JP2013124560A - タービンバイパス装置およびタービンバイパス制御方法 - Google Patents

タービンバイパス装置およびタービンバイパス制御方法 Download PDF

Info

Publication number
JP2013124560A
JP2013124560A JP2011272538A JP2011272538A JP2013124560A JP 2013124560 A JP2013124560 A JP 2013124560A JP 2011272538 A JP2011272538 A JP 2011272538A JP 2011272538 A JP2011272538 A JP 2011272538A JP 2013124560 A JP2013124560 A JP 2013124560A
Authority
JP
Japan
Prior art keywords
steam
amount
turbine
pipe
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011272538A
Other languages
English (en)
Other versions
JP5895498B2 (ja
Inventor
Masato Fujishiro
正人 藤城
Hideki Yamagishi
秀規 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011272538A priority Critical patent/JP5895498B2/ja
Publication of JP2013124560A publication Critical patent/JP2013124560A/ja
Application granted granted Critical
Publication of JP5895498B2 publication Critical patent/JP5895498B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

【課題】電力需要に対応して必要最小限の発電を継続しつつ、蒸気需要側の要求量に応じた蒸気をプロセス送気できること。
【解決手段】本発明の一態様にかかるタービンバイパス装置10は、主蒸気管6aと送気管6cとに接続されたバイパス管11と、バイパス管11内の蒸気流量を調節するバイパス弁12と、制御部17とを備える。バイパス管11は、蒸気タービン3を迂回して蒸気ボイラ2から送気管6cに通じる蒸気の迂回流路を形成する。制御部17は、蒸気タービン3の蒸気の抽気可能量とプロセス送気すべき蒸気の送気要求量とを比較する。制御部17は、抽気可能量≧送気要求量である場合、抽気元弁9bを開くとともにバイパス弁12を閉じる制御を行い、抽気可能量<送気要求量である場合、抽気元弁9bを閉じるとともにバイパス弁12を開く制御を行う。
【選択図】図1

