JP2013123046A - Method of manufacturing semiconductor light-emitting element - Google Patents

Method of manufacturing semiconductor light-emitting element Download PDF

Info

Publication number
JP2013123046A
JP2013123046A JP2012253356A JP2012253356A JP2013123046A JP 2013123046 A JP2013123046 A JP 2013123046A JP 2012253356 A JP2012253356 A JP 2012253356A JP 2012253356 A JP2012253356 A JP 2012253356A JP 2013123046 A JP2013123046 A JP 2013123046A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
light emitting
stress
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012253356A
Other languages
Japanese (ja)
Other versions
JP5944301B2 (en
Inventor
Naoji Sugiyama
直治 杉山
Taisuke Sato
泰輔 佐藤
Kotaro Zaima
康太郎 財満
Junpei Tajima
純平 田島
Toshiteru Hikosaka
年輝 彦坂
Yoshiyuki Harada
佳幸 原田
Gakushi Yoshida
学史 吉田
Shinya Nunoue
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012253356A priority Critical patent/JP5944301B2/en
Publication of JP2013123046A publication Critical patent/JP2013123046A/en
Application granted granted Critical
Publication of JP5944301B2 publication Critical patent/JP5944301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor light-emitting element that prevents degradation of element characteristics due to the occurrence of cracks and introduction of defects and has high luminous efficiency.SOLUTION: There is provided a method of manufacturing a semiconductor light-emitting element including the steps of: forming a first stress application layer; forming a first-conductivity-type first semiconductor layer; forming a light-emitting layer; and removing a crystal substrate while leaving at least a part of the first stress application layer, after forming a second-conductivity-type second semiconductor layer. Compressive stress from the first stress application layer is applied to the first-conductivity-type first semiconductor layer. The lattice constant of the first-conductivity-type first semiconductor layer is smaller than the equivalent lattice length of the crystal substrate. The average lattice constant of the light-emitting layer is larger than the lattice constant of the first semiconductor layer. The lattice constant of the second-conductivity-type second semiconductor layer is smaller than the equivalent lattice length of the crystal substrate.

Description

本発明の実施形態は、半導体発光素子の製造方法に関する。   Embodiments described herein relate generally to a method for manufacturing a semiconductor light emitting device.

窒化物半導体は、半導体発光素子に利用され、高性能な素子が実用化されつつある。   Nitride semiconductors are used in semiconductor light emitting devices, and high performance devices are being put into practical use.

しかし、サファイア基板よりも安価で、かつ製造工程が効率的なシリコン基板上に窒化物半導体結晶をエピタキシャル成長して半導体発光素子を形成すると、エピタキシャル結晶層の内部に含まれる引張り応力に起因して、クラックや欠陥などが発生する場合がある。そうすると、素子作製プロセスにおいて障害をもたらしたり、素子特性を劣化させる場合がある。引張り応力に起因するプロセス途中でのクラックの発生あるいは欠陥の導入に伴う素子特性の劣化を抑制し、発光効率の高い半導体発光素子の実現が望まれている。   However, when a semiconductor light emitting device is formed by epitaxially growing a nitride semiconductor crystal on a silicon substrate that is cheaper than the sapphire substrate and the manufacturing process is efficient, due to the tensile stress contained in the epitaxial crystal layer, Cracks and defects may occur. In such a case, the device manufacturing process may be hindered or the device characteristics may be deteriorated. It is desired to realize a semiconductor light emitting device with high light emission efficiency by suppressing the deterioration of device characteristics due to the occurrence of cracks in the process due to tensile stress or the introduction of defects.

特開2006−303154号公報JP 2006-303154 A

本発明の実施形態は、クラックの発生あるいは欠陥の導入に伴う素子特性の劣化を抑制し発光効率の高い半導体発光素子の製造方法を提供する。   Embodiments of the present invention provide a method for manufacturing a semiconductor light emitting device with high light emission efficiency by suppressing deterioration of device characteristics due to generation of cracks or introduction of defects.

本発明の実施形態によれば、第1応力印加層を形成し、第1導電形の第1半導体層を形成し、発光層を形成し、第2導電形の第2半導体層を形成した後、前記第1応力印加層の少なくとも一部を残した状態で前記結晶基板を除去する半導体発光素子の製造方法が提供される。前記第1応力印加層は、結晶基板の上に形成される。前記第1導電形の第1半導体層は、前記第1応力印加層の上に形成され窒化物半導体結晶を含む。前記第1導電形の第1半導体層には、前記第1応力印加層から圧縮応力が印加される。前記第1導電形の第1半導体層の格子定数は、前記結晶基板の等価的格子長さよりも小さい。または、前記第1導電形の第1半導体層の熱膨張係数は、前記結晶基板の熱膨張係数よりも大きい。前記発光層は、前記第1半導体層の上に形成され窒化物半導体結晶を含む。前記発光層の平均の格子定数は、前記第1半導体層の格子定数よりも大きい。前記第2導電形の第2半導体層は、前記発光層の上に形成され窒化物半導体結晶を含む。前記第2導電形の第2半導体層の格子定数は、前記結晶基板の等価的格子長さよりも小さい。または、前記第2導電形の第2半導体層の熱膨張係数は、前記結晶基板の熱膨張係数よりも大きい。   According to the embodiment of the present invention, after forming the first stress applying layer, forming the first semiconductor layer of the first conductivity type, forming the light emitting layer, and forming the second semiconductor layer of the second conductivity type. There is provided a method for manufacturing a semiconductor light emitting device, wherein the crystal substrate is removed in a state where at least part of the first stress applying layer is left. The first stress applying layer is formed on a crystal substrate. The first semiconductor layer of the first conductivity type is formed on the first stress applying layer and includes a nitride semiconductor crystal. A compressive stress is applied to the first semiconductor layer of the first conductivity type from the first stress application layer. The lattice constant of the first semiconductor layer of the first conductivity type is smaller than the equivalent lattice length of the crystal substrate. Alternatively, the thermal expansion coefficient of the first conductivity type first semiconductor layer is larger than the thermal expansion coefficient of the crystal substrate. The light emitting layer is formed on the first semiconductor layer and includes a nitride semiconductor crystal. The average lattice constant of the light emitting layer is larger than the lattice constant of the first semiconductor layer. The second conductivity type second semiconductor layer is formed on the light emitting layer and includes a nitride semiconductor crystal. A lattice constant of the second semiconductor layer of the second conductivity type is smaller than an equivalent lattice length of the crystal substrate. Alternatively, the thermal expansion coefficient of the second semiconductor layer of the second conductivity type is larger than the thermal expansion coefficient of the crystal substrate.

実施形態にかかる半導体発光素子の構成を例示する断面模式図である。1 is a schematic cross-sectional view illustrating the configuration of a semiconductor light emitting element according to an embodiment. 図2(a)および図2(b)は、積層構造に発生する応力を示す断面模式図である。FIG. 2A and FIG. 2B are schematic cross-sectional views showing the stress generated in the laminated structure. 実施形態にかかる半導体発光素子を作製する際の結晶積層構造の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the crystal laminated structure at the time of producing the semiconductor light-emitting device concerning embodiment. 図4(a)〜図4(c)は、図3に表した半導体発光素子構造を作製するプロセスを示す断面模式図である。4A to 4C are schematic cross-sectional views showing a process for manufacturing the semiconductor light-emitting element structure shown in FIG. 図5(a)〜図5(c)は、図3に表した半導体発光素子構造を作製するプロセスを示す断面模式図である。FIG. 5A to FIG. 5C are schematic cross-sectional views showing a process for manufacturing the semiconductor light emitting device structure shown in FIG. 図6(a)および図6(b)は、実施形態にかかる半導体発光素子の他の例を示す断面模式図および写真図である。FIG. 6A and FIG. 6B are a schematic cross-sectional view and a photograph showing another example of the semiconductor light emitting device according to the embodiment. 実施形態にかかる半導体発光素子のさらに他の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the other example of the semiconductor light-emitting device concerning embodiment.

以下、本発明の実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
Embodiments of the present invention will be described below with reference to the drawings.
The drawings are schematic or conceptual, and the relationship between the thickness and width of each part, the size ratio between the parts, and the like are not necessarily the same as actual ones. Further, even when the same part is represented, the dimensions and ratios may be represented differently depending on the drawings.
Note that, in the present specification and each drawing, the same elements as those described above with reference to the previous drawings are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.

図1は、実施形態にかかる半導体発光素子の構成を例示する断面模式図である。
図1に表したように、実施形態にかかる半導体発光素子110は、第1導電形の第1半導体層10と、第2導形の第2半導体層20と、発光層30と、第1応力印加層16と、を備える。半導体発光素子110は、例えば、LED素子である。半導体発光素子110は、レーザダイオードでも良い。以下では、半導体発光素子110が、LEDである場合として説明する。
FIG. 1 is a schematic cross-sectional view illustrating the configuration of a semiconductor light emitting element according to the embodiment.
As illustrated in FIG. 1, the semiconductor light emitting device 110 according to the embodiment includes a first conductive type first semiconductor layer 10, a second conductive type second semiconductor layer 20, a light emitting layer 30, and a first stress. And an application layer 16. The semiconductor light emitting element 110 is, for example, an LED element. The semiconductor light emitting device 110 may be a laser diode. Hereinafter, the case where the semiconductor light emitting element 110 is an LED will be described.

第1半導体層10には、例えば、n形半導体層が用いられる。第2半導体層20には、例えばp形半導体層が用いられる。ただし、第1半導体層10がp形で、第2半導体層20はn形でも良い。以下では、第1半導体層10がn形で、第2半導体層20がp側である場合として説明する。   For example, an n-type semiconductor layer is used for the first semiconductor layer 10. For example, a p-type semiconductor layer is used for the second semiconductor layer 20. However, the first semiconductor layer 10 may be p-type and the second semiconductor layer 20 may be n-type. Hereinafter, the case where the first semiconductor layer 10 is n-type and the second semiconductor layer 20 is on the p side will be described.

第1半導体層10及び第2半導体層20は、窒化物半導体結晶を含む。後述するように、第1半導体層10及び第2半導体層20のそれぞれは、(0001)面内に引張り応力を有する。   The first semiconductor layer 10 and the second semiconductor layer 20 include a nitride semiconductor crystal. As will be described later, each of the first semiconductor layer 10 and the second semiconductor layer 20 has a tensile stress in the (0001) plane.

第1半導体層10は、例えばn形GaN層である。第2半導体層20は、例えば、p形GaN層である。第1半導体層10は、例えば、i−GaN層(以下、「non−doped GaN層」ともいう)と、n形GaN層と、を含んでも良い。i−GaN層と第2半導体層20との間にn形GaN層が配置される。   The first semiconductor layer 10 is, for example, an n-type GaN layer. The second semiconductor layer 20 is, for example, a p-type GaN layer. The first semiconductor layer 10 may include, for example, an i-GaN layer (hereinafter also referred to as “non-doped GaN layer”) and an n-type GaN layer. An n-type GaN layer is disposed between the i-GaN layer and the second semiconductor layer 20.

