JP2013121612A - Laser beam processing apparatus for resin molded product - Google Patents

Laser beam processing apparatus for resin molded product Download PDF

Info

Publication number
JP2013121612A
JP2013121612A JP2011271181A JP2011271181A JP2013121612A JP 2013121612 A JP2013121612 A JP 2013121612A JP 2011271181 A JP2011271181 A JP 2011271181A JP 2011271181 A JP2011271181 A JP 2011271181A JP 2013121612 A JP2013121612 A JP 2013121612A
Authority
JP
Japan
Prior art keywords
laser beam
output
reflection
optical axis
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011271181A
Other languages
Japanese (ja)
Other versions
JP5930523B2 (en
Inventor
Tatsumi Hishikawa
辰巳 菱川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STAR TECHNO CO Ltd
Original Assignee
STAR TECHNO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STAR TECHNO CO Ltd filed Critical STAR TECHNO CO Ltd
Priority to JP2011271181A priority Critical patent/JP5930523B2/en
Publication of JP2013121612A publication Critical patent/JP2013121612A/en
Application granted granted Critical
Publication of JP5930523B2 publication Critical patent/JP5930523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve durability by preventing any damage of a laser beam oscillating means by the mechanical vibration or the like, to output the consistent output laser for a long time to a workpiece, to propagate and output the laser beam of high output to a laser beam machining head; to perform the machining without limitation of any machining form of the workpiece; and to simply achieve machining work by the laser beam while ensuring versatility of the robot itself.SOLUTION: The laser beam output from a laser beam oscillating means is guided to first and second waveguides (29, 43) which are oscillated and turned following arms (9c, 9g) oscillated and turned according to the drive of a robot (9) by first to third free reflection joint means (31, 45, 53), and output to a resin molded product (5) from a laser beam output head (19).

Description

本発明は、産業ロボットのアームに設けられたレーザ光出力ヘッドから出力されるレーザ光により樹脂成形品をトリミング処理、バリ取り処理、穴開け処理、切断処理等の各種処理を行う樹脂成形品のレーザ光処理装置に関する。   The present invention relates to a resin molded product that performs various processes such as trimming, deburring, drilling, and cutting with a laser beam output from a laser beam output head provided on an arm of an industrial robot. The present invention relates to a laser beam processing apparatus.

産業ロボットのアーム先端部に設けられたレーザ光出力ヘッドからレーザ光を出力してワークに所要の加工を行う処理装置としては、例えば特許文献1に示すレーザ加工装置が知られている。該レーザ加工装置は、産業ロボットの基端側アームにレーザ光発振手段を取り付けると共に基端側アームに対して回動するように軸支された先端側アームに設けられたレーザ光加工ヘッドと上記レーザ光発振手段を光ファイバケーブルで接続し、レーザ光加工ヘッドから被加工物へレーザ光を出力して所要の加工処理を実行している。   For example, a laser processing apparatus disclosed in Patent Document 1 is known as a processing apparatus that outputs laser light from a laser light output head provided at an arm tip of an industrial robot and performs a required processing on a workpiece. The laser machining apparatus includes a laser beam machining head mounted on a distal arm that is attached to a proximal arm of an industrial robot and pivotally supported so as to rotate with respect to the proximal arm and the above-mentioned laser beam machining head. The laser beam oscillation means is connected by an optical fiber cable, and laser beam is output from the laser beam machining head to the workpiece to perform a required machining process.

しかし、上記したレーザ光加工装置にあっては、基端側アームにレーザ光発振手段を取り付ける構造であるため、基端側アームの回動等に伴う振動等によりレーザ光発振手段の耐久性が悪くなって短時間に損傷し易くなり、被加工物に対して長期にわたって安定した出力レーザを出力することが困難になる問題を有している。また、レーザ光加工ヘッドに対してレーザ光を伝播する光ファイバケーブルにあっては、大出力のレーザ光を伝播させることができず、被加工物の加工態様が限定される問題を有している。   However, since the laser beam processing apparatus described above has a structure in which the laser beam oscillation unit is attached to the proximal end arm, the durability of the laser beam oscillation unit is reduced due to vibration associated with the rotation of the proximal end arm. There is a problem that it becomes worse and easily damaged in a short time, and it becomes difficult to output a stable output laser to the workpiece for a long period of time. In addition, in an optical fiber cable that propagates laser light to a laser beam machining head, high-power laser beam cannot be propagated, and there is a problem that the machining mode of a workpiece is limited. Yes.

また、例えば特許文献2に示すレーザビームによる3次元加工システムにあっては、回動自在に連結されたロボットアーム内に光ファイバケーブルを内蔵させ、該光ファイバケーブル内を伝播するレーザ光をレーザ光出力ヘッドから出力して被加工部を加工処理している。   Further, for example, in the three-dimensional machining system using a laser beam shown in Patent Document 2, an optical fiber cable is built in a robot arm that is rotatably connected, and laser light propagating in the optical fiber cable is converted into a laser beam. The processed part is processed by outputting from the optical output head.

しかし、上記加工システムにあっては、上記した特許文献1の加工装置と同様にレーザ光加工ヘッドに対して光ファイバケーブルによりレーザ光を伝播するため、伝播可能なレーザ光の出力が制限されることにより被加工物の加工態様が限定される問題を有している。また、ロボットアーム内にレーザ光を伝播する光ファイバケーブル及びレーザ光を収斂する加工レンズ等の各種構成部品が設けられるため、加工処理装置として見た場合に、ロボットがレーザ光処理装置として専用機化し、レーザ光以外の加工態様に対応できない問題を有している。   However, in the above processing system, the laser beam is propagated to the laser beam processing head by the optical fiber cable in the same manner as the above-described processing apparatus of Patent Document 1, and therefore the output of the propagating laser beam is limited. Thus, there is a problem that the processing mode of the workpiece is limited. In addition, since various components such as an optical fiber cable that propagates laser light and a processing lens that converges laser light are provided in the robot arm, when viewed as a processing apparatus, the robot is a dedicated machine as a laser light processing apparatus. Therefore, there is a problem that it is not possible to cope with processing modes other than laser light.

特開平5−245681号公報JP-A-5-245681 特開2011−140047号公報JP 2011-140047 JP

解決しようとする問題点は、基端側アームに設けられたレーザ光発振手段がアームの回動等に伴う振動等により耐久性が悪くなって短時間に損傷し易くなり、被加工物に対して長期にわたって安定した出力レーザを出力することが困難になる点にある。また、レーザ光加工ヘッドに対してレーザ光を伝播する光ファイバケーブルにあっては、レーザ光の出力が制限されるため、被加工物の加工態様が限定される点にある。更に、ロボット自体がレーザ光を使用する加工処理態様に専用機化され、レーザ光以外の加工態様に対応できない点にある。   The problem to be solved is that the laser beam oscillating means provided on the proximal arm is less durable due to vibration caused by the rotation of the arm, etc., and is easily damaged in a short time. Therefore, it is difficult to output a stable output laser for a long time. Further, in the case of an optical fiber cable that propagates laser light to a laser light processing head, the output of the laser light is limited, so that the processing mode of the workpiece is limited. Furthermore, the robot itself is dedicated to a processing mode using laser light, and cannot be applied to processing modes other than laser light.

