JP2013124820A - 2段式暖房機及び2段式冷房機 - Google Patents

2段式暖房機及び2段式冷房機 Download PDF

Info

Publication number
JP2013124820A
JP2013124820A JP2011274349A JP2011274349A JP2013124820A JP 2013124820 A JP2013124820 A JP 2013124820A JP 2011274349 A JP2011274349 A JP 2011274349A JP 2011274349 A JP2011274349 A JP 2011274349A JP 2013124820 A JP2013124820 A JP 2013124820A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
flow path
stage
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011274349A
Other languages
English (en)
Inventor
Ryohei Iwatani
良平 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011274349A priority Critical patent/JP2013124820A/ja
Publication of JP2013124820A publication Critical patent/JP2013124820A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】 1種類の冷媒を使用して、COPの低下を抑えつつ凝縮器からの放熱温度を高くする。
【解決手段】 冷媒3を共用する2つの冷媒流路を備え、高段側冷媒流路1の第4熱交換器22で放熱した冷媒を減圧弁23で減圧して、低段側冷媒流路1の第1熱交換器12から流出する冷媒に合流する。合流した冷媒3の一部を、低段側冷媒流路1の第2熱交換器13において過冷却する。合流した冷媒3の残りを、高段側冷媒流路2の第5熱交換器25において、外気温度より高い上記過冷却の熱を利用して蒸発させる。高段側冷媒流路2の第5熱交換器25における冷媒3の蒸発温度を高くできるため、高段側冷媒流路2の第2圧縮機21の圧縮比を大きくしなくても、第4熱交換器22からの放熱温度を高めることが可能となる。
【選択図】図1