発光層30は、第1半導体層10と第2半導体層20との間に設けられる。発光層30は、窒化物半導体結晶を含む。発光層30における平均の格子定数は、第1半導体層10の格子定数よりも大きい。   The light emitting layer 30 is provided between the first semiconductor layer 10 and the second semiconductor layer 20. The light emitting layer 30 includes a nitride semiconductor crystal. The average lattice constant in the light emitting layer 30 is larger than the lattice constant of the first semiconductor layer 10.

発光層30は、例えば、複数の障壁層34と、障壁層34どうしの間に設けられた井戸層32と、を含む。井戸層32は複数設けれても良い。例えば、発光層30は、MQW(Multiple Quantum Well)構造を有する。   The light emitting layer 30 includes, for example, a plurality of barrier layers 34 and a well layer 32 provided between the barrier layers 34. A plurality of well layers 32 may be provided. For example, the light emitting layer 30 has an MQW (Multiple Quantum Well) structure.

発光層30における平均の格子定数は、障壁層34の格子定数と、井戸層32の格子定数と、を厚さ配分で重みづけし平均した格子定数である。   The average lattice constant in the light emitting layer 30 is a lattice constant obtained by weighting and averaging the lattice constant of the barrier layer 34 and the lattice constant of the well layer 32 by thickness distribution.

第1応力印加層16は、第1半導体層10の発光層30とは反対側の面において第1半導体層に接合される。第1応力印加層16は、第1半導体層10に圧縮応力を印加する。第1応力印加層16は、例えば、第1半導体層10に接合される。例えば、第1半導体層10が、i−GaN層と、n形GaN層と、を含む場合、第1応力印加層16は、i−GaN層を介してn形GaN層に接合されても良い。   The first stress application layer 16 is bonded to the first semiconductor layer on the surface of the first semiconductor layer 10 opposite to the light emitting layer 30. The first stress application layer 16 applies a compressive stress to the first semiconductor layer 10. The first stress application layer 16 is bonded to, for example, the first semiconductor layer 10. For example, when the first semiconductor layer 10 includes an i-GaN layer and an n-type GaN layer, the first stress application layer 16 may be bonded to the n-type GaN layer via the i-GaN layer. .

この例では、半導体発光素子110は、第2応力印加層22をさらに備える。第2応力印加層22は、第2半導体層20の発光層30とは反対側に設けられる。第2応力印加層22は、例えば、第2半導体層20と接合されている。第2応力印加層22は、第2半導体20層に圧縮応力を印加する。応力については、後述する。   In this example, the semiconductor light emitting device 110 further includes a second stress applying layer 22. The second stress application layer 22 is provided on the opposite side of the second semiconductor layer 20 from the light emitting layer 30. The second stress application layer 22 is bonded to, for example, the second semiconductor layer 20. The second stress application layer 22 applies a compressive stress to the second semiconductor 20 layer. The stress will be described later.

この例では、半導体発光素子110は、第1電極81と、第2電極82と、反射金属90と、をさらに備える。第2半導体層20と発光層30と第1半導体層10とを含むLED積層構造に対して、p形層側にNiを含む反射金属90と、AuSnを含む電極膜を介してSi基板を含む支持基板と、が接合されている。支持基板については、後述する。   In this example, the semiconductor light emitting device 110 further includes a first electrode 81, a second electrode 82, and a reflective metal 90. The LED stacked structure including the second semiconductor layer 20, the light emitting layer 30, and the first semiconductor layer 10 includes a Si substrate via a reflective metal 90 containing Ni on the p-type layer side and an electrode film containing AuSn. The support substrate is bonded. The support substrate will be described later.

図1に表した矢印30Lのように、発光層30から放出される光は、第1半導体層10の側の主面(光取り出し面)から出射する。言い換えれば、発光層30から放出される光は、第1半導体層10および第1応力印加層16を介して半導体発光素子110の外部に出射する。このように、第1半導体層10の側の主面は、光取り出し面となっている。光取り出し面には、凹凸加工が施されている。第2半導体層20と、光取出し面と、の間において、窒化物半導体結晶のLED積層構造が形成されている。   As indicated by an arrow 30 </ b> L illustrated in FIG. 1, the light emitted from the light emitting layer 30 is emitted from the main surface (light extraction surface) on the first semiconductor layer 10 side. In other words, the light emitted from the light emitting layer 30 is emitted to the outside of the semiconductor light emitting element 110 through the first semiconductor layer 10 and the first stress applying layer 16. Thus, the main surface on the first semiconductor layer 10 side is a light extraction surface. The light extraction surface is subjected to uneven processing. An LED stacked structure of nitride semiconductor crystals is formed between the second semiconductor layer 20 and the light extraction surface.

第1半導体層10は、例えば、n形窒化ガリウム(GaN)結晶からなる。第1半導体層10の上には、井戸層32と障壁層34との多層膜からなる発光層30が積層されている。井戸層32には、例えばInGaNが用いられる。障壁層34には、例えば、GaNが用いられる。発光層30となる窒化物半導体の量子井戸構造の上に、第2半導体層20が積層されている。第2半導体層20は、例えば、p形窒化ガリウム結晶からなる。   The first semiconductor layer 10 is made of, for example, n-type gallium nitride (GaN) crystal. On the first semiconductor layer 10, a light emitting layer 30 composed of a multilayer film of a well layer 32 and a barrier layer 34 is stacked. For the well layer 32, for example, InGaN is used. For the barrier layer 34, for example, GaN is used. A second semiconductor layer 20 is stacked on the nitride semiconductor quantum well structure to be the light emitting layer 30. The second semiconductor layer 20 is made of, for example, p-type gallium nitride crystal.

発光層30に含まれるInGaN結晶層(井戸層32)の格子定数は、窒化ガリウム(第1半導体層10)の格子定数よりも大きい。半導体発光素子110は、第1の窒化物半導体結晶(例えば、第1半導体層10及び第2半導体層20となるGaN結晶)を母材とし、第1の窒化物半導体結晶の格子定数よりも大きい格子定数を有する第2の窒化物半導体結晶(井戸層32となるInGaN層)を母材の内部に含む構造を有する。   The lattice constant of the InGaN crystal layer (well layer 32) included in the light emitting layer 30 is larger than the lattice constant of gallium nitride (first semiconductor layer 10). The semiconductor light emitting device 110 uses a first nitride semiconductor crystal (for example, a GaN crystal that becomes the first semiconductor layer 10 and the second semiconductor layer 20) as a base material, and is larger than the lattice constant of the first nitride semiconductor crystal. It has a structure in which a second nitride semiconductor crystal having a lattice constant (InGaN layer to be the well layer 32) is included in the base material.

第1の半導体結晶層の格子のa軸長(a軸方向の格子長)は、GaN結晶の材料固有のa軸長(a軸方向の格子定数)よりも長い。すなわち、第1の半導体結晶層(第1半導体層10及び第2半導体層20)には、引張り応力が印加されている。発光層30(例えば、InGaNの井戸層32とGaNの障壁層34との積層体)の格子の平均的なa軸長は、第1の半導体結晶の格子のa軸長よりも長い。GaN層に印加されている引張り応力の大きさについては、後述のようにラマン分光法により評価できる。   The a-axis length (lattice length in the a-axis direction) of the lattice of the first semiconductor crystal layer is longer than the a-axis length (lattice constant in the a-axis direction) inherent to the material of the GaN crystal. That is, a tensile stress is applied to the first semiconductor crystal layer (the first semiconductor layer 10 and the second semiconductor layer 20). The average a-axis length of the lattice of the light emitting layer 30 (for example, a stacked body of the InGaN well layer 32 and the GaN barrier layer 34) is longer than the a-axis length of the lattice of the first semiconductor crystal. As described later, the magnitude of the tensile stress applied to the GaN layer can be evaluated by Raman spectroscopy.

図2(a)および図2(b)は、積層構造に発生する応力を示す断面模式図である。
図2(a)は、実施形態にかかる半導体発光素子110LED積層構造に発生する応力を例示している。図2(b)は、参考例の半導体発光素子のLED積層構造に発生する応力を例示している。
FIG. 2A and FIG. 2B are schematic cross-sectional views showing the stress generated in the laminated structure.
FIG. 2A illustrates the stress generated in the semiconductor light emitting device 110LED stacked structure according to the embodiment. FIG. 2B illustrates the stress generated in the LED stack structure of the semiconductor light emitting device of the reference example.

図2(b)に表したように、参考例にかかる半導体発光素子では、(0001)面を表面とするサファイア基板上に、同じく(0001)面を表面とする窒化ガリウム結晶層が形成され、さらにInGaN薄膜結晶層からなる発光層が組み合わされている。(0001)面を表面とするサファイア基板上に形成された参考例の半導体発光素子119aの各半導体結晶は、c軸方向に配向している。   As shown in FIG. 2B, in the semiconductor light emitting device according to the reference example, a gallium nitride crystal layer having the (0001) plane as the surface is formed on the sapphire substrate having the (0001) plane as the surface. Further, a light emitting layer composed of an InGaN thin film crystal layer is combined. Each semiconductor crystal of the semiconductor light emitting device 119a of the reference example formed on the sapphire substrate having the (0001) plane as a surface is oriented in the c-axis direction.

半導体発光素子119aのように、サファイア基板上に窒化物半導体結晶層を積層した発光ダイオードは、図示しないサファイア基板上に、n形GaN層(第1半導体層10)と、量子井戸型発光層(発光層30)と、p形GaN層(第2半導体層20)と、を積層した構造を有する。サファイア基板は、対象とする青色領域の波長帯に対してほぼ透明である。そのため、例えば、サファイア基板の裏面に反射膜を形成した上で、表面側のp形GaN層の上部から光を取り出す構造(Face−up構造)が採用される。   Like the semiconductor light emitting device 119a, a light emitting diode having a nitride semiconductor crystal layer stacked on a sapphire substrate has an n-type GaN layer (first semiconductor layer 10) and a quantum well light emitting layer (on a sapphire substrate not shown). The light emitting layer 30) and a p-type GaN layer (second semiconductor layer 20) are stacked. The sapphire substrate is almost transparent to the wavelength band of the blue region of interest. Therefore, for example, a structure (Face-up structure) in which light is extracted from the upper part of the p-type GaN layer on the front surface side after a reflective film is formed on the back surface of the sapphire substrate is employed.

一方、より高い光出力を目指し、電流注入を増大する動作条件下では、発熱に対する対策が行われる。そのために、例えば、窒化物半導体からなるLED構造をサファイア基板上にエピタキシャル成長した後、p形GaN層の表面側を熱伝導性の高い支持基板に貼り付け、サファイア基板を剥離した構造(Thin−film構造)が採用される。   On the other hand, countermeasures against heat generation are taken under an operating condition that aims at higher light output and increases current injection. For this purpose, for example, an LED structure made of a nitride semiconductor is epitaxially grown on a sapphire substrate, the surface side of the p-type GaN layer is attached to a support substrate having high thermal conductivity, and the sapphire substrate is peeled off (Thin-film). Structure) is adopted.

