JP2013121176A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2013121176A
JP2013121176A JP2011269750A JP2011269750A JP2013121176A JP 2013121176 A JP2013121176 A JP 2013121176A JP 2011269750 A JP2011269750 A JP 2011269750A JP 2011269750 A JP2011269750 A JP 2011269750A JP 2013121176 A JP2013121176 A JP 2013121176A
Authority
JP
Japan
Prior art keywords
light
mixing coefficient
pixel value
pixel
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011269750A
Other languages
English (en)
Inventor
Yong Liu
勇 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung R&D Institute Japan Co Ltd
Original Assignee
Samsung Yokohama Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Yokohama Research Institute filed Critical Samsung Yokohama Research Institute
Priority to JP2011269750A priority Critical patent/JP2013121176A/ja
Publication of JP2013121176A publication Critical patent/JP2013121176A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Color Television Image Signal Generators (AREA)

Abstract

【課題】赤外光を検出する画素に混在する可視光成分を考慮した上で、混合係数を高精度に求める。
【解決手段】撮像装置100は、赤色光、緑色光及び青色光の可視光と、赤外光のそれぞれを単独で発光量を増加させながら順次に発光する4色LEDストロボ102と、複数の画素から構成され、赤色光、緑色光及び青色光の可視光と赤外光の画素値をそれぞれ取得する画素を有する撮像素子104と、赤外光の発光量を増加させた際の可視光のそれぞれの画素値の変化に基づいて可視光の画素値に赤外光が混在する割合を示す混合係数を算出し、可視光の発光量を増加させた際の赤外光の変化に基づいて赤外光の画素値に可視光が混在する割合を示す混合係数を算出する混合係数算出部108aと、混合係数算出部108aが算出した混合係数を記憶するメモリ110と、を備える。
【選択図】図1

