + on the surface of the positive electrode active material particles, a large number of H + is attached to the surface of the positive electrode active material particles.

さらに、この状態の正極板を電極体に組み立てて、前述の真空乾燥工程において高温に曝すと、正極活物質をなしているOイオンが正極活物質粒子の表面に付着しているH+と結合し、H2Oとなって脱離する。その際、活物質粒子の表面では、活物質をなすMn4+がMn3+に還元される。
しかるに、正極活物質粒子の表面において、活物質をなすMnイオンがMn3+であると、通常のMn4+である場合に比して、正極活物質層の、ひいては電池の抵抗が増加することが判ってきた。
Further, when the positive electrode plate in this state is assembled into an electrode body and exposed to a high temperature in the vacuum drying process described above, O ions constituting the positive electrode active material are combined with H + adhering to the surface of the positive electrode active material particles. And desorbed as H 2 O. At that time, Mn 4+ forming the active material is reduced to Mn 3+ on the surface of the active material particles.
However, when the Mn ions forming the active material are Mn 3+ on the surface of the positive electrode active material particles, the resistance of the positive electrode active material layer, and thus the battery, is increased as compared with the case of normal Mn 4+. I understand that.

本発明は、かかる知見に鑑みてなされたものであって、正極板のアルミニウムからなる正極集電板の腐食を防止し、かつ、この正極板を用いた電池における抵抗の増加を抑制する電池の製造方法を提供する。   The present invention has been made in view of such knowledge, and it is possible to prevent corrosion of a positive electrode current collector plate made of aluminum as a positive electrode plate and to suppress an increase in resistance in a battery using the positive electrode plate. A manufacturing method is provided.

その解決手段は、アルミニウムからなる正極集電板、及び、この正極集電板に塗布し乾燥された、Li+及びMn4+をその組成中に含む正極活物質粒子を含む正極活物質層を有する正極板、負極板、及びセパレータを用いた電極体を、電池容器内に気密に収容したリチウムイオン二次電池の製造方法であって、上記正極活物質粒子、pH調整剤及び溶媒である水を含み、pHがpH10.0以下の水系正極ペーストを、上記正極集電板に塗布して未乾燥正極活物質層を形成する塗布工程と、上記未乾燥正極活物質層を乾燥して、上記正極活物質層を有する上記正極板を形成する乾燥工程と、上記正極板、上記負極板、及び上記セパレータを用いて電極体を形成する電極体形成工程と、上記電極体を上記電池容器内に収容する収容工程と、上記電極体を収容した上記電池容器内を真空にして、上記正極板を含め上記電極体を真空乾燥する真空乾燥工程と、上記電池容器内に、電解液を注入する注液工程と、上記電池容器を気密に封口する封口工程と、を備え、上記真空乾燥工程は、真空度0.03kPa以下の減圧下、60〜75℃の温度で、12時間以内に行うリチウムイオン二次電池の製造方法である。 The solution includes a positive electrode current collector plate made of aluminum, and a positive electrode active material layer containing positive electrode active material particles containing Li + and Mn 4+ in its composition, applied to the positive electrode current collector plate and dried. A method for producing a lithium ion secondary battery in which a positive electrode plate, a negative electrode plate, and an electrode body using a separator are hermetically accommodated in a battery container, wherein the positive electrode active material particles, the pH adjuster, and the solvent are water. An aqueous positive electrode paste having a pH of 10.0 or less is applied to the positive electrode current collector plate to form an undried positive electrode active material layer, and the undried positive electrode active material layer is dried, A drying step for forming the positive electrode plate having a positive electrode active material layer; an electrode body forming step for forming an electrode body using the positive electrode plate, the negative electrode plate, and the separator; and the electrode body in the battery container. The housing process for housing and the above A vacuum drying step of evacuating the battery body containing the polar body and vacuum-drying the electrode body including the positive electrode plate, a pouring step of injecting an electrolyte into the battery container, and the battery container The vacuum drying step is a method for producing a lithium ion secondary battery performed within 12 hours at a temperature of 60 to 75 ° C. under a reduced pressure with a vacuum degree of 0.03 kPa or less. is there.

この製造方法では、塗布工程において、pHがpH10.0以下の水系正極ペーストを、正極集電板に塗布して未乾燥正極活物質層を形成するので、アルミニウムからなる正極集電板が水系正極ペーストに腐食されることを防止できる。但し、溶媒(水)中にH+が比較的多く存在するため、溶媒中のH+と正極活物質粒子の表面のLi+との交換反応により、正極活物質粒子の表面に多数のH+が付着した状態となる。
ところが、この製造方法では、真空乾燥工程を、真空度0.03kPa以下の減圧下、60〜75℃の温度で、12時間以内に行う。即ち、電池容器内の電極体を真空乾燥させるに当たり、真空度を0.03kPa以下として、乾燥を早めて乾燥時間を12時間以内とする。これにより、正極活物質層中の残留水分量を、残留水分によるガス発生が抑制できる程度に低下させながらも、真空乾燥工程の時間を短くすることができる。
しかも、この製造方法では、乾燥温度を低めの60〜75℃としている。このように、真空乾燥工程に掛かる時間を短くしながら、低温下で乾燥するため、真空乾燥と共に、正極活物質をなしているOイオンが正極活物質粒子の表面に付着しているH+と結合しH2Oとなって脱離することにより、正極活物質粒子の表面において、活物質をなすMn4+が還元されてMn3+が生成されるのを抑制できる。そして、正極活物質層のひいては電池の抵抗が増加するのを抑制することができる。
In this manufacturing method, in the coating step, an aqueous positive electrode paste having a pH of 10.0 or less is applied to the positive electrode current collector plate to form an undried positive electrode active material layer. Therefore, the positive electrode current collector plate made of aluminum is an aqueous positive electrode. It can prevent being corroded by the paste. However, since there relatively often H + in the solvent (water), the exchange reaction between Li + on the surface of the H + and the positive electrode active material particles in a solvent, a number of the surface of the positive electrode active material particles H + Will be attached.
However, in this manufacturing method, the vacuum drying step is performed within 12 hours at a temperature of 60 to 75 ° C. under a reduced pressure with a degree of vacuum of 0.03 kPa or less. That is, when the electrode body in the battery container is vacuum-dried, the degree of vacuum is set to 0.03 kPa or less, the drying is accelerated, and the drying time is set within 12 hours. Thereby, the time of a vacuum drying process can be shortened, reducing the residual moisture amount in a positive electrode active material layer to such an extent that the gas generation by a residual moisture can be suppressed.
Moreover, in this manufacturing method, the drying temperature is set to a low 60 to 75 ° C. Thus, in order to dry at a low temperature while shortening the time required for the vacuum drying process, H + and the O ions forming the positive electrode active material adhere to the surface of the positive electrode active material particles together with the vacuum drying. By combining and desorbing as H 2 O, it is possible to suppress the production of Mn 3+ by reducing Mn 4+ forming the active material on the surface of the positive electrode active material particles. And it can suppress that the resistance of a positive electrode active material layer and a battery increase.

なお、「Li+及びMn4+をその組成中に含む正極活物質粒子」としては、例えば、LiNiMn系スピネルが挙げられる。LiNiMn系スピネルは、AサイトにLiを、BサイトにNi,Mnを主として含み、スピネル型結晶構造を有する正極活物質であり、例えば、Li(Ni,Mn)24などが挙げられる。 Examples of “positive electrode active material particles containing Li + and Mn 4+ in the composition” include, for example, LiNiMn spinel. LiNiMn-based spinel is a positive electrode active material that mainly contains Li at the A site and Ni, Mn at the B site and has a spinel crystal structure. Examples thereof include Li (Ni, Mn) 2 O 4 .