サファイア基板上にエピタキシャル成長をした窒化ガリウムを用いたLEDでは、窒化ガリウムの結晶層を成長するための結晶基板となるサファイアの等価的格子長さは、窒化ガリウムの格子定数より小さい。また、窒化ガリウム結晶の熱膨張係数は、下地となるサファイア結晶の熱膨張係数より小さい。そのため、高温での薄膜結晶成長が完了し室温まで温度を下げた際の窒化ガリウム結晶層には、図2(b)に表した矢印A1および矢印A2のように、大きな圧縮応力が印加される。   In an LED using gallium nitride epitaxially grown on a sapphire substrate, the equivalent lattice length of sapphire serving as a crystal substrate for growing a gallium nitride crystal layer is smaller than the lattice constant of gallium nitride. Further, the thermal expansion coefficient of the gallium nitride crystal is smaller than the thermal expansion coefficient of the sapphire crystal serving as the base. Therefore, a large compressive stress is applied to the gallium nitride crystal layer when the thin film crystal growth at a high temperature is completed and the temperature is lowered to room temperature, as indicated by arrows A1 and A2 shown in FIG. .

また、発光層30となるInGaN結晶層の格子定数は、窒化ガリウムの格子定数より大きい。そのため、図2(b)に表した矢印A3および矢印A4のように、サファイア結晶からの圧縮応力が加わった窒化ガリウム結晶層には、InGaN結晶層から引っ張る方向で応力(引張り応力)が加えられる。一方、図2(b)に表した矢印A5およびA6のように、発光層30には、窒化ガリウム結晶層から圧縮応力を受ける。このような圧縮応力および引張り応力は、(0001)面内に、言い換えれば例えばa軸方向に発生する。   The lattice constant of the InGaN crystal layer that becomes the light emitting layer 30 is larger than the lattice constant of gallium nitride. Therefore, as indicated by arrows A3 and A4 shown in FIG. 2B, stress (tensile stress) is applied in the direction of pulling from the InGaN crystal layer to the gallium nitride crystal layer to which compressive stress from the sapphire crystal is applied. . On the other hand, as indicated by arrows A5 and A6 shown in FIG. 2B, the light emitting layer 30 receives compressive stress from the gallium nitride crystal layer. Such compressive stress and tensile stress are generated in the (0001) plane, in other words, in the a-axis direction, for example.

このように、窒化ガリウムの格子定数よりも大きい格子定数を有するInGaN結晶層から窒化ガリウム結晶層に加えられる引張り応力は、サファイア結晶から窒化ガリウム結晶層に加えられる圧縮応力と比較的つり合う。このため、n形GaN層の端面やp形GaN層の端面などから欠陥が発生することは、比較的少ない。   As described above, the tensile stress applied from the InGaN crystal layer having a lattice constant larger than that of gallium nitride to the gallium nitride crystal layer is relatively balanced with the compressive stress applied from the sapphire crystal to the gallium nitride crystal layer. For this reason, the occurrence of defects from the end face of the n-type GaN layer or the end face of the p-type GaN layer is relatively small.

本発明者の知見によれば、窒化ガリウム結晶層に加えられる圧縮応力および引張り応力は、サファイア基板を除去したThin−film構造においても残留していることが分かっている。これは、図2(a)に関して後述するシリコン基板から剥離したThin−film構造においても同様である。また、窒化ガリウム結晶層に加えられた応力が圧縮応力であるかあるいは引張り応力であるかについては、ラマンスペクトルから判定することができる。例えば、応力が印加されていない窒化ガリウム結晶におけるラマンスペクトルのピークは、約568cm−1であるが、圧縮応力が印加された窒化ガリウム結晶においては、568cm−1よりも小さい波数、例えば約567.8〜565.5cm−1であり、引張り応力が印加された窒化ガリウム結晶においては、568cm−1よりも大きい波数で、約570cm−1までの値となる。 According to the knowledge of the present inventor, it is known that the compressive stress and tensile stress applied to the gallium nitride crystal layer remain even in the thin-film structure from which the sapphire substrate is removed. The same applies to a thin-film structure peeled from a silicon substrate described later with reference to FIG. Whether the stress applied to the gallium nitride crystal layer is a compressive stress or a tensile stress can be determined from a Raman spectrum. For example, the peak of the Raman spectrum in a gallium nitride crystal to which no stress is applied is about 568 cm −1, but in the gallium nitride crystal to which a compressive stress is applied, a wave number smaller than 568 cm −1, for example, about 567. In a gallium nitride crystal to which a tensile stress is applied, the value is from 8 to 565.5 cm −1, and a value up to about 570 cm −1 at a wave number larger than 568 cm −1 .

図2(a)に表したように、実施形態にかかる半導体発光素子110は、図示しない(111)面を表面とするシリコン結晶上に形成され、n形GaN層(第1半導体層10)と、量子井戸型発光層(発光層30)と、p形GaN層(第2半導体層20)と、を積層したLED積層構造を有する。また、(111)面を表面とするシリコン基板上に形成された半導体発光素子110の各半導体結晶は、c軸方向に配向している。   As illustrated in FIG. 2A, the semiconductor light emitting device 110 according to the embodiment is formed on a silicon crystal having a (111) plane (not shown) as a surface, and an n-type GaN layer (first semiconductor layer 10) and The LED has a stacked structure in which a quantum well light emitting layer (light emitting layer 30) and a p-type GaN layer (second semiconductor layer 20) are stacked. Each semiconductor crystal of the semiconductor light emitting device 110 formed on the silicon substrate having the (111) plane as a surface is oriented in the c-axis direction.

サファイア基板よりも安価で、かつ製造工程が効率的になる比較的大きい面積の基板を利用するために、シリコン結晶上への窒化ガリウム結晶の成長が試みられる。シリコン基板上に成長した窒化物結晶を母材として半導体発光素子を作製する場合には、シリコン基板が一般的に取り扱う光の波長に対して透明でない。このため、成長層をシリコン基板から剥離するThin−film構造が用いられる。   In order to use a substrate having a relatively large area that is cheaper than a sapphire substrate and is efficient in the manufacturing process, growth of a gallium nitride crystal on a silicon crystal is attempted. When a semiconductor light emitting device is manufactured using a nitride crystal grown on a silicon substrate as a base material, the silicon substrate is not transparent to the wavelength of light generally handled. For this reason, a thin-film structure is used in which the growth layer is peeled from the silicon substrate.

窒化ガリウムの結晶層を成長するための結晶基板となるシリコンの等価的格子長さは、窒化ガリウムの格子定数よりも大きい。また、シリコン結晶の熱膨張係数は、窒化ガリウムの熱膨張係数よりも小さい。そのため、結晶成長終了後の窒化ガリウム結晶層には、図2(a)に表した矢印A11および矢印A12のように、引張り応力が残存している。さらに、図2(a)に表した矢印A13および矢印A14のように、シリコン結晶上に形成した窒化物半導体結晶系では、InGaN発光層30からさらなる引張り応力を受ける。一方、図2(a)に表した矢印A15およびA16のように、発光層30には、窒化ガリウム結晶層から圧縮応力を受ける。このような圧縮応力および引張り応力は、(0001)面内に、言い換えれば例えばa軸方向に発生する。   The equivalent lattice length of silicon used as a crystal substrate for growing a gallium nitride crystal layer is larger than the lattice constant of gallium nitride. Moreover, the thermal expansion coefficient of the silicon crystal is smaller than that of gallium nitride. Therefore, tensile stress remains in the gallium nitride crystal layer after the completion of crystal growth, as indicated by arrows A11 and A12 shown in FIG. Further, the nitride semiconductor crystal system formed on the silicon crystal is subjected to further tensile stress from the InGaN light emitting layer 30 as indicated by arrows A13 and A14 shown in FIG. On the other hand, as indicated by arrows A15 and A16 shown in FIG. 2A, the light emitting layer 30 receives compressive stress from the gallium nitride crystal layer. Such compressive stress and tensile stress are generated in the (0001) plane, in other words, in the a-axis direction, for example.

このように、実施形態に係る半導体発光素子110においては、窒化ガリウムの格子定数よりも大きい格子定数を有するInGaN結晶層から窒化ガリウム結晶層に加えられる引張り応力は、シリコン結晶から窒化ガリウム結晶層に加えられる引張り応力と相乗する。このため、シリコン基板上に窒化物半導体結晶をエピタキシャル成長し、半導体発光素子を形成した場合には、エピタキシャル結晶層の内部に含まれる引張り応力に起因して、クラックや欠陥などが発生し易い。そうすると、素子作製プロセスにおいて障害をもたらしたり、素子特性を劣化させる場合がある。   Thus, in the semiconductor light emitting device 110 according to the embodiment, the tensile stress applied from the InGaN crystal layer having a lattice constant larger than that of gallium nitride to the gallium nitride crystal layer is changed from the silicon crystal to the gallium nitride crystal layer. Synergistic with the applied tensile stress. For this reason, when a nitride semiconductor crystal is epitaxially grown on a silicon substrate to form a semiconductor light emitting device, cracks, defects, and the like are likely to occur due to the tensile stress contained in the epitaxial crystal layer. In such a case, the device manufacturing process may be hindered or the device characteristics may be deteriorated.

また、発光層30のIn組成が高く、発光層30の平均的な格子定数が大きいときには、InGaN結晶層から窒化ガリウム結晶層に加えられる引張り応力が大きく、素子作製プロセスにおいて発生する障害が顕著である。また、InGaN結晶層の厚さが厚い場合においても、素子作製プロセスにおいて発生する障害が顕著である。   Further, when the In composition of the light emitting layer 30 is high and the average lattice constant of the light emitting layer 30 is large, the tensile stress applied from the InGaN crystal layer to the gallium nitride crystal layer is large, and the obstacles that occur in the device manufacturing process are remarkable. is there. Even when the thickness of the InGaN crystal layer is large, obstacles occurring in the element manufacturing process are significant.

これに対して、実施形態にかかる半導体発光素子110においては、図1に表したように、第1半導体層10の端部に設けられた第1応力印加層16と、第2半導体層20の端部に設けられた第2応力印加層22と、が設けられる。これにより、第1応力印加層16および第2応力印加層22は、第1半導体層10および第2半導体層20、すなわち母材層としての第1の半導体結晶層に圧縮応力を印加する。   On the other hand, in the semiconductor light emitting device 110 according to the embodiment, as illustrated in FIG. 1, the first stress application layer 16 provided at the end of the first semiconductor layer 10 and the second semiconductor layer 20 are provided. And a second stress applying layer 22 provided at the end. Thereby, the first stress application layer 16 and the second stress application layer 22 apply a compressive stress to the first semiconductor layer 10 and the second semiconductor layer 20, that is, the first semiconductor crystal layer as the base material layer.

第1応力印加層16は、例えば、AlN層を含む。第1応力印加層16は、一層のAlN層を含むことに限定されず、複数のAlN層を含んでいてもよい。また、第1応力印加層16は、AlGaN層を含んでいてもよい。
第2応力印加層22は、AlGaN層を含む。また、第2応力印加層22は、AlN層を含んでいてもよい。
The first stress application layer 16 includes, for example, an AlN layer. The first stress applying layer 16 is not limited to including a single layer of AlN, and may include a plurality of AlN layers. The first stress application layer 16 may include an AlGaN layer.
The second stress application layer 22 includes an AlGaN layer. Further, the second stress application layer 22 may include an AlN layer.