Description

本発明は、冷媒を共用する低段側冷媒流路と高段側冷媒流路とを備える2段式暖房機及び2段式冷房機に関する。
従来から、蒸気圧縮サイクルを利用した暖房装置や冷房装置等が多用されている。この蒸気圧縮サイクルは、圧縮機、凝縮器、膨脹弁及び蒸発器に、この順序で冷媒を循環させ、暖房には凝縮器からの放熱を利用し、冷房には蒸発器の吸熱を利用する。ここで凝縮器からの放熱を利用する暖房機は、ヒートポンプとも称されており、蒸発器で吸熱した熱量と圧縮機の動力とを加えたエネルギーを、暖房用の熱量として利用できる。
ところで熱機関の熱効率は、出力エネルギー/入力エネルギーで定義されるところ、この熱効率が1を超えることはない。例えば、石油ストーブで暖房する場合、石油ストーブの燃焼で得られる熱量は、石油自体が有する燃焼熱量を超えることはない。しかるにヒートポンプでは、圧縮機の動力より多い出力エネルギーを、暖房用の熱量として得ることができる。そこで実際に消費される圧縮機の動力を入力エネルギーと考え、暖房に利用できる凝縮器からの放熱量を出力エネルギーと考えれば、ヒートポンプの熱効率は、出力エネルギー/入力エネルギー =
「凝縮器からの放熱量=蒸発器で吸熱した熱量+圧縮機の動力」/「圧縮機の動力」=(「蒸発器で吸熱した熱量」/「圧縮機の動力」)+1となり、1より大きくなる。この値は、COP(動作係数)と呼ばれ、このCOPは、3〜5程度にもなる。すなわちヒートポンプは、省資源及び省エネルギーが極めて高い暖房装置であるといえる。
ここでヒートポンプでは、凝縮器からの放熱温度が高いほど、熱エネルギーとしての利用価値が高い。たとえば同一の熱容量の部屋の暖房や給湯等を行なう場合には、所定の温度まで短時間で達することができ、あるいは所定の温度に維持するためには、ヒートポンプや熱交換器等の機器のサイズを小さくすることができる。
凝縮器からの放熱温度を高くするためには、圧縮機の圧縮比を大きくすることが考えられるが、圧縮機における圧縮比を大きくすると、「圧縮機の動力」が増加する。しかるに上述したように、ヒートポンプのCOPは、(「蒸発器で吸熱した熱量」/「圧縮機の動力」)+1であるため、「圧縮機の動力」を増加させると、COPが低下する。すなわち蒸気圧縮サイクルを利用したヒートポンプでは、凝縮器からの放熱温度を高くしようとすると、COPが低下するという問題がある。
そこでCOPの低下を抑えつつ、凝縮器からの放熱温度を高くする手段として、蒸気圧縮サイクルを2系統使用する2元式ヒートポンプが提案されている(例えば特許文献1及び2参照。)。特許文献1及び2に記載の2元式ヒートポンプは、いずれも低元側冷媒循環流路と高元側冷媒循環流路とを備え、それぞれの冷媒循環流路を異なる冷媒が相互に独立して循環する。すなわち低元側冷媒循環流路では、蒸発器において外気から吸熱して、凝縮器において放熱する。高元側冷媒循環流路では、蒸発器において低元側冷媒循環流路の凝縮器からの放熱を吸熱して、凝縮器において放熱する。そして高元側冷媒循環流路の凝縮器から放熱した高熱を、暖房や温水器等に利用する。
このような2元式ヒートポンプでは、高元側冷媒循環流路の蒸発器において、外気より高温の、低元側冷媒循環流路の凝縮器からの放熱を吸熱するため、この高元側冷媒循環流路の蒸発器における冷媒の蒸発温度を高くすることができる。したがって、高元側冷媒循環流路の圧縮機の圧縮比を大きくしなくても、圧縮機から吐出するガス冷媒の温度を高くすることができ、高元側冷媒循環流路の凝縮器における放熱温度も高くすることができる。一方低元側冷媒循環流路の凝縮器では、外気温度より低温の、高元側冷媒循環流路の蒸発器へ放熱することが可能となるため、低元側冷媒循環流路の圧縮機から吐出するガス冷媒の温度を高くする必要はない。したがって低元側冷媒循環流路においても、圧縮機の圧縮比をそれほど大きくする必要はない。
また2元式ヒートポンプでは、低元側冷媒循環流路において、蒸発器における冷媒の蒸発圧力が高くても、蒸発温度を低くすることができる冷媒、例えばR404A、R407C、あるいはR410を使用し、高元側冷媒循環流路において、圧縮機から吐出されるガス冷媒の温度を高くても、このガス冷媒の吐出圧力が高くならない冷媒、例えばR134a、R152a、あるいはR600aを使用することができる。このように低元側冷媒循環流路と高元側冷媒循環流路とに、それぞれ好適な異なる冷媒を選択することによって、双方の圧縮比をさらに小さくすることができる。
以上説明したように、2元式ヒートポンプでは、低元側冷媒循環流路及び高元側冷媒循環流路の双方について圧縮機の圧縮比を高くしなくても、高元側冷媒循環流路の凝縮器からの放熱温度を高くすることができる。したがって2元式ヒートポンプでは、低元側冷媒循環流路及び高元側冷媒循環流路の双方についてCOPを低下させることなく、高温の熱エネルギーを得ることができる。
特開2010−164258号公報 特開2011−169695号公報
しかしながら上述した従来技術による2元式ヒートポンプは、低元側冷媒循環流路と高元側冷媒循環流路とにおいて、それぞれ異なる冷媒を使用するため、それぞれ異なる2種類の冷媒が必要となる。また低元側冷媒循環流路と高元側冷媒循環流路とを、それぞれ別途独立に設ける必要があるため冷媒を循環させる配管等が複雑になる。したがって製造コストや整備コスト等がその分高くなるという問題がある。さらには低元側冷媒循環流路及び高元側冷媒循環流路の2個の圧縮機を、1個のケーシングに納めて共通のモーターで駆動する場合には、相互に異なる冷媒が混合しないように、複雑あるいは高度なシール構造を採用する必要がある。