Description

本発明は、蒸気タービンを迂回して蒸気を送気するタービンバイパス装置およびタービンバイパス制御方法に関するものである。
従来から、蒸気を用いて発電する蒸気タービン発電機が知られている。一般に、蒸気タービン発電機は、蒸気ボイラによって発生した蒸気を蒸気タービンに供給し、これによって蒸気タービンを駆動させて発電する。なお、蒸気タービン発電機は、蒸気タービンに対し、必要量の蒸気を供給し続けることによって、継続的に発電できる。
このような蒸気タービン発電機において、蒸気は、蒸気タービンを駆動させた後、蒸気タービンから排出される。その後、蒸気は、復水されて蒸気ボイラに戻され、あるいは、蒸気需要のある設備またはプロセス等に送気される。特に、鉄鋼分野においては、鉄鋼製造の設備またはプロセスの蒸気需要が高まっている。これに伴い、蒸気需要のある設備またはプロセスに対して蒸気を送気すること(以下、プロセス送気という)が、蒸気を用いる蒸気タービン発電機に要望されている。
なお、蒸気タービン発電機によるプロセス送気に関する従来技術として、例えば、蒸気タービンの選択段から蒸気を抽気する抽気パイプを含む蒸気タービン用の抽気ユニットもあれば(特許文献1参照)、蒸気タービンに対する蒸気の供給を停止して、蒸気ボイラからの蒸気をプロセス送気するタービンバイパス制御装置もある(特許文献2参照)。
特開2010−185453号公報 特開平10−325306号公報
ところで、蒸気タービン発電機による発電量は、蒸気タービンに対する蒸気供給量を調節することによって、必要量に調節可能である。具体的には、蒸気ボイラによる蒸気の発生量を増やして、蒸気タービンに対する蒸気の供給量を増やせば、発電量は増加する。その逆に、蒸気ボイラによる蒸気の発生量を減らして、蒸気タービンに対する蒸気の供給量を抑えれば、発電量は低下する。このような蒸気タービン発電機による発電量は、経時的に変化する電力需要および発電コスト等を加味して、必要最小限に調節されることが望ましい。
一方、蒸気タービン発電機は、蒸気需要のある設備およびプロセスが蒸気不足に陥る事態を防止するために、この蒸気需要を満足する量の蒸気をプロセス送気しなければならない。これを実現するためには、蒸気需要側から要求された蒸気量が、上述した発電量の調節に関わらず常に、プロセス送気可能な蒸気量として蒸気タービン発電機に確保されていなければならない。
しかしながら、上述した従来技術では、蒸気タービン発電機による発電量を必要最小限に調節するとともに、蒸気需要側から要求された蒸気量を蒸気タービン発電機に確保させることは困難であった。このため、蒸気タービン発電機によって必要最小限の発電を継続しつつ、蒸気タービン発電機から蒸気需要側に対して要求量に応じた蒸気をプロセス送気することが困難であるという問題があった。
なお、上述した特許文献1に記載の従来技術によれば、蒸気タービンから抽気した蒸気をプロセス送気することは可能である。しかし、この蒸気タービンから抽気可能な蒸気量は、蒸気タービンに対する蒸気供給量に依存する。このため、この蒸気供給量の低下に起因して、蒸気タービンにおける抽気部位の圧力が必要最低限未満に低下し、この結果、蒸気タービンから要求量の蒸気を抽気できない虞がある。なお、この蒸気供給量の低下は、蒸気タービン発電機による発電量を必要最小限に調節した際に起こり得る。
また、上述した特許文献2に記載の従来技術よれば、蒸気ボイラによって発生した蒸気は、蒸気タービンに供給されずに全てプロセス送気される。これによって、蒸気タービン発電機から蒸気需要側に対し、要求量に応じた蒸気をプロセス送気することは、可能である。しかし、このプロセス送気の際に、蒸気タービンに対する蒸気の供給が停止されているため、蒸気タービンの稼動時とプロセス送気時とにおいて、蒸気タービンに生じる温度の高低差が大きい。これに起因して、蒸気タービンに熱応力が生じ、この結果、蒸気タービンの劣化が促進されて、蒸気タービンが短命化するという問題がある。
本発明は、上記の事情に鑑みてなされたものであって、蒸気タービン発電機によって必要最小限の発電を継続しつつ、蒸気需要側の要求量に応じた蒸気をプロセス送気可能な蒸気タービン発電機を実現できるタービンバイパス装置およびタービンバイパス制御方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかるタービンバイパス装置は、蒸気ボイラから蒸気タービンに通じる主蒸気管と、蒸気をプロセス送気する送気管とに接続され、前記蒸気タービンを迂回して前記蒸気ボイラから前記送気管に通じる蒸気の迂回流路を形成するバイパス管と、前記バイパス管内の蒸気流量を調節するバイパス弁と、前記蒸気タービンから抽気可能な蒸気の抽気可能量とプロセス送気すべく要求された蒸気の送気要求量とを比較し、前記抽気可能量が前記送気要求量以上である場合、前記蒸気タービンから前記送気管に通じる抽気管内の蒸気流量を調節する抽気元弁を開くとともに前記バイパス弁を閉じる制御を行い、前記抽気可能量が前記送気要求量未満である場合、前記抽気元弁を閉じるとともに前記バイパス弁を開く制御を行う制御部と、を備えたことを特徴とする。
また、本発明にかかるタービンバイパス装置は、上記の発明において、前記制御部は、前記蒸気ボイラの蒸気発生量と、前記蒸気タービンに蒸気を供給して得られる発電量と、前記送気管内の蒸気流量とをもとに、前記抽気可能量を算出することを特徴とする。
また、本発明にかかるタービンバイパス装置は、上記の発明において、前記制御部は、前記蒸気タービンから蒸気を抽気可能にするために最低限必要な量の蒸気を前記蒸気タービンに供給して得られる抽気可能発電量と前記発電量とを比較し、前記発電量が前記抽気可能発電量未満である場合、前記抽気可能量として前記送気要求量未満の値を算出することを特徴とする。
また、本発明にかかるタービンバイパス装置は、上記の発明において、設定された前記送気要求量を前記制御部に入力する入力部をさらに備えたことを特徴とする。
また、本発明にかかるタービンバイパス制御方法は、蒸気ボイラから蒸気タービンに通じる主蒸気管と蒸気をプロセス送気する送気管とを連通するバイパス管によって、前記蒸気タービンを迂回して前記蒸気ボイラから前記送気管に通じる蒸気の迂回流路を形成し、前記蒸気タービンから抽気可能な蒸気の抽気可能量とプロセス送気すべく要求された蒸気の送気要求量とを比較して、前記抽気可能量が前記送気要求量以上である場合、前記蒸気タービンから前記送気管に通じる抽気管内の蒸気流量を調節する抽気元弁を開くとともに、前記バイパス管内の蒸気流量を調節するバイパス弁を閉じる制御を行い、前記抽気可能量が前記送気要求量未満である場合、前記抽気元弁を閉じるとともに前記バイパス弁を開く制御を行うことを特徴とする。
また、本発明にかかるタービンバイパス制御方法は、上記の発明において、前記蒸気ボイラの蒸気発生量と、前記蒸気タービンに蒸気を供給して得られる発電量と、前記送気管内の蒸気流量とをもとに、前記抽気可能量を算出することを特徴とする。
また、本発明にかかるタービンバイパス制御方法は、上記の発明において、前記蒸気タービンから蒸気を抽気可能にするために最低限必要な量の蒸気を前記蒸気タービンに供給して得られる抽気可能発電量と前記発電量とを比較し、前記発電量が前記抽気可能発電量未満である場合、前記抽気元弁を閉じるとともに前記バイパス弁を開く制御を行うことを特徴とする。
本発明によれば、電力需要に対応して必要最小限の発電を継続しつつ、蒸気需要側からの要求量を満足する蒸気をプロセス送気することが可能な蒸気タービン発電機を実現できるという効果を奏する。
図1は、本発明の実施の形態にかかるタービンバイパス装置を備えた蒸気タービン発電機の一構成例を示す模式図である。 図2は、蒸気需要に応じた蒸気のプロセス送気が行える条件範囲を示す模式図である。
以下に、添付図面を参照して、本発明にかかるタービンバイパス装置およびタービンバイパス制御方法の好適な実施の形態について詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。
(実施の形態)
まず、本発明の実施の形態にかかるタービンバイパス装置を備えた蒸気タービン発電機の構成を説明する。図1は、本発明の実施の形態にかかるタービンバイパス装置を備えた蒸気タービン発電機の一構成例を示す模式図である。図1に示すように、この蒸気タービン発電機1は、蒸気を発生する蒸気ボイラ2と、蒸気によって駆動する蒸気タービン3と、蒸気タービン3の駆動によって発電する発電機4と、蒸気の熱交換処理を行う熱交換器5とを備える。また、蒸気タービン発電機1は、蒸気ボイラ2から蒸気タービン3に蒸気を流通する主蒸気管6aと、蒸気タービン3から抽気した蒸気を流通する抽気管6bと、蒸気需要側に蒸気をプロセス送気する送気管6cと、主蒸気管6a内の蒸気圧力を測定する圧力測定部7と、送気管6c内の蒸気流量を測定する流量測定部8とを備える。さらに、蒸気タービン発電機1は、主蒸気管6a内の蒸気流量を調節する主蒸気調節弁9aと、抽気管6b内の蒸気流量を調節する抽気元弁9bと、送気管6c内の蒸気流量を調節するプロセス送気調節弁9cと、所定の条件下において蒸気が蒸気タービン3を迂回してプロセス送気されるように機能するタービンバイパス装置10とを備える。
蒸気ボイラ2は、蒸気タービン発電機1の蒸気発生源であり、配管および蒸気ドラム等を用いて実現される。蒸気ボイラ2は、高炉から供給される高温ガス(Bガス)またはコークス炉から供給される高温ガス(Cガス)を熱源として用い、配管内の水を蒸発させて蒸気を発生させる。なお、蒸気ボイラ2によって発生する蒸気量(以下、蒸気発生量という)は、蒸気ボイラ2に対する熱源供給量の増減によって調節可能である。具体的には、蒸気ボイラによる蒸気発生量は、この熱源供給量の増加に伴って増加し、この熱源供給量の減少に伴って低下する。
蒸気タービン3は、主蒸気管6aを介して蒸気ボイラ2から蒸気を受け入れ、この蒸気の作用によって駆動する。また、蒸気タービン3は、この駆動によって、発電機4を稼動させる。発電機4は、この蒸気タービン3の駆動に対応して発電する。この場合、蒸気によって蒸気タービン3に発生した負荷(以下、タービン負荷という)は、発電機4による発電量に変換される。すなわち、発電機4は、タービン負荷に応じた発電量の電力を出力する。
熱交換器5は、蒸気タービン3から抽気された蒸気の熱回収を行うためのものである。具体的には、熱交換器5は、抽気管6b(図1では抽気管6bの出力端部近傍)に配置される。熱交換器5は、抽気管6b内を流れる蒸気と、冷媒または熱の消費媒体等の熱回収体とを接触させて、この蒸気の熱交換処理を行う。熱交換器5は、この熱交換処理によって、この蒸気から熱を回収し、熱需要のある設備またはプラント等の熱需要体に対し、この回収した熱を提供する。
主蒸気管6aは、蒸気ボイラ2から蒸気タービン3に通じる管であり、蒸気ボイラ2によって発生した蒸気を蒸気タービン3へ導く。具体的には、主蒸気管6aは、一端が蒸気ボイラ2に接続され且つ他端が蒸気タービン3に接続され、この結果、蒸気ボイラ2と蒸気タービン3とを連通する。このような主蒸気管6aは、蒸気ボイラ2から蒸気タービン3への蒸気の流通を可能にする。
抽気管6bは、蒸気タービン3から抽気された蒸気を送気管6c側へ流通するための管である。具体的には、抽気管6bは、一端が蒸気タービン3に接続され、他端がタービンバイパス装置10の配管(後述するバイパス管11)に接続される。この結果、抽気管6bは、タービンバイパス装置10の配管を介して送気管6cに通じる。すなわち、抽気管6bは、タービンバイパス装置10の配管を介して、蒸気タービン3と送気管6cとを連通する。このような抽気管6bは、蒸気タービン3から送気管6cへの蒸気の流通を可能にする。