実施形態にかかる半導体発光素子110によれば、母材としての第1の半導体結晶に引張り応力が印加される条件下であっても、第1応力印加層16および第2応力印加層22が第1の半導体結晶層に圧縮応力を印加することができる。そのため、クラックの発生あるいは欠陥の導入を抑制し、発光効率の高い半導体発光素子を提供することができる。   According to the semiconductor light emitting device 110 according to the embodiment, the first stress application layer 16 and the second stress application layer 22 are provided in the first stress application layer 16 and the second stress application layer 22 even under a condition in which a tensile stress is applied to the first semiconductor crystal as a base material. A compressive stress can be applied to one semiconductor crystal layer. Therefore, the generation of cracks or the introduction of defects can be suppressed, and a semiconductor light emitting element with high luminous efficiency can be provided.

例えば、図2(a)に関して前述したように、引張り応力を含む薄膜結晶(第1の半導体結晶)中にさらに引張り応力を印加する発光層30が含まれる素子構造において、第1の半導体結晶層の両端面に圧縮応力を印加する第1応力印加層16および第2応力印加層22が配置されている。そのため、引張り応力に起因するプロセス途中でのクラックの発生あるいは欠陥の導入に伴う素子特性の劣化を抑制することが可能である。   For example, as described above with reference to FIG. 2A, in the element structure in which the light emitting layer 30 that further applies the tensile stress is included in the thin film crystal (first semiconductor crystal) including the tensile stress, the first semiconductor crystal layer The first stress application layer 16 and the second stress application layer 22 that apply compressive stress are disposed on both end faces of the first and second stress layers. For this reason, it is possible to suppress degradation of device characteristics due to generation of cracks or introduction of defects during the process due to tensile stress.

また、シリコン基板から剥離したThin−film構造では、第1半導体層10の主面(光取り出し面)は、開放端(開放面)となる。そのため、第1応力印加層16および第2応力印加層22が設けられていない場合には、開放面となった第1半導体層10の主面(光取り出し面)には、応力が加わらない。このような開放面では、エピタキシャル結晶層の内部に含まれる引張り応力に起因する障害が発生し易い。これに対して、実施形態にかかる半導体発光素子110では、第1応力印加層16および第2応力印加層22が設けられているため、第1半導体層10の主面(光取り出し面)が開放端となっても、第1の半導体結晶層に圧縮応力が印加される。   In the thin-film structure peeled from the silicon substrate, the main surface (light extraction surface) of the first semiconductor layer 10 is an open end (open surface). Therefore, when the first stress application layer 16 and the second stress application layer 22 are not provided, no stress is applied to the main surface (light extraction surface) of the first semiconductor layer 10 that is an open surface. In such an open surface, a failure due to tensile stress included in the epitaxial crystal layer is likely to occur. On the other hand, in the semiconductor light emitting device 110 according to the embodiment, since the first stress application layer 16 and the second stress application layer 22 are provided, the main surface (light extraction surface) of the first semiconductor layer 10 is open. Even at the edge, compressive stress is applied to the first semiconductor crystal layer.

図3は、実施形態にかかる半導体発光素子を作製する際の結晶積層構造の例を示す断面模式図である。
図3に表したように、本実施形態に係る半導体発光素子120では、シリコン基板50の上に、AlN層とAlGaN層とを有するバッファ層12が配置されている。バッファ層12の上には、厚さ300ナノメートル(nm)のnon−doped 障壁層14をはさみ、厚さ15nmのAlN層(第1応力印加層)16が3回繰り返して設けられている。AlN層16の上には、第1半導体層10が積層されている。第1半導体層10には、厚さ2マイクロメートル(μm)のn形GaN層18、及び厚さ1μmのnon−doped GaN層17が積層されている。
FIG. 3 is a schematic cross-sectional view illustrating an example of a crystal stacked structure when manufacturing the semiconductor light emitting device according to the embodiment.
As shown in FIG. 3, in the semiconductor light emitting device 120 according to this embodiment, the buffer layer 12 having an AlN layer and an AlGaN layer is disposed on the silicon substrate 50. On the buffer layer 12, a non-doped barrier layer 14 having a thickness of 300 nanometers (nm) is sandwiched, and an AlN layer 16 (first stress applying layer) 16 having a thickness of 15 nm is repeatedly provided three times. A first semiconductor layer 10 is stacked on the AlN layer 16. On the first semiconductor layer 10, an n-type GaN layer 18 having a thickness of 2 micrometers (μm) and a non-doped GaN layer 17 having a thickness of 1 μm are stacked.

n形GaN層18の上には、GaNからなる厚さ3nmのGaN層と、In組成7%、厚さ1nmのInGaN層と、を30回繰り返して形成した構造を有するSLS(Super lattice structure:超格子構造)層60が配置されている。SLS層60の上には、MQW発光層30が積層されている。MQW発光層30は、GaNからなる厚さ5nmの障壁層34と、In組成15%、厚さ3nmのInGaN層からなる井戸層32と、が8回繰り返されて形成された構造を有する。実施形態の半導体発光素子120では、井戸層32におけるInの組成比は、例えば0.12以上0.20以下である。   On the n-type GaN layer 18, an SLS (Super lattice structure) having a structure in which a GaN layer made of GaN having a thickness of 3 nm and an InGaN layer having an In composition of 7% and a thickness of 1 nm are repeatedly formed 30 times. A (superlattice structure) layer 60 is disposed. On the SLS layer 60, the MQW light emitting layer 30 is laminated. The MQW light emitting layer 30 has a structure in which a 5 nm thick barrier layer 34 made of GaN and a well layer 32 made of an InGaN layer having an In composition of 15% and a thickness of 3 nm are repeated eight times. In the semiconductor light emitting device 120 of the embodiment, the In composition ratio in the well layer 32 is, for example, not less than 0.12 and not more than 0.20.

発光層30の上には、Al組成20%のp形AlGaN層(第2応力印加層22)が配置されている。p形AlGaN層(第2応力印加層22)の上には、p形GaN層(第2半導体層20)が配置されている。p形GaN層(第2半導体層20)上には、反射金属90が配置されている。   On the light emitting layer 30, a p-type AlGaN layer (second stress applying layer 22) having an Al composition of 20% is disposed. A p-type GaN layer (second semiconductor layer 20) is disposed on the p-type AlGaN layer (second stress applying layer 22). A reflective metal 90 is disposed on the p-type GaN layer (second semiconductor layer 20).

次に、半導体発光素子120のを作製プロセスの一例について、説明する。
図4(a)〜図5(c)は、図3に表した半導体発光素子構造を作製するプロセスを示す断面模式図である。
Next, an example of a manufacturing process of the semiconductor light emitting element 120 will be described.
FIGS. 4A to 5C are schematic cross-sectional views showing a process for manufacturing the semiconductor light emitting device structure shown in FIG.

まず、薄膜窒化物半導体の結晶成長用基板として(111)面を表面とするシリコン基板50を用意する。シリコン基板50の結晶の厚さは、例えば約525μm程度である。但し、シリコン基板50の結晶の厚さは、これだけに限定されず、例えば250μm〜800μm程度であってもよい。   First, a silicon substrate 50 having a (111) plane as a surface is prepared as a substrate for crystal growth of a thin film nitride semiconductor. The thickness of the crystal of the silicon substrate 50 is about 525 μm, for example. However, the crystal thickness of the silicon substrate 50 is not limited to this, and may be, for example, about 250 μm to 800 μm.

一般に大気中に置かれているSi基板50の表面は、自然酸化膜で被覆されている。そのため、この自然酸化膜を除去し、基板表面に水素終端処理を施すために、酸処理洗浄を施す。その後に、薄膜成長用基板を濃度1%程度の希弗酸溶液により約1分程度の処理を行う。この処理により、Si層表面は、水素で終端された表面構造となり、はっ水性の表面となる。   Generally, the surface of the Si substrate 50 placed in the atmosphere is covered with a natural oxide film. Therefore, in order to remove the natural oxide film and perform a hydrogen termination treatment on the substrate surface, an acid treatment cleaning is performed. Thereafter, the thin film growth substrate is treated with a diluted hydrofluoric acid solution having a concentration of about 1% for about 1 minute. By this treatment, the surface of the Si layer becomes a surface structure terminated with hydrogen and becomes a water-repellent surface.

続いて、表面が水素終端処理されたSi基板50を有機金属とアンモニアガスとを原料とする成膜装置(MOCVD装置)に導入し、厚さ100nmのAlN層を成膜温度1200℃で積層する。なお、ここでは、AlN層の成膜にMOCVD装置を用いる例を説明したが、成膜方法の選択は任意である。例えば、AlN層の成膜装置として、ECRプラズマスパッタ装置や、MBE装置などを用いてもよい。   Subsequently, the Si substrate 50 whose surface is hydrogen-terminated is introduced into a film forming apparatus (MOCVD apparatus) using organic metal and ammonia gas as raw materials, and an AlN layer having a thickness of 100 nm is stacked at a film forming temperature of 1200 ° C. . Although an example in which the MOCVD apparatus is used for forming the AlN layer has been described here, the selection of the film forming method is arbitrary. For example, an ECR plasma sputtering apparatus or an MBE apparatus may be used as the AlN layer deposition apparatus.

Si基板50上のAlN層の成膜をMOCVD装置以外で行う場合には、AlN層の成膜後にMOCVD装置に基板を導入し引き続き以下の成膜工程を続ける。
Si基板50上に100nmのAlN層を積層したのち、基板温度を1100℃に設定しAl組成25%、厚さ250nmのAlGaN層を積層する。
このようにして形成されたAlN層およびAlGaN層は、図3に表したバッファ層12に相当する。
When the AlN layer is formed on the Si substrate 50 by a device other than the MOCVD apparatus, the substrate is introduced into the MOCVD apparatus after the AlN layer is formed, and the following film forming process is continued.
After laminating a 100 nm AlN layer on the Si substrate 50, the substrate temperature is set to 1100 ° C. and an AlGaN layer having an Al composition of 25% and a thickness of 250 nm is laminated.
The AlN layer and the AlGaN layer thus formed correspond to the buffer layer 12 shown in FIG.

その後に、TMG(トリメチルガリウム)およびNH(アンモニア)を原料として0.3μmの窒化ガリウム層14を形成する。0.3μmの窒化ガリウム層14を積層したのち、成膜温度を700℃に下げ、厚さ15nmのAlN層16(第1応力印加層)を成長する。さらに、厚さ300nmの障壁層14を成膜温度1100℃で再び成長する。このようにして300nmの障壁層14を挟み、低温成長のAlN層16を3回挿入する。 Thereafter, a 0.3 μm gallium nitride layer 14 is formed using TMG (trimethylgallium) and NH 3 (ammonia) as raw materials. After laminating the 0.3 μm gallium nitride layer 14, the film forming temperature is lowered to 700 ° C. to grow an AlN layer 16 (first stress applying layer) having a thickness of 15 nm. Further, the barrier layer 14 having a thickness of 300 nm is grown again at a film forming temperature of 1100 ° C. In this way, the low-temperature grown AlN layer 16 is inserted three times with the 300 nm barrier layer 14 interposed therebetween.