そこで本発明の目的は、1種類の冷媒を使用して、COPの低下を抑えつつ、凝縮器からの放熱温度を高くする2段式暖房機を提供することにある。またこの2段式暖房機の冷媒循環流路を切り換えて使用する2段式冷房機を提供することにある。
上記課題を解決すべく、本発明による2段式暖房機の特徴は、次のとおりである。すなわち共通の冷媒を使用する2系統の冷媒流路を備えており、高段側冷媒流路の凝縮器から流出する冷媒を、低段側冷媒流路の凝縮器から流出する冷媒に合流させる。合流した冷媒の一部を、低段側冷媒流路において過冷却した後、膨脹弁で減圧し、蒸発器で蒸発させて圧縮機に還流する。また合流した冷媒の残りを、高段側冷媒流路において膨脹弁で減圧し、蒸発器で蒸発させて、圧縮機に還流する。
ここで高段側冷媒流路の凝縮器から流出する冷媒は、減圧弁で減圧して低段側冷媒流路の凝縮器から流出する冷媒に合流させる。また高段側冷媒流路の蒸発器では、低段側冷媒流路における冷媒の過冷却熱を吸熱して、冷媒を蒸発させる。そして高段側冷媒流路の凝縮器と低段側冷媒流路の凝縮器との双方あるいは一方における放熱を、暖房用に使用する。
このように構成した2段式暖房機は、次の作用効果を発揮する。すなわち高段側冷媒流路の凝縮器から減圧弁を経由して流出する冷媒、及び低段側冷媒流路の凝縮器から流出する冷媒の温度は、いずれも外気温度より高いため、これらが合流した冷媒の温度も外気温度より高くなる。例えば外気温度が10℃の場合、高段側冷媒流路の凝縮器から減圧弁を経由して流出する冷媒、及び低段側冷媒流路の凝縮器から流出する冷媒の温度は、それぞれ30℃及び15℃程度になる。このためこれらが合流した冷媒の温度も、18℃程度になる。したがって低段側冷媒流路において、合流した冷媒の一部を過冷却する場合、過冷却用の熱交換器に流入する冷媒の温度も18℃程度になり、依然として外気温度より高い。
したがって高段側冷媒流路の蒸発器において、低段側冷媒流路における外気温度より高い冷媒の過冷却熱を用いて冷媒を蒸発させれば、高段側冷媒流路の蒸発器における冷媒の蒸発温度を高くすることができる。すなわち高段側冷媒流路において、蒸発器における冷媒の蒸発温度が高くなれば、圧縮機の圧縮比を大きくしなくても、圧縮機からの冷媒の吐出温度、すなわち凝縮器における冷媒の放熱温度を高くすることができる。したがって本発明による2段式暖房機は、高段側冷媒流路において、COPの低下を抑えつつ、凝縮器からの放熱温度を高くすることができる。そしてこの作用効果を、1種類の共通の冷媒によって発揮させることができる。
以上により本発明による2段式暖房機は、次のように構成される。すなわち、本発明による2段式暖房機は、それぞれ共通の冷媒が循環する低段側冷媒流路と高段側冷媒流路とを備えている。上記低段側冷媒流路は、第1圧縮機、第1熱交換器、第2熱交換器、第1膨脹弁及び第3熱交換器を有している。上記高段側冷媒流路は、第2圧縮機、第4熱交換器、減圧弁、第2膨脹弁及び第5熱交換器を有している。
上記低段側冷媒流路において上記冷媒は、上記第1圧縮機及び第1熱交換器をこの順序で流れ、上記高段側冷媒流路において上記冷媒は、上記第2圧縮機、第4熱交換器及び減圧弁をこの順序で流れて、この減圧弁の出口の流路において、上記低段側冷媒流路の第1熱交換器から流出した冷媒と合流する。上記合流した冷媒の一部は、上記低段側冷媒流路の第2熱交換器、第1膨脹弁及び第3熱交換器を、この順序で流れて上記第1圧縮機に還流する。上記合流した冷媒の残りは、上記高段側冷媒流路の第2膨脹弁及び第5熱交換器を、この順序で流れて上記第2圧縮機に還流する。
上記低段側冷媒流路の第3熱交換器において上記冷媒は、外気から吸熱すると共に、上記第1熱交換器及び第2熱交換器において放熱する。そして上記冷媒は、上記高段側冷媒流路の第5熱交換器において、上記低段側冷媒流路の第2熱交換器において放熱した熱量を吸熱すると共に、上記第4熱交換器において放熱する。
ここで上記2段式暖房機の冷媒流路を切り換えることによって、冷房機として使用できる。すなわち本発明による2段式冷房機は、次のように構成される。上記低段側冷媒流路は、上記第1圧縮機の出口流路、第3熱交換器の出口流路及び第2熱交換器の出口流路において、それぞれ上記冷媒が流れる流路を切り替える流路切替弁を有すると共に、この第2熱交換器の出口流路に第3膨脹弁を有している。また上記高段側冷媒流路は、上記第2圧縮機の出口流路及び第4熱交換器の出口流路において、それぞれ上記冷媒が流れる流路を切り替える流路切替弁を有すると共に、この第2圧縮機の出口流路に第6熱交換器を有している。
上記低段側冷媒流路において上記冷媒は、上記第1圧縮機及び第3熱交換器をこの順序で流れ、上記高段側冷媒流路において上記冷媒は、上記第2圧縮機、第6熱交換器及び減圧弁をこの順序で流れて、この減圧弁の出口の流路において、上記低段側冷媒流路の第3熱交換器から流出した冷媒と合流する。上記合流した冷媒の一部は、上記低段側冷媒流路の第2熱交換器、第3膨脹弁及び上記高段側冷媒流路の第4熱交換器を、この順序で流れて上記第1圧縮機に還流する。上記合流した冷媒の残りは、上記高段側冷媒流路の第2膨脹弁及び第5熱交換器を、この順序で流れて上記第2圧縮機に還流する。