送気管6cは、蒸気需要のある設備またはプロセスに蒸気をプロセス送気するための管である。具体的には、送気管6cは、一端がタービンバイパス装置10の配管に接続され、他端が工場等の蒸気需要側(図示せず)に接続される。この結果、送気管6cは、この蒸気需要側とタービンバイパス装置10の配管とを連通する。ここで、タービンバイパス装置10の配管は、図1に示すように、抽気管6bと送気管6cとを連通する。このため、送気管6cは、タービンバイパス装置10の配管および抽気管6bの双方に通じる。このような送気管6cは、タービンバイパス装置10の配管または抽気管6bのいずれか一方から流通した蒸気のプロセス送気を可能にする。
圧力測定部7は、主蒸気管6a内の所定の位置P1における蒸気圧力を測定する。ここで、位置P1は、図1に示すように、タービンバイパス装置10の配管と主蒸気管6aとの接続部分の後段であって主蒸気調節弁9aの前段の位置である。すなわち、圧力測定部7は、主蒸気調節弁9aに流入する蒸気の圧力を測定している。圧力測定部7は、このような蒸気圧力を連続的または断続的に測定し、測定する都度、得られた蒸気圧力の測定結果の情報を主蒸気調節弁9aに送信する。
流量測定部8は、送気管6c内の所定の位置P2における蒸気流量を測定する。ここで、位置P2は、図1に示すように、タービンバイパス装置10の配管の後段であってプロセス送気調節弁9cの前段の位置である。すなわち、流量測定部8は、プロセス送気調節弁9cに流入する蒸気の流量を測定している。流量測定部8は、このような送気管6c内の蒸気流量(以下、送気流量という)を連続的または断続的に測定し、測定する都度、得られた送気流量の測定結果の情報をプロセス送気調節弁9cとタービンバイパス装置10(詳細には制御部17)とに送信する。
主蒸気調節弁9aは、蒸気タービン3に供給する蒸気の流量を調節するための自動弁である。具体的には、主蒸気調節弁9aは、図1に示すように、主蒸気管6aにおける蒸気タービン3の前段の位置に配置される。主蒸気調節弁9aは、圧力測定部7によって測定された蒸気圧力をもとに開閉駆動を適宜行う。これによって、主蒸気調節弁9aは、一定圧力の蒸気が蒸気タービン3に流入するように、主蒸気管6a内の蒸気流量、具体的には、蒸気タービン3に供給する蒸気の流量(以下、蒸気供給量という)を調節する。
抽気元弁9bは、抽気管6b内の蒸気流量を調節するための自動弁である。具体的には、抽気元弁9bは、図1に示すように、抽気管6bにおける蒸気タービン3の後段の位置に配置される。抽気元弁9bは、タービンバイパス装置10による制御に基づいて開閉駆動し、これによって、抽気管6b内の蒸気流量を調節する。すなわち、蒸気タービン3から抽気された蒸気がプロセス送気される場合、抽気元弁9bは、開駆動して、蒸気需要側に要求される量の蒸気を蒸気タービン3から送気管6cへ流通可能にする。一方、タービンバイパス装置10によって主蒸気管6aから取り出された蒸気がプロセス送気される場合、抽気元弁9bは、閉駆動して、蒸気タービン3から送気管6cへの蒸気の流通を遮断する。
プロセス送気調節弁9cは、蒸気需要側へプロセス送気する蒸気の流量を調節するための自動弁である。具体的には、プロセス送気調節弁9cは、図1に示すように、流量測定部8による流量測定の位置P2と送気管6cの出口端との間に配置される。プロセス送気調節弁9cは、蒸気需要側から要求される蒸気量を設定し、流量測定部8によって測定された蒸気流量(すなわち送気流量)をもとに開閉駆動する。これによって、プロセス送気調節弁9cは、蒸気需要側によって現に要求される量の蒸気が送気管6cからプロセス送気されるように、送気管6c内の蒸気流量を調節する。なお、この要求される蒸気量の設定情報は、後述するタービンバイパス装置10の入力部16によってプロセス送気調節弁9cに入力される。
タービンバイパス装置10は、プロセス送気可能な蒸気の流量に応じ、蒸気タービン3を通る蒸気流路と蒸気タービン3を迂回する蒸気流路とを選択的に切り替えて、送気管6cに蒸気を流通する流通経路として好適な蒸気流路を決定する。また、タービンバイパス装置10は、蒸気ボイラ2によって発生した蒸気を主蒸気管6aから適宜取り出し、この取り出した蒸気を送気管6cに流通する。このようにして、タービンバイパス装置10は、プロセス送気する蒸気として蒸気需要側の要求量に応じた蒸気を確保する。なお、このようなタービンバイパス装置10の詳細な構成については、後述する。
つぎに、図1を参照しつつ、本発明の実施の形態にかかるタービンバイパス装置10の構成を詳細に説明する。図1に示すように、タービンバイパス装置10は、蒸気タービン3を迂回する蒸気の迂回流路を形成するバイパス管11と、バイパス管11内の蒸気流量を調節するバイパス弁12と、蒸気の熱交換処理を行う熱交換器13と、蒸気圧力を測定する圧力測定部14と、蒸気ボイラ2による蒸気発生量を検出する検出部15と、各種情報を入力する入力部16と、抽気元弁9bおよびバイパス弁12を制御する制御部17とを備える。
バイパス管11は、蒸気タービン3を迂回して蒸気ボイラ2から送気管6cに通じる蒸気の迂回流路を形成する管である。具体的には、バイパス管11は、図1に示すように、2つの蒸気流入端と1つの蒸気流出端とを有する三叉形状に形成される。バイパス管11の一方の蒸気流入端は、蒸気ボイラ2と上述した位置P1との間の主蒸気管6a部分に接続される。また、バイパス管11の蒸気流出端は、送気管6cに接続される。この接続によって、バイパス管11は、主蒸気管6aと送気管6cとを連通するとともに、蒸気タービン3を迂回する蒸気の迂回流路を形成する。さらに、バイパス管11の他方の蒸気流入端は、抽気管6bに接続される。これによって、バイパス管11は、抽気管6bと送気管6cとを連通する。このようなバイパス管11は、蒸気タービン3を迂回して蒸気ボイラ2から送気管6cへの蒸気の流通を可能にし、且つ、蒸気タービン3から送気管6cへの蒸気の流通を可能にする。
バイパス弁12は、バイパス管11内の蒸気流量を調節するための自動弁である。具体的には、バイパス弁12は、図1に示すように、バイパス管11と主蒸気管6aとの接続部分、すなわち主蒸気管6aからバイパス管11への分岐部分の近傍であって熱交換器13の前段の位置に配置される。バイパス弁12は、制御部17による制御に基づいて開閉駆動し、これによって、バイパス管11内の蒸気流量を調節する。すなわち、主蒸気管6aからバイパス管11に分岐して取り出された蒸気がプロセス送気される場合、バイパス弁11は、開駆動して、蒸気需要側に要求される量の蒸気を蒸気ボイラ2から送気管6cへ流通可能にする。一方、蒸気タービン3から抽気された蒸気がプロセス送気される場合、バイパス弁11は、閉駆動して、バイパス管11内の蒸気の流通を遮断する。
熱交換器13は、バイパス管11内の蒸気の熱回収を行うためのものである。具体的には、熱交換器14は、バイパス管11(図1ではバイパス弁12とバイパス管11の分岐部分との間)に配置される。熱交換器13は、バイパス管11内を流れる蒸気と、冷媒または熱の消費媒体等の熱回収体とを接触させて、この蒸気の熱交換処理を行う。熱交換器13は、この熱交換処理によって、この蒸気から熱を回収し、熱需要のある設備またはプラント等の熱需要体に対し、この回収した熱を提供する。
圧力測定部14は、バイパス管11内の所定の位置P3における蒸気圧力を測定する。ここで、位置P3は、図1に示すように、バイパス管11の分岐部分の後段であって送気管6cの前段の位置である。すなわち、圧力測定部14は、送気管6cに流入してプロセス送気される蒸気の圧力を測定している。なお、一回のプロセス送気において、この位置P3を通過する蒸気は、抽気管6bからの蒸気またはバイパス管11からの蒸気のいずれかであり、双方からの蒸気を混合したものではない。圧力測定部14は、このような蒸気圧力を連続的または断続的に測定し、測定する都度、得られた蒸気圧力の測定結果の情報を制御部17に送信する。
検出部15は、蒸気ボイラ2による蒸気発生量を連続的または断続的に検出し、検出する都度、得られた蒸気発生量の情報を制御部17に送信する。入力部16は、入力キー等を用いて実現され、作業者の入力操作に応じて制御部17に各種情報を入力する。また、入力部16は、プロセス送気調節弁9cに対して送気流量の調節に必要な設定情報を入力する。なお、この入力部17による入力情報として、例えば、プロセス送気すべく蒸気需要側から要求された蒸気の送気量設定値(以下、送気要求量という)の情報等、プロセス送気のための抽気元弁9bおよびバイパス弁11の各駆動制御に必要な情報が挙げられる。これらの情報のうち、送気要求量の情報は、プロセス送気調節弁9cおよび制御部17に入力される。
制御部17は、送気要求量を満足する蒸気をプロセス送気するために必要な抽気元弁9bおよびバイパス弁11を制御する。具体的には、制御部17は、登録された処理プログラムの実行機能と情報の記憶機能とを有するコンピュータ等を用いて実現される。制御部17は、蒸気ボイラ2による現時点の蒸気発生量を検出部15から取得し、蒸気タービン3に蒸気を供給して得られる現時点の発電量を発電機4から取得し、送気管6c内の現時点の送気流量を流量測定部8から取得する。また、制御部17は、入力部16によって入力された送気要求量を取得する。制御部17は、このように取得した蒸気発生量と発電量と送気流量とをもとに、蒸気タービン3から抽気可能な蒸気量(以下、抽気可能量という)を算出する。ついで、制御部17は、この算出した抽気可能量と送気要求量とを比較する。制御部17は、抽気可能量が送気要求量以上である場合、抽気元弁9bを開くとともにバイパス弁11を閉じる制御を行う。一方、制御部17は、抽気可能量が送気要求量未満である場合、抽気元弁9bを閉じるとともにバイパス弁12を開く制御を行う。その後、制御部17は、圧力測定部14によって測定された蒸気圧力をもとに、抽気元弁9bおよびバイパス弁12のうちの開状態の弁の開度を制御する。これによって、制御部17は、一定圧力の蒸気が送気管6cに流入するように蒸気流量を調節する。
つぎに、図1を参照しつつ、本発明の実施の形態にかかるタービンバイパス制御方法について詳細に説明する。本実施の形態にかかるタービンバイパス制御方法において、プロセス送気される蒸気の流路は、図1の太線矢印によって示されるように、蒸気ボイラ2から蒸気タービン3を経由して送気管6cに至る主蒸気流路と、蒸気ボイラ2から蒸気タービン3を迂回して送気管6cに至る迂回流路とのいずれか一方に制御される。
詳細には、蒸気ボイラ2によって発生した蒸気は、主蒸気管6aを通って蒸気タービン3に供給され、蒸気タービン3を駆動させる。発電機4は、この蒸気タービン3の駆動に伴って発生したタービン負荷に応じて発電し、発電量Eの電力を出力する。
この発電量Eは、蒸気タービン3に対する蒸気供給量Qbに応じて現に発電機4が発電した量であり、発電量Eの情報は、発電機4からタービンバイパス装置10の制御部17に送信される。また、制御部17に対し、蒸気ボイラ2による現時点の蒸気発生量Qaの情報が検出部2から送信され、送気管6c内の現時点の送気流量Qeの情報が流量測定部8から送信される。制御部17は、このように取得した蒸気発生量Qaと発電量Eと送気流量Qeとをもとに、蒸気タービン3の抽気可能量Qiを算出する。
ここで、抽気可能量Qiは、蒸気供給量Qbの蒸気が供給された蒸気タービン3から抽気可能な蒸気量である。このような抽気可能量Qiは、蒸気タービン3から抽気管6bを通って送気管6cへ蒸気が流れている状態において、蒸気発生量Qaと蒸気タービン3の最小負荷流量Qminとを用い、次式(1)によって算出される。