本発明は、少なくとも2本のアームを搖動及び回動可能に設けたロボットのアーム先端部に設けられたレーザ光出力ヘッドから本体上に保持された樹脂成形品に対してレーザ光を出力して所要の加工処理を行う樹脂成形品のレーザ光処理装置において、所要出力のレーザ光を発振するレーザ発振手段と、上記レーザ光発振手段に対して出力されるレーザ光を光軸と一致する方向及び直交方向へそれぞれ反射すると共にそれぞれの方向の軸線周りに対して回動可能に軸支された第1自在反射継手手段と、上記レーザ光発振部材の出力端に対して上記第1自在反射継手手段を介して基端部が接続され、上記ロボットのアームの可動距離の少なくとも1/2の長手方向長さで、上記第1自在反射継手手段から出力されるレーザ光を軸線に一致して伝播する第1導波管と、上記第1導波管内を伝播するレーザ光を光軸と直交方向及び一致する方向へそれぞれ反射すると共に該直交方向の軸線周りに対して回動可能に軸支された第2自在反射継手手段と、基端部が上記第2自在反射継手手段を介して接続され、上記ロボットのアームの可動距離の少なくとも1/2の長手方向長さで、上記第2自在反射継手手段から出力されるレーザ光を軸線に一致して伝播する第2光導波管と、上記第2導波管の先端部とレーザ光出力ヘッドとに設けられ、該第2導波管から出力されるレーザ光を光軸と一致する方向及び直交方向へそれぞれ反射すると共にそれぞれの方向の軸線周りに対して回動可能に軸支された第3自在反射継手手段とを備え、ロボットの駆動に伴って搖動及び回動するアームに追従して搖動及び回動する第1及び第2導波管に対して上記第1乃至第3自在反射継手手段によりレーザ光発振手段から出力されたレーザ光を導波してレーザ光出力ヘッドから樹脂成形品へ出力可能としたことを最も主要な特徴とする。   The present invention outputs laser light to a resin molded product held on a main body from a laser light output head provided at the tip of an arm of a robot in which at least two arms are provided to be swingable and rotatable. In a laser beam processing apparatus for a resin molded product that performs a required processing, a laser oscillation unit that oscillates a laser beam having a required output, a direction in which the laser beam output to the laser beam oscillation unit coincides with an optical axis, and First universal reflection joint means that is respectively reflected in the orthogonal direction and is pivotally supported around the axis in each direction, and the first universal reflection joint means for the output end of the laser light oscillation member The base end portion is connected through the robot arm, and the laser beam output from the first universal reflection coupling means is transmitted in alignment with the axis at a length in the longitudinal direction of at least half of the movable distance of the robot arm. The first waveguide and the laser beam propagating in the first waveguide are respectively reflected in a direction orthogonal to and coincident with the optical axis, and are rotatably supported around the axis in the orthogonal direction. The second universal reflective joint means and the base end portion are connected via the second universal reflective joint means, and the second universal reflective joint means has a longitudinal length of at least 1/2 of the movable distance of the robot arm. Provided in the second optical waveguide for propagating the laser light output from the joint means in alignment with the axis, the tip of the second waveguide, and the laser light output head, and output from the second waveguide And a third universal reflection joint means which reflects the laser beam to be reflected in a direction coinciding with the optical axis and in a direction orthogonal to the optical axis and is pivotally supported about the axis in each direction. Following the arm that swings and rotates with it The laser light output from the laser light oscillating means is guided by the first to third universal reflection coupling means to the first and second waveguides that move and rotate, and the resin molded product is output from the laser light output head. The most important feature is that it can be output.

本発明は、機械振動等によるレーザ光発振手段の損傷を防止して耐久性を向上し、被加工物に対して長期にわたって安定した出力レーザを出力することができる。また、レーザ光加工ヘッドに対して大出力のレーザ光を伝播して出力させることができ、被加工物の加工態様に限定されることなく加工処理を行うことができる。更に、ロボット自体の汎用性を確保しながら簡易にレーザ光により加工処理を実現できる。   According to the present invention, the laser beam oscillation means is prevented from being damaged by mechanical vibration or the like to improve durability, and a stable output laser can be output to a workpiece for a long period of time. Further, a high-power laser beam can be propagated and output to the laser beam processing head, and the processing can be performed without being limited to the processing mode of the workpiece. Furthermore, it is possible to easily realize the processing with the laser beam while ensuring the versatility of the robot itself.

樹脂成形品のレーザ光処理装置としてのレーザ光バリ取り装置の概略を示す斜視図である。It is a perspective view which shows the outline of the laser beam deburring apparatus as a laser beam processing apparatus of a resin molded product. 第1自在反射継手の各反射部を平面状に回動した状態を示す横断面図である。It is a cross-sectional view which shows the state which rotated each reflection part of the 1st universal reflection coupling in planar shape. 第2自在反射継手の各反射部を平面状に回動した状態を示す横断面図である。It is a cross-sectional view which shows the state which rotated each reflection part of the 2nd universal reflection coupling in planar shape. 第3自在反射継手の各反射部を平面状に回動した状態を示す横断面図である。It is a cross-sectional view which shows the state which rotated each reflection part of the 3rd universal reflection coupling in planar shape. レーザ光出力ヘッドを示す斜視断面図である。It is a perspective sectional view showing a laser beam output head. 第1及び第2導波管が屈曲した際の第1及び第2導波管の状態を示す説明図である。It is explanatory drawing which shows the state of the 1st and 2nd waveguide when a 1st and 2nd waveguide is bent. 第1及び第2導波管が伸長した際の第1及び第2導波管の状態を示す説明図である。It is explanatory drawing which shows the state of the 1st and 2nd waveguide when the 1st and 2nd waveguide expand | extend.

ロボットの駆動に伴って搖動及び回動するアームに追従して搖動及び回動する第1及び第2導波管に対して上記第1乃至第3自在反射継手手段によりレーザ光発振手段から出力されたレーザ光を導波してレーザ光出力ヘッドから樹脂成形品へ出力可能としたことを最良の実施形態とする。 The first to third universal reflection coupling means output the laser light oscillation means to the first and second waveguides that swing and rotate following the arm that swings and rotates as the robot is driven. In the best mode, the laser light is guided to be output from the laser light output head to the resin molded product.

以下、本発明を樹脂成形品としての車両用バンパー周縁のバリをレーザ光により熱溶融して切断除去するレーザ光バリ取り装置として実施した実施例を示す図に従って本発明を説明する。   Hereinafter, the present invention will be described with reference to the drawings showing an embodiment in which the present invention is implemented as a laser beam deburring apparatus that thermally melts and removes burrs at the periphery of a vehicle bumper as a resin molded product by laser beam.

図1乃至図5に示すように、樹脂成形品のレーザ光処理装置としてのレーザ光バリ取り装置1における本体3の前方(図1において矢示A側)には、樹脂成形機(図示せず)から取り出された樹脂成形品としての車両用バンパー5が位置決めされた状態で保持する保持手段7が設けられる。該保持手段7は、例えば車両用バンパー5裏面における予め設定された所要箇所を支持し、負圧発生装置(図示せず)に接続された吸着部材7bが先端部に設けられた複数本の保持ロッド7aにより構成される。各保持ロッド7aは、大きさ、形状等が異なる各種の車両用バンパー5に対応するため、本体3の長手方向(左右方向とも称する。)及び長手直交方向(前後方向とも称する。)へ移動可能に構成し、各種車両用バンパー5を位置決めした状態で吸着して保持する構成としてもよい。   As shown in FIGS. 1 to 5, a resin molding machine (not shown) is provided in front of the main body 3 (indicated by an arrow A in FIG. 1) of a laser beam deburring apparatus 1 as a laser beam processing apparatus for resin molded products. A holding means 7 is provided for holding the vehicle bumper 5 as a resin molded product taken out from (3) in a positioned state. The holding means 7 supports, for example, a predetermined required position on the back surface of the vehicle bumper 5 and holds a plurality of holding members 7b connected to a negative pressure generating device (not shown) provided at the tip portion. It is comprised by the rod 7a. Each holding rod 7a is movable in the longitudinal direction (also referred to as the left-right direction) and the longitudinal orthogonal direction (also referred to as the front-rear direction) of the main body 3 in order to correspond to various vehicle bumpers 5 having different sizes, shapes, and the like. It is good also as a structure which adsorb | sucks and hold | maintains in the state which positioned the various bumpers 5 for vehicles.