「pH調整剤」としては、溶媒(水)中で酸性を呈する物質が挙げられ、結着剤としても機能するポリアクリル酸など酸性を示す高分子のほか、硫酸、塩酸、硝酸、リン酸等の無機酸および酢酸、カルボン酸、アクリル酸等の有機酸なども用い得る。   Examples of the “pH adjuster” include substances that exhibit acidity in a solvent (water). In addition to polymers exhibiting acidity such as polyacrylic acid that also functions as a binder, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, etc. Inorganic acids and organic acids such as acetic acid, carboxylic acid and acrylic acid can also be used.

また、水系正極ペーストには、固形分として、正極活物質粒子のほか、カーボンブラック(例えば、アセチレンブラック、ファーネスブラック、ケッチェンブラック)、グラファイト粉末等のカーボン粉末などの導電材を用いることができる。これらの導電材のうち一種又は二種以上を併用してもよい。
また、カルボキシメチルセルロース(CMC)などの増粘剤を含めることもできる。含め得る増粘材としては、水に溶解または分散するポリマー材料を好ましく採用し得る。水に溶解する(水溶性の)ポリマー材料としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)等のセルロース系ポリマーや、ポリビニルアルコール(PVA)等が例示される。
Further, in the water-based positive electrode paste, in addition to the positive electrode active material particles, a conductive material such as carbon black (for example, acetylene black, furnace black, ketjen black) or carbon powder such as graphite powder can be used as the solid content. . You may use together 1 type, or 2 or more types among these electrically conductive materials.
A thickener such as carboxymethyl cellulose (CMC) can also be included. As a thickener that can be included, a polymer material that is dissolved or dispersed in water can be preferably employed. Examples of the water-soluble (water-soluble) polymer material include cellulose polymers such as carboxymethyl cellulose (CMC), methyl cellulose (MC), cellulose acetate phthalate (CAP), and hydroxypropyl methyl cellulose (HPMC), and polyvinyl alcohol (PVA). And the like.

正極板、負極板、及びセパレータを用いた電極体としては、公知の電極体の形態を採用することができる。例えば、帯状の正極板及び帯状の負極板を、一対の帯状のセパレータと交互に積層し捲回した捲回型の電極体や、複数の正極板と複数の負極板をセパレータを介して交互に積層した積層型の電極体が挙げられる。
真空乾燥工程では、電極体を収容した注液孔などが未封口の電池容器全体を真空槽中に配置して、電池容器内外を真空として真空乾燥工程を行うほか、注液孔などを真空ポンプ等に接続して、電池容器内を真空として真空乾燥工程を行うこともできる。
As an electrode body using a positive electrode plate, a negative electrode plate, and a separator, the form of a known electrode body can be adopted. For example, a strip-shaped positive electrode plate and a strip-shaped negative electrode plate are alternately stacked with a pair of strip-shaped separators and wound, or a plurality of positive electrode plates and a plurality of negative electrode plates are alternately sandwiched via separators. A laminated electrode body that is laminated may be mentioned.
In the vacuum drying process, the entire battery container with the electrode hole containing the electrode body is placed in a vacuum chamber, and the inside and outside of the battery container are evacuated to perform the vacuum drying process. Or the like, and the vacuum drying process can be performed with the inside of the battery container being evacuated.

なお、前述のリチウムイオン二次電池の製造方法において、真空乾燥工程は、真空度0.03kPa以下の減圧下、60〜70℃の温度で、12時間以内に行うリチウムイオン二次電池の製造方法とするとさらに好ましい。
正極活物質粒子の表面におけるMn3+の生成を確実に抑制でき、さらに電池の反応抵抗を低くできるからである。
In addition, in the manufacturing method of the above-mentioned lithium ion secondary battery, a vacuum drying process is the manufacturing method of the lithium ion secondary battery performed within 60 hours at the temperature of 60-70 degreeC under the pressure reduction of 0.03 kPa or less of vacuum. It is more preferable.
This is because the production of Mn 3+ on the surface of the positive electrode active material particles can be reliably suppressed, and the reaction resistance of the battery can be lowered.

加えて、前述のリチウムイオン二次電池の製造方法において、真空乾燥工程は、真空度0.03kPa以下の減圧下、65〜70℃の温度で、12時間以内に行うリチウムイオン二次電池の製造方法とするとさらに好ましい。
電池の反応抵抗を低くできる上に、正極活物質層における残留水分量を十分減少させることができ、残留水分によるガス発生などの不具合を確実に抑制できるからである。
In addition, in the above-described method for manufacturing a lithium ion secondary battery, the vacuum drying step is performed within 12 hours at a temperature of 65 to 70 ° C. under a reduced pressure with a degree of vacuum of 0.03 kPa or less. The method is more preferable.
This is because the reaction resistance of the battery can be lowered and the amount of residual moisture in the positive electrode active material layer can be sufficiently reduced, so that problems such as gas generation due to residual moisture can be reliably suppressed.

実施形態に係るリチウムイオン二次電池の斜視図である。1 is a perspective view of a lithium ion secondary battery according to an embodiment. 実施形態に係るリチウムイオン二次電池の縦断面図である。It is a longitudinal cross-sectional view of the lithium ion secondary battery which concerns on embodiment. 実施形態に係る電池の電極体の断面図である。It is sectional drawing of the electrode body of the battery which concerns on embodiment. 実施形態に係る正極板の上面図である。It is a top view of the positive electrode plate according to the embodiment. 実施形態に係る負極板の上面図である。It is a top view of the negative electrode plate which concerns on embodiment. 実施形態に係り、電池の製造工程を示すフローチャートである。4 is a flowchart illustrating a battery manufacturing process according to the embodiment. 真空乾燥時の乾燥温度と残留水分量比との関係を示すグラフである。It is a graph which shows the relationship between the drying temperature at the time of vacuum drying, and a residual moisture content ratio. 真空乾燥時の乾燥温度と反応抵抗比との関係を示すグラフである。It is a graph which shows the relationship between the drying temperature at the time of vacuum drying, and reaction resistance ratio. 真空乾燥時の真空度と残留水分量比が110%になるまでの乾燥時間との関係を示すグラフである。It is a graph which shows the relationship between the vacuum degree at the time of vacuum drying, and the drying time until the residual water content ratio becomes 110%.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係るリチウムイオン二次電池1の斜視図及び縦断面図を示す。また、図3に、電極体20の断面図を示す。また、図4に、正極板21の上面図を示す。また、図5に、内側負極板31Cの上面図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。   Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a perspective view and a longitudinal sectional view of a lithium ion secondary battery 1 according to this embodiment. FIG. 3 shows a cross-sectional view of the electrode body 20. FIG. 4 shows a top view of the positive electrode plate 21. FIG. 5 shows a top view of the inner negative electrode plate 31C. In the following description, the battery thickness direction BH, the battery lateral direction CH, and the battery vertical direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2.

この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された積層型の電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される(図1及び図2参照)。また、電池ケース10内には、非水電解液19が収容されており、その一部は電極体20内に含浸されている。   The battery 1 is a rectangular and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric car. The battery 1 includes a battery case 10, a stacked electrode body 20 accommodated therein, a positive terminal member 50 and a negative terminal member 60 supported by the battery case 10 (FIGS. 1 and 2). reference). In addition, a non-aqueous electrolyte 19 is accommodated in the battery case 10, and a part thereof is impregnated in the electrode body 20.