Description

本発明は、撮像装置に関する。
近時においては、デジタルカメラなどの撮像装置等において、下記の特許文献1〜3、非特許文献1に記載されているように、赤、緑、青(RGB)の画素値を、近赤外線成分を考慮して求める方法が知られている。
特開2011−15087号公報 特開2007−202108号公報 特開2011−29810号公報 特開2010−98358号公報
香山信三、田中圭介、廣瀬裕 「監視カメラ用昼夜兼用イメージセンサ」 Panasonic Technical Journal Vol.54 No.4 Jan.2009
赤色光、緑色光、青色光を検出する各画素(R画素、G画素、B画素)には、それぞれ、RGB成分に加えて近赤外光成分(IR成分)が混在して検出される。このため、赤色光、緑色光、青色光を検出する各画素にIR成分が含まれている割合を示す混合係数を製品出荷前に測定しておき、混在するIR成分を分離する必要がある。このため、製品出荷前に煩雑な工程が必要となり、製造コストの上昇といった問題が生じていた。
また、製品出荷前に混合係数を測定した場合、経年劣化等の要因により、その後に混合係数の値が変化してしまうことが想定される。このため、製品出荷後に長期間に渡って、IR成分を精度良く分離することは困難であった。
更に、赤外光を検出するIR画素は、近赤外光を透過させるフィルタを備えていたとしても、IR成分に加えてRGB成分が混在して検出される。しかしながら、上記従来の方法では、いずれもIR画素にRGB成分が混在していることは想定していなかった。例えば特許文献4では、R+IR画素、G+IR画素、B+IR画素、IR画素を加重平均で近似し、得られた擬似中心IR画素を差し引くことでRGB各画素を求めているが、擬似中心IR画素を差し引く際は比重係数を考慮しておらず、IR画素にRGB成分が混在していることは想定していなかった。一方、非特許文献1によれば、赤、緑、青の原信号から近赤外専用画素の近赤外信号成分を除去する差分処理を施しても、R画素には9%、G画素には4%、B画素21%の赤外光成分が残存している。また、非特許文献1の分光感度の測定値を見ても、IR画素には一定量のRGB成分が混在していることが分かる。従って、IR画素にRGB成分が混在していないという仮定条件下で混合係数を算出すると、混合係数を精度良く求めることは困難である。
このため、混合係数を用いて画素値を補償した場合においても、補償した画素値の精度が低下してしまい、所望の高画質の画像を得ることができないという問題が生じていた。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、赤外光を検出する画素に混在する可視光成分を考慮した上で、混合係数を高精度に求めることが可能な、新規かつ改良された撮像装置を提供することにある。
上記課題を解決するために、本発明のある観点によれば、赤色光、緑色光及び青色光の可視光と、赤外光のそれぞれを単独で発光量を増加させながら順次に発光する発光部と、複数の画素から構成され、赤色光、緑色光及び青色光の可視光と赤外光の画素値をそれぞれ取得する画素を有する撮像素子と、前記赤外光の発光量を増加させた際の前記可視光のそれぞれの画素値の変化に基づいて可視光の画素値に赤外光が混在する割合を示す混合係数を算出し、前記可視光の発光量を増加させた際の前記赤外光の変化に基づいて赤外光の画素値に可視光が混在する割合を示す混合係数を算出する混合係数算出部と、前記混合係数算出部が算出した混合係数を記憶する混合係数記憶部と、を備える撮像装置が提供される。
上記構成によれば、赤外光の発光量を増加させた際の可視光のそれぞれの画素値の変化に基づいて可視光の画素値に赤外光が混在する割合を示す混合係数を算出し、可視光の発光量を増加させた際の前記赤外光の変化に基づいて赤外光の画素値に可視光が混在する割合を示す混合係数が算出される。従って、製品出荷時に混合係数を測定する必要がなく、製品出荷後に発光部を発光させることで混合係数を逐次算出することができる。
前記混合係数算出部は、前記赤色光、緑色光、及び青色光の発光量をそれぞれ増加させた際の前記赤外光の画素値の変化に基づいて前記赤外光の画素値に対して前記赤色光、緑色光、及び青色光が混在する割合を示す第1、第2及び第3の混合係数をそれぞれ算出する。この構成によれば、赤外光の画素値に対して前記赤色光、緑色光、及び青色光が混在していることを考慮した上で、赤外光の画素値に対して赤色光、緑色光、及び青色光が混在する割合を示す第1、第2及び第3の混合係数をそれぞれ算出することができる。
前記混合係数算出部は、前記赤外光の発光量を増加させた際の前記赤色光の画素値の変化に基づいて前記赤色光の画素値に赤外光が混在する割合を示す第4の混合係数を算出し、前記混合係数算出部は、前記赤外光の発光量を増加させた際の前記緑色光の画素値の変化に基づいて前記緑色光の画素値に赤外光が混在する割合を示す第5の混合係数を算出し、前記混合係数算出部は、前記赤外光の発光量を増加させた際の前記青色光の画素値の変化に基づいて前記青色光の画素値に赤外光が混在する割合を示す第6の混合係数を算出する。この構成によれば、発光部の発光により、赤色光の画素値に赤外光が混在する割合を示す第4の混合係数、緑色光の画素値に赤外光が混在する割合を示す第5の混合係数、青色光の画素値に赤外光が混在する割合を示す第6の混合係数をそれぞれ算出することができる。
前記混合係数に基づいて、前記可視光及び前記赤外光の画素値を補償する画素値補償部を更に備える。この構成によれば、混合係数に基づいて画素値が補償されるため、赤色光、緑色光及び青色光の可視光と、赤外光のそれぞれの画素値を高精度に取得することができる。