Qi=Qa−Qmin (E≧Ethの場合) ・・・(1)
一方、蒸気タービン3からバイパス管11を通って送気管6cへ蒸気が流れている状態において、抽気可能量Qiは、蒸気発生量Qaと送気流量Qeと最小負荷流量Qminとを用い、次式(2)によって算出される。

Qi=(Qa−Qe)−Qmin (E≧Ethの場合) ・・・(2)
上述した式(1),(2)において、最小負荷流量Qminは、発電量Eを得るために蒸気タービン3に必要な最低限の蒸気流量である。すなわち、最小負荷流量Qminの蒸気は、発電量Eの発電稼動に必要な最小限のタービン負荷を蒸気タービン3に発生させる。なお、この最小負荷流量Qminに応じたタービン負荷は、発電機4が発電量Eの電力を出力するために必要な最低限のタービン負荷である。
また、抽気可能発電量Ethは、蒸気タービン3から蒸気を抽気可能にするために最低限必要な量の蒸気を蒸気タービン3に供給して得られる発電機4の発電量である。ここで、蒸気タービン3は、蒸気ボイラ2からの蒸気供給流量Qbの増減に応じて、タービン負荷、すなわち、発電量Eを増減させる。また、この発電量Eの増減に伴って、蒸気タービン3の抽気孔3aにおける蒸気圧力は増減する。このような蒸気タービン3から蒸気を抽気するためには、抽気孔3aの蒸気圧力が抽気に必要な最低限の圧力以上でなければならない。この蒸気圧力の条件を満足するためには、必要最小量以上の蒸気を蒸気タービン3に供給すればよい。すなわち、必要最小量の蒸気が蒸気タービン3に供給された場合、抽気孔3aの蒸気圧力は、蒸気タービン3から蒸気を抽気可能にするために最低限必要な圧力となる。この抽気孔3aの圧力状態において、蒸気タービン3は、この必要最小量の蒸気に応じたタービン負荷を発電機4に伝達する。このタービン負荷に応じて発電された電力の量が、上述した抽気可能発電量Ethとなる。
なお、抽気孔3aは、蒸気タービン3から蒸気を抽気するために形成された蒸気タービン3の開口部であり、抽気管6bに通じる。一方、抽気可能発電量Ethは、予め制御部17に設定されてもよいし、入力部16によって制御部17に入力されてもよい。
制御部17は、取得した発電量Eと抽気可能発電量Ethとを比較し、発電量Eが抽気可能発電量Eth以上である場合、上述した式(1)または式(2)に基づいて蒸気の抽気可能量Qiを算出する。この場合、制御部17は、上述したように、プロセス送気する蒸気の流路に応じて式(1)と式(2)とを使い分ける。
一方、制御部17は、発電量Eが抽気可能発電量Eth未満である場合、次式(3)に基づいて蒸気の抽気可能量Qiを算出する。

Qi=0 (E<Ethの場合) ・・・(3)