続いて、n形GaN(第1半導体層)10を積層する。このとき、n形GaN10にはSiが不純物として1×1019cm−2の濃度で添加されている。ここで、図3に表したように、AlN層16の上にn形GaN10を直接形成するのではなく、不純物を含まない障壁層(non−doped 障壁層)17を厚さ1〜3μm程度で成長した後、n形GaN層18を積層してもよい。つまり、第1半導体層10は、non−doped GaN層17と、n形GaN層18と、が積層された構造を有していてもよい。 Subsequently, an n-type GaN (first semiconductor layer) 10 is stacked. At this time, Si is added to the n-type GaN 10 as an impurity at a concentration of 1 × 10 19 cm −2 . Here, as shown in FIG. 3, the n-type GaN 10 is not directly formed on the AlN layer 16, but a barrier layer 17 containing no impurities (non-doped barrier layer) 17 having a thickness of about 1 to 3 μm. After the growth, the n-type GaN layer 18 may be stacked. That is, the first semiconductor layer 10 may have a structure in which the non-doped GaN layer 17 and the n-type GaN layer 18 are stacked.

n形GaN10の成長をした後、このn形窒化ガリウム結晶層10の上にInGaNとGaNの多層膜からなるSLS層60及び発光層(MQW発光層)30を積層する。また、発光層30を光らせるための電流注入をするために、結晶構造の上部側にはp形(Mg)のドーピングをする。このとき、発光層30の上には、Al組成20%のAlGaN層22(第2応力印加層)と、Alを含まないp形GaN(第1半導体層)20と、が形成される。   After the growth of the n-type GaN 10, an SLS layer 60 and a light emitting layer (MQW light emitting layer) 30 made of a multilayer film of InGaN and GaN are stacked on the n-type gallium nitride crystal layer 10. Further, in order to inject current for making the light emitting layer 30 shine, p-type (Mg) doping is performed on the upper side of the crystal structure. At this time, an AlGaN layer 22 (second stress applying layer) having an Al composition of 20% and a p-type GaN (first semiconductor layer) 20 containing no Al are formed on the light emitting layer 30.

ここでは、n形GaN結晶層10、発光層30、及びp形GaN20の薄膜結晶成長の手法として有機金属を用いた気相成長法(MOCVD法)を挙げているが、これだけに限定されるわけではない。n形GaN結晶層10、発光層30、及びp形GaN20の薄膜結晶成長の手法としては、一般に窒化物半導体結晶成長に用いられている薄膜結晶成長法である分子線エピタキシー法(MBE: Molecular Beam Epitaxy)やHVPE法(Hydride Vapor Phase Epitaxy)などいずれの方法を用いてもかまわない。   Here, a vapor phase growth method (MOCVD method) using an organic metal is mentioned as a method for growing a thin film crystal of the n-type GaN crystal layer 10, the light emitting layer 30, and the p-type GaN 20, but it is not limited to this. is not. As a method of growing a thin film crystal of the n-type GaN crystal layer 10, the light emitting layer 30, and the p-type GaN 20, a molecular beam epitaxy method (MBE: Molecular Beam) which is a thin film crystal growth method generally used for growing a nitride semiconductor crystal. Any method such as Epitaxy) or HVPE method (Hydride Vapor Phase Epitaxy) may be used.

このようにして、図4(a)に表したように、LED構造の薄膜結晶層(結晶成長層)70をエピタキシャル成長することができる。その後、図4(b)に表したように、第2半導体層20の表面に反射膜兼コンタクト層としてのAgを含む金属膜(反射金属90)、例えば銀ニッケル層、を積層後、接合金属(例えば金錫合金)をはさみ、シリコンあるいは銅などの導電性の支持基板40に貼り合わせる。   In this way, as shown in FIG. 4A, the thin film crystal layer (crystal growth layer) 70 having the LED structure can be epitaxially grown. Thereafter, as shown in FIG. 4B, a metal film (reflection metal 90) containing Ag as a reflection film and contact layer, for example, a silver nickel layer, is laminated on the surface of the second semiconductor layer 20, and then bonded metal. (For example, a gold-tin alloy) is sandwiched and bonded to a conductive support substrate 40 such as silicon or copper.

次に、図4(c)に表したように、薄膜結晶成長用基板であるSi基板50を除去する。第2半導体層20側に支持基板40を貼り付けた後、成長基板を研削することにより成長用Si基板50を除去することが可能である。このとき、Si基板50をおおむね研削により除去した後、最終的にSFガスをエッチャントとするドライエッチングでわずかに残ったSiを除去することにより、Si基板50上に最初に形成したAlN層(バッファ層12)を露出させることができる。 Next, as shown in FIG. 4C, the Si substrate 50 which is a thin film crystal growth substrate is removed. After the support substrate 40 is attached to the second semiconductor layer 20 side, the growth Si substrate 50 can be removed by grinding the growth substrate. At this time, after the Si substrate 50 is removed by grinding, the remaining Si is finally removed by dry etching using SF 6 gas as an etchant, whereby an AlN layer (first formed on the Si substrate 50 ( The buffer layer 12) can be exposed.

ここで、AlN層は、抵抗成分を高くする性質を有する。そのため、例えば図3に関して前述した積層構造を有する半導体発光素子では、AlN系バッファ層(例えば、AlN層を含むバッファ層12)およびAlN系応力印加層(例えば、AlN層を含む第1応力印加層16)を除去しn形GaN層18を露出させた後に、凹凸加工(図1参照)を施す例がある。   Here, the AlN layer has a property of increasing the resistance component. Therefore, for example, in the semiconductor light emitting device having the stacked structure described above with reference to FIG. 3, the AlN buffer layer (for example, the buffer layer 12 including the AlN layer) and the AlN stress applying layer (for example, the first stress applying layer including the AlN layer). There is an example in which an unevenness processing (see FIG. 1) is performed after removing 16) and exposing the n-type GaN layer 18.

具体的には、AlN系バッファ層あるいはAlN系応力印加層は、電極形成を考えた場合には、高いコンタクト抵抗を有する。また、シリーズ抵抗成分が増加する。そのため、一般的なプロセスでは、AlN系バッファ層及びAlN系応力印加層を除去しn形GaN層18を露出させてから凹凸加工を施している。この場合には、第1の半導体結晶層に圧縮応力を印加することができず、引張り応力に起因する障害が発生しやすい。本発明者が実施した実験では、シリコン基板50(エピタキシャル成長用基板)を除去したのちに、AlN系バッファ層(例えば、AlN層を含むバッファ層12)及びAlN系応力印加層(例えば、AlN層を含む第1応力印加層16)を除去しn形GaN層18を露出させた場合、n形GaN層18に加えられる引張り応力に起因して、5〜0.5ミリメートル(mm)の間隔で密度が2〜20cm−1程度の新たなクラックが発生することが分かっている。さらに、実際にLEDを動作させている際には素子温度が上昇するため、第1応力印加層16が設けられていない構造では、素子動作時にも新たなクラックや欠陥が発生して、素子特性の劣化を引き起こすことがある。 Specifically, the AlN buffer layer or the AlN stress application layer has a high contact resistance when electrode formation is considered. In addition, the series resistance component increases. Therefore, in a general process, the AlN buffer layer and the AlN stress application layer are removed to expose the n-type GaN layer 18, and then the concavo-convex process is performed. In this case, compressive stress cannot be applied to the first semiconductor crystal layer, and a failure due to tensile stress is likely to occur. In an experiment conducted by the present inventor, after removing the silicon substrate 50 (epitaxial growth substrate), an AlN buffer layer (for example, a buffer layer 12 including an AlN layer) and an AlN stress applying layer (for example, an AlN layer) are removed. When the n-type GaN layer 18 is exposed by removing the first stress applying layer 16), the density is increased at intervals of 5 to 0.5 millimeters (mm) due to the tensile stress applied to the n-type GaN layer 18. It is known that a new crack of about 2 to 20 cm −1 occurs. Further, since the element temperature rises when the LED is actually operated, in the structure in which the first stress application layer 16 is not provided, new cracks and defects are generated even during the operation of the element. May cause deterioration.

これに対して、実施形態の半導体発光素子では、AlN系応力印加層は、除去されず残っている(例えば、図1に表した「第1応力印加層16」参照)。そのため、第1の半導体結晶層に圧縮応力を印加することができ、引張り応力に起因する障害の発生を抑制することができる。   On the other hand, in the semiconductor light emitting device of the embodiment, the AlN-based stress application layer remains without being removed (see, for example, “first stress application layer 16” illustrated in FIG. 1). Therefore, a compressive stress can be applied to the first semiconductor crystal layer, and the occurrence of failures due to the tensile stress can be suppressed.

この後、図5(a)に表したように、結晶成長層70を素子のサイズで窒化物半導体結晶層部70aに分割する。このとき、p形電極(第2電極82)金属よりも下の基板側については、分割しない状態で保持する。続いて、図5(b)に表したように、n側電極(第1電極81)を形成する部分をマスク89で保護した上で、KOH溶液により窒化物半導体表面(第1半導体層10)側に深さ約500nm程度の凹凸加工を施す。このとき、表面に露出しているAlNおよびAlGaN層(バッファ層12)は、エッチングにより除去される。また、例えば、結晶成長層70(窒化物半導体結晶層部70a)の内部に含まれる3層のAlN層16については、窒化物半導体表面の凹凸加工により最上層(窒化物半導体表面の側の層)が分断され、最上層の下の2層のAlN層16は、凹部よりも下側に連続膜として残される。これについては、後に詳述する。
最後に、図5(c)に表したように、n形電極生成部を保護していたマスク89を除去し、エッチングによりn形GaNを露出させ、n形電極を形成する。
Thereafter, as shown in FIG. 5A, the crystal growth layer 70 is divided into nitride semiconductor crystal layer portions 70a in the element size. At this time, the substrate side below the p-type electrode (second electrode 82) metal is held without being divided. Subsequently, as illustrated in FIG. 5B, the portion where the n-side electrode (first electrode 81) is formed is protected with a mask 89, and then the surface of the nitride semiconductor (first semiconductor layer 10) with a KOH solution. An uneven surface with a depth of about 500 nm is formed on the side. At this time, the AlN and AlGaN layers (buffer layer 12) exposed on the surface are removed by etching. Further, for example, for the three AlN layers 16 included in the crystal growth layer 70 (nitride semiconductor crystal layer portion 70a), the uppermost layer (layer on the nitride semiconductor surface side) is formed by uneven processing on the nitride semiconductor surface. ) Are divided, and the two AlN layers 16 below the uppermost layer are left as continuous films below the recesses. This will be described in detail later.
Finally, as shown in FIG. 5C, the mask 89 protecting the n-type electrode generation portion is removed, and the n-type GaN is exposed by etching to form an n-type electrode.

次に、実施形態にかかる半導体発光素子の他の一例について、図面を参照しつつ説明する。
図6(a)および図6(b)は、実施形態にかかる半導体発光素子の他の例を示す断面模式図および写真図である。
また、図7は、実施形態にかかる半導体発光素子のさらに他の例を示す断面模式図である。
なお、図6(b)は、図6(a)に表した範囲B1の拡大写真図である。
Next, another example of the semiconductor light emitting device according to the embodiment will be described with reference to the drawings.
FIG. 6A and FIG. 6B are a schematic cross-sectional view and a photograph showing another example of the semiconductor light emitting device according to the embodiment.
FIG. 7 is a schematic cross-sectional view showing still another example of the semiconductor light emitting element according to the embodiment.
FIG. 6B is an enlarged photograph of the range B1 shown in FIG.