そして上記冷媒は、上記低段側冷媒流路の第3熱交換器及び第2熱交換器において放熱すると共に、上記高段側冷媒流路の第4熱交換器において吸熱する。また上記冷媒は、上記高段側冷媒流路の第5熱交換器において、上記低段側冷媒流路の第2熱交換器において放熱した熱量を吸熱すると共に、上記第6熱交換器において放熱する。
このように構成した2段式冷房機は、次の作用効果を発揮する。すなわち高段側冷媒流路の蒸発器(第5熱交換器)における冷媒の蒸発熱によって、低段側冷媒流路の凝縮器(第3熱交換器)から流出する冷媒(正確には、高段側冷媒流路の減圧弁から流出する冷媒が合流した冷媒の一部)を、第2熱交換器において過冷却することによって、低段側冷媒流路の蒸発器(第4熱交換器)における冷媒の蒸発熱量を増加させることができ、これにより冷房能力を向上させることができる。
また上述した2段式冷房機の高段側冷媒流路には、減圧弁をバイパスするバイパス流路を設けることが望ましい。すなわち高段側冷媒流路の凝縮器(第6熱交換器)から流出する冷媒を、減圧弁をバイパスするバイパス流路を経由して、低段側冷媒流路の凝縮器(第3熱交換器)から流出する冷媒に合流させることによって、高段側冷媒流路の凝縮器(第6熱交換器)から流出する冷媒の圧力を、低段側冷媒流路の凝縮器(第3熱交換器)から流出する冷媒と同等の圧力まで低下させることができる。したがって高段側冷媒流路の凝縮器(第6熱交換器)における冷媒の凝縮圧力、すなわち高段側冷媒流路の第2圧縮機の吐出圧力が低下して、この第2圧縮機の圧縮比を少なくすることができる。よって高段側冷媒流路におけるCOPを向上させることができる。なお高段側冷媒流路の第2圧縮機の吐出圧力が低下すると、凝縮器(第6熱交換器)における冷媒の凝縮温度も低下するが、冷房運転を行なうときには、凝縮器(第6熱交換器)における冷媒の凝縮熱は、外気に放熱されて利用されない。
ここで上記「第1圧縮機」及び「第2圧縮機」とは、冷媒ガスを圧縮する全ての機器を意味し、例えば往復型、スクロール型、遠心型、ロータリー型、及びスクリュー型が該当する。「第1熱交換器」〜「第61熱交換器」とは、通過する冷媒が、熱伝達、熱伝導または熱放射等によって、外部と高い効率で熱交換できる全ての冷媒通路を意味しており、例えば、配管構造、シェル構造、あるいは容器が該当する。「第1膨張弁」〜「第3膨張弁」及び「減圧弁」とは、液化冷媒または気液混合冷媒の圧力を減少させる全ての手段を意味し、例えばノズル、バルブあるいはキャピラリーチューブが該当する。
上述したように、本発明による2段式暖房機は、1種類の冷媒を使用して、COPの低下を抑えつつ、凝縮器からの放熱温度を高くすることができる。また本発明による2段式冷房機は、2段式暖房機の冷媒流路を切り替えることによって、主要構成要素をそのまま使用しつつ、蒸発器における吸熱能力を向上させることができる。
2段式暖房機の蒸気圧縮サイクルを示すモリエ線図である。 2段式暖房機の構成図である。 2段式冷房機の蒸気圧縮サイクルを示すモリエ線図である。 2段式冷房機の構成図である。
図1と図2とを参照しつつ、本発明による2段式暖房機の構成と作用等とを説明する。図1は、2段式暖房機の蒸気圧縮サイクルを示すモリエ線図であって、横軸に冷媒のエンタルピー(H)を、縦軸に冷媒の圧力(P)を示している。このモリエ線図には、2段式暖房機を構成する主要構成部品が記載してある。また図2は、本発明による2段式暖房機の具体的な構成の1例を記載してある。
さて図1に示すように、本発明による2段式暖房機は、低段側冷媒流路1と高段側冷媒流路2とを備えており、それぞれ共通の冷媒3、例えばR22が循環する。低段側冷媒流路1には、第1圧縮機11、第1熱交換器12、第2熱交換器13、第1膨脹弁14、及び第3熱交換器15が設けてある。また高段側冷媒流路2には、第2圧縮機21、第4熱交換器22、減圧弁23、第2膨脹弁24、及び第5熱交換器25が設けてある。なお第1圧縮機11と第2圧縮機21とは、共に往復型であり、第1熱交換器12〜第5熱交換器25は、いずれもパイプ構造になっている。また第1膨脹弁14、第2膨脹弁24及び減圧弁23は、いずれもノズルを採用している。ここで各熱交換器については、参照を容易にするため、それぞれの部品番号の後に、「第1」及び「第2」等を表す丸で囲った数字の「1」及び「2」等を付す。
高段側冷媒流路2は、減圧弁23の出口の流路において、低段側冷媒流路1の第1熱交換器12の出口の流路と連通している。さて低段側冷媒流路1において冷媒3は、第1圧縮機11及び第1熱交換器12をこの順序で流れる。高段側冷媒流路2において冷媒3は、第2圧縮機21、第4熱交換器22、及び減圧弁23をこの順序で流れて、この減圧弁の出口の流路において、低段側冷媒流路1の第1熱交換器12から流出した冷媒3と合流する。
合流した冷媒3の一部は、低段側冷媒流路1の第2熱交換器13、第1膨脹弁14、及び第3熱交換器15を、この順序で流れて、第1圧縮機11に還流する。また合流した冷媒3の残りは、高段側冷媒流路2の第2膨脹弁24、及び第5熱交換器25を、この順序で流れて第2圧縮機21に還流する。