上記本体3の後方には、ロボット9が配置される。該ロボット9としては、基台11に内蔵され、垂直方向に軸線を有したサーボモータ等の第1軸電動モータ(図示せず)の出力軸に固定されて回動する回動軸支部材9aと、該回動軸支部材9aに対して搖動可能に軸支され、基端部が水平方向に軸線を有して回動軸支部材9aに固定されたサーボモータ等の第2軸電動モータ9bの出力軸に固定される第1アーム9cと、該第1アーム9cの先端部に対して搖動可能に軸支され、第1アーム9cの長手方向と直交する方向に軸線を有して第1アーム9cの先端部に固定されたサーボモータ等の第3軸電動モータ9dの出力軸に固定される中間搖動部材9eと、中間搖動部材9eの基端側に固定され、該中間回動軸支部材9eの長手方向に軸線を有したサーボモータ等の第4軸電動モータ(図示せず)の出力軸に基端部が固定される第2アーム9gとからなる多関節型ロボットで構成される。   A robot 9 is disposed behind the main body 3. The robot 9 is built in the base 11 and is a rotation shaft support member 9a that is fixed to the output shaft of a first shaft electric motor (not shown) such as a servomotor having an axis in the vertical direction and rotates. And a second shaft electric motor such as a servo motor which is pivotally supported with respect to the pivot shaft support member 9a and whose base end portion has an axis in the horizontal direction and is fixed to the pivot shaft support member 9a. A first arm 9c fixed to the output shaft of 9b, and pivotally supported by the tip of the first arm 9c so as to be slidable and having an axis in a direction perpendicular to the longitudinal direction of the first arm 9c. An intermediate swing member 9e fixed to the output shaft of a third shaft electric motor 9d such as a servo motor fixed to the distal end portion of one arm 9c, and fixed to the proximal end side of the intermediate swing member 9e, the intermediate pivot shaft A fourth shaft electric motor such as a servomotor having an axis in the longitudinal direction of the support member 9e (see FIG. Constituted by the articulated robot having a base end portion to the output shaft of without) is composed of a second arm 9g fixed.

なお、ロボット9としては、第1及び第2アーム9c・9gを4軸方向へ回動及び旋回する構成の他に樹脂成形品に対する処理態様に応じて5軸方向、6軸方向、7軸方向へ回動及び旋回する多関節型構造又は3軸直交方向型構造であってもよい。   In addition to the configuration in which the robot 9 rotates and turns the first and second arms 9c and 9g in the four-axis direction, the robot 9 has a 5-axis direction, a 6-axis direction, and a 7-axis direction according to the processing mode for the resin molded product. A multi-joint structure or a three-axis orthogonal direction structure that pivots and swivels may be used.

上記第2アーム9gの先端部には、取付け用円筒体13を介してレーザ光出力ヘッド19が固定される。該取付け円筒体13の一部外周には、切欠き部13aが軸周りへ所要の長さで延出するように形成される。また、取付け円筒体13内には、回転円筒体17が軸受15を介して回転可能に軸支され、該回転円筒体17の一部外周に形成された開口17aには、軸線直交方向に軸線を有し、上記切欠き部13aを介して外部へ突出する連結導波管21の端部が内部と連通するように固定される。更に、連結導波管21の軸心位置に応じた回転円筒体17内には、反射鏡17bが軸線に対して45度、傾斜して固定される。   A laser beam output head 19 is fixed to the distal end portion of the second arm 9g through a mounting cylinder 13. A cutout portion 13a is formed on a part of the outer periphery of the mounting cylinder 13 so as to extend around the axis with a required length. In addition, a rotating cylinder 17 is rotatably supported in the mounting cylinder 13 via a bearing 15, and an opening 17 a formed on a part of the outer periphery of the rotating cylinder 17 has an axis line orthogonal to the axis. And the end of the connecting waveguide 21 protruding outside through the notch 13a is fixed so as to communicate with the inside. Further, the reflecting mirror 17b is fixed at an angle of 45 degrees with respect to the axis in the rotating cylindrical body 17 corresponding to the axial center position of the connecting waveguide 21.

上記取付け円筒体13の先端部に固定されるレーザ光出力ヘッド19は、軸線と一致する方向へ延出する固定円筒部19a及び軸線直交方向へ延出する側面が截頭円錐形の出力ノズル19bを一体形成して構成される。固定円筒部19a及び出力ノズル19bの接続箇所内には、反射鏡19cが固定円筒部19a及び出力ノズル19bの軸線に対してそれぞれ45度、傾斜して固定される。また、出力ノズル19bの基端部内には、車両用バンパー5において外方向へ突出するように一体成形されたバリ(図示せず)との境界面に対してレーザ光を所要のビーム径に収斂させる光学的レンズ19dが設けられる。 The laser beam output head 19 fixed to the tip of the mounting cylindrical body 13 includes a fixed cylindrical portion 19a extending in a direction coinciding with the axis and an output nozzle 19b having a frustoconical side surface extending in the direction orthogonal to the axis. Are integrally formed. In the connection portion between the fixed cylindrical portion 19a and the output nozzle 19b, the reflecting mirror 19c is fixed with an inclination of 45 degrees with respect to the axes of the fixed cylindrical portion 19a and the output nozzle 19b. Further, in the base end portion of the output nozzle 19b, the laser beam is converged to a required beam diameter with respect to a boundary surface with a burr (not shown) integrally formed so as to protrude outward in the vehicle bumper 5. An optical lens 19d is provided.

本体3の後方には、所要の高さからなる取付けスタンド23が設けられ、該取付けスタンド23には、左右水平方向へレーザ光を出力するレーザ発振装置25が設けられる。該レーザ発振装置25としては、高出力のレーザ光を発振する炭酸ガスレーザ発振装置、YAGレーザ発振装置等により構成される。 A mounting stand 23 having a required height is provided behind the main body 3, and a laser oscillation device 25 that outputs laser light in the horizontal direction is provided on the mounting stand 23. The laser oscillation device 25 includes a carbon dioxide laser oscillation device that oscillates a high-power laser beam, a YAG laser oscillation device, or the like.

上記レーザ発振装置25には、発振されたレーザ光を水平方向へ伝播して出力する出力導波管27が取り付けられ、該出力導波管27の端部には、軸線方向が少なくとも第1及び第2アーム9a・9dの最大伸長距離の1/2の軸線方向長さからなる第1導波管29が第1自在反射継手手段としての第1自在反射継手31を介して取り付けられる。 An output waveguide 27 for propagating and outputting the oscillated laser light in the horizontal direction is attached to the laser oscillation device 25, and the end of the output waveguide 27 has at least a first and an axial direction. A first waveguide 29 having a length in the axial direction that is ½ of the maximum extension distance of the second arms 9a and 9d is attached via a first universal reflection joint 31 as first universal reflection coupling means.

上記第1自在反射継手31は、レーザ発振装置25から出力されるレーザ光と一致する方向に軸線を有して出力導波管27の端部に軸線を一致させて固定される接続円筒部33a及び該接続円筒部33aの直交方向に軸線を有した軸受円筒部33bが一体形成されると共にこれらの接続部に45度の角度を設けて取り付けられる反射鏡33cからなる第1反射部33と、上記軸受円筒部33bと一致する方向に軸線を有し、該軸受円筒部33bに対して軸受35を介して回転可能に軸支される軸支円筒部37a及び該軸支円筒部37aと直交方向に軸線を有した軸受円筒部37bが一体形成されると共にこれらの接続部に45度の角度を設けて取り付けられる反射鏡37cからなる第2反射部37と、上記軸受円筒部37bと一致する方向に軸線を有し、該軸受円筒部37bに対して軸受39を介して回転可能に軸支される軸支円筒部41a及び該軸支円筒部41aと直交方向に軸線を有した接続円筒部41bが一体形成されると共にこれらの接続部に45度の角度を設けて取り付けられる反射鏡41cからなる第3反射部41とから構成される。 The first universal reflection joint 31 has a connecting cylindrical portion 33 a that has an axis in a direction that matches the laser beam output from the laser oscillation device 25 and is fixed to the end of the output waveguide 27 with the axis aligned. And a first cylindrical reflection portion 33 comprising a reflection mirror 33c that is integrally formed with a bearing cylindrical portion 33b having an axis in an orthogonal direction to the connecting cylindrical portion 33a and is attached to these connecting portions at an angle of 45 degrees; A shaft support cylinder portion 37a having an axis in a direction coinciding with the bearing cylinder portion 33b and rotatably supported via a bearing 35 with respect to the bearing cylinder portion 33b, and a direction orthogonal to the shaft support cylinder portion 37a A bearing cylindrical portion 37b having an axis is integrally formed, and a second reflecting portion 37 comprising a reflecting mirror 37c attached at an angle of 45 degrees to these connecting portions, and a direction coinciding with the bearing cylindrical portion 37b In A shaft support cylinder portion 41a that is rotatably supported via a bearing 39 with respect to the bearing cylinder portion 37b, and a connection cylinder portion 41b that has an axis in a direction orthogonal to the shaft support cylinder portion 41a. The third reflecting portion 41 is formed of a reflecting mirror 41c that is integrally formed and attached to these connecting portions with an angle of 45 degrees.