図6(a)に表した半導体発光素子130は、図1に関して前述した半導体発光素子110と同様に、第2半導体層20と、MQW発光層30と、第1半導体層10と、第1応力印加層16と、第2応力印加層22と、第1電極81と、第2電極82と、を備える。第1半導体層10は、non−doped GaN層17と、n形GaN層18と、が積層された構造を有する。これらは、図1および図3に関して前述した如くである。   Similar to the semiconductor light emitting device 110 described above with reference to FIG. 1, the semiconductor light emitting device 130 illustrated in FIG. 6A includes the second semiconductor layer 20, the MQW light emitting layer 30, the first semiconductor layer 10, and the first stress. The application layer 16, the second stress application layer 22, the first electrode 81, and the second electrode 82 are provided. The first semiconductor layer 10 has a structure in which a non-doped GaN layer 17 and an n-type GaN layer 18 are stacked. These are as described above with reference to FIGS.

なお、図7に表した半導体発光素子140のように、MQW発光層30の上には、InGaNとGaNの多層膜からなるSLS層60が配置されていてもよい。また、第2応力印加層は、AlN系の多層膜からなるSLS層24を含んでいてもよい。   Note that an SLS layer 60 made of a multilayer film of InGaN and GaN may be disposed on the MQW light emitting layer 30 as in the semiconductor light emitting device 140 shown in FIG. The second stress application layer may include an SLS layer 24 made of an AlN-based multilayer film.

図6(b)に表したように、第1応力印加層16の第1半導体層10とは反対側に光取り出し層が設けられている。光取り出し層の第1応力印加層16とは反対側の表面(光取り出し面)には凹凸が設けられている。光取り出し面に施された凹凸加工の表面には、SiOを含む保護膜15が形成されている。また、図6(a)に表した半導体発光素子130では、半導体表面の凹凸加工により、結晶成長層70(図4(a)等参照)の内部に含まれる3層のAlN層16のうちの最上層(光取り出し面の側の層)および最上層の下の1層目のAlN層16が分断されている。一方、最上層の下の2層目のAlN層16は、凹部よりも下側に連続膜として残されている。 As shown in FIG. 6B, the light extraction layer is provided on the opposite side of the first stress application layer 16 from the first semiconductor layer 10. The surface of the light extraction layer opposite to the first stress application layer 16 (light extraction surface) is provided with unevenness. A protective film 15 containing SiO 2 is formed on the surface of the concavo-convex process applied to the light extraction surface. Further, in the semiconductor light emitting device 130 shown in FIG. 6A, of the three AlN layers 16 included in the crystal growth layer 70 (see FIG. 4A, etc.) due to the uneven processing of the semiconductor surface. The uppermost layer (the layer on the light extraction surface side) and the first AlN layer 16 below the uppermost layer are divided. On the other hand, the second AlN layer 16 below the uppermost layer is left as a continuous film below the recess.

なお、連続膜として残されるAlN層(第1応力印加層)16の形態は、これだけに限定されるわけではない。例えば、図1に表したように、最上層のAlN層16の位置に対する光取り出し面の凹凸加工が浅く、全てのAlN層16が連続膜として残されていてもよい。
このように、複数層のAlN層16のうちのいずれかのAlN層16が連続膜として残されていることで、AlN層16は、第1の半導体結晶層に圧縮応力を印加することができる。これにより、クラックの発生あるいは欠陥の導入に伴う素子特性の劣化を抑制し発光効率の高い半導体発光素子を提供することができる。
The form of the AlN layer (first stress application layer) 16 left as a continuous film is not limited to this. For example, as shown in FIG. 1, the unevenness of the light extraction surface with respect to the position of the uppermost AlN layer 16 may be shallow, and all the AlN layers 16 may be left as a continuous film.
Thus, any one of the plurality of AlN layers 16 is left as a continuous film, so that the AlN layer 16 can apply compressive stress to the first semiconductor crystal layer. . As a result, it is possible to provide a semiconductor light emitting device with high light emission efficiency by suppressing deterioration of device characteristics due to generation of cracks or introduction of defects.

すなわち、第1応力印加層16として必要とされるAlNの厚さは、AlN層が単層の場合には15nm以上である。また、AlN層は、複数層であってもよい。複数層のAlNが隣接する場合には、その合計の厚さが15nm以上となればよい。
また、図6(a)に表した半導体発光素子130において、第1半導体層10は、厚さ1μmのnon−doped GaN層17と、厚さ2μmのn形GaN層18と、から構成され合計3μmの厚さを有するが、第1応力印加層16として要求されるAlNの厚さは、この第1半導体層10の厚さに依存する。すなわち、第1半導体層10の厚さが薄い場合には、第1応力印加層16の厚さは、薄くてもよい。より具体的には、第1半導体層10が厚さ2μmのn形GaN層から構成される場合には、第1応力印加層16のAlNの厚さは、10nm以上であればよい。
That is, the thickness of AlN required as the first stress application layer 16 is 15 nm or more when the AlN layer is a single layer. The AlN layer may be a plurality of layers. When multiple layers of AlN are adjacent to each other, the total thickness may be 15 nm or more.
Further, in the semiconductor light emitting device 130 illustrated in FIG. 6A, the first semiconductor layer 10 includes a non-doped GaN layer 17 having a thickness of 1 μm and an n-type GaN layer 18 having a thickness of 2 μm. Although it has a thickness of 3 μm, the thickness of AlN required as the first stress application layer 16 depends on the thickness of the first semiconductor layer 10. That is, when the first semiconductor layer 10 is thin, the first stress applying layer 16 may be thin. More specifically, when the first semiconductor layer 10 is composed of an n-type GaN layer having a thickness of 2 μm, the thickness of AlN of the first stress application layer 16 may be 10 nm or more.

また、第1応力印加層16は、AlGaN層で構成されてもよい。第1応力印加層16がAlGaNで構成される場合には、そのAl組成と厚さとの関係は、等価的なAlN層の厚さと同等であればよい。すなわち、第1半導体層10の厚さが3μmの場合、Al組成50%のAlGaN層を第1応力印加層16とするには、AlGaNの厚さは、30nm以上であればよい。さらに、第1応力印加層16は、AlNとAlGaNの複合層あるいは互いに組成の異なる複数のAlGaNから構成されてもよい。その場合にも、要求される厚さは、等価的なAlNの厚さで見積もることができる。   The first stress application layer 16 may be composed of an AlGaN layer. In the case where the first stress application layer 16 is made of AlGaN, the relationship between the Al composition and the thickness should be equivalent to the thickness of the equivalent AlN layer. That is, when the thickness of the first semiconductor layer 10 is 3 μm, in order to use the AlGaN layer having an Al composition of 50% as the first stress applying layer 16, the thickness of the AlGaN may be 30 nm or more. Further, the first stress applying layer 16 may be composed of a composite layer of AlN and AlGaN or a plurality of AlGaN having different compositions. Even in that case, the required thickness can be estimated by the equivalent AlN thickness.

第1応力印加層16は、開放面である光取出し面の側に設けられるのに対して、第2応力印加層22は、反射金属90および接合金属と接する側に配置される第2半導体層20に接して形成される。すなわち、第2半導体層20は、反射金属90膜で固定されているため、第2半導体層20には第1半導体層10に比べてクラックや欠陥が発生しづらい。そのため、第2応力印加層22に要求される等価的なAlN層の厚さは、第1応力印加層16に要求される等価的なAlN層の厚さよりも薄くなる。図6(a)に表した半導体発光素子130の第2応力印加層22としては、厚さ5nm、Al組成20%のAlGaN層を用いている。また、図7に表した半導体発光素子140の第2応力印加層としては、厚さ3nm、Al組成15%のAlGaN層を厚さ3nmのGaN層で挟み込んだSLS層(3周期)24を用いている。第2応力印加層は、Al組成10%、厚さ5nmのAlGaN層でもよい。また、第2応力印加層22は、省略することもできる。   The first stress application layer 16 is provided on the light extraction surface side which is an open surface, while the second stress application layer 22 is a second semiconductor layer disposed on the side in contact with the reflective metal 90 and the bonding metal. 20 is formed in contact with. That is, since the second semiconductor layer 20 is fixed by the reflective metal 90 film, cracks and defects are less likely to occur in the second semiconductor layer 20 than in the first semiconductor layer 10. Therefore, the equivalent thickness of the AlN layer required for the second stress application layer 22 is thinner than the equivalent thickness of the AlN layer required for the first stress application layer 16. As the second stress applying layer 22 of the semiconductor light emitting device 130 shown in FIG. 6A, an AlGaN layer having a thickness of 5 nm and an Al composition of 20% is used. Further, as the second stress applying layer of the semiconductor light emitting device 140 shown in FIG. 7, an SLS layer (3 periods) 24 in which an AlGaN layer having a thickness of 3 nm and an Al composition of 15% is sandwiched between GaN layers having a thickness of 3 nm is used. ing. The second stress applying layer may be an AlGaN layer having an Al composition of 10% and a thickness of 5 nm. Further, the second stress application layer 22 can be omitted.

第一応力印加層16により第1半導体層10に圧縮応力を印加できない場合には、引張り応力の影響でクラックの発生あるいは欠陥の導入に伴う素子特性の劣化が生ずる。また引張り応力の影響によるこれら障害は、MQW発光層30の平均のIn組成が高く、MQW発光層30の平均的な格子定数が大きいときに顕著となる。また、引張り応力の影響による障害は、MQW発光層30の厚さが厚い場合にも顕著となる。   When compressive stress cannot be applied to the first semiconductor layer 10 by the first stress application layer 16, cracks are generated due to the influence of tensile stress or element characteristics are deteriorated due to the introduction of defects. Further, these obstacles due to the influence of tensile stress become prominent when the average In composition of the MQW light emitting layer 30 is high and the average lattice constant of the MQW light emitting layer 30 is large. Further, the obstacle due to the influence of the tensile stress becomes significant even when the MQW light emitting layer 30 is thick.

具体的には、MQW発光層30の中で、InGaN層からなる井戸層32のIn組成が16%で、井戸層32の厚さが3.5nmよりも厚い場合、かつ、GaN層からなる障壁層34の厚さが10.5nmよりも薄い場合に、引張り応力の影響による障害は顕著となる。前述の条件では、平均のIn組成は4.0%である。ここで、本願明細書において、「平均のIn組成」とは、井戸層32の厚さをt1とし、井戸層32におけるIn組成をx1とし、障壁層34の厚さをt2とし、障壁層34におけるIn組成をx2としたとき、(t1×x1+t2×x2)/(t1+t2)で表される比率をいうものとする。また前述の条件で、井戸層32の数が4ペアよりも多いときに、引張り応力の影響による障害は顕著となる。これは、前述のMQW発光層30の場合には、56nm以上の厚さに相当する。   Specifically, in the MQW light emitting layer 30, when the In composition of the well layer 32 made of the InGaN layer is 16% and the thickness of the well layer 32 is thicker than 3.5 nm, the barrier made of the GaN layer When the thickness of the layer 34 is less than 10.5 nm, the obstacle due to the influence of tensile stress becomes significant. Under the conditions described above, the average In composition is 4.0%. Here, in the present specification, “average In composition” means that the thickness of the well layer 32 is t1, the In composition in the well layer 32 is x1, the thickness of the barrier layer 34 is t2, and the barrier layer 34 When the In composition in x is x2, the ratio represented by (t1 × x1 + t2 × x2) / (t1 + t2) is used. Moreover, when the number of well layers 32 is larger than 4 pairs under the above-described conditions, the failure due to the influence of tensile stress becomes significant. This corresponds to a thickness of 56 nm or more in the case of the MQW light emitting layer 30 described above.