前記撮像素子は、赤色光、緑色光、青色光、及び赤外光のそれぞれの画素値を取得する4つの画素を1単位とする計測ブロックを有し、前記画素値補償部は、各計測ブロックで取得された前記混合係数を用いて各計測ブロックで取得された画素値を補償する。この構成によれば、計測ブロック毎に取得された混合係数を用いて各計測ブロックで取得された画素値が補償されるため、各計測ブロックの画素値を高精度に取得することができる。
前記撮像素子は、赤色光、緑色光、青色光、及び赤外光のそれぞれの画素値を取得する4つの画素を1単位とする計測ブロックを有し、前記画素値補償部は、任意の計測ブロックを含む所定の領域の画素において、前記任意の計測ブロックで取得された前記混合係数を用いて前記所定の領域で取得された画素値を補償する。この構成によれば、任意の計測ブロックを含む所定の領域の画素においては、任意の計測ブロックで取得された混合係数が用いられるため、混合係数を記憶するメモリ領域を最小限に抑えることができる。
本発明によれば、赤外光を検出する画素に混在する可視光成分を考慮した上で、混合係数を高精度に求めることが可能となる。
本発明の一実施形態に係る撮像装置の構成を示す模式図である。 撮像素子の4つの画素からなる計測ブロックを示す模式図である。 赤外光の発光量Iの増加に伴い、撮像素子104のR+IR画素、G+IR画素、B+IR画素の画素値が変化する様子を説明するための特性図である。 撮像素子の撮像領域の一例を示す模式図である。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
図1は、本発明の一実施形態に係る撮像装置100の構成を示す模式図である。まず、図1を参照して、本発明の一実施形態に係る撮像装置100の構成について説明する。図1に示すように、撮像装置100は、4色LEDストロボ(4 color LED Strobe)102、撮像素子(Day/Night Image Sensor)104、LED制御部(Controller)106、プロセッサ(Processor)108、メモリ(Memory)110、を有して構成される。
撮像装置100は、赤外線照射機能を有するカメラであり、通常の赤外線LEDを赤外光・赤・緑・青の4色LEDを置き換えた構成の4色LEDストロボ102を有している。なお、この4色LEDストロボ102には反射枠と拡散板を設ける必要がなく、赤外光・赤・緑・青の4つのLEDチップを透明のパッケージに入れるだけで構成することができる。
図1に示す構成において、4色LEDストロボ102は、被写体(Object)200に対して、R(赤)、G(緑)、B(青)の各色の可視光を照射し、また、IR(赤外光)を照射する。撮像素子104は、撮像光学系(不図示)によって被写体200の像が結像される撮像面を備えており、被写体200の像に応じた画素値を1画素(ピクセル)単位で出力する。LED制御部106は、4色LEDストロボ102の発光を制御する。プロセッサ108は、撮像装置100の全体を制御する。特にプロセッサ108は、撮像素子104で取得された画素値に基づいて、混合係数を演算する処理を行う。メモリ110は、プロセッサ108が算出した混合係数を記憶する。また、メモリ110は、プロセッサ108を機能させるためのプログラムを格納することができる。
図2は、撮像素子104の4つの画素からなる計測ブロックを示す模式図である。図2に示すように、撮像素子104は、R+IR画素104a、G+IR画素104b、B+IR画素104c、及びIR画素104dが1つの計測ブロックとして構成されている。R+IR画素104a、G+IR画素104b、B+IR画素104cには、カラーフィルタが配列され、R+IR画素104aは赤色光を、G+IR画素104bは緑色光を、B+IR画素104cは青色光をそれぞれ検出し、光電変換により電気信号(画素値)に変換する。なお、上述したように、R+IR画素104a、G+IR画素104b、B+IR画素104cは、各色の可視光とともに近赤外光も検出する。
また、IR画素104dは、近赤外光のみが透過可能なフィルタを備える画素である。このような構成によれば、昼間はR+IR画素104a、G+IR画素104b、B+IR画素104cで検出すされる近赤外光成分を含んだ赤、緑、青の原信号からIR画素104dの近赤外成分を差分除去することで、赤、緑、青の各信号を得ることができ、昼間であっても機械式IRカットフィルタが不要となる。
プロセッサ108は、製品出荷後、実際にユーザが使用する過程において、混合係数を求めるため、撮像素子104内の全計測ブロックで計測された画素値に対して以下で説明する処理を行う。このため、プロセッサ108は、混合係数算出部108aを備えている。また、プロセッサ108は、求めた混合係数を用いてR+IR画素104a、G+IR画素104b、B+IR画素104c、及びIR画素104dの各画素値を補償する画素値補償部108bを備える。混合係数算出部108a、および画素値補償部108bは、プロセッサ108とこれを機能させるプログラム(ソフトウェア)から構成することができる。この場合において、そのプログラムは、撮像装置100が備えるメモリ110、または他の記憶部に格納されることができる。なお、混合係数算出部108a、および画素値補償部108bは、回路(ハードウェア)から構成することもできる。
前述したように、分光感度測定結果によれば、R+IR画素104a、G+IR画素104b、B+IR画素104cにはRGB成分と一定量のIR成分が混在している。また、IR画素104dには、IR成分と一定量のRGB成分が混ざっている。これらの関係は次式で表すことができる。
Figure 2013121176