ここで高段側冷媒流路2の第4熱交換器22から流出する冷媒3は、この冷媒の飽和液線上まで、あるいはさらに飽和液に入った領域まで冷却することが望ましい。これによって、第4熱交換器22において、暖房に利用する高温の放熱量を増すことができる。また低段側冷媒流路1の第1熱交換器12は、高段側冷媒流路2の減圧弁23から流出した冷媒3と、この低段側冷媒流路の第1熱交換器から流出した冷媒3とが合流した冷媒が、冷媒の飽和液線上まで凝縮する容量にすることが望ましい。これにより、低段側冷媒流路1の第1熱交換器12における凝縮熱量を増すことができるため、この凝縮による放熱を暖房に利用する場合に有利となる。また低段側冷媒流路1の第1熱交換器12と、第2熱交換器13とは、それぞれ別個の熱交換器ではなく、1個の熱交換器であってもよい。かかる場合には、1個の熱交換器内の冷媒流路の途中で、高段側冷媒流路2の減圧弁23から流出した冷媒3を合流させる。
さて低段側冷媒流路1の第3熱交換器15において、冷媒3は、外気から熱量QL2を吸熱すると共に、第1熱交換器12及び第2熱交換器13において、それぞれ熱量QL1-1とQL1-2とを放熱する。ここで高段側冷媒流路2の第5熱交換器25において、冷媒3は、低段側冷媒流路1の第2熱交換器13で放熱した熱量QL1-2を吸熱すると共に、第4熱交換器22において高温の熱量QH1を放熱する。
すなわち高段側冷媒流路2の第5熱交換器25において、冷媒3は、低段側冷媒流路1の第2熱交換器13で放熱した、外気温度より高い熱量QL1-2を吸熱して蒸発する。一方低段側冷媒流路1の第1熱交換器12で放熱した熱量QL1-1と、高段側冷媒流路2の第4熱交換器22において放熱した高温の熱量QH1は、それぞれ水循環流路4を循環する水を加温する。
ここで水循環流路4は、本発明による2段式暖房機からの放熱量を利用する手段の1例であって、水を循環させるポンプ41、第7熱交換器42、第8熱交換器43及び第9熱交換器44を備えている。上流側の第7熱交換器42では、低段側冷媒流路1の第1熱交換器12で放熱した熱量QL1-1によって、循環する水を予熱する。また下流側の第8熱交換器43では、高段側冷媒流路2の第4熱交換器22において放熱した高温の熱量QH1との熱交換によって、予熱された温水を、さらに高温に加温する。そして高温に加温された熱水は、第9熱交換器44において、例えば室内に放熱し、この室内を暖房する。
なお高段側冷媒流路2の第4熱交換器22において放熱した高温の熱量QH1のみを利用して、水循環流路4を循環する水を加温してもよく、また低段側冷媒流路1の第1熱交換器12で放熱した熱量QL1-1を、別個の水循環流路を循環する水の加温に利用してもよい。さらに高段側冷媒流路2の第4熱交換器22において放熱した高温の熱量QH1、及び低段側冷媒流路1の第1熱交換器12で放熱した熱量QL1-1を、それぞれ水循環流路4を使用せずに、直接室内空気に放熱し、この室内を暖房するようにしてもよい。
図2に、上述した2段式暖房機の構成を、より詳細に示す。なお図2に示す2段式暖房機の構成は、後述するように2段式冷房機に使用できるように、冷媒流路を切り替える複数の流路切替弁等を設けてある。なお図2において、2段式暖房機として使用する場合の冷媒流路は実線で、2段式冷房機として使用する場合の冷媒流路は破線で示している。また流路切替弁が閉状態の場合は、黒色で塗り潰し、開状態の場合は、白抜きで表している。以下2段式暖房機として使用する場合について説明する。
低段側冷媒流路1の第1圧縮気11から吐出した高温のガス冷媒3は、四方弁Vを経由して、第1熱交換器12に流入し、この第1熱交換器において液冷媒に凝縮し、チェックバルブVを経由して、高段側冷媒流路2の減圧弁23から流出する液冷媒3に合流する。一方、高段側冷媒流路2の第2圧縮気21から吐出した高温のガス冷媒3は、切替弁Vを経由して第4熱交換器22に流入し、この第4熱交換器において、水循環流路4の第8熱交換器43を流れる水と熱交換して凝縮し、液冷媒となる。第4熱交換器において凝縮した液冷媒3は、切替弁Vを経由して減圧弁23に流入し、この減圧弁23において、チェックバルブVから流出する低段側冷媒流路1の液冷媒3の圧力まで減圧されて、合流する。
合流した液冷媒の一部は、低段側冷媒流路1の第2熱交換器13に流入する。一方、合流した液冷媒の残りは、高段側冷媒流路2の第2膨脹弁24において気液混合状態の冷媒3に減圧され、第5熱交換器25を経由して第2圧縮気21に還流する。ここで高段側冷媒流路2の第5熱交換器25を流れる冷媒3は、低段側冷媒流路1の第2熱交換器13を流れる冷媒3から、熱量QL1−2を吸熱してガス状態に蒸発し、他方、この低段側冷媒流路の第2熱交換器を流れる冷媒は、この高段側冷媒流路の第5熱交換器を流れる冷媒に熱量QL1−2を放熱して過冷却状態になる。
低段側冷媒流路1の第2熱交換器13を流出した過冷却の状態の冷媒3は、第1膨脹弁14流入し、この第1膨脹弁において気液混合状態の冷媒に減圧される。この気液混合状態の冷媒3は、切替弁Vを経由して、第3熱交換器15に流入し、この第3熱交換器において外気から熱量QL2を吸熱してガス状態に蒸発する。このガス状態の冷媒3は、四方弁Vを経由して、第1圧縮気21に還流する。