このうち電池ケース10は、直方体箱状で金属(本実施形態1ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21の正極集電部21mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31の負極集電部31mに接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。   Of these, the battery case 10 has a rectangular parallelepiped box shape and is made of metal (aluminum in the first embodiment). The battery case 10 is composed of a bottomed rectangular tube-shaped case main body member 11 that is open only on the upper side, and a rectangular plate-shaped case lid member 13 that is welded in a form that closes the opening of the case main body member 11. The A positive terminal member 50 made of aluminum is fixed to the case lid member 13 while being insulated from the case lid member 13. The positive electrode terminal member 50 is connected to and electrically connected to the positive electrode current collector 21m of the positive electrode plate 21 of the electrode body 20 in the battery case 10, and extends through the case lid member 13 to the outside of the battery. Further, a negative electrode terminal member 60 made of copper is fixed to the case lid member 13 while being insulated from the case lid member 13. The negative electrode terminal member 60 is connected to the negative electrode current collecting portion 31m of the negative electrode plate 31 of the electrode body 20 in the battery case 10 to be conductive, and extends through the case lid member 13 to the outside of the battery.

電極体20(図3も参照)は、概略直方体状をなし、電極体20の積層方向EH(図3中、上下方向)が電池厚み方向BHに一致し、電極体横方向FH(図3中、左右方向)が電池横方向CHに一致し、電極体縦方向GH(図1及び図2参照)が電池縦方向DHに一致する姿勢で、電池ケース10内に収容されている。また、本実施形態では積層方向EHのうち、図3中、上方を積層方向一方側EH1、下方を積層方向他方側EH2とする。また、電極体横方向FHのうち、図3中、左方を横方向一方側FH1、右方を横方向他方側FH2とする。   The electrode body 20 (see also FIG. 3) has a substantially rectangular parallelepiped shape, the stacking direction EH (vertical direction in FIG. 3) of the electrode body 20 coincides with the battery thickness direction BH, and the electrode body lateral direction FH (in FIG. 3). , The horizontal direction) is accommodated in the battery case 10 in such a posture that the battery horizontal direction CH coincides with the electrode body vertical direction GH (see FIGS. 1 and 2) coincides with the battery vertical direction DH. In the present embodiment, among the stacking direction EH, in FIG. 3, the upper side is defined as one side EH1 in the stacking direction, and the lower side is defined as the other side EH2 in the stacking direction. Further, in FIG. 3, the left side of the electrode body lateral direction FH is defined as one lateral side FH <b> 1 and the right side is defined as the other lateral side FH <b> 2.

この電極体20は、複数の矩形状の正極板21(図4参照)及び複数の矩形状の負極板31(図5参照)を、矩形状で樹脂製の多孔質膜からなるセパレータ41を介して積層方向EHに交互に積層してなる。   This electrode body 20 includes a plurality of rectangular positive electrode plates 21 (see FIG. 4) and a plurality of rectangular negative electrode plates 31 (see FIG. 5) with a rectangular separator 41 made of a resin porous film. And alternately stacked in the stacking direction EH.

複数の正極板21(図4及び図3参照)は、いずれも、矩形状のアルミニウム箔からなる正極集電箔22のうち、横方向一方側FH1の一部(図4中、左側)を露出させて、正極集電部21mとする一方、残部(横方向他方側FH2)の両面には、正極活物質層23,23を矩形状に設けてなる。各々の正極板21の正極集電部21mは、積層方向EH(図3参照)に束ねられて、前述の正極端子部材50に溶接されている。この正極板21のうち正極活物質層23,23は、それぞれ正極活物質粒子のほか、導電助材(アセチレンブラック)及びバインダ(ポリアクリル酸)及び増粘剤(CMC)を含む。この正極活物質層23に含まれる正極活物質粒子は、LiNiMnスピネル(ニッケルマンガン酸リチウム、Li(Ni,Mn)24)の粒子である。 Each of the plurality of positive electrode plates 21 (see FIGS. 4 and 3) exposes a part (left side in FIG. 4) of one side FH1 in the lateral direction of the positive electrode current collector foil 22 made of a rectangular aluminum foil. Thus, the positive electrode current collector portion 21m is formed, and the positive electrode active material layers 23 and 23 are provided in a rectangular shape on both surfaces of the remaining portion (the other lateral side FH2). The positive electrode current collector 21m of each positive electrode plate 21 is bundled in the stacking direction EH (see FIG. 3) and welded to the positive electrode terminal member 50 described above. In the positive electrode plate 21, the positive electrode active material layers 23 and 23 each include, in addition to positive electrode active material particles, a conductive additive (acetylene black), a binder (polyacrylic acid), and a thickener (CMC). The positive electrode active material particles contained in the positive electrode active material layer 23 are particles of LiNiMn spinel (lithium nickel manganate, Li (Ni, Mn) 2 O 4 ).

次に、負極板31について説明する(図5及び図3参照)。負極板31は、最も積層方向一方側EH1に位置する最上層負極板31A、最も積層方向他方側EH2に位置する最下層負極板31B、及びこれらの間に位置する内側負極板31Cに分けられる。まず、これらのうち内側負極板31Cについて説明する。内側負極板31C(図5参照)は、いずれも、矩形状の銅箔からなる負極集電箔32のうち、横方向他方側FH2の一部(図5中、右側)を露出させて、負極集電部31mとする一方、残部(横方向一方側FH1)の両面には、負極活物質層33,33を矩形状に設けてなる。この負極活物質層33は、セパレータ41を介して対向する正極板21の正極活物質層23よりも全周にわたり大きく形成されている。負極活物質層33は、負極活物質、結着剤及び増粘剤からなる。本実施形態では、負極活物質粒子として黒鉛粒子を、結着剤としてスチレンブタジエンゴム(SBR)を、増粘剤としてカルボシキメチルセルロース(CMC)を用いており、これらを含む水系負極ペーストを、負極集電箔32に塗布し乾燥して、負極活物質層33を設けている。   Next, the negative electrode plate 31 will be described (see FIGS. 5 and 3). The negative electrode plate 31 is divided into an uppermost negative electrode plate 31A positioned on the one side EH1 in the stacking direction, a lowermost layer negative electrode plate 31B positioned on the other side EH2 in the stacking direction, and an inner negative plate 31C positioned therebetween. First, the inner negative electrode plate 31C will be described. The inner negative electrode plate 31C (see FIG. 5) is such that a part of the other side FH2 in the lateral direction (right side in FIG. 5) of the negative electrode current collector foil 32 made of a rectangular copper foil is exposed. On the other hand, the negative electrode active material layers 33 and 33 are provided in a rectangular shape on both surfaces of the remaining portion (one side FH1 in the lateral direction) as the current collector 31m. The negative electrode active material layer 33 is formed larger over the entire circumference than the positive electrode active material layer 23 of the positive electrode plate 21 opposed via the separator 41. The negative electrode active material layer 33 includes a negative electrode active material, a binder, and a thickener. In the present embodiment, graphite particles are used as negative electrode active material particles, styrene butadiene rubber (SBR) is used as a binder, and carboxymethyl cellulose (CMC) is used as a thickener. The negative electrode active material layer 33 is provided by applying to the current collector foil 32 and drying.

一方、最上層負極板31A(図3参照)は、破線で示すように、上述した内側負極板31Cから、積層方向一方側EH1(図3中、上方)の負極活物質層33を除去した形態である。また、最下層負極板31B(図3参照)は、破線で示すように、上述した内側負極板31Cから、積層方向他方側EH2(図3中、下方)の負極活物質層33を除去した形態である。   On the other hand, the uppermost layer negative electrode plate 31A (see FIG. 3) has a configuration in which the negative electrode active material layer 33 on one side EH1 in the stacking direction (upward in FIG. 3) is removed from the above-described inner negative electrode plate 31C, as indicated by a broken line. It is. Further, the lowermost layer negative electrode plate 31B (see FIG. 3) has a form in which the negative electrode active material layer 33 on the other side EH2 in the stacking direction (downward in FIG. 3) is removed from the above-described inner negative electrode plate 31C as indicated by a broken line. It is.