上式において、Rmix,Gmix,Bmix,Imixは、撮像素子104のR+IR画素104a、G+IR画素104b、B+IR画素104c、IR画素104dの画素値であり、R,G,B,Iは、撮像素子104に照射される赤色光、緑色光、青色光、赤外光の強度である。また、Kxx(KRI,KGI,KBI,KIR、KIG、KIB)は、それぞれの画素における各照射光の混合係数である。従って、各混合係数を求めることで、R,G,B,Iを高精度に算出することができる。
混合係数の測定モードでは、先ず、撮像装置100によって撮像される画像の画面内に動きのある物体がない状態で、4色LEDストロボ102の赤外光、赤色光、緑色光、青色光の発光量が順次に増加するように制御し、下式に示すように、式(1)〜式(3)に対してIの偏微分(式(5)〜式(7))、式(4)に対してR,G,Bの偏微分(式(8)〜式(10))を求める。
Figure 2013121176
そして、式(5)〜式(10)で得られた混合係数Kxx(KRI,KGI,KBI,KIR、KIG、KIB)を式(1)〜式(4)に代入し、連立1次方程式を解くことで照射光の各成分R,G,B,Iを求めることができる。
一方、非特許文献1では、IR画素にIR成分と一定量のRGB成分が混在していることを想定していないため、KIR、KIG、KIBの値は0である。つまり、非特許文献1では、上述した式(4)において、Imix=Iとしている。このため、非特許文献1による混合係数の算出は正確でなく、照射光の各成分R,G,B,Iを精度良く求めることができない。
混合係数を取得するための4色LEDストロボ102の単独発光は、撮像装置100の電源オン時などに定期的に行う。これにより、混合係数の経時的な変化に対応することができ、常に高画質の画像を撮像することができる。混合係数を求める前提として、撮像装置100が静止しているか否かを判定する。具体的には、撮像素子104で複数のフレームを撮像し、前後数フレームに渡ってフレーム間の画素値の差分が小さい場合は、被写体200が静止していると見なし、混合係数の測定モードに入る。なお、混合係数の測定モードは、通常の撮影モードが設定されていない場合に設定される。
混合係数の測定モードでは、先ず、LED制御部106が、4色LEDストロボ102の赤外光の発光量を連続増加するように制御する。これにより、4色LEDストロボ102の赤外光の発光部が、その発光量を連続的に増加するように発光する。
図3は、赤外光の発光量Iの増加に伴い、撮像素子104のR+IR画素104a、G+IR画素104b、B+IR画素104cの画素値が変化する様子を説明するための特性図である。また、図3は、4色LEDストロボ102の赤色光、緑色光、青色光(R,G,B)の増加に伴い、IR画素104dの画素値が変化する様子を説明するための特性図である。
図3に基づいて、赤外光の発光量Iの増加に伴い、R+IR画素104aの画素値が変化する様子を説明する。図3のx軸は4色LEDストロボ102から発光される赤外光成分I、y軸はR+IR画素104aの画素値Rmixを示している。図3に示すように、赤外光成分Iの増加に伴って画素値Rmixが増加する。そして、画素値Rmixが値cよりも増加すると、赤外光成分Iと画素値Rmixとの関係が線形になる。
図3に示すように、赤外光LEDの発光量Iが連続増加すると、線形領域にあるx0,x1,y0,y1の4つの値を取得することができる。ここで、x0,x1は発光量Iであり、y0,y1は、発光量x0,x1に対応するR+IR画素104aの画素値Rmixである。線形領域にあるx0,x1,y0,y1の4つの値を取得することで、線形領域の傾きを求めることができるため、式(5)における赤外光成分Iについての偏微分が計算可能となり、KRIを算出することができる。なお、この偏微分によるKRIの算出は、以下の式で表すこともできる。
RI=(y1−y0)/(x1−x0)
ここで、上述したように、測定は撮像装置100が静止している条件下で行われる。従って、画像の変化に影響を受けることなく、発光量Iの増加に伴う画素値Rmixの変化を精度良く求めることができる。
同様にして、赤外光の発光量Iの増加に伴い、撮像素子104のG+IR画素104b、B+IR画素104cの画素値が変化した際の特性をそれぞれ取得し、G+IR画素104b、B+IR画素104cについてもx0,x1,y0,y1の4つの値をそれぞれ取得する。これにより、G+IR画素104b、B+IR画素104cについても、赤外光成分Iについての偏微分が計算可能となる。これにより、式(6)、式(7)における赤外光成分Iについての偏微分が計算可能となり、KGI,KBIを算出することができる。
このようにして、プロセッサ108は、赤外光の発光量Iの増加に伴い、R+IR画素104a、G+IR画素104b、B+IR画素104cの画素値が変化する様子を取得し、R+IR画素104a、G+IR画素104b、B+IR画素104cのそれぞれにおいて、x0,x1,y0,y1の4つの値をそれぞれ取得する。そして、式(5)〜式(7)で示したように、Rmix,Gmix,Bmixに対して赤外光成分Iの偏微分を計算することで、KRI,KGI,KBIを求めることができる。なお、R+IR画素104a、G+IR画素104b、B+IR画素104cの画素値は同時に取得できるため、赤外光を1回だけ単独発光させて、発光量Iを増加させることによって、R+IR画素104a、G+IR画素104b、B+IR画素104cの画素値を取得することができ、これに基づいて混合係数KRI,KGI,KBIを求めることができる。
次に、測定モードにおいて、LED制御部106が4色LEDストロボ102の赤色光の発光量Rを連続増加するように制御する。ここでも、図3を用いて説明すると、図3のx軸を赤色光成分R、y軸をIR画素104dの画素値Imixとする。赤色光LEDの発光量Rが連続増加すると、上記と同様に線形領域にてx0,x1,y0,y1の4つの値を取得できるため、赤色光成分Rについての偏微分が計算可能である。