また低段側冷媒流路1の第1熱交換器12内を流れる冷媒3は、水循環流路4の第7熱交換器42を流れる水に、熱量QL1-1を放熱し、この水を予熱する。すなわち水循環流路4では、上流側の第7熱交換器42において、低段側冷媒流路1の第1熱交換器12からの放熱量QL1-1によって、循環する水を予熱し、この予熱された温水を、下流側の第8熱交換器43において、高段側冷媒流路2の第4熱交換器22からの高温の放熱量QH1によって、さらに高温に加温する。そして高温に加温された熱水は、第8熱交換器43において、室内に放熱して暖房する。
図3は、上述した2段式暖房機の冷媒流路を切り替えて、2段式冷房機としてする場合の蒸気圧縮サイクルを示すモリエ線図である。この2段式暖房機の蒸気圧縮サイクルにおいて、図1で示した2段式暖房機の蒸気圧縮サイクルと異なる点は、次のとおりである。すなわち低段側冷媒流路1及び高段側冷媒流路2において、凝縮器(第3熱交換器15、及び第6凝縮器26)からの、冷媒3の凝縮熱量QL1-1及びQH1は、いずれも外気に放熱し、低段側冷媒流路1の蒸発器(第4熱交換器22)における冷媒3の蒸発熱QL2によって、水循環流路4の下流側の第8熱交換器43内を流れる水を冷却する。また高段側冷媒流路2の凝縮器(第6凝縮器26)を流出した冷媒3は、2段式暖房機で使用する減圧弁23の替わりにバイパス流路27を経由して、減圧されることなく低段側冷媒流路1の凝縮器(第3熱交換器15)から流出した冷媒と合流する。
なお2段式暖房機は、2段式冷房機において使用する部品の大部分を、そのまま使用するが、後述するように、新たな冷媒流路や流路切替弁の他、低段側冷媒流路1において第3膨脹弁、及び高段側冷媒流路2において第6熱交換器26を備える。
図4に、上述した2段式冷房機の構成の1例を示す。なお図4において、2段式冷房機として使用する場合の冷媒流路は実線で、2段式暖房機として使用する場合の冷媒流路は破線で示している。また流路切替弁が閉状態の場合は、黒色で塗り潰し、開状態の場合は、白抜きで表している。以下2段式冷房機として使用する場合について説明する。
すなわち図4に示すように、低段側冷媒流路1において、第1圧縮機11から吐出されるガス冷媒3は、四方弁Vによって冷媒流路が切替えられて、第3熱交換器15に流入し、この第3熱交換器において、ほぼ飽和液線上まで凝縮して、外気に熱量QL1-1を放熱する。第3熱交換器15を流出した液冷媒3は、新たな冷媒流路Bに流入し、切替弁Vを経由して、高段側冷媒流路2のバイパス流路27から流出する冷媒3と合流する。
高段側冷媒流路2において、第2圧縮機21から吐出されるガス冷媒3は、新たな冷媒流路Bに流入して、切替弁V、新たな第6熱交換器26及びバイパス流路27を経由して、低段側冷媒流路1の切替弁Vから流出する冷媒3と合流する。なお冷媒3は、高段側冷媒流路2の第6熱交換器26において凝縮して、外気に熱量QH1を放熱する。合流した冷媒3の一部は、低段側冷媒流路1の第2熱交換器13に流入し、この第2熱交換器において、高段側冷媒流路2の第5熱交換器25で蒸発する冷媒3の蒸発熱QL1-2によって過冷却される。
低段側冷媒流路1の第2熱交換器13から流出した過冷却状態の冷媒3は、新たな冷媒流路Bに流入し、切替弁V及び新たな第3膨脹弁16を経由して、第4熱交換器22に流入する。冷媒3は、第4熱交換器22において蒸発し、水循環流路4の第8熱交換器43を流れる水から熱量QL2を吸熱して、この水を冷却する。なお冷却された水は、水循環流路4のポンプ41によって、第7熱交換器42及び第9熱交換器44に送られ、この第9熱交換器において、部屋等の空気から吸熱して冷房する。また低段側冷媒流路1の第4熱交換器22から流出したガス冷媒3は、新たな冷媒流路Bに流入し、切替弁Vを経由して第1圧縮機に還流する。
合流した冷媒3の残りは、高段側冷媒流路2の第2膨脹弁24を経由して、第5熱交換器25に流入する。冷媒3は、高段側冷媒流路2の第5熱交換器25において、低段側冷媒流路1の第2熱交換器13を流れる冷媒3の過冷却熱
L1-2を吸熱して蒸発してガス冷媒となり、第2圧縮機21に還流する。
なお上述した2段式暖房機及び2段式冷房機において、冷媒の気液分離装置、冷媒温度や圧力の計測機器、冷媒流量等の制御装置及び圧縮機や切替弁等を駆動する電源システム等の機器については、いずれも記載していないが、従来技術の装置や機器等が使用可能であり、必要に応じて容易に設けることができる。
本発明による2段式暖房機は、1種類の冷媒を使用して、COPの低下を抑えつつ、凝縮器からの放熱温度を高くすることができる。また本発明による2段式冷房機は、2段式暖房機の冷媒流路を切り替えることによって、主要構成要素をそのまま使用しつつ、蒸発器における吸熱能力を向上させることができる。よって暖房機及び冷房機に関する産業に広く利用可能である。
1 低段側冷媒流路
11 第1圧縮機
12 第1熱交換器
13 第2熱交換器
14 第1膨脹弁
15 第3熱交換器
16 第3膨脹弁
2 高段側冷媒流路
21 第2圧縮機
22 第4熱交換器
23 減圧弁
24 第2膨脹弁
25 第5熱交換器
26 第6熱交換器
27 バイパス流路
3 ガス冷媒、液冷媒、気液混合冷(媒冷媒)