そして上記第1自在反射継手31の接続円筒部41cには、第1導波管29の基端部が軸線を一致させて固定される。また、上記第1導波管29の先端部には、軸線方向が少なくとも第1及び第2アーム9a・9dの最大伸長距離の1/2の軸線方向長さからなる第2導波管43の基端部が第2自在反射継手手段としての第2自在反射継手45を介して接続される。 The proximal end portion of the first waveguide 29 is fixed to the connecting cylindrical portion 41c of the first universal reflection joint 31 with the axis line aligned. Further, at the distal end portion of the first waveguide 29, the second waveguide 43 having an axial direction length of at least 1/2 of the maximum extension distance of the first and second arms 9a and 9d. The proximal end portion is connected via a second universal reflective joint 45 as a second universal reflective joint means.

該第2自在反射継手45は、該第1導波管29の先端部に軸線を一致させて接続される接続円筒部47a及び該接続円筒部47aの直交方向に軸線を有した軸受円筒部47bが一体形成されると共にこれらの接続部に45度の角度を設けて取り付けられる反射鏡47cからなる第4反射部47と、上記軸受円筒部47bと一致する方向に軸線を有し、該軸受円筒部47bに対して軸受49を介して回転可能に軸支される軸支円筒部51a及び該軸支円筒部51aと直交方向に軸線を有した接続円筒部51bが一体形成されると共にこれらの接続部に45度の角度を設けて取り付けられる反射鏡51cからなる第5反射部51とから構成され、上記接続円筒部51bには第2導波管45の基端部が軸線を一致させて固定される。 The second universal reflection joint 45 includes a connecting cylindrical portion 47a connected to the tip end portion of the first waveguide 29 with its axis aligned, and a bearing cylindrical portion 47b having an axis in the direction orthogonal to the connecting cylindrical portion 47a. Are formed integrally, and have a fourth reflecting portion 47 comprising a reflecting mirror 47c attached at an angle of 45 degrees to these connecting portions, and an axis in a direction coinciding with the bearing cylindrical portion 47b. A shaft-supporting cylindrical portion 51a that is rotatably supported via a bearing 49 with respect to the portion 47b, and a connecting cylindrical portion 51b having an axis in a direction orthogonal to the shaft-supporting cylindrical portion 51a are integrally formed and these connections are made. And a fifth reflecting portion 51 composed of a reflecting mirror 51c attached at an angle of 45 degrees to the portion, and the base end portion of the second waveguide 45 is fixed to the connecting cylindrical portion 51b with the axis line aligned. Is done.

上記第2導波管45の先端部には、連結円筒体21の他方端部が第3自在反射継手手段としての第3自在反射継手53を介して接続される。上記第3自在反射継手53は、第2導波管45の軸線と一致する方向に軸線を有して第2導波管45の基端部に固定される接続円筒部55a及び該接続円筒部55aの軸線直交方向に軸線を有した軸受円筒部55bが一体形成されると共にこれらの接続部に45度の角度を設けて取り付けられる反射鏡55cからなる第6反射部55と、上記軸受円筒部55bと一致する方向に軸線を有し、該軸受円筒部55bに対して軸受57を介して回転可能に軸支される軸支円筒部59a及び該軸支円筒部59aと直交方向に軸線を有した軸受円筒部59bが一体形成されると共にこれらの接続部に45度の角度を設けて取り付けられる反射鏡59cからなる第7反射部59と、上記軸受円筒部59bと一致する方向に軸線を有し、該軸受円筒部59bに対して軸受61を介して回転可能に軸支される軸支円筒部63a及び該軸支円筒部63aと直交方向に軸線を有した接続円筒部63bが一体形成されると共にこれらの接続部に45度の角度を設けて取り付けられる反射鏡63cからなる第8反射部63とから構成される。 The other end portion of the connecting cylindrical body 21 is connected to the distal end portion of the second waveguide 45 via a third universal reflection joint 53 as third universal reflection joint means. The third universal reflection joint 53 includes a connection cylindrical portion 55a having an axis in a direction coinciding with the axis of the second waveguide 45 and fixed to the proximal end portion of the second waveguide 45, and the connection cylindrical portion. A bearing cylindrical portion 55b having an axis in the direction orthogonal to the axis of 55a is integrally formed, and a sixth reflecting portion 55 comprising a reflecting mirror 55c attached at an angle of 45 degrees to these connecting portions, and the bearing cylindrical portion The shaft supporting cylinder portion 59a is rotatably supported via a bearing 57 with respect to the bearing cylindrical portion 55b, and has an axis line orthogonal to the shaft supporting cylindrical portion 59a. The bearing cylindrical portion 59b is integrally formed, and a seventh reflecting portion 59 comprising a reflecting mirror 59c attached at an angle of 45 degrees to these connecting portions, and an axis line in the direction coinciding with the bearing cylindrical portion 59b. The bearing cylindrical portion 59b On the other hand, a shaft supporting cylindrical portion 63a that is rotatably supported via a bearing 61 and a connecting cylindrical portion 63b having an axis in a direction orthogonal to the shaft supporting cylindrical portion 63a are integrally formed, and 45 at these connecting portions. And an eighth reflecting portion 63 including a reflecting mirror 63c attached with an angle of degrees.

次に、上記のように構成されたレーザ光バリ取り装置1により成形後の車両用バンパー周縁からバリを切断除去するバリ取り処理作用を説明すると、成形された車両用バンパー5をレーザ光バリ取り装置1へ搬入した後、その裏面における所要の箇所に対して保持ロッド7aを位置させた状態で裏面に当接する吸着部材7bにより吸着して位置決め状態で保持させる。   Next, an explanation will be given of the deburring process action of cutting and removing burrs from the periphery of the molded vehicle bumper by the laser beam deburring device 1 configured as described above. The molded vehicle bumper 5 is laser beam deburred. After carrying in to the apparatus 1, the holding rod 7 a is positioned with respect to a required position on the back surface, and is sucked by the suction member 7 b that is in contact with the back surface and is held in a positioned state.