これらの負極板31(最上層負極板31A、最下層負極板31B及び内側負極板31C)の負極集電部31mは、積層方向EH(図3参照)に束ねられて、前述の負極端子部材60に溶接されている。   The negative electrode current collector 31m of these negative electrode plates 31 (the uppermost negative electrode plate 31A, the lowermost negative electrode plate 31B, and the inner negative electrode plate 31C) is bundled in the stacking direction EH (see FIG. 3), and the negative electrode terminal member 60 described above. It is welded to.

次いで、正極板21の製造及び電池1の製造について、図6を参照して説明する。まず、正極ペースト作製工程S1において、正極ペーストを作製する。具体的には、正極活物質粒子のLiNiMnスピネル粉末と、増粘剤であるCMCと、導電助剤としてのアセチレンブラックと、バインダであるポリアクリル酸と、溶媒(分散媒)である水とを、プラネタリミキサで混練して、正極ペーストを作製する。   Next, the manufacture of the positive electrode plate 21 and the manufacture of the battery 1 will be described with reference to FIG. First, in the positive electrode paste manufacturing step S1, a positive electrode paste is manufactured. Specifically, LiNiMn spinel powder of positive electrode active material particles, CMC as a thickener, acetylene black as a conductive auxiliary agent, polyacrylic acid as a binder, and water as a solvent (dispersion medium). And kneading with a planetary mixer to produce a positive electrode paste.

ところで、正極活物質粒子をなすLiNiMnスピネルは、溶媒である水と混合すると、水素を発生しつつLiイオンを電離すると共に、溶媒自身及びこれを含む正極ペーストはpH10.0を超える(pH=12.0に達する)強いアルカリ性になる。この正極ペーストを正極集電箔22に塗布すると、正極集電箔22と正極活物質層23との間の抵抗が上昇することがある。正極集電箔22をなすアルミニウムは、アルカリ下では腐食されることがある。特に、pH10.0を超える強アルカリ下では腐食が生じ易い。このため、強いアルカリ性の正極ペーストを正極集電箔22に塗布すると、正極ペーストを乾燥させるまでの間に、正極集電箔22のうち塗布された部分が腐食され、表面が荒れた状態となるほか、腐食に伴って発生する水素によって、正極集電箔22と正極活物質層23との間の密着度が低下して、正極集電箔22と正極活物質層23との間の抵抗が上昇すると考えられる。   By the way, when LiNiMn spinel forming positive electrode active material particles is mixed with water as a solvent, Li ions are ionized while generating hydrogen, and the solvent itself and the positive electrode paste containing the same exceed pH 10.0 (pH = 12). .0) (strongly alkaline). When this positive electrode paste is applied to the positive electrode current collector foil 22, the resistance between the positive electrode current collector foil 22 and the positive electrode active material layer 23 may increase. Aluminum forming the positive electrode current collector foil 22 may be corroded under an alkali. In particular, corrosion is likely to occur under a strong alkali exceeding pH 10.0. For this reason, when a strong alkaline positive electrode paste is applied to the positive electrode current collector foil 22, the applied portion of the positive electrode current collector foil 22 is corroded and the surface becomes rough before the positive electrode paste is dried. In addition, due to hydrogen generated due to corrosion, the degree of adhesion between the positive electrode current collector foil 22 and the positive electrode active material layer 23 decreases, and the resistance between the positive electrode current collector foil 22 and the positive electrode active material layer 23 decreases. It is expected to rise.

これに対し、本実施形態では、正極ペーストに、バインダとして、ポリアクリル酸を添加している。ポリアクリル酸は、溶媒である水に分散されると、カルボキシル基(COOH)のH+が電離するため、酸性を示すpH調整剤としても機能している。このため、このバインダ(pH調整剤)を添加した正極ペーストは、正極活物質粒子に起因するアルカリ性が緩和される。本実施形態の正極ペーストでは、pH10.0以下、具体的にはpH10.0とした。この正極ペーストならば、正極集電箔22に塗布しても、正極集電箔22の腐食による密着性低下などの不具合の発生を抑制できる。
そこで、塗布工程S2において、コータを用いて、厚さ20μmの正極集電箔22の両表面に、それぞれ正極ペーストを塗布して、未乾燥正極活物質層を形成する。
On the other hand, in this embodiment, polyacrylic acid is added to the positive electrode paste as a binder. When polyacrylic acid is dispersed in water as a solvent, H + of the carboxyl group (COOH) is ionized, so that it also functions as an acidic pH adjuster. For this reason, the positive electrode paste to which this binder (pH adjuster) is added has reduced alkalinity caused by the positive electrode active material particles. In the positive electrode paste of the present embodiment, pH is 10.0 or less, specifically, pH 10.0. If this positive electrode paste is applied to the positive electrode current collector foil 22, it is possible to suppress the occurrence of problems such as a decrease in adhesion due to corrosion of the positive electrode current collector foil 22.
Therefore, in the application step S2, a positive electrode paste is applied to both surfaces of the positive electrode current collector foil 22 having a thickness of 20 μm using a coater to form an undried positive electrode active material layer.

さらに、乾燥工程S3として、140℃の熱風乾燥により未乾燥正極活物質層を乾燥させ、正極活物質層23を形成する。なお、図6において破線で示すように、塗布工程S2及び乾燥工程S3を繰り返して、正極集電箔22の両面に正極活物質層23,23を形成して、正極板21を完成する。   Further, as the drying step S3, the undried positive electrode active material layer is dried by hot air drying at 140 ° C. to form the positive electrode active material layer 23. In addition, as shown with a broken line in FIG. 6, the application | coating process S2 and the drying process S3 are repeated, the positive electrode active material layers 23 and 23 are formed on both surfaces of the positive electrode current collection foil 22, and the positive electrode plate 21 is completed.

その後、積層工程S4において、この正極板21のほか、公知の手法で形成した負極板31(最下層負極板31B,内側負極板31C,最上層負極板31A)を、セパレータ41を介して交互に積層して、積層型の電極体20を形成する。   Thereafter, in the stacking step S4, in addition to the positive electrode plate 21, negative electrode plates 31 (the lowermost negative electrode plate 31B, the inner negative electrode plate 31C, and the uppermost negative electrode plate 31A) formed by a known method are alternately arranged via the separators 41. The stacked electrode body 20 is formed by stacking.

続く収容工程S5では、予め正極端子部材50及び負極端子部材60を固設したケース蓋部材13を準備しておき、この電極体20のうち、各正極板21の正極集電部21mに正極端子部材50を溶接すると共に、及び各負極板31の負極集電部31mに負極端子部材60を溶接する。そして、電極体20をケース本体部材11内に収容し、ケース本体部材11とケース蓋部材13とを気密に溶接する。
なお、図1及び図2に示すように、ケース蓋部材13には、注液孔13hが開口しており、この時点では、電池ケース10内は密封されていない。
In the subsequent accommodating step S5, a case lid member 13 in which the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixed in advance is prepared, and the positive electrode current collector 21m of each positive electrode plate 21 of the electrode body 20 is connected to the positive electrode terminal 21m. While welding the member 50, and the negative electrode current collection part 31m of each negative electrode plate 31, the negative electrode terminal member 60 is welded. And the electrode body 20 is accommodated in the case main body member 11, and the case main body member 11 and the case cover member 13 are welded airtightly.
As shown in FIGS. 1 and 2, the case lid member 13 has a liquid injection hole 13h, and the battery case 10 is not sealed at this point.