Claims (3)

  1. それぞれ共通の冷媒(3)が循環する低段側冷媒流路(1)と高段側冷媒流路(2)とを備え、
    上記低段側冷媒流路(1)は、第1圧縮機(11)、第1熱交換器(12)、第2熱交換器(13)、第1膨脹弁(14)及び第3熱交換器(15)を有し、
    上記高段側冷媒流路(2)は、第2圧縮機(21)、第4熱交換器(22)、減圧弁(23)、第2膨脹弁(24)及び第5熱交換器(25)を有し、
    上記低段側冷媒流路(1)において上記冷媒(3)は、上記第1圧縮機(11)及び第1熱交換器(12)をこの順序で流れ、
    上記高段側冷媒流路(2)において上記冷媒(3)は、上記第2圧縮機(21)、第4熱交換器(22)及び減圧弁(23)をこの順序で流れて、この減圧弁(23)の出口の流路において、上記低段側冷媒流路(1)の第1熱交換器(12)から流出した冷媒(3)と合流し、
    上記合流した冷媒(3)の一部は、上記低段側冷媒流路(1)の第2熱交換器(13)、第1膨脹弁(14)及び第3熱交換器(15)を、この順序で流れて、上記第1圧縮機(11)に還流し、
    上記合流した冷媒(3)の残りは、上記高段側冷媒流路(2)の第2膨脹弁(24)及び第5熱交換器(25)を、この順序で流れて上記第2圧縮機(21)に還流し、
    上記低段側冷媒流路(1)の第3熱交換器(15)において上記冷媒(3)は、外気から吸熱すると共に、上記第1熱交換器(12)及び第2熱交換器(13)において放熱し、
    上記高段側冷媒流路(2)の第5熱交換器(25)において上記冷媒(3)は、上記低段側冷媒流路(1)の第2熱交換器(13)において放熱した熱量を吸熱すると共に、上記第4熱交換器(22)において放熱する
    ことを特徴とする2段式暖房機。
  2. 請求項1に記載の2段式暖房機の冷媒流路を切り換えて使用する2段式冷房機であって、
    上記低段側冷媒流路(1)は、上記第1圧縮機(11)の出口流路、第3熱交換器(15)の出口流路、及び第2熱交換器(13)の出口流路において、それぞれ上記冷媒(3)が流れる流路を切り替える流路切替弁を有すると共に、この第2熱交換器(13)の出口流路に第3膨脹弁(16)を有し、
    上記高段側冷媒流路(2)は、上記第2圧縮機(21)の出口流路及び第4熱交換器(22)の出口流路において、それぞれ上記冷媒(3)が流れる流路を切り替える流路切替弁を有すると共に、この第2圧縮機(21)の出口流路に第6熱交換器(26)を有し、
    上記低段側冷媒流路(1)において上記冷媒(3)は、上記第1圧縮機(11)及び第3熱交換器(15)をこの順序で流れ、
    上記高段側冷媒流路(2)において上記冷媒(3)は、上記第2圧縮機(21)、第6熱交換器(26)及び減圧弁(23)をこの順序で流れて、この減圧弁(23)の出口の流路において、上記低段側冷媒流路(1)の第3熱交換器(15)から流出した冷媒(3)と合流し、
    上記合流した冷媒(3)の一部は、上記低段側冷媒流路(1)の第2熱交換器(13)、第3膨脹弁(16)及び上記高段側冷媒流路(2)の第4熱交換器(22)を、この順序で流れて、上記第1圧縮機(11)に還流し、
    上記合流した冷媒(3)の残りは、上記高段側冷媒流路(2)の第2膨脹弁(24)及び第5熱交換器(25)を、この順序で流れて上記第2圧縮機(21)に還流し、
    上記冷媒(3)は、上記低段側冷媒流路(1)の第3熱交換器(15)及び第2熱交換器(13)において放熱すると共に、上記高段側冷媒流路(2)の第4熱交換器(22)において吸熱し、
    上記冷媒(3)は、上記高段側冷媒流路(2)の第5熱交換器(25)において、上記低段側冷媒流路(1)の第2熱交換器(13)において放熱した熱量を吸熱すると共に、上記第6熱交換器(26)において放熱する
    ことを特徴とする2段式冷房機。
  3. 上記高段側冷媒流路(2)には、上記減圧弁(23)をバイパスするバイパス流路(27)が設けてある
    ことを特徴とする請求項2に記載の2段式冷房機。
JP2011274349A 2011-12-15 2011-12-15 2段式暖房機及び2段式冷房機 Pending JP2013124820A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011274349A JP2013124820A (ja) 2011-12-15 2011-12-15 2段式暖房機及び2段式冷房機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274349A JP2013124820A (ja) 2011-12-15 2011-12-15 2段式暖房機及び2段式冷房機