これにより、プロセッサ108は、式(8)に示すように、Imixに対して赤色光成分Rの偏微分を計算することで、KIRを求めることができる。
次に、測定モードにおいて、LED制御部106が4色LEDストロボ102の緑色光の発光量Gを連続増加するように制御する。ここでも、図3のx軸を緑色光成分G、y軸をIR画素104dの画素値Imixとして説明する。緑色光LEDの発光量Gが連続増加すると線形領域にあるx0,x1,y0,y1の4つの値が取得できるため、緑色光成分Gについての偏微分が計算可能である。
これにより、プロセッサ108は、式(9)に示すように、Imixに対して緑色光成分Gの偏微分を計算することで、KIGを求めることができる。
次に、測定モードにおいて、LED制御部106が4色LEDストロボ102の青色光の発光量Bを連続増加するように制御する。ここでも、図3のx軸を青色光成分B、y軸をIR画素の画素値Imixとして説明する。青色光LEDの発光量Bが連続増加すると、線形領域にあるx0,x1,y0,y1の4つの値が取得できるため、青色光成分Bについての偏微分が計算可能である。
これにより、プロセッサ108は、式(10)に示すように、Imixに対して青色光成分Bの偏微分を計算することで、KIBを求めることができる。
プロセッサ108は、以上の処理で求めた混合係数KRI,KGI,KBI,KIR、KIG、KIBを画素毎にメモリ110に記憶させる。図2に示す4つの画素の画素値に基づいて求めた混合係数KRI,KGI,KBI,KIR、KIG、KIBは、この4画素の混合係数としてメモリ110に記憶される。他の4つの画素の画素値に基づいて求めた混合係数は、当該他の4つの画素の混合係数としてメモリ110に記憶される。メモリ110では、次回の測定モードで新しい混合係数が取得されるまでの間は、混合係数KRI,KGI,KBI,KIR、KIG、KIBを保持し続ける。そして、次回の測定モードで新しい混合係数が取得されると、メモリ110に記憶された混合係数KRI,KGI,KBI,KIR、KIG、KIBが更新される。
基本的には、撮像素子104内の全計測ブロックにそれぞれの混合係数を持たせることが可能である。つまり、撮像素子104内の全画素の各混合係数を求めることが可能である。一方、メモリ110の容量が不足する場合等においては、撮像素子104の撮影領域を幾つかの小領域に分割して、小領域内の計測ブロックが共通の混合係数を使用することも可能である。
図4は、撮像素子104の撮像領域の一例を示す模式図である。図4に示すように、撮像素子104の撮像領域は、図2に示した計測ブロックが複数配置されて構成されている。図4の例では、図2に示す計測ブロックが9個配置された領域を示している。この場合において、図4に示す9個の計測ブロックについては、その中心の一点鎖線A1で囲んだ1つの計測ブロックと共通の混合係数を使用することでメモリ110の容量を抑えることが可能である。
なお、上述した測定モードの手順において、4色LEDストロボ102の発光順序は特に限定されるものではなく、上述した発光順序はその一例である。従って、4色LEDストロボ102の発光順序は適宜変更することができる。
次に、通常の撮影モードの処理について説明する。測定モードが終了し、通常の撮影モードで撮影を行う際には、メモリに保存した混合係数KRI,KGI,KBI,KIR、KIG、KIBを式(1)〜式(4)に代入する。そして、連立1次方程式を解くことで、IR成分を含まない真の画素値R,G,B、及びRGB成分を含まない真のIRの画素値Iを求める。これにより、測定モードで得られた混合係数KRI,KGI,KBI,KIR、KIG、KIBに基づいて、RGBの画素値及びIRの画素値を高精度に求めることが可能である。
この際、メモリ110に4画素の測定ブロック毎に混合係数が記憶されている場合は、その4画素で取得された画素値に対して、その4画素に対応する混合係数を用いることで、真の画素値を精度良く求めることができる。また、複数の測定ブロックで共通の混合係数が記憶されている場合は、その複数の測定ブロックで取得された各画素値に対して共通の混合係数を用いて真の画素値を算出する。
以上説明したように本実施形態によれば、製品出荷前に混合係数を測定する作業を必要とせず、実際の運用環境下で自律的に可視光成分、赤外光成分の混合係数を計算することができる。従って、外部環境の影響を受けることなく、正確な混合係数の分離結果を得ることができ、混合係数に基づいて画質を大幅に向上することができる。また、非特許文献1ではカラーフィルタの環境耐久性を高めるために複雑な製造プロセスを経て、混合係数の経時変化を抑えるようにしているため、製造コストが大幅に上昇してしまうが、本実施形態では混合係数を逐次算出することができるため、光学多層膜を形成する必要がなく、一定の時間間隔で混合係数を計算することができる。従って、経時変化が生じやすく、比較的環境耐久性の低い撮像素子(センサー)にも適用することが可能である。さらに、式(4)に混合係数KIR、KIG、KIBを設けることで、赤外光のカラーフィルタが可視光成分を完全にカットできない場合にも対応できるようになるため、混合係数をより詳細に求めることができる。従って、撮像素子のカラーフィルタに対する要求を低減することができ、製造コストを低下することが可能である。これにより、カラーフィルタ選択の自由度が高まるとともに、経年変化等による混合係数の変動の影響を抑止できるため、カラーフィルタの製造コストを低減することが可能となる。
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
100 撮像装置
102 4色LEDストロボ
104 撮像素子
108 プロセッサ
108a 混合係数算出部
108b 画素値補償部
110 メモリ