なお、発電量Eが抽気可能発電量Eth未満である場合、抽気孔3aの蒸気圧力が必要最低限の値に満たないため、蒸気タービン3から蒸気を抽気することは不可能である。この状態に対応して、制御部17は、抽気可能量Qiとして「0」を算出する。
その後、制御部17は、上述したように算出した蒸気の抽気可能量Qiと、プロセス送気するよう要求された蒸気量である送気要求量Qjとを比較する。なお、この送気要求量Qjの情報は、適宜入力部16によって制御部17に入力される。
ここで、制御部17は、抽気可能量Qiが送気要求量Qj以上である場合、抽気元弁9bを開くとともにバイパス弁11を閉じる制御を行う。この制御によって、蒸気ボイラ2から蒸気タービン3を経由して送気管6cに至る主蒸気流路が開放されるとともに、蒸気ボイラ2から蒸気タービン3を迂回して送気管6cに至る迂回流路が閉ざされる。この場合、蒸気ボイラ2からの蒸気は、この主蒸気流路に沿って流通してプロセス送気される。
具体的には、蒸気発生量Qaの蒸気は、バイパス管11へ流れることなく、主蒸気管6aを通じて蒸気タービン3に全て供給される。すなわち、この状態における蒸気発生量Qaは、蒸気タービン3への蒸気供給量Qbと同等である。蒸気タービン3に供給された蒸気は、蒸気タービン3を駆動後、抽気孔3aを介して抽気される。この抽気された蒸気は、抽気管6b等を通じて送気管6cに流入し、その後、プロセス送気される。このプロセス送気される蒸気の送気流量Qeは、送気管6c内の蒸気流量であって抽気管6b内の蒸気流量、すなわち抽気流量Qcと同等である。
一方、制御部17は、抽気可能量Qiが送気要求量Qj未満である場合、抽気元弁9bを閉じるとともにバイパス弁11を開く制御を行う。この制御によって、上述した主蒸気流路のうちの抽気管6bが閉ざされるとともに、バイパス管11による迂回流路が開放される。この場合、蒸気ボイラ2からの蒸気は、この迂回流路に沿って流通してプロセス送気される。
具体的には、蒸気発生量Qaの蒸気のうち、送気要求量Qjを満足する蒸気量の蒸気が、バイパス管11によって主蒸気管6aから取り出され、バイパス管11を通じて送気管6cに流入する。この場合、バイパス管11内の蒸気は、蒸気タービン3を迂回し、送気管6cを通じてプロセス送気される。なお、このような迂回流路において、バイパス管11内には迂回流量Qdの蒸気が流れる。この迂回流量Qdは、送気要求量Qjを満足するものであって送気流量Qeと同等である。
一方、蒸気発生量Qaの蒸気のうちの残りの蒸気は、主蒸気管6aを通じて蒸気タービン3に供給され、蒸気タービン3を駆動後、復水器に排出される。この場合の蒸気供給量Qbは、蒸気発生量Qaから迂回流量Qdを減じた量である。なお、この状態において、抽気管6b内の蒸気の流通は遮断されている。このため、抽気管6b内の蒸気は、上述したバイパス管11内の蒸気と合流しない。
上述したように、制御部17は、抽気可能量Qiと送気要求量Qjとの大小関係に基づいて、蒸気タービン3を経由する主蒸気流路または蒸気タービン3を迂回する迂回流路のいずれか適切な流路を、プロセス送気する蒸気の流路として選択できる。このような蒸気流路の制御機能を有する蒸気タービン発電機1は、蒸気タービン3から蒸気を抽気可能であるか否かによらず、且つ、蒸気タービン3のタービン負荷に応じた発電量Eの大小によらず、蒸気需要側の送気要求量Qjを満足する量の蒸気を常にプロセス送気できる。
また、蒸気タービン発電機1は、蒸気ボイラ2および蒸気タービン3等の設備制約を限度に、蒸気発生量Qaおよび発電量Eの広い範囲において、蒸気需要側の送気要求量Qjを満足する量の蒸気を常にプロセス送気できる。図2は、蒸気需要に応じた蒸気のプロセス送気が行える条件範囲を示す模式図である。図2には、蒸気ボイラ2による蒸気発生量Qaと蒸気タービン3のタービン負荷に応じた発電量Eとに注目して、蒸気需要側の送気要求量Qjを満足する蒸気のプロセス送気が行える蒸気タービン発電機1の条件範囲が示されている。
図2に示すように、条件範囲A1(ハッチング部分を参照)は、蒸気発生量Qaと発電量Eとの特定な関係を示す直線Lと、抽気可能発電量Ethを示す破線と、蒸気ボイラ2による最大の蒸気発生量Qmaxを示す直線とによって囲まれた範囲である。すなわち、条件範囲A1において、発電量Eの下限は、抽気可能発電量Ethであり、発電量Eの上限は、蒸気タービン3のタービン負荷に応じて発電可能な最大の発電量Emaxである。また、蒸気発生量Qaの下限は、抽気可能発電量Ethを得るために最低限必要な蒸気発生量Qthであり、蒸気発生量Qaの上限は、最大の蒸気発生量Qmaxである。
この条件範囲A1において、蒸気タービン発電機1は、抽気可能発電量Eth以上の発電が可能であるため、蒸気タービン3から蒸気を抽気可能である。タービンバイパス装置10は、この蒸気の抽気可能量Qiが送気要求量Qj以上である場合、蒸気タービン3から抽気した蒸気をプロセス送気するよう蒸気流路を選択する。一方、タービンバイパス装置10は、抽気可能量Qiが送気要求量Qj未満である場合、送気要求量Qjを満足しない蒸気タービン3からの蒸気の代わりに、バイパス管11内の蒸気をプロセス送気するよう蒸気流路を選択する。このバイパス管11内の蒸気は、主蒸気管6a介して蒸気ボイラ2から取り出した蒸気であるため、条件範囲A1内において送気要求量Qjを常に満足する。このように蒸気流路を選択することによって、タービンバイパス装置10は、送気要求量Qjを満足する蒸気を抽気可能か否かに関わらず、条件範囲A1において常に、送気要求量Qjを満足する蒸気をプロセス送気できる。
一方、図2に示す条件範囲A2は、蒸気発生量Qaと発電量Eとの特定な関係を示す直線Lと、抽気可能発電量Ethを示す破線と、蒸気ボイラ2による最大の蒸気発生量Qmaxを示す直線と、発電量E1を示す直線とによって囲まれた範囲である。すなわち、条件範囲A2において、発電量Eの下限は、発電量E1であり、発電量Eの上限は、条件範囲A1と同様に最大の発電量Emaxである。また、蒸気発生量Qaの下限は、送気要求量Qjを満足するために最低限必要な蒸気発生量Q1であり、蒸気発生量Qaの上限は、最大の蒸気発生量Qmaxである。なお、発電量E1は、蒸気発生量Q1の蒸気を蒸気タービン3に供給した場合に得られる電力量である。
この条件範囲A2において、蒸気タービン発電機1は、抽気可能発電量Eth以上の発電が不可能であるため、蒸気タービン3から蒸気を抽気できない。このため、タービンバイパス装置10は、条件範囲A2において、蒸気の抽気可能量Qi=0とする。すなわち、条件範囲A2における抽気可能量Qiは、常に送気要求量Qj未満である。したがって、タービンバイパス装置10は、条件範囲A2において常に、バイパス管11内の蒸気をプロセス送気するよう蒸気流路を選択する。なお、このバイパス管11内の蒸気は、条件範囲A1の場合と同様に、常に送気要求量Qjを満足する。このようなタービンバイパス装置10は、たとえ蒸気タービン3から蒸気を抽気できない状態であっても、条件範囲A2において常に、送気要求量Qjを満足する蒸気をプロセス送気できる。
また、タービンバイパス装置10は、条件範囲A1,A2のいずれにおいても、図2の直線Lによって示される蒸気発生量Qaと発電量Eとの特定な関係を満足するように、蒸気ボイラ2から蒸気タービン3に通じる蒸気流路を常に確保している。ここで、直線Lは、蒸気タービン3のタービン負荷に応じた発電量Eと、この発電量Eを得るために蒸気タービン3に必要な最低限の蒸気供給流量(すなわち最小負荷流量Qmin)との関係を示す。タービンバイパス装置10は、たとえバイパス管11によって主蒸気管6aから蒸気を取り出す場合であっても、蒸気発生量Q1の蒸気のうちの少なくとも最小負荷流量Qminの蒸気を蒸気タービン3に供給できるように蒸気流路を制御する。これによって、タービンバイパス装置10は、条件範囲A1,A2のいずれにおいても、蒸気流路の選択結果によらず常に、蒸気タービン3を稼動させつつ、送気要求量Qjを満足する蒸気をプロセス送気できる。
ここで、上述したタービンバイパス装置10を備えていない従来の蒸気タービン発電機は、一般に、稼働中の蒸気タービンから抽気した蒸気をプロセス送気している。このプロセス送気を実現するために、従来の蒸気タービン発電機は、蒸気発生量Qth以上の蒸気を蒸気タービンに供給して抽気可能発電量Eth以上の電力を出力する。すなわち、この従来の蒸気タービン発電機は、図2に示す条件範囲A1内においてプロセス送気可能である。このような従来の蒸気タービン発電機は、蒸気タービンから抽気した蒸気をプロセス送気し続けるために、電力需要の大小に関わらず、抽気可能発電量Eth以上の電力を発生し続けなければならい。このため、従来の蒸気タービン発電機は、たとえ電力需要が抽気可能発電量Eth未満であっても、抽気可能発電量Eth以上の電力を無駄に発生させてしまう。この結果、蒸気のプロセス送気時の電力コストが無駄に増大する。
また、たとえ蒸気タービンの稼動によって抽気可能発電量Eth以上の電力が発生している場合であっても、この蒸気タービンから抽気した蒸気量は、必ずしも蒸気需要の送気要求量Qjを満足するとは限らない。すなわち、この従来の蒸気タービン発電機は、条件範囲A1において正常に稼働中の蒸気タービンから蒸気を抽気した場合であっても、蒸気需要の送気要求量Qjを満足する蒸気をプロセス送気できない虞がある。