Publications (1)

Publication Number Publication Date
JP2013124820A true JP2013124820A (ja) 2013-06-24

Family

ID=48776176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274349A Pending JP2013124820A (ja) 2011-12-15 2011-12-15 2段式暖房機及び2段式冷房機

Country Status (1)

Country Link
JP (1) JP2013124820A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512521A (ja) * 2017-03-27 2020-04-23 リバウンド テクノロジーズ, インク.Rebound Technologies, Inc. サイクルエンハンスメントの方法、システム、及び装置
US11460226B2 (en) 2018-02-23 2022-10-04 Rebound Technologies, Inc. Freeze point suppression cycle control systems, devices, and methods
US11530863B2 (en) 2018-12-20 2022-12-20 Rebound Technologies, Inc. Thermo-chemical recuperation systems, devices, and methods

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512521A (ja) * 2017-03-27 2020-04-23 リバウンド テクノロジーズ, インク.Rebound Technologies, Inc. サイクルエンハンスメントの方法、システム、及び装置
US11473818B2 (en) 2017-03-27 2022-10-18 Rebound Technologies, Inc. Cycle enhancement methods, systems, and devices
US11460226B2 (en) 2018-02-23 2022-10-04 Rebound Technologies, Inc. Freeze point suppression cycle control systems, devices, and methods
US11530863B2 (en) 2018-12-20 2022-12-20 Rebound Technologies, Inc. Thermo-chemical recuperation systems, devices, and methods

Similar Documents

Publication Publication Date Title
JP5991989B2 (ja) 冷凍空調装置
KR101343711B1 (ko) 공조 급탕 시스템 및 히트 펌프 유닛
JP6042026B2 (ja) 冷凍サイクル装置
JP5455521B2 (ja) 空調給湯システム
WO2011105270A1 (ja) 冷凍サイクル装置
US20140338389A1 (en) Vapor compression system with thermal energy storage
JP5430604B2 (ja) 二元冷凍装置
EP2629031B1 (en) Gas heat pump system
WO2010098005A1 (ja) 2元式ヒートポンプ及び冷凍機
Minh et al. Improved vapour compression refrigeration cycles: literature review and their application to heat pumps
EP1332323B1 (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
CN105135729A (zh) 单制冷剂回路、多排气压力的蒸气压缩制冷/热泵系统
JP2013124820A (ja) 2段式暖房機及び2段式冷房機
GB2455579A (en) Heat pump comprising an inverter drive compressor
JP4608303B2 (ja) 蒸気圧縮式ヒートポンプ
JP2012237518A (ja) 空気調和機
KR20100005736U (ko) 히트펌프 시스템
KR101524862B1 (ko) 착상 예방과 증발효율을 향상한 히트펌프 시스템
KR101170712B1 (ko) 지열을 이용한 가스엔진히트펌프 냉난방 시스템
JP2012073008A (ja) 冷凍サイクル装置
JP5229076B2 (ja) 冷凍装置
KR101258096B1 (ko) 2단 압축 히트펌프 시스템
KR100613502B1 (ko) 히트 펌프식 공기조화기
JP2014020673A (ja) 冷凍装置
LU500968B1 (en) Cascade Heat Pump System with Variable Flow Single Working Medium Parallel Heat Exchanger