Claims (6)

  1. 赤色光、緑色光及び青色光の可視光と、赤外光のそれぞれを単独で発光量を増加させながら順次に発光する発光部と、
    複数の画素から構成され、赤色光、緑色光及び青色光の可視光と赤外光の画素値をそれぞれ取得する画素を有する撮像素子と、
    前記赤外光の発光量を増加させた際の前記可視光のそれぞれの画素値の変化に基づいて可視光の画素値に赤外光が混在する割合を示す混合係数を算出し、前記可視光の発光量を増加させた際の前記赤外光の変化に基づいて赤外光の画素値に可視光が混在する割合を示す混合係数を算出する混合係数算出部と、
    前記混合係数算出部が算出した混合係数を記憶する混合係数記憶部と、
    を備えることを特徴とする、撮像装置。
  2. 前記混合係数算出部は、前記赤色光、緑色光、及び青色光の発光量をそれぞれ増加させた際の前記赤外光の画素値の変化に基づいて前記赤外光の画素値に対して前記赤色光、緑色光、及び青色光が混在する割合を示す第1、第2及び第3の混合係数をそれぞれ算出する、ことを特徴とする、請求項1に記載の撮像装置。
  3. 前記混合係数算出部は、前記赤外光の発光量を増加させた際の前記赤色光の画素値の変化に基づいて前記赤色光の画素値に赤外光が混在する割合を示す第4の混合係数を算出し、
    前記混合係数算出部は、前記赤外光の発光量を増加させた際の前記緑色光の画素値の変化に基づいて前記緑色光の画素値に赤外光が混在する割合を示す第5の混合係数を算出し、
    前記混合係数算出部は、前記赤外光の発光量を増加させた際の前記青色光の画素値の変化に基づいて前記青色光の画素値に赤外光が混在する割合を示す第6の混合係数を算出する、ことを特徴とする、請求項2に記載の撮像装置。
  4. 前記混合係数に基づいて、前記可視光及び前記赤外光の画素値を補償する画素値補償部を更に備えることを特徴とする、請求項1に記載の撮像装置。
  5. 前記撮像素子は、赤色光、緑色光、青色光、及び赤外光のそれぞれの画素値を取得する4つの画素を1単位とする計測ブロックを有し、
    前記画素値補償部は、各計測ブロックで取得された前記混合係数を用いて各計測ブロックで取得された画素値を補償することを特徴とする、請求項4に記載の撮像装置。
  6. 前記撮像素子は、赤色光、緑色光、青色光、及び赤外光のそれぞれの画素値を取得する4つの画素を1単位とする計測ブロックを有し、
    前記画素値補償部は、任意の計測ブロックを含む所定の領域の画素において、前記任意の計測ブロックで取得された前記混合係数を用いて前記所定の領域で取得された画素値を補償することを特徴とする、請求項4に記載の撮像装置。
JP2011269750A 2011-12-09 2011-12-09 撮像装置 Pending JP2013121176A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011269750A JP2013121176A (ja) 2011-12-09 2011-12-09 撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011269750A JP2013121176A (ja) 2011-12-09 2011-12-09 撮像装置