さらに、従来の蒸気タービン発電機は、電力需要等の事情に対応して発電量Eを抽気可能発電量Eth未満に低下した場合、プロセス送気するための蒸気を蒸気タービンから抽気できない。この場合、従来の蒸気タービン発電機は、蒸気をプロセス送気するために、蒸気タービンに対する蒸気供給を停止し、これによって確保した蒸気をプロセス送気しなければならない。すなわち、従来の蒸気タービン発電機は、蒸気のプロセス送気を開始または停止する前後において、蒸気タービンに対する蒸気の供給停止と供給開始とを繰り返し行う。このような従来の蒸気タービン発電機において、蒸気タービンは、蒸気の供給停止と供給開始との繰り返しに伴って、温度低下と温度上昇とを繰り返す。これによって、この蒸気タービンに生じる温度差が増大し、この温度差に起因して蒸気タービンに熱応力が発生する。この熱応力の影響によって、蒸気タービンが破損する可能性が高まる。この結果、蒸気タービンの設備寿命が短命化する。
上述した従来の蒸気タービン発電機に対し、本発明における蒸気タービン発電機1は、蒸気タービン3を経由する主蒸気流路または蒸気タービン3を迂回する迂回流路のいずれか適切な流路を適宜選択可能なタービンバイパス装置10を備える。タービンバイパス装置10は、条件範囲A1内において、蒸気タービン3に対する蒸気供給を停止させずに、上述した主蒸気流路および迂回流路の中から、送気要求量Qjを満足する蒸気をプロセス送気可能な蒸気流路を選択する。また、タービンバイパス装置10は、条件範囲A2内において、常に迂回流路を選択するとともに、蒸気タービン3に対する蒸気供給を停止させずに主蒸気流路の抽気管6bを閉ざす。このようなタービンバイパス装置10の作用によって、蒸気タービン発電機1は、2つの条件範囲A1,A2を加えた全条件範囲内において、蒸気タービン3に対する蒸気供給を停止させずに、常に送気要求量Qjを満足する蒸気量を確保できる。すなわち、蒸気タービン発電機1は、タービンバイパス装置10の制御機能に基づいて、蒸気タービン3を継続的に稼動させつつ、電力需要の要求量に応じて発電量Eを適切に増減するとともに、常に送気要求量Qjを満足する蒸気をプロセス送気できる。また、蒸気タービン発電機1は、蒸気をプロセス送気する際に費やす電力コストを低減できるとともに、蒸気タービン3の熱応力を抑制して蒸気タービン3の長寿命化を促進できる。
以上、説明したように、本発明の実施の形態では、蒸気タービンを迂回して蒸気ボイラから送気管に通じる蒸気の迂回流路をバイパス管によって形成して、蒸気ボイラから蒸気タービンに通じる主蒸気管と蒸気をプロセス送気する送気管とをバイパス管によって連通するように構成している。また、蒸気タービンから抽気可能な蒸気の抽気可能量と、プロセス送気すべく要求された蒸気の送気要求量とを比較し、抽気可能量が送気要求量以上である場合、抽気管の抽気元弁を開くとともにバイパス管のバイパス弁を閉じる制御を行って、抽気管を通じて蒸気タービンから送気管に向けて蒸気を流通可能にしている。一方、抽気可能量が送気要求量未満である場合、この抽気元弁を閉じるとともに、このバイパス弁を開く制御を行って、この抽気管内の蒸気の流通を遮断するとともに、バイパス管を通じて主蒸気管から送気管に向けて蒸気を流通可能にしている。
このため、主蒸気管を介した蒸気ボイラと蒸気タービンとの連通状態を遮断せずに、この主蒸気管から必要に応じて蒸気を一部取り出すことが可能な迂回流路をバイパス管によって形成でき、蒸気をプロセス送気する都度、抽気可能量と送気要求量との大小関係に応じてバイパス管および抽気管の中からプロセス送気に必要な管を適切に選択できる。これによって、蒸気タービンに対する蒸気の供給を停止することなく、バイパス管による蒸気流路または抽気管による蒸気流路のいずれか一方を選択して、蒸気タービンのタービン負荷の大小に関わらず、蒸気需要側からの蒸気の送気要求量を常に満足する蒸気量を確保できる。この結果、電力需要に応じた必要最小限の発電を継続しつつ、蒸気タービンから蒸気を抽気可能であるか否かに関わらず常に、送気要求量を満足する蒸気をプロセス送気可能な蒸気タービン発電機を実現できる。本発明にかかるタービンバイパス装置を備えた蒸気タービン発電機は、タービン負荷(すなわち発電量)の増減に応じて蒸気のプロセス送気量が変化してしまう従来の蒸気タービン発電機に比して、広い蒸気発生量および発電量の条件範囲において、上述したプロセス送気を実現できる。
また、蒸気をプロセス送気する期間、蒸気タービンに対して蒸気を継続的に供給し続けているため、プロセス送気の前後における蒸気タービンの温度変化を可能な限り抑制できる。これによって、温度変化に起因して蒸気タービンに発生する熱応力を抑制でき、この結果、蒸気タービンの長寿命化を促進できる。
さらに、本発明の実施の形態では、蒸気タービンから蒸気を抽気可能にするために最低限必要な量の蒸気を蒸気タービンに供給して得られる発電量(すなわち抽気可能発電量)と現時点の発電量とを比較している。また、この比較処理の結果、現時点の発電量が抽気可能発電量以上である場合、上述したように抽気可能量と送気要求量との大小関係に応じてバイパス管または抽気管を選択し、現時点の発電量が抽気可能発電量未満である場合、上述した抽気可能量を零値にして、抽気可能量<送気要求量という大小関係に基づいて蒸気流路を選択している。
具体的には、現時点の発電量≧抽気可能発電量という条件範囲において、抽気可能量≧送気要求量である場合、送気要求量に応じた蒸気が蒸気タービンから抽気できるため、蒸気タービンから抽気した蒸気をプロセス送気し、抽気可能量<送気要求量である場合、蒸気タービンから抽気される蒸気は送気要求量を満足しないため、バイパス管によって主蒸気管から取り出した蒸気をプロセス送気する。一方、現時点の発電量<抽気可能発電量という条件範囲において、蒸気タービンから蒸気を抽気することは常に不可能であるため、バイパス管によって主蒸気管から取り出した蒸気をプロセス送気する。
このため、現時点の発電量に対応して、プロセス送気に好適な蒸気流路を適切に制御することができる。これによって、たとえ送気要求量を満足する蒸気を蒸気タービンから抽気できない状態であっても、この送気要求量を満足する蒸気をプロセス送気できるとともに、発電量の増減に関わらず確実に、送気要求量を満足する蒸気量を確保できる。この結果、送気要求量に応じた蒸気のプロセス送気を継続しつつ、電力需要に対応して発電量を調節できることから、蒸気のプロセス送気時に費やす電力コストを可能な限り低減することができる。
なお、上述した実施の形態では、現時点の発電量Eが抽気可能発電量Eth未満である場合、蒸気の抽気可能量Qiを零値にして抽気可能量Qi<送気要求量Qjという大小関係にしていたが、本発明はこれに限定されるものではない。制御部17は、現時点の発電量Eが抽気可能発電量Eth未満である場合、抽気可能量Qiとして送気要求量Qj未満の値を算出してもよく、この算出値は零値でなくてもよい。
また、上述した実施の形態では、発電量Eの情報は、発電機4から制御部17に自動的に送信されていたが、本発明はこれに限定されるものではない。発電量Eの情報は、入力部16によって制御部17に適宜入力されてもよい。
さらに、上述した実施の形態では、蒸気需要側からの送気要求量Qjの情報は、入力部16によって制御部17に適宜入力されていたが、本発明はこれに限定されるものではない。例えば、入力部16は設置されず、制御部17は、送気要求量Qjの情報として、流量測定部8によって測定された送気流量Qeの情報を取得してもよい。この場合、送気要求量Qjの情報はプロセス送気調節弁9cに設定され、このプロセス送気調節弁9cが、流量測定部8による測定結果に基づいて、送気要求量Qjを満足する蒸気流量に送気流量Qeを調節してもよい。
また、上述した実施の形態では、蒸気ボイラ2の蒸気発生量Qaは、検出部15によって検出され、検出された蒸気発生量Qaの情報が検出部15から制御部17に自動的に送信されていたが、本発明はこれに限定されるものではない。蒸気発生量Qaは、入力部16によって制御部17に適宜入力されてもよい。この場合、タービンバイパス装置10は、検出部15を備えてなくてもよい。
さらに、上述した実施の形態では、単一の蒸気タービン3を備えた蒸気タービン発電機1を例示したが、本発明はこれに限定されるものではなく、蒸気タービン3は複数設置されてもよい。この場合、複数の蒸気タービン3の各々に抽気管6bおよび抽気元弁9bが配置される。制御部17は、上述したように抽気可能量Qiと送気要求量Qjとの大小関係等に基づいて、これら複数の抽気管6bおよびバイパス管11の中から、プロセス送気に必要な管を選択してもよい。
また、上述した実施の形態では、抽気管6bはバイパス管11を介して送気管6cと連通していたが、本発明はこれに限定されるものではなく、抽気管6bは、バイパス管11を介さず、送気管6cの入力端に直に接続されてもよい。
なお、上述した実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明に含まれる。
1 蒸気タービン発電機
2 蒸気ボイラ
3 蒸気タービン
4 発電機
5,13 熱交換器
6a 主蒸気管
6b 抽気管
6c 送気管
7,14 圧力測定部
8 流量測定部
9a 主蒸気調節弁
9b 抽気元弁
9c プロセス送気調節弁
10 タービンバイパス装置
11 バイパス管
12 バイパス弁
15 検出部
16 入力部
17 制御部
A1,A2 条件範囲
L 直線
P1〜P3 位置