また、MQW発光層30の中で、InGaN層からなる井戸層32のIn組成が12%で、井戸層32の厚さが3nmよりも厚い場合、かつ、GaN層からなる障壁層34の厚さが5nmよりも薄い場合に、引張り応力の影響による障害はさらに顕著となる。前述の条件では、平均のIn組成は4.5%である。また前述の条件で、井戸層32の数が6ペアよりも多いときに、引張り応力の影響による障害は顕著となる。これは、前述のMQW発光層30の場合には、48nm以上の厚さに相当する。   Further, in the MQW light emitting layer 30, when the In composition of the well layer 32 made of the InGaN layer is 12% and the thickness of the well layer 32 is thicker than 3 nm, the thickness of the barrier layer 34 made of the GaN layer When the thickness is smaller than 5 nm, the obstacle due to the influence of the tensile stress becomes more remarkable. Under the conditions described above, the average In composition is 4.5%. Under the above-described conditions, when the number of well layers 32 is larger than 6 pairs, the failure due to the influence of tensile stress becomes significant. This corresponds to a thickness of 48 nm or more in the case of the MQW light emitting layer 30 described above.

さらに、MQW発光層30の障壁層34にInを含むInGaNを用いた場合でも、GaN層に印加される引張り応力に起因した障害はさらに顕著となる。この場合にも、等価的な平均のIn組成の大きさでクラックの発生あるいは欠陥の導入などの障害の発生の危険性を評価できる。   Further, even when InGaN containing In is used for the barrier layer 34 of the MQW light emitting layer 30, the failure due to the tensile stress applied to the GaN layer becomes more prominent. Also in this case, the risk of occurrence of a failure such as the occurrence of a crack or the introduction of a defect can be evaluated with an equivalent average In composition size.

第1電極81は、第1応力印加層16を貫通し、第1半導体層10に電気的に接続されている。第2電極82においては、図示しない引き出し部が図6(a)に表した断面に対して垂直方向(紙面に対して垂直方向)に形成されている。   The first electrode 81 penetrates the first stress application layer 16 and is electrically connected to the first semiconductor layer 10. In the second electrode 82, an unillustrated lead portion is formed in a direction perpendicular to the cross section shown in FIG.

なお、本明細書において「窒化物半導体」とは、BInAlGa1−x−y−zN(0≦x≦1,0≦y≦1,0≦z≦1,x+y+z≦1)なる化学式において組成比x、y及びzをそれぞれの範囲内で変化させた全ての組成の半導体を含むものとする。またさらに、上記化学式において、N(窒素)以外のV族元素もさらに含むもの、導電形などの各種の物性を制御するために添加される各種の元素をさらに含むもの、及び、意図せずに含まれる各種の元素をさらに含むものも、「窒化物半導体」に含まれるものとする。 In this specification, “nitride semiconductor” means B x In y Al z Ga 1-xyz N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, x + y + z ≦ 1) Semiconductors having all compositions in which the composition ratios x, y, and z are changed within the respective ranges are included. Furthermore, in the above chemical formula, those further containing a group V element other than N (nitrogen), those further containing various elements added for controlling various physical properties such as conductivity type, and unintentionally Those further including various elements included are also included in the “nitride semiconductor”.

以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、半導体発光素子に含まれる発光層、半導体層などの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. For example, regarding the specific configuration of each element such as a light emitting layer and a semiconductor layer included in the semiconductor light emitting device, those skilled in the art can implement the present invention in a similar manner by appropriately selecting from a known range, and obtain the same effects. As long as it is possible, it is within the scope of the present invention.
Moreover, what combined any two or more elements of each specific example in the technically possible range is also included in the scope of the present invention as long as the gist of the present invention is included.

その他、本発明の実施の形態として上述した半導体発光素子を基にして、当業者が適宜設計変更して実施し得る全ての半導体発光素子も、本発明の要旨を包含する限り、本発明の範囲に属する。   In addition, all semiconductor light-emitting elements that can be implemented by those skilled in the art based on the semiconductor light-emitting elements described above as embodiments of the present invention are included in the scope of the present invention as long as they include the gist of the present invention. Belonging to.

その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。   In addition, in the category of the idea of the present invention, those skilled in the art can conceive of various changes and modifications, and it is understood that these changes and modifications also belong to the scope of the present invention. .

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10 第1半導体層、 12 バッファ層、 14 窒化ガリウム層、 15 保護膜、 16 第1応力印加層、 17 窒化ガリウム層(GaN層)、 18 n形GaN層、 20 第2半導体層、 22 第2応力印加層、 24 SLS層、 30 発光層、 32 井戸層、 34 障壁層、 40 支持基板、 50 シリコン基板、 60 SLS層、 70 結晶成長層、 70a 窒化物半導体結晶層部、 81 第1電極、 82 第2電極、 89 マスク、 90 反射金属、 110、120、130、140 半導体発光素子   10 first semiconductor layer, 12 buffer layer, 14 gallium nitride layer, 15 protective film, 16 first stress applying layer, 17 gallium nitride layer (GaN layer), 18 n-type GaN layer, 20 second semiconductor layer, 22 second Stress application layer, 24 SLS layer, 30 light emitting layer, 32 well layer, 34 barrier layer, 40 support substrate, 50 silicon substrate, 60 SLS layer, 70 crystal growth layer, 70a nitride semiconductor crystal layer portion, 81 first electrode, 82 Second electrode, 89 Mask, 90 Reflective metal, 110, 120, 130, 140 Semiconductor light emitting device

図1は、実施形態にかかる半導体発光素子の構成を例示する断面模式図である。
図1に表したように、実施形態にかかる半導体発光素子110は、第1導電形の第1半導体層10と、第2導電形の第2半導体層20と、発光層30と、第1応力印加層16と、を備える。半導体発光素子110は、例えば、LED素子である。半導体発光素子110は、レーザダイオードでも良い。以下では、半導体発光素子110が、LEDである場合として説明する。
FIG. 1 is a schematic cross-sectional view illustrating the configuration of a semiconductor light emitting element according to the embodiment.
As illustrated in FIG. 1, the semiconductor light emitting device 110 according to the embodiment includes a first semiconductor layer 10 having a first conductivity type, a second semiconductor layer 20 having a second conductivity type, a light emitting layer 30, and a first stress. And an application layer 16. The semiconductor light emitting element 110 is, for example, an LED element. The semiconductor light emitting device 110 may be a laser diode. Hereinafter, the case where the semiconductor light emitting element 110 is an LED will be described.

発光層30は、例えば、複数の障壁層34と、障壁層34どうしの間に設けられた井戸層32と、を含む。井戸層32は複数設けられても良い。例えば、発光層30は、MQW(Multiple Quantum Well)構造を有する。   The light emitting layer 30 includes, for example, a plurality of barrier layers 34 and a well layer 32 provided between the barrier layers 34. A plurality of well layers 32 may be provided. For example, the light emitting layer 30 has an MQW (Multiple Quantum Well) structure.

図2(a)および図2(b)は、積層構造に発生する応力を示す断面模式図である。
図2(a)は、実施形態にかかる半導体発光素子110のLED積層構造に発生する応力を例示している。図2(b)は、参考例の半導体発光素子のLED積層構造に発生する応力を例示している。
FIG. 2A and FIG. 2B are schematic cross-sectional views showing the stress generated in the laminated structure.
FIG. 2A illustrates the stress generated in the LED stacked structure of the semiconductor light emitting device 110 according to the embodiment. FIG. 2B illustrates the stress generated in the LED stack structure of the semiconductor light emitting device of the reference example.

また、発光層30となるInGaN結晶層の格子定数は、窒化ガリウムの格子定数より大きい。そのため、図2(b)に表した矢印A3および矢印A4のように、サファイア結晶からの圧縮応力が加わった窒化ガリウム結晶層には、InGaN結晶層から引っ張る方向で応力(引張り応力)が加えられる。一方、図2(b)に表した矢印A5および矢印A6のように、発光層30には、窒化ガリウム結晶層から圧縮応力を受ける。このような圧縮応力および引張り応力は、(0001)面内に、言い換えれば例えばa軸方向に発生する。   The lattice constant of the InGaN crystal layer that becomes the light emitting layer 30 is larger than the lattice constant of gallium nitride. Therefore, as indicated by arrows A3 and A4 shown in FIG. 2B, stress (tensile stress) is applied in the direction of pulling from the InGaN crystal layer to the gallium nitride crystal layer to which compressive stress from the sapphire crystal is applied. . On the other hand, as indicated by arrows A5 and A6 shown in FIG. 2B, the light emitting layer 30 receives compressive stress from the gallium nitride crystal layer. Such compressive stress and tensile stress are generated in the (0001) plane, in other words, in the a-axis direction, for example.

本発明者の知見によれば、窒化ガリウム結晶層に加えられる圧縮応力および引張り応力は、サファイア基板を除去したThin−film構造においても残留していることが分かっている。これは、図2(a)に関して後述するシリコン基板から剥離したThin−film構造においても同様である。また、窒化ガリウム結晶層に加えられた応力が圧縮応力であるかあるいは引張り応力であるかについては、ラマンスペクトルから判定することができる。例えば、応力が印加されていない窒化ガリウム結晶におけるラマンスペクトルのピークは、約568cm−1であるが、圧縮応力が印加された窒化ガリウム結晶においては、568cm−1よりも小さい波数、例えば約567.8〜565.5cm−1であり、引張り応力が印加された窒化ガリウム結晶においては、568cm−1よりも大きい波数で、約570cm−1までの値となる。 According to the knowledge of the present inventor, it is known that the compressive stress and tensile stress applied to the gallium nitride crystal layer remain even in the thin-film structure from which the sapphire substrate is removed. The same applies to a thin-film structure peeled from a silicon substrate described later with reference to FIG. Whether the stress applied to the gallium nitride crystal layer is a compressive stress or a tensile stress can be determined from a Raman spectrum. For example, the peak of the Raman spectrum in a gallium nitride crystal to which no stress is applied is about 568 cm −1 , but in the gallium nitride crystal to which a compressive stress is applied, a wave number smaller than 568 cm −1 , for example, about 567. a 8~565.5Cm -1, in the gallium nitride crystal stress is applied tensile, with larger wave numbers than 568cm -1, a value of up to about 570 cm -1.