上記状態にてロボット9における第1軸乃至第4軸電動モータ9b、9dをそれぞれ駆動制御して第1及び第2アーム9c・9gを、レーザ光出力ヘッド19における出力ノズル19bの先端が車両用バンパー5におけるバリとの境界面に対し、軸線が所要の角度で、かつレーザ光が所要のビーム径で収斂する所定の間隔をおいた状態で境界線に沿って走査するように回動及び搖動させる。   In the above state, the first to fourth axis electric motors 9b and 9d in the robot 9 are driven and controlled to control the first and second arms 9c and 9g, and the tip of the output nozzle 19b in the laser light output head 19 is for the vehicle. Rotating and swinging with respect to the boundary surface with the burr in the bumper 5 so as to scan along the boundary line with a predetermined angle at which the axis is at the required angle and the laser beam is converged at the required beam diameter. Let

このとき、レーザ発振装置25から出力されるレーザ光は、第1自在反射継手31により光軸と一致する方向及び直交方向へそれぞれ回動するように設けられた第1導波管29、第2自在反射継手45により第1導波管29の先端部に対して基端部が光軸と直交方向へ回動し、かつ第3自在反射継手53により先端部がレーザ光出力ヘッド19に対して光軸と一致する方向及び直交方向へそれぞれ回動するように設けられた第2導波管43を介してレーザ光出力ヘッド19へ伝播されて車両用バンパー5におけるバリとの境界へ出力される。図6及び図7は、ロボット9の第1及び第2アーム9c・9gがそれぞれ屈曲した際及び伸長した際に、これら第1及び第2アーム9c、9gに追従して屈曲及び伸長する第1及び第2導波管29・43の状態を示す。 At this time, the laser light output from the laser oscillation device 25 is provided with a first waveguide 29 and a second waveguide provided so as to be rotated by the first universal reflection joint 31 in a direction coinciding with the optical axis and in an orthogonal direction, respectively. The proximal end of the first waveguide 29 is rotated in the direction orthogonal to the optical axis by the universal reflection joint 45, and the distal end of the third universal reflection joint 53 is relative to the laser light output head 19. The light is propagated to the laser light output head 19 through the second waveguide 43 provided so as to rotate in the direction coincident with the optical axis and in the orthogonal direction, and is output to the boundary with the burr in the vehicle bumper 5. . 6 and 7 show the first and second arms 9c and 9g of the robot 9 which are bent and extended following the first and second arms 9c and 9g when the first and second arms 9c and 9g are bent and extended, respectively. The states of the second waveguides 29 and 43 are shown.

これにより車両用バンパー5におけるバリとの境界に対して所要のビーム径に収斂されたレーザ光を出力して熱溶融することにより車両用バンパー5からバリを切断して分離させる。 As a result, the laser beam converged to a required beam diameter is output to the boundary with the burr in the vehicular bumper 5 and is thermally melted to cut and separate the burr from the vehicular bumper 5.

上記した第1乃至第3自在反射継手31,45,53は、レーザ光を以下のように反射して第1及び第2導波管29,43内をそれぞれの軸線に対して光軸を一致させた状態で伝播させてレーザ光出力ヘッド19から出力させる。 The above-described first to third universal reflective joints 31, 45, 53 reflect the laser beam as follows, and the optical axes of the first and second waveguides 29, 43 are aligned with the respective axis lines. The laser light is output from the laser light output head 19 by propagating in the state of being caused to occur.

すなわち、レーザ発振装置25から出力されたレーザ光は、出力導波管27内を軸線と光軸を一致させた状態で通過した後に第1自在反射継手31における第1反射部33の反射鏡33cにより90度、反射させられて第2反射部37内へ軸円筒部37aの軸線と光軸を一致させた状態で入射された後、第2反射部37の反射鏡37cにより90度、反射させられて第3反射部41内へ軸支円筒部41aの軸線と光軸を一致させた状態でされた後、該第3反射部41の反射鏡41cにより90度、反射させられて第1導波管29内へその軸線と光軸が一致した状態で入射させられる。 That is, the laser beam output from the laser oscillation device 25 passes through the output waveguide 27 in a state where the axis and the optical axis coincide with each other, and then the reflecting mirror 33c of the first reflecting portion 33 in the first universal reflecting joint 31. Is incident on the second reflecting portion 37 with the axis of the axial cylindrical portion 37a being aligned with the optical axis, and then reflected by the reflecting mirror 37c of the second reflecting portion 37. After the optical axis is aligned with the axis of the support cylindrical portion 41a into the third reflecting portion 41, it is reflected by the reflecting mirror 41c of the third reflecting portion 41 by 90 degrees to be the first guide. It is made to enter into the wave tube 29 in a state where its axis and the optical axis coincide.

このとき、第1反射部33に対して第2反射部37が、また第2反射部37に対して第3反射部41がそれぞれ直交した状態で回動可能に軸支されているため、ロボット9における第1及び第2アーム9c・9gの搖動及び軸線周りへの回動に追従してレーザ光を第1導波管29内へその軸線と光軸が一致した状態で出力させる。 At this time, the second reflecting portion 37 is supported by the first reflecting portion 33, and the third reflecting portion 41 is pivotally supported in a state of being orthogonal to the second reflecting portion 37, so that the robot 9, the laser beam is output into the first waveguide 29 in a state where the axis and the optical axis coincide with each other following the swinging and rotation of the first and second arms 9c and 9g around the axis.

また、第1導波管29内を導波されたレーザ光は、第2自在反射継手45における第4反射部47の反射鏡47cにより90度、反射させられて第5反射部51内へ軸円筒部51aの軸線と光軸を一致させた状態で入射された後、第5反射部51の反射鏡51cにより90度、反射させられて第2導波管43内へその軸線と光軸が一致した状態で入射させられる。 Further, the laser light guided in the first waveguide 29 is reflected 90 degrees by the reflecting mirror 47 c of the fourth reflecting portion 47 in the second universal reflecting joint 45 and is axially guided into the fifth reflecting portion 51. After being incident in a state where the axis of the cylindrical portion 51a and the optical axis coincide with each other, it is reflected by 90 degrees by the reflecting mirror 51c of the fifth reflecting portion 51, and the axis and the optical axis are reflected into the second waveguide 43. Incident light is incident.

このとき、第4反射部47に対して第5反射部51が回動可能に軸支されているため、ロボット9における第1及び第2アーム9c、9gにおける連結部の搖動に追従してレーザ光を第1導波管29から第2導波管43内へそれぞれの軸線と光軸が一致した状態で出力させる。 At this time, since the fifth reflecting portion 51 is pivotally supported with respect to the fourth reflecting portion 47, the laser follows the peristaltic movement of the connecting portions in the first and second arms 9c and 9g in the robot 9. Light is output from the first waveguide 29 into the second waveguide 43 in a state in which the respective axis lines coincide with the optical axis.

更に、第2導波管43内を導波されたレーザ光は、第3自在反射継手53における第6反射部55の反射鏡55cにより90度、反射させられて第7反射部59内へ軸支円筒部59aの軸線と光軸を一致させた状態で入射された後、第7反射部59の反射鏡59cにより90度、反射させられて第8反射部63内へ軸支円筒部63aの軸線と光軸を一致させた状態でされた後、該第8反射部63の反射鏡63cにより90度、反射させられて連結導波管21内へその軸線と光軸が一致した状態で入射させられる。 Further, the laser beam guided in the second waveguide 43 is reflected 90 degrees by the reflecting mirror 55 c of the sixth reflecting portion 55 in the third universal reflecting joint 53 and is axially guided into the seventh reflecting portion 59. After being incident in a state where the axis of the support cylindrical portion 59 a coincides with the optical axis, it is reflected 90 degrees by the reflecting mirror 59 c of the seventh reflection portion 59 and into the eighth reflection portion 63 of the support cylindrical portion 63 a. After the axial line and the optical axis coincide with each other, it is reflected by 90 degrees by the reflecting mirror 63c of the eighth reflecting portion 63, and enters the connecting waveguide 21 with the axial line and the optical axis coincident with each other. Be made.

このとき、第6反射部55に対して第7反射部59が、また第7反射部59に対して第8反射部63がそれぞれ直交した状態で回動可能に軸支されているため、ロボット9における第1及び第2アーム9c、9gの搖動及び軸線周りへの回動並びに第2アーム9g先端部におけるレーザ光出力ヘッド19の搖動及び軸線周りへの回動に追従して第2導波管43内を伝播したレーザ光をレーザ光出力ヘッド19内へ出力させる。 At this time, since the seventh reflecting portion 59 is pivotally supported in a state of being orthogonal to the sixth reflecting portion 55 and the eighth reflecting portion 63 is orthogonal to the seventh reflecting portion 59, the robot is supported. 9 follows the swinging and rotation of the first and second arms 9c, 9g in FIG. 9 and the rotation of the laser light output head 19 at the tip of the second arm 9g and the rotation of the laser beam output head 19 around the axis. The laser beam propagating through the tube 43 is output into the laser beam output head 19.