Claims (7)

  1. 蒸気ボイラから蒸気タービンに通じる主蒸気管と、蒸気をプロセス送気する送気管とに接続され、前記蒸気タービンを迂回して前記蒸気ボイラから前記送気管に通じる蒸気の迂回流路を形成するバイパス管と、
    前記バイパス管内の蒸気流量を調節するバイパス弁と、
    前記蒸気タービンから抽気可能な蒸気の抽気可能量とプロセス送気すべく要求された蒸気の送気要求量とを比較し、前記抽気可能量が前記送気要求量以上である場合、前記蒸気タービンから前記送気管に通じる抽気管内の蒸気流量を調節する抽気元弁を開くとともに前記バイパス弁を閉じる制御を行い、前記抽気可能量が前記送気要求量未満である場合、前記抽気元弁を閉じるとともに前記バイパス弁を開く制御を行う制御部と、
    を備えたことを特徴とするタービンバイパス装置。
  2. 前記制御部は、前記蒸気ボイラの蒸気発生量と、前記蒸気タービンに蒸気を供給して得られる発電量と、前記送気管内の蒸気流量とをもとに、前記抽気可能量を算出することを特徴とする請求項1に記載のタービンバイパス装置。
  3. 前記制御部は、前記蒸気タービンから蒸気を抽気可能にするために最低限必要な量の蒸気を前記蒸気タービンに供給して得られる抽気可能発電量と前記発電量とを比較し、前記発電量が前記抽気可能発電量未満である場合、前記抽気可能量として前記送気要求量未満の値を算出することを特徴とする請求項2に記載のタービンバイパス装置。
  4. 設定された前記送気要求量を前記制御部に入力する入力部をさらに備えたことを特徴とする請求項1〜3のいずれか一つに記載のタービンバイパス装置。
  5. 蒸気ボイラから蒸気タービンに通じる主蒸気管と蒸気をプロセス送気する送気管とを連通するバイパス管によって、前記蒸気タービンを迂回して前記蒸気ボイラから前記送気管に通じる蒸気の迂回流路を形成し、前記蒸気タービンから抽気可能な蒸気の抽気可能量とプロセス送気すべく要求された蒸気の送気要求量とを比較して、前記抽気可能量が前記送気要求量以上である場合、前記蒸気タービンから前記送気管に通じる抽気管内の蒸気流量を調節する抽気元弁を開くとともに、前記バイパス管内の蒸気流量を調節するバイパス弁を閉じる制御を行い、前記抽気可能量が前記送気要求量未満である場合、前記抽気元弁を閉じるとともに前記バイパス弁を開く制御を行うことを特徴とするタービンバイパス制御方法。
  6. 前記蒸気ボイラの蒸気発生量と、前記蒸気タービンに蒸気を供給して得られる発電量と、前記送気管内の蒸気流量とをもとに、前記抽気可能量を算出することを特徴とする請求項5に記載のタービンバイパス制御方法。
  7. 前記蒸気タービンから蒸気を抽気可能にするために最低限必要な量の蒸気を前記蒸気タービンに供給して得られる抽気可能発電量と前記発電量とを比較し、前記発電量が前記抽気可能発電量未満である場合、前記抽気元弁を閉じるとともに前記バイパス弁を開く制御を行うことを特徴とする請求項6に記載のタービンバイパス制御方法。
JP2011272538A 2011-12-13 2011-12-13 タービンバイパス装置およびタービンバイパス制御方法 Active JP5895498B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011272538A JP5895498B2 (ja) 2011-12-13 2011-12-13 タービンバイパス装置およびタービンバイパス制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011272538A JP5895498B2 (ja) 2011-12-13 2011-12-13 タービンバイパス装置およびタービンバイパス制御方法