次いで、真空乾燥工程S6において、電池ケース10内の真空乾燥を行う。この真空乾燥工程S6では、電池ケース10の内壁に付着している水分や、電極体20をなす正極板21、負極板31、セパレータ41に付着あるいは内部に残留している水分を蒸発させ、注液孔13hを通じて除去する。水分が多く残留していると、電池1の充放電時にガス発生の原因となるので、これを抑制するためである。   Next, vacuum drying in the battery case 10 is performed in a vacuum drying step S6. In this vacuum drying step S6, the moisture adhering to the inner wall of the battery case 10 and the moisture adhering to or remaining in the positive electrode plate 21, the negative electrode plate 31 and the separator 41 constituting the electrode body 20 are evaporated. It is removed through the liquid hole 13h. If much moisture remains, it will cause gas generation during charging / discharging of the battery 1, and this is to suppress this.

具体的には、未封口状態の電池1を真空乾燥機(図示しない)のチャンバー内に入れ、チャンバー内の気圧を所定の真空度まで減圧すると共に、チャンバー周囲から赤外線ヒータで所定温度に加熱して放置する。これにより、電池ケース10の内壁や電極体20(正極板21、負極板31、セパレータ41)から水分(蒸気)を放出させて除去することができる。本実施形態では、真空乾燥機のチャンバー内を、真空度0.03kPa、乾燥温度60℃とし、12時間放置した。   Specifically, the unsealed battery 1 is placed in a chamber of a vacuum dryer (not shown), the pressure inside the chamber is reduced to a predetermined vacuum level, and heated to a predetermined temperature with an infrared heater from around the chamber. Leave it alone. Accordingly, moisture (vapor) can be released and removed from the inner wall of the battery case 10 and the electrode body 20 (the positive electrode plate 21, the negative electrode plate 31, and the separator 41). In this embodiment, the inside of the chamber of the vacuum dryer was set to a vacuum degree of 0.03 kPa and a drying temperature of 60 ° C. and left for 12 hours.

これにより、電池ケース10の内壁や負極板31、セパレータ41から水分を除去できたほか、正極板21の正極活物質層23からも残留水分を除去することができる。具体的には、正極板21の正極活物質層23の残留水分量を、0.03kPa,80℃,12hrsで乾燥させた場合(後述する比較例3)を基準とする残留水分量比で示すと110%に相当する量にできた。
なお、正極活物質層23の残留水分量は、真空乾燥工程S6後の電池1から正極板21を取りだし、30mm□の大きさの試料を、120℃に加熱し放出された水分量をカールフィッシャー法により測定した。
Accordingly, moisture can be removed from the inner wall of the battery case 10, the negative electrode plate 31, and the separator 41, and residual moisture can also be removed from the positive electrode active material layer 23 of the positive electrode plate 21. Specifically, the residual moisture content of the positive electrode active material layer 23 of the positive electrode plate 21 is expressed as a residual moisture content ratio based on the case where the moisture content is dried at 0.03 kPa, 80 ° C., 12 hrs (Comparative Example 3 described later). And an amount corresponding to 110%.
The residual water content of the positive electrode active material layer 23 is obtained by removing the positive electrode plate 21 from the battery 1 after the vacuum drying step S6, heating a sample of 30 mm □ to 120 ° C., and using the released water content as Karl Fischer. Measured by the method.

なお、正極活物質層23の残留水分量が、後述する残留水分量比で示して110%以下であれば、正極活物質層23に残留する水分によるガス発生を抑制できることが判っている。従って、本実施形態の真空乾燥工程S6によれば、正極活物質層23に残留する水分によるガス発生を抑制できる。   It has been found that when the residual moisture content of the positive electrode active material layer 23 is 110% or less as shown in the residual moisture content ratio described later, gas generation due to moisture remaining in the positive electrode active material layer 23 can be suppressed. Therefore, according to the vacuum drying step S6 of the present embodiment, gas generation due to moisture remaining in the positive electrode active material layer 23 can be suppressed.

次いで注液工程S7において、注液孔13hを介して、電池ケース10内に非水電解液19を所定量注液する。
その後、初充電工程S8で初期充電を行い、さらに、封口工程S9で、注液孔13hを封止部材15を用いて気密に封止する。かくして、電池1が完成する。
Next, in a liquid injection step S7, a predetermined amount of the non-aqueous electrolyte 19 is injected into the battery case 10 through the liquid injection hole 13h.
Thereafter, initial charging is performed in the initial charging step S <b> 8, and the liquid injection hole 13 h is hermetically sealed using the sealing member 15 in the sealing step S <b> 9. Thus, the battery 1 is completed.

更にこの電池1の電池抵抗を測定し、コールコールプロットなどを用いたインピーダンス解析で電池1の反応抵抗を算出した。その大きさは、本実施形態の電池1と同形で、負極板31、セパレータ41も同一であるが、正極板の正極活物質層を、0.03kPa、80℃、12hrsの乾燥条件により形成した基準の電池の反応抵抗に比して、84%の大きさ(16%減)となった。   Further, the battery resistance of the battery 1 was measured, and the reaction resistance of the battery 1 was calculated by impedance analysis using a Cole-Cole plot or the like. The size is the same as that of the battery 1 of the present embodiment, and the negative electrode plate 31 and the separator 41 are the same, but the positive electrode active material layer of the positive electrode plate was formed under drying conditions of 0.03 kPa, 80 ° C., and 12 hrs. Compared to the reaction resistance of the standard battery, the size was 84% (16% decrease).

これは、基準の電池が、上述のように比較的高い温度(80℃)で真空乾燥工程S6をおこなったものであるため、正極活物質粒子の表面にMn3+が発生し、正極活物質層における反応抵抗が高くなり、ひいては電池の反応抵抗が高くなったと考えられる。これに比して、本実施形態の電池1では、真空乾燥工程S6において、0.03kPaの真空度にした上で、比較的低温の60℃に加熱に留め、12時間乾燥を行ったことで、正極活物質内からのOイオンの脱離反応が抑制され、正極活物質粒子の表面にMn3+が発生するのを抑制でき、正極活物質層のひいては電池の反応抵抗が増加するのを抑制できたためと考えられる。 This is because the reference battery was subjected to the vacuum drying step S6 at a relatively high temperature (80 ° C.) as described above, so that Mn 3+ was generated on the surface of the positive electrode active material particles, and the positive electrode active material It is considered that the reaction resistance in the layer was increased, and as a result, the reaction resistance of the battery was increased. On the other hand, in the battery 1 of this embodiment, in the vacuum drying step S6, the degree of vacuum was set to 0.03 kPa, the heating was kept at a relatively low temperature of 60 ° C., and the drying was performed for 12 hours. In addition, the elimination reaction of O ions from the positive electrode active material can be suppressed, the generation of Mn 3+ on the surface of the positive electrode active material particles can be suppressed, and the reaction resistance of the battery can be increased. This is thought to be due to the suppression.

しかも、真空乾燥工程S6において、真空度を0.03kPaとしたので、残留水分量を残留水分量比で110%とするのに12時間で足り、真空乾燥工程S6に掛かる時間を短くすることができるのに加え、正極板21が加熱されている時間を減少して、Mn3+が生成する期間を短くして、Mn3+の生成量を抑制することができている。 Moreover, since the degree of vacuum is set to 0.03 kPa in the vacuum drying step S6, 12 hours is sufficient for the residual water content to be 110% in the residual water content ratio, and the time required for the vacuum drying step S6 can be shortened. In addition to this, the time during which the positive electrode plate 21 is heated can be reduced, the period during which Mn 3+ is generated can be shortened, and the amount of Mn 3+ generated can be suppressed.