Publications (1)

Publication Number Publication Date
JP2013121176A true JP2013121176A (ja) 2013-06-17

Family

ID=48773609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011269750A Pending JP2013121176A (ja) 2011-12-09 2011-12-09 撮像装置

Country Status (1)

Country Link
JP (1) JP2013121176A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109672828A (zh) * 2019-01-04 2019-04-23 深圳英飞拓科技股份有限公司 基于光路白平衡的低照度提升装置及低照度提升方法
JP2020027979A (ja) * 2018-08-09 2020-02-20 キヤノン株式会社 撮像装置及び撮像方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027979A (ja) * 2018-08-09 2020-02-20 キヤノン株式会社 撮像装置及び撮像方法
JP7150514B2 (ja) 2018-08-09 2022-10-11 キヤノン株式会社 撮像装置及び撮像方法
CN109672828A (zh) * 2019-01-04 2019-04-23 深圳英飞拓科技股份有限公司 基于光路白平衡的低照度提升装置及低照度提升方法

Similar Documents

Publication Publication Date Title
CN105865630B (zh) 用于显示测试的比色系统
CN110232885B (zh) 一种显示屏亮度测量方法、系统及终端
JP5796348B2 (ja) 特徴量推定装置および特徴量推定方法、並びにコンピュータープログラム
JP5124705B1 (ja) はんだ高さ検出方法およびはんだ高さ検出装置
JP2014122847A (ja) 画像補正装置、画像補正プログラム、画像補正方法
KR102653207B1 (ko) 외관 검사 장치 및 그 광학계 자동 캘리브레이션 방법
JP2007093477A (ja) 色測定装置の校正方法および校正装置、色測定方法、色測定装置
US9088756B2 (en) Systems and methods for camera image correction and white balancing
JP2013121176A (ja) 撮像装置
JP5997578B2 (ja) クロストーク補正係数算出方法およびクロストーク補正係数算出機能を備えた透明膜の膜厚測定装置
JP6716295B2 (ja) 処理装置、撮像装置、処理方法、プログラム、および記録媒体
TWI384159B (zh) 校準光源的方法
JP5082137B2 (ja) 投射型画像表示装置、画像表示システム、および色むら補正方法
KR102088125B1 (ko) 측색계
US10091443B2 (en) Camera system and method for inspecting and/or measuring objects
JP2013113588A (ja) 光特性ムラ測定装置及び光特性ムラ測定方法
JP2002350355A (ja) 光沢ムラ評価装置、光沢ムラ評価方法及び該方法を実行するためのプログラムを格納したコンピュータ読み取り可能な記憶媒体
KR20170122649A (ko) 디스플레이 유닛을 검사하기 위한 기술
JP6311283B2 (ja) 画像読取装置及びプログラム
CN110174351A (zh) 颜色测量装置及方法
JP6813749B1 (ja) 対象物の色を数値化する方法、信号処理装置、および撮像システム
JP2016008954A (ja) 物体形状推定装置及びプログラム
JP2002323376A (ja) 色情報計測方法と表示色評価方法及び表示色調整方法並びにこれらを利用した装置それにプロジェクタの製造方法
JP4082166B2 (ja) 光検出装置、プロジェクタ、光検出方法、プログラムおよび記録媒体
US10567713B2 (en) Camera and method of producing color images