そして連結導波管21内を伝播するレーザ光は、反射鏡17cにより反射して固定円筒部19a内へ軸線と光軸を一致させた状態で出力された後に反射鏡19cにより反射して出力ノズル19b内へ軸線と光軸を一致させた状態で出力される。そして反射されたレーザ光は、光学的レンズ19dにより所要のビーム径に収斂されて出力ノズル19bの先端開口から車両用バンパー5におけるバリとの境界へ出力される。これにより車両用バンパー5におけるバリとの境界へ出力され、境界箇所を熱溶融して車両用バンパー5からバリを切断分離してバリ取り処理を行う。 The laser light propagating in the coupling waveguide 21 is reflected by the reflecting mirror 17c and output to the fixed cylindrical portion 19a in a state where the axis and the optical axis coincide with each other, and then reflected by the reflecting mirror 19c and output nozzle. It is output in a state where the axis and the optical axis coincide with each other into 19b. The reflected laser light is converged to a required beam diameter by the optical lens 19d and output from the front end opening of the output nozzle 19b to the boundary with the burr in the vehicle bumper 5. As a result, it is output to the boundary with the burr in the vehicle bumper 5, the boundary portion is melted by heat, and the burr is cut and separated from the vehicle bumper 5 to perform the deburring process.

なお、レーザ光出力ヘッド19が固定されているため、ロボット9の第1及び第2アーム9c・9gの回動及び搖動に伴ってレーザ光出力ヘッド19が追従して回動することになる。本例においては、レーザ光出力ヘッド19が取り付けられる取付け円筒体13内にて、連結導波管21の端部が固定された回転円筒体17が切欠き部13aの軸周り方向幅の範囲で回転することによりレーザ光出力ヘッド19の回動を可能にさせる。 In addition, since the laser beam output head 19 is fixed, the laser beam output head 19 follows and rotates as the first and second arms 9c and 9g of the robot 9 rotate and swing. In this example, in the mounting cylinder 13 to which the laser light output head 19 is mounted, the rotating cylinder 17 to which the end of the connecting waveguide 21 is fixed is within the range of the width around the notch 13a. The rotation of the laser beam output head 19 is made possible by rotating.

本実施例は、ロボット9の第1及び第2アーム9c・9gを屈曲及び伸長したり、軸線周りに回動して車両用バンパー5の周縁に一体形成されたバリをレーザ光により溶融して切断除去処理する際に、第1及び第2アーム9c・9gの屈曲及び伸長や軸線周りへの回動に追従して第1及び第2導波管29・43を屈曲及び伸長させたり、軸線周りへ回動させてレーザ光をレーザ光出力ヘッド19へ伝播させて所要の処理を実行することができる。このため、既存のロボット9に対して第1及び第2導波管29・43を増設するだけでレーザ光により樹脂成形品の各種処理を実現でき、設備コストを低減することができる。 In the present embodiment, the first and second arms 9c and 9g of the robot 9 are bent and extended, or the burr formed integrally with the periphery of the vehicle bumper 5 by melting around the axis is melted by laser light. During the cutting and removing process, the first and second waveguides 29 and 43 are bent and extended following the bending and extension of the first and second arms 9c and 9g and the rotation around the axis, or the axis The laser beam can be rotated around to propagate the laser beam to the laser beam output head 19 to execute a required process. For this reason, it is possible to realize various types of processing of the resin molded product by the laser beam only by adding the first and second waveguides 29 and 43 to the existing robot 9, and the equipment cost can be reduced.

上記説明は、第2アーム9gの先端部に対してレーザ光出力ヘッド19を軸線周りへ回動するように設ける構成としたが、第2アーム9gの先端部に長手方向と一致する方向に軸線を有した電動モータを内蔵し、該電動モータの出力軸に回動支持体を取り付けると共に該回動支持体に長手方向と直交する方向に軸線を有した電動モータを取り付け、該電動モータの出力軸にレーザ光出力ヘッド19を取り付け、各電動モータの駆動に伴ってレーザ光出力ヘッド19を回動及び搖動させる構成としてもよい。 In the above description, the laser light output head 19 is provided so as to rotate about the axis with respect to the tip of the second arm 9g. However, the axis of the second arm 9g extends in the direction coinciding with the longitudinal direction. And an electric motor having an axis in a direction perpendicular to the longitudinal direction is attached to the output shaft of the electric motor, and an output of the electric motor is provided. A laser light output head 19 may be attached to the shaft, and the laser light output head 19 may be rotated and swung as each electric motor is driven.

上記説明は、樹脂成形品を車両用バンパー5として説明したが、本発明においては、樹脂成形品は上記に限定されるものではなく、レーザ光により加工処理可能な各種の樹脂成形品に対して実施できる。また、上記説明は、合成樹脂製の車両用バンパー5の外縁に一体成形されたバリをレーザ光により溶融切断して除去するレーザ光バリ取り装置を例に説明したが、本発明は、樹脂成形品に対してレーザ光の熱でトリミング処理、切断処理、穴開け処理等の各種処理を実行する各種処理装置においても実施できる。 In the above description, the resin molded product is described as the vehicle bumper 5. However, in the present invention, the resin molded product is not limited to the above, and various resin molded products that can be processed by laser light are used. Can be implemented. In the above description, the laser light deburring device that removes the burr integrally formed on the outer edge of the vehicle bumper 5 made of synthetic resin by melting and cutting with a laser beam has been described as an example. The present invention can also be implemented in various processing apparatuses that perform various processes such as trimming, cutting, and punching processes on the product with the heat of laser light.

1 樹脂成形品処理装置としてのレーザ光バリ取り装置
3 本体
5 樹脂成形品としての車両用バンパー
7 保持手段
7a 保持ロッド
7b 吸着部材
9 ロボット
9a 回動軸支部材
9b 第2軸電動モータ
9c 第1アーム
9d 第3軸電動モータ
9e 中間搖動部材
9g 第2アーム
11 基台
13 取付け用円筒体
13a 切欠き部
15 軸受
17 回転円筒体
17a 反射鏡
19 レーザ光出力ヘッド
19a 固定円筒部
19b 出力ノズル
19c 反射鏡
19d 光学的レンズ
21 連結導波管
23 取付けスタンド
25 レーザ発振装置
27 出力導波管
29 第1導波管
31 第1自在反射継手手段としての第1自在反射継手
33 第1反射部
33a 接続円筒部
33b 軸受円筒部
33c 反射鏡
35 軸受
37 第2反射部
37a 軸支円筒部
37b 軸受円筒部
37c 反射鏡
39 軸受
41 第3反射部
41a 軸支円筒部
41b 接続円筒部
41c 反射鏡
43 第2導波管
45 第2自在反射継手手段としての第2自在反射継手
47 第4反射部
47a 接続円筒部
47b 軸受円筒部
47c 反射鏡
49 軸受
51 第5反射部
51a 軸支円筒部
51b 接続円筒部
51c 反射鏡
53 第3自在反射継手手段としての第3自在反射継手
55 第6反射部
55a 接続円筒部
55b 軸受円筒部
55c 反射鏡
57 軸受
59 第7反射部
59a 軸支円筒部
59b 軸受円筒部
59c 反射鏡
61 軸受
63 第8反射部
63a 軸支円筒部
63b 接続円筒部
63c 反射鏡
DESCRIPTION OF SYMBOLS 1 Laser beam deburring apparatus 3 as a resin molded product processing apparatus 5 Main body 5 Bumper for vehicles as resin molded product 7 Holding means 7a Holding rod 7b Adsorption member 9 Robot 9a Rotating shaft support member 9b Second shaft electric motor 9c Arm 9d Third shaft electric motor 9e Intermediate swing member 9g Second arm 11 Base 13 Mounting cylinder 13a Notch 15 Bearing 17 Rotating cylinder 17a Reflector 19 Laser light output head 19a Fixed cylinder 19b Output nozzle 19c Reflection Mirror 19d Optical lens 21 Connecting waveguide 23 Mounting stand 25 Laser oscillation device 27 Output waveguide 29 First waveguide 31 First universal reflection joint 33 as first universal reflection joint means First reflection section 33a Connection cylinder Portion 33b Bearing cylindrical portion 33c Reflective mirror 35 Bearing 37 Second reflecting portion 37a Shaft support cylindrical portion 37b Bearing cylindrical portion 37c Reflection 39 Bearing 41 Third reflecting portion 41a Shaft supporting cylindrical portion 41b Connecting cylindrical portion 41c Reflecting mirror 43 Second waveguide 45 Second universal reflecting joint 47 as second universal reflecting joint means Fourth reflecting portion 47a Connecting cylindrical portion 47b Bearing Cylindrical portion 47c Reflective mirror 49 Bearing 51 Fifth reflective portion 51a Axial support cylindrical portion 51b Connection cylindrical portion 51c Reflective mirror 53 Third universal reflection joint 55 as third universal reflection joint means Sixth reflection portion 55a Connection cylindrical portion 55b Bearing cylinder Part 55c Reflective mirror 57 Bearing 59 Seventh reflective part 59a Axial support cylindrical part 59b Bearing cylindrical part 59c Reflective mirror 61 Bearing 63 Eighth reflection part 63a Axial support cylindrical part 63b Connection cylindrical part 63c Reflective mirror