(実施例及び比較例)
次いで、真空乾燥工程S6における乾燥温度を変化させた場合の、反応抵抗の違い、及び正極活物質層23における残留水分量比の違いを調査した結果について説明する(表1,図7,図8参照)。
ここでは、収容工程S5まで、上述の実施形態と同様にして製造した、未封口の電池(比較例1〜5,実施例1〜4)について、真空乾燥工程S6における乾燥温度のみ異ならせて製造し(真空度0.03kPa,乾燥時間12時間)、各例の電池について、電池抵抗を測定し反応抵抗を算出すると共に、真空乾燥工程S6後の正極活物質層23の残留水分量を測定し残留水分量比を算出した。結果を表1、図7及び図8に示す。なお、前述した実施形態の電池1は、実施例1の電池に相当する。
(Examples and Comparative Examples)
Next, the results of investigating the difference in reaction resistance and the difference in the residual water content ratio in the positive electrode active material layer 23 when the drying temperature in the vacuum drying step S6 is changed will be described (Table 1, FIG. 7, FIG. 8). reference).
Here, the unsealed batteries (Comparative Examples 1 to 5 and Examples 1 to 4) manufactured in the same manner as the above-described embodiment up to the housing process S5 are manufactured by changing only the drying temperature in the vacuum drying process S6. (Vacuum degree 0.03 kPa, drying time 12 hours) For each battery, the battery resistance was measured to calculate the reaction resistance, and the residual moisture content of the positive electrode active material layer 23 after the vacuum drying step S6 was measured. The residual water content ratio was calculated. The results are shown in Table 1, FIG. 7 and FIG. The battery 1 of the above-described embodiment corresponds to the battery of Example 1.

Figure 2018113188
Figure 2018113188

表1では、各例の反応抵抗を、前述の実施形態の電池1と同形で、負極板31、セパレータ41も同一であるが、正極板の正極活物質層を、0.03kPa,80℃,12hrsで真空乾燥させて形成した比較例3の電池の反応抵抗を基準(100%)とした、反応抵抗比で表示した(図7も参照)。   In Table 1, the reaction resistance of each example is the same as that of the battery 1 of the above-described embodiment, and the negative electrode plate 31 and the separator 41 are the same, but the positive electrode active material layer of the positive electrode plate is 0.03 kPa, 80 ° C., The reaction resistance ratio of the battery of Comparative Example 3 formed by vacuum drying at 12 hrs was displayed as a reference (100%) reaction resistance ratio (see also FIG. 7).

また表1では、実施形態と同じく、正極活物質層23の残留水分量を、真空乾燥工程S6後の電池1から正極板21を取りだし、30mm□の大きさの試料を、120℃に加熱し放出された水分量をカールフィッシャー法により測定した。さらに、各例の残留水分量も、0.03kPa,80℃、12hrsで真空乾燥した、比較例3の電池に用いた正極板の残留水分量を基準(100%)とした残留水分量比で表示した(図7も参照)。   Also, in Table 1, as in the embodiment, the residual moisture content of the positive electrode active material layer 23 is obtained by removing the positive electrode plate 21 from the battery 1 after the vacuum drying step S6 and heating a sample having a size of 30 mm □ to 120 ° C. The amount of water released was measured by the Karl Fischer method. Furthermore, the residual moisture content in each example was also a ratio of the residual moisture content based on the residual moisture content of the positive electrode plate used in the battery of Comparative Example 3 that was vacuum-dried at 0.03 kPa, 80 ° C., 12 hrs (100%). Displayed (see also FIG. 7).

まず各例の反応抵抗比を見ると、乾燥温度が75℃を超えると、乾燥温度と共に、ほぼ直線的に反応抵抗比が大きくなっていることが判る。一方、乾燥温度が75℃以下の場合には、乾燥温度に拘わらず、反応抵抗はほぼ同じであることが判る(図8も参照)。
前述したように、乾燥工程S3で乾燥した正極板21の正極活物質層23では、正極活物質粒子の表面に、溶媒(水)中のH+と正極活物質粒子の表面のLi+との交換反応により、正極活物質粒子の表面に多数のH+が付着している。
First, the reaction resistance ratio of each example shows that when the drying temperature exceeds 75 ° C., the reaction resistance ratio increases almost linearly with the drying temperature. On the other hand, when the drying temperature is 75 ° C. or less, the reaction resistance is almost the same regardless of the drying temperature (see also FIG. 8).
As described above, in the positive electrode active material layer 23 of the positive electrode plate 21 dried in the drying step S3, H + in the solvent (water) and Li + on the surface of the positive electrode active material particles are formed on the surface of the positive electrode active material particles. Due to the exchange reaction, a large number of H + is attached to the surface of the positive electrode active material particles.

このため、乾燥温度が比較的高い75℃を超える場合には、真空乾燥と共に、正極活物質を構成するOイオンが、正極活物質粒子の表面に付着しているH+と結合してH2Oとなって脱離することにより、活物質をなすMn4+が還元されてMn3+が生成される。Mn3+はMn4+に比して導電性が低いため、正極活物質粒子の表面において反応抵抗が増加し、正極活物質層23の反応抵抗、ひいては電池の反応抵抗が高くなったと考えられる。また、上述の反応は、温度が高くなるほど進行することも理解できる。
なお、乾燥温度が75℃以下とすれば、真空乾燥時に、Oイオンの脱離が抑制されるので、Mn3+の生成が十分に抑制される。このため、正極活物質層23の反応抵抗、ひいては電池の反応抵抗の増加が抑制できたと考えられる。また、乾燥温度を75℃以下とすれば、Oイオンの脱離反応が抑制できるため、乾燥温度が75℃以下の実施例1〜4では、反応抵抗比がほぼ同じになったと考えられる。
これらから、乾燥温度を75℃以下とすると良いことが理解できる。さらに乾燥温度を65〜70℃とすると、Oイオンの脱離反応を確実に抑制でき、電池の反応抵抗を更に低くできることも判る。
For this reason, when the drying temperature exceeds 75 ° C., which is relatively high, O ions constituting the positive electrode active material are combined with H + adhering to the surface of the positive electrode active material particles together with vacuum drying and H 2. By desorbing as O, Mn 4+ forming the active material is reduced to produce Mn 3+ . Since Mn 3+ has lower conductivity than Mn 4+ , the reaction resistance is increased on the surface of the positive electrode active material particles, and it is considered that the reaction resistance of the positive electrode active material layer 23 and thus the reaction resistance of the battery is increased. . It can also be understood that the above-described reaction proceeds as the temperature increases.
If the drying temperature is 75 ° C. or lower, the desorption of O ions is suppressed during vacuum drying, so that the generation of Mn 3+ is sufficiently suppressed. For this reason, it is considered that an increase in the reaction resistance of the positive electrode active material layer 23 and, consequently, the reaction resistance of the battery could be suppressed. Further, if the drying temperature is 75 ° C. or lower, the elimination reaction of O ions can be suppressed. Therefore, in Examples 1 to 4 where the drying temperature is 75 ° C. or lower, the reaction resistance ratio is considered to be substantially the same.
From these, it can be understood that the drying temperature is preferably 75 ° C. or lower. It can also be seen that when the drying temperature is 65 to 70 ° C., the elimination reaction of O ions can be reliably suppressed and the reaction resistance of the battery can be further reduced.