窒化ガリウムの結晶層を成長するための結晶基板となるシリコンの等価的格子長さは、窒化ガリウムの格子定数よりも大きい。また、シリコン結晶の熱膨張係数は、窒化ガリウムの熱膨張係数よりも小さい。そのため、結晶成長終了後の窒化ガリウム結晶層には、図2(a)に表した矢印A11および矢印A12のように、引張り応力が残存している。さらに、図2(a)に表した矢印A13および矢印A14のように、シリコン結晶上に形成した窒化物半導体結晶系では、InGaN発光層30からさらなる引張り応力を受ける。一方、図2(a)に表した矢印A15および矢印A16のように、発光層30には、窒化ガリウム結晶層から圧縮応力を受ける。このような圧縮応力および引張り応力は、(0001)面内に、言い換えれば例えばa軸方向に発生する。   The equivalent lattice length of silicon used as a crystal substrate for growing a gallium nitride crystal layer is larger than the lattice constant of gallium nitride. Moreover, the thermal expansion coefficient of the silicon crystal is smaller than that of gallium nitride. Therefore, tensile stress remains in the gallium nitride crystal layer after the completion of crystal growth, as indicated by arrows A11 and A12 shown in FIG. Further, the nitride semiconductor crystal system formed on the silicon crystal is subjected to further tensile stress from the InGaN light emitting layer 30 as indicated by arrows A13 and A14 shown in FIG. On the other hand, as indicated by arrows A15 and A16 shown in FIG. 2A, the light emitting layer 30 receives compressive stress from the gallium nitride crystal layer. Such compressive stress and tensile stress are generated in the (0001) plane, in other words, in the a-axis direction, for example.

次に、半導体発光素子120の作製プロセスの一例について、説明する。
図4(a)〜図5(c)は、図3に表した半導体発光素子構造を作製するプロセスを示す断面模式図である。

Next, an example of a manufacturing process of the semiconductor light emitting element 120 will be described.
FIGS. 4A to 5C are schematic cross-sectional views showing a process for manufacturing the semiconductor light emitting device structure shown in FIG.

Claims (9)

結晶基板の上に、第1応力印加層を形成し、
前記第1応力印加層の上に、窒化物半導体結晶を含み前記第1応力印加層から圧縮応力が印加される第1導電形の第1半導体層であって、格子定数が前記結晶基板の等価的格子長さよりも小さい第1導電形の第1半導体層または熱膨張係数が前記結晶基板の熱膨張係数よりも大きい第1導電形の第1半導体層を形成し、
前記第1半導体層の上に、窒化物半導体結晶を含み、平均の格子定数が前記第1半導体層の格子定数よりも大きい発光層を形成し、
前記発光層の上に、窒化物半導体結晶を含み、格子定数が前記結晶基板の等価的格子長さよりも小さい第2導電形の第2半導体層または熱膨張係数が前記結晶基板の熱膨張係数よりも大きい第2導電形の第2半導体層を形成した後、
前記第1応力印加層の少なくとも一部を残した状態で前記結晶基板を除去する半導体発光素子の製造方法。
Forming a first stress applying layer on the crystal substrate;
A first semiconductor layer of a first conductivity type including a nitride semiconductor crystal and applied with compressive stress from the first stress application layer on the first stress application layer, and having a lattice constant equivalent to that of the crystal substrate Forming a first semiconductor layer of a first conductivity type smaller than a general lattice length or a first semiconductor layer of a first conductivity type having a thermal expansion coefficient larger than that of the crystal substrate;
On the first semiconductor layer, a light emitting layer including a nitride semiconductor crystal and having an average lattice constant larger than that of the first semiconductor layer is formed.
A second semiconductor layer of a second conductivity type including a nitride semiconductor crystal on the light emitting layer and having a lattice constant smaller than an equivalent lattice length of the crystal substrate, or a thermal expansion coefficient is greater than a thermal expansion coefficient of the crystal substrate. After forming a second semiconductor layer having a larger second conductivity type,
A method of manufacturing a semiconductor light emitting device, wherein the crystal substrate is removed while leaving at least a part of the first stress application layer.
前記第1応力印加層は、Alx1Ga1−x1N(0<x1≦1)を含む請求項1記載の半導体発光素子の製造方法。 2. The method of manufacturing a semiconductor light emitting element according to claim 1, wherein the first stress application layer includes Al x1 Ga 1-x1 N (0 <x1 ≦ 1). 前記第1応力印加層を複数層形成し、
前記結晶基板を除去する工程は、前記複数の第1応力印加層の少なくとも一層を残した状態で前記結晶基板を除去する工程を含む請求項1または2に記載の半導体発光素子の製造方法。
Forming a plurality of first stress applying layers;
3. The method for manufacturing a semiconductor light emitting element according to claim 1, wherein the step of removing the crystal substrate includes a step of removing the crystal substrate while leaving at least one of the plurality of first stress applying layers.
前記第2半導体層の上に、前記第2半導体層に圧縮応力を印加する第2応力印加層をさらに形成する請求項1〜3のいずれか1つに記載の半導体発光素子の製造方法。   4. The method for manufacturing a semiconductor light emitting element according to claim 1, further comprising forming a second stress applying layer for applying a compressive stress to the second semiconductor layer on the second semiconductor layer. 5. 前記第2応力印加層は、Alx2Ga1−x2N(0<x2<1)を含む請求項4記載の半導体発光素子の製造方法。 5. The method of manufacturing a semiconductor light emitting element according to claim 4, wherein the second stress application layer contains Al x2 Ga 1-x2 N (0 <x2 <1). 前記第2応力印加層の上に、前記第1応力印加層、前記第1半導体層、前記発光層及び前記第2半導体層を支持する導電性の支持基板をさらに形成する請求項4または5に記載の半導体発光素子の製造方法。   The conductive support substrate that supports the first stress application layer, the first semiconductor layer, the light emitting layer, and the second semiconductor layer is further formed on the second stress application layer. The manufacturing method of the semiconductor light-emitting device of description. 前記結晶基板を除去した後、前記第1応力印加層の前記第1半導体層とは反対側に凹凸をさらに形成する請求項1〜6のいずれか1つに記載の半導体発光素子の製造方法。   The method for manufacturing a semiconductor light emitting element according to claim 1, further comprising forming irregularities on the opposite side of the first stress applying layer from the first semiconductor layer after removing the crystal substrate. 前記第1応力印加層を3層形成し、
前記3層の第1応力印加層のうちの前記凹凸の側の層を前記凹凸の加工により分断し、
前記3層の第1応力印加層のうちの前記凹凸の側の層とは異なる他の2層を前記凹凸の凹部の下側に連続膜として残す請求項7記載の半導体発光素子の製造方法。
Forming three first stress applying layers;
Of the three first stress applying layers, the uneven side layer is divided by the uneven surface processing,
8. The method of manufacturing a semiconductor light emitting element according to claim 7, wherein two other layers different from the layer on the concave and convex side of the three first stress applying layers are left as continuous films below the concave and convex portions of the concave and convex.
前記第1応力印加層を貫通し、前記第1半導体層に電気的に接続される第1電極をさらに形成する請求項1〜8のいずれか1つに記載の半導体発光素子の製造方法。   The method for manufacturing a semiconductor light emitting element according to claim 1, further comprising forming a first electrode that penetrates the first stress application layer and is electrically connected to the first semiconductor layer.
JP2012253356A 2012-11-19 2012-11-19 Manufacturing method of semiconductor light emitting device Active JP5944301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012253356A JP5944301B2 (en) 2012-11-19 2012-11-19 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012253356A JP5944301B2 (en) 2012-11-19 2012-11-19 Manufacturing method of semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011271560A Division JP5166594B1 (en) 2011-12-12 2011-12-12 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2013123046A true JP2013123046A (en) 2013-06-20
JP5944301B2 JP5944301B2 (en) 2016-07-05

Family

ID=48774830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012253356A Active JP5944301B2 (en) 2012-11-19 2012-11-19 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5944301B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082671A (en) * 1998-06-26 2000-03-21 Sony Corp Nitride based iii-v compound semiconductor device and its manufacture
JP2003536257A (en) * 2000-06-09 2003-12-02 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Method of manufacturing gallium nitride coating
JP2004048076A (en) * 2003-10-30 2004-02-12 Sanyo Electric Co Ltd Semiconductor element and its manufacturing method
JP2006156968A (en) * 2004-10-26 2006-06-15 Doshisha Co Ltd Light-emitting device
WO2006120908A1 (en) * 2005-05-02 2006-11-16 Nichia Corporation Nitride based semiconductor element and method for fabricating the same
JP2006332125A (en) * 2005-05-23 2006-12-07 Nichia Chem Ind Ltd Semiconductor element
JP2009527913A (en) * 2006-02-23 2009-07-30 アズッロ セミコンダクターズ アクチエンゲゼルシャフト NITRIDO SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000082671A (en) * 1998-06-26 2000-03-21 Sony Corp Nitride based iii-v compound semiconductor device and its manufacture
JP2003536257A (en) * 2000-06-09 2003-12-02 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Method of manufacturing gallium nitride coating
JP2004048076A (en) * 2003-10-30 2004-02-12 Sanyo Electric Co Ltd Semiconductor element and its manufacturing method
JP2006156968A (en) * 2004-10-26 2006-06-15 Doshisha Co Ltd Light-emitting device
WO2006120908A1 (en) * 2005-05-02 2006-11-16 Nichia Corporation Nitride based semiconductor element and method for fabricating the same
JP2006332125A (en) * 2005-05-23 2006-12-07 Nichia Chem Ind Ltd Semiconductor element
JP2009527913A (en) * 2006-02-23 2009-07-30 アズッロ セミコンダクターズ アクチエンゲゼルシャフト NITRIDO SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME

Also Published As

Publication number Publication date
JP5944301B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5460831B1 (en) Semiconductor light emitting device
JP5995302B2 (en) Manufacturing method of nitride semiconductor light emitting device
JP5166594B1 (en) Semiconductor light emitting device
EP2472605A1 (en) Nitride semiconductor element and process for production thereof
WO2010100844A1 (en) Nitride semiconductor element and method for manufacturing same
JP2007305851A (en) Nitride semiconductor light emitting device
JP5861947B2 (en) Semiconductor light emitting device and manufacturing method thereof
WO2016002419A1 (en) Nitride-semiconductor light-emitting element
JP2015153826A (en) Nitride semiconductor light emitting element and manufacturing method of the same
TW201607076A (en) Led element
JP2010040692A (en) Nitride based semiconductor device and method of manufacturing the same
JP2008288532A (en) Nitride semiconductor device
US8987026B2 (en) Semiconductor light emitting device
JP2013258207A (en) Semiconductor light-emitting element and method of manufacturing the same
JP2001102633A (en) Method of manufacturing nitride-based compound semiconductor light emitting element
JP6135954B2 (en) Nitride semiconductor light emitting device
JP2015115343A (en) Method of manufacturing nitride semiconductor element
JP5434343B2 (en) Method for forming ITO electrode, ITO electrode for semiconductor element, and semiconductor element provided with ITO electrode
US9065004B2 (en) Semiconductor light emitting element
JP5944301B2 (en) Manufacturing method of semiconductor light emitting device
JP5800251B2 (en) LED element
JP2008227103A (en) GaN-BASED SEMICONDUCTOR LIGHT EMITTING ELEMENT
JP2007019526A (en) Process for fabricating nitride semiconductor element
JP6482388B2 (en) Nitride semiconductor light emitting device
JP5800252B2 (en) LED element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160525

R151 Written notification of patent or utility model registration

Ref document number: 5944301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250