Claims (6)

少なくとも2本のアームを搖動及び回動可能に設けたロボットのアーム先端部に設けられたレーザ光出力ヘッドから本体上に保持された樹脂成形品に対してレーザ光を出力して所要の加工処理を行う樹脂成形品のレーザ光処理装置において、
所要出力のレーザ光を発振するレーザ発振手段と、
上記レーザ光発振手段に対して出力されるレーザ光を光軸と一致する方向及び直交方向へそれぞれ反射すると共にそれぞれの方向の軸線周りに対して回動可能に軸支された第1自在反射継手手段と、
上記レーザ光発振手段の出力端に対して基端部が上記第1自在反射継手手段を介して接続され、上記ロボットのアームの可動距離の少なくとも1/2の長手方向長さで、上記第1自在反射継手手段から出力されるレーザ光を軸線に一致して伝播する第1導波管と、
上記第1導波管内を伝播するレーザ光を光軸と直交方向及び一致する方向へそれぞれ反射すると共に該直交方向の軸線周りに対して回動可能に軸支された第2自在反射継手手段と、
基端部が上記第2自在反射継手手段を介して接続され、上記ロボットのアームの可動距離の少なくとも1/2の長手方向長さで、上記第2自在反射継手手段から出力されるレーザ光を軸線に一致して伝播する第2光導波管と、
上記第2導波管の先端部とレーザ光出力ヘッドとに設けられ、該第2導波管から出力されるレーザ光を光軸と一致する方向及び直交方向へそれぞれ反射すると共にそれぞれの方向の軸線周りに対して回動可能に軸支された第3自在反射継手手段と、
を備え、ロボットの駆動に伴って搖動及び回動するアームに追従して搖動及び回動する第1及び第2導波管に対して上記第1乃至第3自在反射継手手段によりレーザ光発振手段から出力されたレーザ光を導波してレーザ光出力ヘッドから樹脂成形品へ出力可能としたレーザ光処理装置
A laser beam is output to a resin molded product held on the main body from a laser beam output head provided at the tip of the arm of a robot in which at least two arms are provided so as to be able to swing and rotate. In a laser beam processing apparatus for resin molded products,
Laser oscillation means for oscillating a laser beam having a required output;
The first universal reflection joint that reflects the laser beam output to the laser beam oscillation means in the direction coincident with the optical axis and in the orthogonal direction and is pivotally supported around the axis in each direction. Means,
A base end portion is connected to the output end of the laser beam oscillation means via the first universal reflection coupling means, and has a longitudinal length of at least 1/2 of the movable distance of the arm of the robot. A first waveguide for propagating the laser beam output from the universal reflection coupling means in alignment with the axis;
A second universal reflection coupling means for reflecting the laser light propagating in the first waveguide in a direction orthogonal to and coincident with the optical axis and pivotally supported around an axis in the orthogonal direction; ,
The base end portion is connected via the second universal reflection joint means, and the laser beam output from the second universal reflection joint means is at least half the length of the movable distance of the robot arm. A second optical waveguide propagating along the axis;
Provided at the tip of the second waveguide and the laser light output head, the laser light output from the second waveguide is reflected in the direction coincident with the optical axis and in the orthogonal direction, and in each direction. A third universal reflection joint means pivotally supported so as to be rotatable about an axis,
And a laser beam oscillation means by the first to third universal reflection coupling means for the first and second waveguides that swing and rotate following the arm that swings and rotates as the robot is driven. Laser beam processing device that can guide the laser beam output from the laser beam and output it from the laser beam output head to the resin molded product
請求項1において、第1自在反射継手手段は、レーザ発振手段から出力されるレーザ光を光軸の直交方向へ反射する第1反射部と第1反射部に対して該第1反射部から出力される反射レーザ光の光軸周りへ回動可能に支持されると共に第1反射部から出力される反射レーザ光を光軸と直交方向へ反射する第2反射部及び第2反射部に対して第2反射部から出力される反射レーザ光の光軸周りへ回動可能に支持されると共に第2反射部から出力される反射レーザ光を光軸と直交方向へ反射して第1導波管内へ軸線と光軸を一致させて出力する第3反射部により構成した樹脂成形品のレーザ光処理装置。 2. The first universal reflection coupling means according to claim 1, wherein the first reflection part means outputs the laser beam outputted from the laser oscillation means in the direction orthogonal to the optical axis, and outputs from the first reflection part to the first reflection part. The second reflection unit and the second reflection unit are supported so as to be rotatable around the optical axis of the reflected laser beam and reflect the reflected laser beam output from the first reflection unit in a direction orthogonal to the optical axis. The reflection laser beam output from the second reflection unit is supported so as to be rotatable around the optical axis, and the reflection laser beam output from the second reflection unit is reflected in the direction orthogonal to the optical axis to be within the first waveguide. A laser beam processing apparatus for a resin molded product constituted by a third reflecting portion that outputs a light beam with its axis parallel to the optical axis. 請求項1において、第2自在反射継手手段は、第1導波管により伝播されたレーザ光を光軸直交方向へ反射する第4反射部及び第4反射部に対して該第4反射部から出力される反射レーザ光の光軸周りへ回動可能に支持されると共に第4反射部から出力される反射レーザ光を光軸と直交方向へ反射して第2導波管内へ軸線と光軸を一致させて出力する第5反射部により構成した樹脂成形品のレーザ光処理装置。 2. The second universal reflection coupling means according to claim 1, wherein the second reflection coupling means reflects the laser beam propagated by the first waveguide in the direction orthogonal to the optical axis from the fourth reflection unit with respect to the fourth reflection unit. The output reflected laser light is supported so as to be rotatable around the optical axis, and the reflected laser light output from the fourth reflecting portion is reflected in a direction orthogonal to the optical axis so as to enter the second waveguide. A laser beam processing apparatus for a resin molded product constituted by a fifth reflecting section that outputs the same in the same manner. 請求項1において、第3自在反射継手手段は、第2導波管により伝播されたレーザ光を光軸の直交方向へ反射する第6反射部と第6反射部に対して該第6反射部から出力される反射レーザ光の光軸周りへ回動可能に支持されると共に第6反射部から出力される反射レーザ光を光軸と直交方向へ反射する第7反射部及び第7反射部に対して第7反射部から出力される反射レーザ光の光軸周りへ回動可能に支持されると共に第7反射部から出力される反射レーザ光を光軸と直交方向へ反射してレーザ光出力ヘッド内へ軸線と光軸を一致させて出力する第8反射部により構成した樹脂成形品のレーザ光処理装置。 3. The sixth reflective portion according to claim 1, wherein the third universal reflective joint means reflects the laser beam propagated by the second waveguide in a direction orthogonal to the optical axis and the sixth reflective portion. The seventh and seventh reflecting parts are supported so as to be rotatable around the optical axis of the reflected laser light output from the sixth reflecting part and reflect the reflected laser light output from the sixth reflecting part in the direction orthogonal to the optical axis. On the other hand, it is supported so as to be rotatable around the optical axis of the reflected laser beam output from the seventh reflecting portion, and the reflected laser beam output from the seventh reflecting portion is reflected in the direction orthogonal to the optical axis to output the laser beam. A laser beam processing apparatus for a resin molded product constituted by an eighth reflecting section for outputting an axis and an optical axis in the head. 請求項1乃至4のいずれかにおいて、レーザ光出力ヘッドは、第2アームの先端部に設けられた電動モータにより第2アームの長手方向周りへ回動可能に設けられる樹脂成形品のレーザ光処理装置。 5. The laser light processing of a resin molded product according to claim 1, wherein the laser light output head is rotatably provided around the longitudinal direction of the second arm by an electric motor provided at the tip of the second arm. apparatus. 請求項5において、レーザ光出力ヘッドは、第2アームの長手方向と直交する方向に軸線を有した電動モータの駆動により搖動可能に設けられる樹脂成形品のレーザ光処理装置。 6. The laser light processing apparatus for a resin molded product according to claim 5, wherein the laser light output head is provided so as to be swingable by driving an electric motor having an axis in a direction orthogonal to the longitudinal direction of the second arm.
JP2011271181A 2011-12-12 2011-12-12 Laser light processing equipment for resin molded products Active JP5930523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011271181A JP5930523B2 (en) 2011-12-12 2011-12-12 Laser light processing equipment for resin molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011271181A JP5930523B2 (en) 2011-12-12 2011-12-12 Laser light processing equipment for resin molded products