次いで、残留水分量比について検討する。乾燥温度が65〜75℃の範囲(実施例2〜4)では、残留水分量比は、余り変化しない。次述する真空度と残留水分量との関係とを併せて考察すると、乾燥温度が65〜75℃の範囲では、残留水分量に対する乾燥温度の影響は比較的小さく、真空度の影響が大きいことが判る。また、乾燥温度を65℃以上とすれば、真空度0.03kPaの環境下で除去しうる水分はほぼ全量除去できることも判る。
一方、乾燥温度が65℃未満(実施例1、比較例1,2)では、乾燥温度の低下と共に、残留水分量が急激に増加することが判る。乾燥温度が低いと残留水分の蒸発が抑制されるためと考えられる。
加えて、正極活物質層23の残留水分量比が110%を超えると、注液後に、非水電解液と水分との反応により、ガスが発生する虞がある。
これらから、乾燥温度を60℃以上とすることが良いことが判る。さらに、乾燥温度を65℃以上とすると、乾燥温度の変動による残留水分量の変化を抑制できて、さらに好ましいことが理解できる。
Next, the residual moisture content ratio will be examined. When the drying temperature is in the range of 65 to 75 ° C. (Examples 2 to 4), the residual moisture content ratio does not change much. Considering together the relationship between the degree of vacuum and the residual moisture content described below, when the drying temperature is in the range of 65 to 75 ° C., the influence of the drying temperature on the residual moisture content is relatively small and the influence of the vacuum degree is large. I understand. It can also be seen that if the drying temperature is set to 65 ° C. or higher, almost all of the water that can be removed in an environment with a degree of vacuum of 0.03 kPa can be removed.
On the other hand, when the drying temperature is less than 65 ° C. (Example 1, Comparative Examples 1 and 2), it can be seen that the residual moisture content increases rapidly as the drying temperature decreases. This is probably because the evaporation of residual moisture is suppressed when the drying temperature is low.
In addition, if the residual water content ratio of the positive electrode active material layer 23 exceeds 110%, gas may be generated due to the reaction between the non-aqueous electrolyte and water after the injection.
From these, it can be seen that the drying temperature is preferably 60 ° C. or higher. Furthermore, it can be understood that when the drying temperature is set to 65 ° C. or higher, a change in the amount of residual moisture due to variation in the drying temperature can be suppressed, which is more preferable.

なお、表1の判定欄においては、残留水分量比110%以下で、かつ、反応抵抗比100%未満のものを「○」印で示し、それ以外のものを「×」印で表示した。
判定欄から判るように、真空度0.03kPa、乾燥時間12時間の場合には、乾燥温度が60〜75℃の範囲(実施例1〜4)で「○」判定となった。この範囲では、正極活物質粒子の表面にMn3+が生成されるのを抑制でき、電池の抵抗が増加を抑制できる。
さらに、乾燥温度を60〜70℃とするのが好ましいことも理解できる。このようにすると、正極活物質粒子の表面におけるMn3+の生成を確実に抑制でき、さらに電池の反応抵抗を低くできる。
さらに、乾燥温度を65〜70℃とするのが特に好ましいことも理解できる。上述のように電池の反応抵抗を低くできる上に、正極活物質層における残留水分量を十分減少させることができ、残留水分によるガス発生などの不具合を確実に抑制できるからである。
In the judgment column of Table 1, “○” marks indicate those having a residual moisture content ratio of 110% or less and less than 100% reaction resistance ratio, and “x” marks indicate other things.
As can be seen from the determination column, when the degree of vacuum was 0.03 kPa and the drying time was 12 hours, “◯” was determined when the drying temperature was in the range of 60 to 75 ° C. (Examples 1 to 4). In this range, it is possible to suppress the generation of Mn 3+ on the surface of the positive electrode active material particles, and it is possible to suppress an increase in battery resistance.
Furthermore, it can be understood that the drying temperature is preferably 60 to 70 ° C. In this way, the production of Mn 3+ on the surface of the positive electrode active material particles can be reliably suppressed, and the reaction resistance of the battery can be further lowered.
Furthermore, it can be understood that the drying temperature is particularly preferably 65 to 70 ° C. This is because the reaction resistance of the battery can be lowered as described above, and the amount of residual moisture in the positive electrode active material layer can be sufficiently reduced, and problems such as gas generation due to residual moisture can be reliably suppressed.

(真空度と乾燥時間)
次いで、真空度を変化させた場合の、正極活物質層23における残留水分量が所定量になるまでの乾燥時間を調査した結果について説明する(表2,図9参照)。
ここでも、収容工程S5まで、前述の実施形態と同様にして製造した、未封口の電池を用意し、乾燥温度を75℃あるいは60℃とした上で、真空度を異ならせて真空乾燥工程S6を行い、この真空乾燥工程S6後の正極活物質層23の残留水分量を測定して、残留水分量比が110%となる乾燥時間を得た。結果を表2及び図9に示す。なお、前述した実施形態の電池1は、真空度0.03kPa,乾燥温度60℃、乾燥時間12時間で残留水分量比が110%となった例に相当する。
(Vacuum level and drying time)
Next, the results of investigating the drying time until the residual water content in the positive electrode active material layer 23 reaches a predetermined amount when the degree of vacuum is changed will be described (see Table 2 and FIG. 9).
Also here, an unsealed battery manufactured in the same manner as in the previous embodiment is prepared up to the housing step S5, the drying temperature is set to 75 ° C. or 60 ° C., and the degree of vacuum is varied to make the vacuum drying step S6. Then, the residual moisture content of the positive electrode active material layer 23 after this vacuum drying step S6 was measured to obtain a drying time in which the residual moisture content ratio was 110%. The results are shown in Table 2 and FIG. In addition, the battery 1 of the embodiment described above corresponds to an example in which the residual water content ratio becomes 110% after a degree of vacuum of 0.03 kPa, a drying temperature of 60 ° C., and a drying time of 12 hours.

Figure 2018113188
Figure 2018113188

表2及び図9から理解できるように、乾燥温度が75℃、60℃のいずれの場合でも、残留水分量比が110%となるまでの乾燥時間は、真空度が高い(数値が小さい)ほど短くできることが判る。
そこで、表2では、残留水分量比が110%となるまでの乾燥時間が12時間以内となるものを「○」印とし、これより時間が掛かるものを「×」印とした。表2及び図9によれば、乾燥温度が75℃、60℃のいずれの場合でも、真空度を0.03kPa以下とすれば、残留水分量比が110%となるまでの乾燥時間を12時間以内にできることが判る。
As can be understood from Table 2 and FIG. 9, the drying time until the residual moisture content ratio becomes 110% is higher as the degree of vacuum is higher (the numerical value is smaller) in both cases where the drying temperature is 75 ° C. and 60 ° C. It can be seen that it can be shortened.
Therefore, in Table 2, “○” marks indicate that the drying time until the residual water content ratio reaches 110% is within 12 hours, and “X” marks indicate that it takes longer than this. According to Table 2 and FIG. 9, when the drying temperature is 75 ° C. or 60 ° C., if the degree of vacuum is 0.03 kPa or less, the drying time until the residual moisture content ratio becomes 110% is 12 hours. It can be seen within.

但し、真空度を高真空とするほど、高性能の真空ポンプ等を要するほか、狙いの真空度に到達するまでに時間を要するためコストアップとなる。
従って、乾燥時間を12時間以下とするならば、乾燥温度が75℃、60℃のいずれの場合でも、真空度を0.03kPaとするのが好ましいことが判る。
However, the higher the degree of vacuum, the higher the cost because it requires a high-performance vacuum pump and the like, and it takes time to reach the target degree of vacuum.
Therefore, it can be seen that if the drying time is 12 hours or less, the degree of vacuum is preferably 0.03 kPa regardless of whether the drying temperature is 75 ° C. or 60 ° C.

なお、乾燥温度75℃と乾燥温度60℃の場合を比較すると、常に、乾燥温度75℃の方が乾燥時間を短くできることが判る。正極活物質層23に残留する水分の除去には、真空度のほか、乾燥温度もその要因であり、乾燥温度が高いほど蒸発しやすいためである。   In addition, when the case where the drying temperature is 75 ° C. and the drying temperature is 60 ° C. is compared, it can always be seen that the drying time can be shortened when the drying temperature is 75 ° C. This is because, in addition to the degree of vacuum, the drying temperature is a factor in the removal of moisture remaining in the positive electrode active material layer 23, and the higher the drying temperature, the easier it is to evaporate.