Publications (2)

Publication Number Publication Date
JP2013124560A true JP2013124560A (ja) 2013-06-24
JP5895498B2 JP5895498B2 (ja) 2016-03-30

Family

ID=48775994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011272538A Active JP5895498B2 (ja) 2011-12-13 2011-12-13 タービンバイパス装置およびタービンバイパス制御方法

Country Status (1)

Country Link
JP (1) JP5895498B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093262A1 (ja) * 2013-12-16 2015-06-25 Jfeスチール株式会社 エネルギー需給運用ガイダンス装置及び製鉄所内のエネルギー需給運用方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135703A (en) * 1980-03-26 1981-10-23 Hitachi Ltd Controlling method for turbine bypass
JPH0539703A (ja) * 1991-08-06 1993-02-19 Fuji Electric Co Ltd 蒸気タービン発電設備
JPH08312309A (ja) * 1995-05-17 1996-11-26 Fuji Electric Co Ltd 抽気逆止め弁のチャタリング防止装置
JPH10121909A (ja) * 1996-10-17 1998-05-12 Fuji Electric Co Ltd 抽気蒸気タービンプラント
JPH10141013A (ja) * 1996-11-14 1998-05-26 Mitsubishi Heavy Ind Ltd 余剰蒸気の回収装置
JPH11343814A (ja) * 1998-05-28 1999-12-14 Mitsubishi Heavy Ind Ltd ボイラタービン発電装置における蒸気制御方法
JP2000257405A (ja) * 1999-03-09 2000-09-19 Hitachi Ltd 蒸気タービンプラントの運転方法
JP2001193416A (ja) * 2000-01-05 2001-07-17 Fuji Electric Co Ltd 蒸気タービン装置
JP2001317305A (ja) * 2000-05-12 2001-11-16 Babcock Hitachi Kk タービン・発電機の制御方法と装置
JP2007046576A (ja) * 2005-08-12 2007-02-22 Hitachi Ltd 蒸気タービン発電プラントとその制御方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135703A (en) * 1980-03-26 1981-10-23 Hitachi Ltd Controlling method for turbine bypass
JPH0539703A (ja) * 1991-08-06 1993-02-19 Fuji Electric Co Ltd 蒸気タービン発電設備
JPH08312309A (ja) * 1995-05-17 1996-11-26 Fuji Electric Co Ltd 抽気逆止め弁のチャタリング防止装置
JPH10121909A (ja) * 1996-10-17 1998-05-12 Fuji Electric Co Ltd 抽気蒸気タービンプラント
JPH10141013A (ja) * 1996-11-14 1998-05-26 Mitsubishi Heavy Ind Ltd 余剰蒸気の回収装置
JPH11343814A (ja) * 1998-05-28 1999-12-14 Mitsubishi Heavy Ind Ltd ボイラタービン発電装置における蒸気制御方法
JP2000257405A (ja) * 1999-03-09 2000-09-19 Hitachi Ltd 蒸気タービンプラントの運転方法
JP2001193416A (ja) * 2000-01-05 2001-07-17 Fuji Electric Co Ltd 蒸気タービン装置
JP2001317305A (ja) * 2000-05-12 2001-11-16 Babcock Hitachi Kk タービン・発電機の制御方法と装置
JP2007046576A (ja) * 2005-08-12 2007-02-22 Hitachi Ltd 蒸気タービン発電プラントとその制御方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093262A1 (ja) * 2013-12-16 2015-06-25 Jfeスチール株式会社 エネルギー需給運用ガイダンス装置及び製鉄所内のエネルギー需給運用方法
JP5862839B2 (ja) * 2013-12-16 2016-02-16 Jfeスチール株式会社 エネルギー需給運用ガイダンス装置及び製鉄所内のエネルギー需給運用方法
CN105814504A (zh) * 2013-12-16 2016-07-27 杰富意钢铁株式会社 能量供需运用指导装置以及炼钢厂内的能量供需运用方法
KR101771985B1 (ko) 2013-12-16 2017-08-28 제이에프이 스틸 가부시키가이샤 에너지 수급 운용 가이던스 장치 및 제철소 내의 에너지 수급 운용 방법
CN105814504B (zh) * 2013-12-16 2018-07-06 杰富意钢铁株式会社 能量供需运用指导装置以及炼钢厂内的能量供需运用方法

Also Published As

Publication number Publication date
JP5895498B2 (ja) 2016-03-30

Similar Documents

Publication Publication Date Title
US8104282B2 (en) Power generation complex plant and plant control method
JP2012047439A (ja) ヒートポンプ式蒸気生成装置
KR20130139240A (ko) 폐열 증기 발생기
CN111123770B (zh) 一种fcb工况下旁路模型开度确定方法及装置
JP4982507B2 (ja) タービングランドシール蒸気減温制御装置および蒸気タービン発電設備におけるプラント制御方法
JP2008104355A (ja) 水力発電所用発電機軸受の冷却システム
JP5783458B2 (ja) 蒸気発電プラントにおける増出力運転方法
JP5895498B2 (ja) タービンバイパス装置およびタービンバイパス制御方法
JP4600139B2 (ja) 空調装置及びその制御方法
US9959945B2 (en) High temperature gas cooled reactor steam generation system
JP5667435B2 (ja) 熱併給原子力発電システム
CN111584898A (zh) 燃料电池系统
JP2008267688A (ja) 復水器真空度制御システム及び該システムを備えた発電プラント
JP2013019561A (ja) ボイラのブロー制御装置およびブロー制御方法
KR102042653B1 (ko) 열교환기의 유량조절장치
JP5727270B2 (ja) 貯湯システム及びその運転方法、並びに、貯湯システム用の制御装置
JP3971646B2 (ja) 補充蒸気の制御方法
JP2007139235A (ja) 復水器の制御方法
JP5256514B2 (ja) 火力発電プラント、及び火力発電プラントの運転方法
JP5890221B2 (ja) 石炭ガス化複合発電プラントとその運転制御方法
JP2007232500A (ja) 原子炉の運転方法及び原子力発電プラント
JP2008241048A (ja) ガス焚きボイラーの運転方法及び装置
JP2017198365A (ja) 熱回収システム
JP2014175141A (ja) 燃料電池システム
JP2011102813A (ja) 原子炉の運転方法及び原子力発電プラント

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5895498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250