Publications (2)

Publication Number Publication Date
JP2013121612A true JP2013121612A (en) 2013-06-20
JP5930523B2 JP5930523B2 (en) 2016-06-08

Family

ID=48773912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011271181A Active JP5930523B2 (en) 2011-12-12 2011-12-12 Laser light processing equipment for resin molded products

Country Status (1)

Country Link
JP (1) JP5930523B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103660255A (en) * 2013-12-31 2014-03-26 亚普汽车部件股份有限公司 Trimming mechanism of plastic oil tank and method of trimming plastic oil tank
CN106583922A (en) * 2017-02-16 2017-04-26 上海嘉强自动化技术有限公司 Five-shaft laser robot
CN114799496A (en) * 2022-06-10 2022-07-29 广东隆崎机器人有限公司 Transmission mechanism for laser robot, support arm module and laser robot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106914702A (en) * 2017-05-08 2017-07-04 上海大道包装隔热材料有限公司 Using the device and method of laser ablation burr

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133695A (en) * 1987-08-28 1989-05-25 Robomatix Ltd Laser beam cutting head
JPH02133188A (en) * 1988-11-10 1990-05-22 Toshiba Corp Laser beam machining robot
JPH02229689A (en) * 1989-03-02 1990-09-12 Toshiba Corp Laser beam machining robot
JPH04138892A (en) * 1990-09-28 1992-05-13 Fanuc Ltd Laser beam machine
JPH058079A (en) * 1991-07-03 1993-01-19 Mitsubishi Electric Corp Laser beam machine
JPH05245681A (en) * 1992-03-06 1993-09-24 Fuji Heavy Ind Ltd Laser beam machine
JPH05329674A (en) * 1992-05-28 1993-12-14 Kawasaki Heavy Ind Ltd Method for adjusting optical axis and device therefor
JP2004090026A (en) * 2002-08-30 2004-03-25 Inst Of Physical & Chemical Res Information writing device
JP2004243335A (en) * 2003-02-12 2004-09-02 Toyoda Iron Works Co Ltd Laser beam guided apparatus for articulated robot, and laser beam machining mechanism
JP2006346698A (en) * 2005-06-14 2006-12-28 Nissan Motor Co Ltd Laser machining apparatus and laser machining method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01133695A (en) * 1987-08-28 1989-05-25 Robomatix Ltd Laser beam cutting head
JPH02133188A (en) * 1988-11-10 1990-05-22 Toshiba Corp Laser beam machining robot
JPH02229689A (en) * 1989-03-02 1990-09-12 Toshiba Corp Laser beam machining robot
JPH04138892A (en) * 1990-09-28 1992-05-13 Fanuc Ltd Laser beam machine
JPH058079A (en) * 1991-07-03 1993-01-19 Mitsubishi Electric Corp Laser beam machine
JPH05245681A (en) * 1992-03-06 1993-09-24 Fuji Heavy Ind Ltd Laser beam machine
JPH05329674A (en) * 1992-05-28 1993-12-14 Kawasaki Heavy Ind Ltd Method for adjusting optical axis and device therefor
JP2004090026A (en) * 2002-08-30 2004-03-25 Inst Of Physical & Chemical Res Information writing device
JP2004243335A (en) * 2003-02-12 2004-09-02 Toyoda Iron Works Co Ltd Laser beam guided apparatus for articulated robot, and laser beam machining mechanism
JP2006346698A (en) * 2005-06-14 2006-12-28 Nissan Motor Co Ltd Laser machining apparatus and laser machining method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103660255A (en) * 2013-12-31 2014-03-26 亚普汽车部件股份有限公司 Trimming mechanism of plastic oil tank and method of trimming plastic oil tank
CN106583922A (en) * 2017-02-16 2017-04-26 上海嘉强自动化技术有限公司 Five-shaft laser robot
CN114799496A (en) * 2022-06-10 2022-07-29 广东隆崎机器人有限公司 Transmission mechanism for laser robot, support arm module and laser robot

Also Published As

Publication number Publication date
JP5930523B2 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
JP5930523B2 (en) Laser light processing equipment for resin molded products
ES2291802T3 (en) PROCEDURE AND DEVICE FOR LASER WELDING.
JP5004020B2 (en) Articulated manipulator and robot system
KR102458112B1 (en) Drive machanism of two degrees of freedom
JP6467644B2 (en) Laser processing robot
EP0823303A1 (en) Laser processing device
US10836053B2 (en) Industrial robot
JP2012517900A (en) Head for precision machining of a three-dimensional body continuously and machining apparatus equipped with the head
JP2006055954A (en) Robot for laser beam machining, and robot system
JPH0352791A (en) Articulated arm type industrial laser robot
EP0927596B1 (en) An operative head for a laser machine
CN110842357A (en) Laser welding mechanism and laser equipment applying same
JP2004306057A (en) Laser beam welding equipment
JP2006346698A (en) Laser machining apparatus and laser machining method
CN113241579A (en) Universal laser light source module
JP4661315B2 (en) Laser welding apparatus, laser welding system, and laser welding method
KR20190103275A (en) Articulated welding robot
JP2012192499A (en) Parallel link robot
JP2606011B2 (en) Articulated robot
JPH02133188A (en) Laser beam machining robot
CN115090619B (en) Laser cleaning head with steerable light beam, workpiece inner wall cleaning device and cleaning method thereof
JPH0833994A (en) Laser beam machine
JP6898484B2 (en) Robots and methods
KR200297093Y1 (en) Driving devices for tilting shaft of articulated welding robot
JP5988681B2 (en) Processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent or registration of utility model

Ref document number: 5930523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250