以上において、本発明を実施形態及び実施例に即して説明したが、本発明は上記実施形態等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることはいうまでもない。
実施形態の電池1では、電極体20として積層型の電極体を用いた例を示した。しかし、帯状の正極板、負極板、及びセパレータを捲回した捲回型の電極体を収容した捲回型の電池の製造において、本発明を適用することもできる。
In the above, the present invention has been described with reference to the embodiments and examples. However, the present invention is not limited to the above-described embodiments and the like, and can be applied with appropriate modifications without departing from the gist thereof. Not too long.
In the battery 1 of the embodiment, an example in which a stacked electrode body is used as the electrode body 20 is shown. However, the present invention can also be applied to the manufacture of a wound battery containing a belt-shaped positive electrode plate, a negative electrode plate, and a wound electrode body wound with a separator.

1 電池
10 電池ケース(電池容器)
19 非水電解液
20 電極体
21 正極板
22 正極集電箔(正極集電板)
23 正極活物質層
31 負極板
41 セパレータ
S1 正極ペースト作製工程
S2 塗布工程
S3 乾燥工程
S4 積層工程(電極体形成工程)
S5 収容工程
S6 真空乾燥工程
S7 注液工程
S8 初充電工程
S9 封口工程
1 Battery 10 Battery Case (Battery Container)
19 Non-aqueous electrolyte 20 Electrode body 21 Positive electrode plate 22 Positive electrode current collector foil (positive electrode current collector plate)
23 positive electrode active material layer 31 negative electrode plate 41 separator S1 positive electrode paste preparation step S2 coating step S3 drying step S4 laminating step (electrode body forming step)
S5 Accommodation process S6 Vacuum drying process S7 Injection process S8 Initial charging process S9 Sealing process

Claims (1)

アルミニウムからなる正極集電板、及び、この正極集電板に塗布し乾燥された、Li+及びMn4+をその組成中に含む正極活物質粒子を含む正極活物質層を有する正極板、負極板、及びセパレータを用いた電極体を、電池容器内に気密に収容した
リチウムイオン二次電池の製造方法であって、
上記正極活物質粒子、pH調整剤及び溶媒である水を含み、pHがpH10.0以下の水系正極ペーストを、上記正極集電板に塗布して未乾燥正極活物質層を形成する塗布工程と、
上記未乾燥正極活物質層を乾燥して、上記正極活物質層を有する上記正極板を形成する乾燥工程と、
上記正極板、上記負極板、及び上記セパレータを用いて電極体を形成する電極体形成工程と、
上記電極体を上記電池容器内に収容する収容工程と、
上記電極体を収容した上記電池容器内を真空にして、上記正極板を含め上記電極体を真空乾燥する真空乾燥工程と、
上記電池容器内に、非水電解液を注入する注液工程と、
上記電池容器を気密に封口する封口工程と、を備え、
上記真空乾燥工程は、
真空度0.03kPa以下の減圧下、60〜75℃の温度で、12時間以内に行う
リチウムイオン二次電池の製造方法。
Positive electrode current collector plate made of aluminum, and positive electrode plate having a positive electrode active material layer containing positive electrode active material particles containing Li + and Mn 4+ in its composition, applied to the positive electrode current collector plate and dried, and negative electrode A method for producing a lithium ion secondary battery in which a plate and an electrode body using a separator are hermetically accommodated in a battery container,
An application step of forming an undried positive electrode active material layer by applying an aqueous positive electrode paste having a pH of 10.0 or less, including water as the positive electrode active material particles, a pH adjuster and a solvent, to the positive electrode current collector plate; ,
Drying the undried positive electrode active material layer to form the positive electrode plate having the positive electrode active material layer;
An electrode body forming step of forming an electrode body using the positive electrode plate, the negative electrode plate, and the separator;
A housing step of housing the electrode body in the battery container;
A vacuum drying step of evacuating the battery body containing the electrode body and vacuum drying the electrode body including the positive electrode plate;
A liquid injection step of injecting a non-aqueous electrolyte into the battery container;
A sealing step of sealing the battery container in an airtight manner,
The vacuum drying step
A method for producing a lithium ion secondary battery, which is carried out at a temperature of 60 to 75 ° C. within 12 hours under a reduced pressure of a vacuum degree of 0.03 kPa or less.
JP2017003568A 2017-01-12 2017-01-12 Manufacturing method of lithium ion secondary battery Active JP6658557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017003568A JP6658557B2 (en) 2017-01-12 2017-01-12 Manufacturing method of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017003568A JP6658557B2 (en) 2017-01-12 2017-01-12 Manufacturing method of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2018113188A true JP2018113188A (en) 2018-07-19
JP6658557B2 JP6658557B2 (en) 2020-03-04

Family

ID=62912495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003568A Active JP6658557B2 (en) 2017-01-12 2017-01-12 Manufacturing method of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6658557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768329A (en) * 2018-12-04 2019-05-17 湖北大学 The construction method of mixed aquo-lithium ion battery system based on cobalt acid lithium and active carbon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014254A (en) * 2009-06-30 2011-01-20 Panasonic Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP2013125661A (en) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2016192394A (en) * 2014-09-08 2016-11-10 日立マクセル株式会社 Nonaqueous electrolyte battery, and method of manufacturing the same
US20180080711A1 (en) * 2016-09-22 2018-03-22 Grst International Limited Method of drying electrode assemblies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014254A (en) * 2009-06-30 2011-01-20 Panasonic Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP2013125661A (en) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2016192394A (en) * 2014-09-08 2016-11-10 日立マクセル株式会社 Nonaqueous electrolyte battery, and method of manufacturing the same
US20180080711A1 (en) * 2016-09-22 2018-03-22 Grst International Limited Method of drying electrode assemblies

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109768329A (en) * 2018-12-04 2019-05-17 湖北大学 The construction method of mixed aquo-lithium ion battery system based on cobalt acid lithium and active carbon
CN109768329B (en) * 2018-12-04 2021-12-10 太原科技大学 Construction method of mixed type water system lithium ion battery system based on lithium cobaltate and active carbon

Also Published As

Publication number Publication date
JP6658557B2 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
JP5408509B2 (en) Method for producing non-aqueous electrolyte type lithium ion secondary battery
CN101667636B (en) Electrode manufacturing method and electrodes
JP5773226B2 (en) Method for producing lithium ion secondary battery
JP5888551B2 (en) Manufacturing method of sealed lithium secondary battery
US10217993B2 (en) Method of manufacturing non-aqueous electrolyte secondary battery
TWI672842B (en) Lithium ion secondary battery and method of producing the same
WO2009122933A1 (en) Positive electrode of lithium secondary battery and method for producing the same
JP2010287512A (en) Method of manufacturing lithium ion secondary battery
JP5448002B2 (en) Non-aqueous electrolyte type lithium ion secondary battery
JP6321420B2 (en) Electrode and manufacturing method thereof
JPWO2018043375A1 (en) Storage element and method of manufacturing the same
JP6976097B2 (en) Alkali metal ion doping method
JP2011187343A (en) Method for manufacturing electrode for battery
JP5720952B2 (en) Lithium ion secondary battery
JP6658557B2 (en) Manufacturing method of lithium ion secondary battery
WO2019069705A1 (en) Method for producing power storage element and power storage element
JP7290124B2 (en) Manufacturing method and negative electrode material for lithium ion secondary battery
JP4496727B2 (en) Storage element and method for manufacturing the same
JP2010153337A (en) Manufacturing method of lithium secondary battery
JP2015204282A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP2008282838A (en) Hybrid electric double layer capacitor
CN111164801A (en) Electrode, electricity storage element, and method for manufacturing electrode
JP2013118104A (en) Method for manufacturing negative electrode for nonaqueous electrolyte secondary battery, and method for manufacturing nonaqueous electrolyte secondary battery including the negative electrode
JP7048205B2 (en) Negative electrode manufacturing method
JP2021128918A (en) Negative electrode for lithium ion secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6658557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151